CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;16 of 16 results for author: <span class="mathjax">艩tefan膷i膷, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="艩tefan膷i膷, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=%C5%A0tefan%C4%8Di%C4%8D%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="艩tefan膷i膷, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17323">arXiv:2312.17323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17323">pdf</a>, <a href="https://arxiv.org/format/2312.17323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic skyrmion and multi-$q$ spin dynamics in centrosymmetric Gd$_2$PdSi$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telling%2C+M+T+F">M. T. F. Telling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">P. J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17323v2-abstract-short" style="display: inline;"> Skyrmions are particle-like vortices of magnetization with non-trivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SkL) hosts with net-zero DMI, where both the SkL stabilization mechanisms and magnetic ground states remain controversial. We address these by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17323v2-abstract-full').style.display = 'inline'; document.getElementById('2312.17323v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17323v2-abstract-full" style="display: none;"> Skyrmions are particle-like vortices of magnetization with non-trivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SkL) hosts with net-zero DMI, where both the SkL stabilization mechanisms and magnetic ground states remain controversial. We address these by investigating both static and dynamic spin properties of the centrosymmetric SkL host Gd$_2$PdSi$_3$ using muon spectroscopy ($渭$SR). We find that spin fluctuations in its non-coplanar SkL phase are highly anisotropic, implying that spin anisotropy plays a prominent role in stabilizing this phase. We also observe strongly-anisotropic spin dynamics in the ground-state (IC-1) incommensurate magnetic phase of the material, indicating that it is a meron-like multi-$q$ structure. In contrast, the higher-field, coplanar IC-2 phase is found to be single-$q$ with nearly-isotropic spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17323v2-abstract-full').style.display = 'none'; document.getElementById('2312.17323v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 3 figures. Supplemental Material: 6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08381">arXiv:2111.08381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08381">pdf</a>, <a href="https://arxiv.org/format/2111.08381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Investigations of the size distribution and magnetic properties of nanoparticles of Cu$_2$OSeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08381v1-abstract-short" style="display: inline;"> Skyrmions in confined geometries have been a subject of increasing interest due to the different properties that they exhibit compared to their bulk counterparts. In this study, nanoparticles of skyrmion-hosting $\text{Cu}_{2}\text{OSeO}_{3}$ have been synthesised using a precipitation method followed by thermal treatment. This enables us to produce nanoparticles whose mean size varies from tens o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08381v1-abstract-full').style.display = 'inline'; document.getElementById('2111.08381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08381v1-abstract-full" style="display: none;"> Skyrmions in confined geometries have been a subject of increasing interest due to the different properties that they exhibit compared to their bulk counterparts. In this study, nanoparticles of skyrmion-hosting $\text{Cu}_{2}\text{OSeO}_{3}$ have been synthesised using a precipitation method followed by thermal treatment. This enables us to produce nanoparticles whose mean size varies from tens of nanometers to a few micrometers by varying the temperature and duration of the thermal decomposition of the precursor. These sizes span the $\sim 63$~nm diameter of skyrmions in $\text{Cu}_{2}\text{OSeO}_{3}$, allowing investigations into how the magnetic state changes when the size of the geometrical confinement is similar to and smaller than the size of an isolated magnetic skyrmion. AC susceptibility measurements performed on nanoparticles with a size distribution from 15 to 250 nm show a change in the magnetic phase diagram compared to bulk $\text{Cu}_{2}\text{OSeO}_{3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08381v1-abstract-full').style.display = 'none'; document.getElementById('2111.08381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09273">arXiv:2105.09273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09273">pdf</a>, <a href="https://arxiv.org/format/2105.09273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.043149">10.1103/PhysRevResearch.3.043149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Evidence of a change of Exchange Anisotropy Sign with Temperature in Zn-Substituted Cu2OSeO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nielsen%2C+P">P. Nielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venero%2C+D+A">D. Alba Venero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09273v1-abstract-short" style="display: inline;"> We report small-angle neutron scattering from the conical state in a single crystal of Zn-substituted Cu2OSeO3. Using a 3D vector-field magnet to reorient the conical wavevector, our measurements show that the magnitude of the conical wavevector changes as a function of crystallographic direction. These changes are caused by the anisotropic exchange interaction (AEI), whose magnitude transitions f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09273v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09273v1-abstract-full" style="display: none;"> We report small-angle neutron scattering from the conical state in a single crystal of Zn-substituted Cu2OSeO3. Using a 3D vector-field magnet to reorient the conical wavevector, our measurements show that the magnitude of the conical wavevector changes as a function of crystallographic direction. These changes are caused by the anisotropic exchange interaction (AEI), whose magnitude transitions from a maxima to a minima along the &lt;111&gt; and &lt;100&gt; crystallographic directions respectively. We further find that the AEI constant undergoes a change of sign from positive to negative with decreasing temperature. Unlike in the related compound FeGe, where similar behaviour of the AEI induces a reorientation of the helical wavevector, we show that the zero field helical wavevector in (Cu0.98Zn0.02)2OSeO3 remains along the &lt;100&gt; directions at all temperatures due to the competing fourth-order magnetocrystalline anisotropy becoming dominant at lower temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09273v1-abstract-full').style.display = 'none'; document.getElementById('2105.09273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14813">arXiv:2012.14813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14813">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bloch point-mediated skyrmion annihilation in three dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">D. Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khanh%2C+N+D">N. D. Khanh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seki%2C+S">S. Seki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14813v1-abstract-short" style="display: inline;"> The creation and annihilation of magnetic skyrmions are mediated by three dimensional topological defects known as Bloch points. Investigation of such dynamical processes is important both for understanding the emergence of exotic topological spin textures, and for future engineering of skyrmions in technological applications. However, while the annihilation of skyrmions has been extensively inves&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14813v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14813v1-abstract-full" style="display: none;"> The creation and annihilation of magnetic skyrmions are mediated by three dimensional topological defects known as Bloch points. Investigation of such dynamical processes is important both for understanding the emergence of exotic topological spin textures, and for future engineering of skyrmions in technological applications. However, while the annihilation of skyrmions has been extensively investigated in two dimensions, in three dimensions the phase transitions are considerably more complex. We report field-dependent experimental measurements of metastable skyrmion lifetimes in an archetypal chiral magnet, revealing two distinct regimes. Comparison to supporting three-dimensional geodesic nudged elastic band simulations demonstrates that these correspond to skyrmion annihilation into either the helical or conical states, each exhibiting a different transition mechanism. The results highlight that the lowest energy magnetic configuration of the system plays a crucial role when considering the emergence of topological spin structures via defect-mediated dynamics, and their stability in future devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14813v1-abstract-full').style.display = 'none'; document.getElementById('2012.14813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12994">arXiv:2011.12994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.12994">pdf</a>, <a href="https://arxiv.org/format/2011.12994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.134414">10.1103/PhysRevB.104.134414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics in bulk MnNiGa and Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn investigated by muon spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loudon%2C+J+C">J. C. Loudon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Twitchett-Harrison%2C+A+C">A. C. Twitchett-Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Telling%2C+M">M. Telling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12994v2-abstract-short" style="display: inline;"> We report muon spin relaxation and magnetometry studies of bulk Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and MnNiGa, two materials which have recently been proposed to host topological magnetic states in thin lamella (antiskyrmions for Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and biskyrmions for MnNiGa), and show spin reorientation transitions in bulk. These measurements shed light on the magnetic dynamics suroun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12994v2-abstract-full').style.display = 'inline'; document.getElementById('2011.12994v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12994v2-abstract-full" style="display: none;"> We report muon spin relaxation and magnetometry studies of bulk Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and MnNiGa, two materials which have recently been proposed to host topological magnetic states in thin lamella (antiskyrmions for Mn$_{1.4}$Pt$_{0.9}$Pd$_{0.1}$Sn and biskyrmions for MnNiGa), and show spin reorientation transitions in bulk. These measurements shed light on the magnetic dynamics surounding the two magnetic phase transitions in each material. In particular, we demonstrate that the behaviour approaching the higher temperature transition in both samples is best understood by considering a slow decrease in the frequency of dynamics with temperature, rather than the sharp critical slowing down typical of second order transitions. Furthermore, at low temperatures the two samples both show spin dynamics over a broad range of frequencies that persist below the spin reorienation transition. The dynamic behavior we identify gives new insight into the bulk magnetism of these materials that may help underpin the stabilization of the topologically non-trivial phases that are seen in thin lamellae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12994v2-abstract-full').style.display = 'none'; document.getElementById('2011.12994v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 134414 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10330">arXiv:2011.10330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10330">pdf</a>, <a href="https://arxiv.org/format/2011.10330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.024428">10.1103/PhysRevB.103.024428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz dynamics in skyrmion systems probed with muon-spin relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawkhead%2C+Z">Z. Hawkhead</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10330v3-abstract-short" style="display: inline;"> We present longitudinal-field muon-spin relaxation (LF $渭$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL phase of Cu$_2$OSeO$_3$ exhibits emergent dynamic behavior at megahertz frequencies, likely due to collective excitations, allowing the SkL to be identified f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10330v3-abstract-full').style.display = 'inline'; document.getElementById('2011.10330v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10330v3-abstract-full" style="display: none;"> We present longitudinal-field muon-spin relaxation (LF $渭$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL phase of Cu$_2$OSeO$_3$ exhibits emergent dynamic behavior at megahertz frequencies, likely due to collective excitations, allowing the SkL to be identified from the $渭$SR response. From measurements following different cooling protocols and calculations of the muon stopping site, we suggest that the metastable SkL is not the majority phase throughout the bulk of this material at the fields and temperatures where it is often observed. The dynamics of bulk Co$_8$Zn$_9$Mn$_3$ are well described by $\simeq~2$ GHz excitations that reduce in frequency near the critical temperature, while in Co$_8$Zn$_8$Mn$_4$ we observe similar behavior over a wide range of temperatures, implying that dynamics of this kind persist beyond the SkL phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10330v3-abstract-full').style.display = 'none'; document.getElementById('2011.10330v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 024428 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14326">arXiv:2010.14326</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Charge Density Waves and Coplanar Magnetism in Gd2PdSi3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14326v3-abstract-short" style="display: inline;"> The intermetallic Gd2PdSi3 has recently generated a lot of excitement after reports that it hosts chiral magnetic nano-skyrmions despite its centrosymmetric crystal structure. Using magnetic-field-dependent polarized resonant elastic x-ray scattering (REXS), we find than an unexpected incommensurate charge density wave (CDW) appears below the ordering transition with a wavevector equal to that of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14326v3-abstract-full').style.display = 'inline'; document.getElementById('2010.14326v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14326v3-abstract-full" style="display: none;"> The intermetallic Gd2PdSi3 has recently generated a lot of excitement after reports that it hosts chiral magnetic nano-skyrmions despite its centrosymmetric crystal structure. Using magnetic-field-dependent polarized resonant elastic x-ray scattering (REXS), we find than an unexpected incommensurate charge density wave (CDW) appears below the ordering transition with a wavevector equal to that of the magnetic textures. Furthermore, we show these incommensurate magnetic textures in Gd2PdSi3 are highly anisotropic, with the vast majority of the spin modulation lying within the hexagonal ab-plane. This observation is not compatible with the previously suggested non-coplanar magnetic textures and coplanar alternatives are discussed. Our results thus refute the interpretation of the observed large anomalous Hall and Nernst effects in Gd2PdSi3 as arising from topologically-nontrivial magnetic skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14326v3-abstract-full').style.display = 'none'; document.getElementById('2010.14326v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We have recently collected new measurements which conflict the main claims of this paper. We will reinterpret our old results together with the new data in due course and will report our findings once the analysis is complete and a better understanding of the complete picture has been achieved</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.13450">arXiv:2010.13450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.13450">pdf</a>, <a href="https://arxiv.org/format/2010.13450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.114413">10.1103/PhysRevMaterials.4.114413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure and magnetism of the skyrmion hosting family GaV$_4$S$_{8-y}$Se$_y$ with low levels of substitutions between $0 \leq y \leq 0.5$ and $7.5 \leq y\leq 8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">C. Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.13450v1-abstract-short" style="display: inline;"> Polycrystalline members of the GaV$_4$S$_{8-y}$Se$_y$ family of materials with small levels of substitution between $0 \leq y \leq 0.5$ and $7.5 \leq y\leq 8$ have been synthesized in order to investigate their magnetic and structural properties. Substitutions to the skyrmion hosting parent compounds GaV$_4$S$_8$ and GaV$_4$Se$_8$, are found to suppress the temperature of the cubic to rhombohedral&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13450v1-abstract-full').style.display = 'inline'; document.getElementById('2010.13450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.13450v1-abstract-full" style="display: none;"> Polycrystalline members of the GaV$_4$S$_{8-y}$Se$_y$ family of materials with small levels of substitution between $0 \leq y \leq 0.5$ and $7.5 \leq y\leq 8$ have been synthesized in order to investigate their magnetic and structural properties. Substitutions to the skyrmion hosting parent compounds GaV$_4$S$_8$ and GaV$_4$Se$_8$, are found to suppress the temperature of the cubic to rhombohedral structural phase transition that occurs in both end compounds and to create a temperature region around the transition where there is a coexistence of these two phases. Similarly, the magnitude of the magnetization and temperature of the magnetic transition are both suppressed in all substituted compounds until a glassy-like magnetic state is realized. There is evidence from the $ac$ susceptibility data that skyrmion lattices with similar dynamics to those in GaV$_4$S$_8$ and GaV$_4$Se$_8$ are present in compounds with very low levels of substitution, $0 &lt; y&lt; 0.2$ and $7.8 &lt; y &lt; 8$, however, these states vanish at higher levels of substitution. The magnetic properties of these substituted materials are affected by the substitution altering exchange pathways and resulting in the creation of increasingly disordered magnetic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13450v1-abstract-full').style.display = 'none'; document.getElementById('2010.13450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mat. 4, 114413 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10464">arXiv:2006.10464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.10464">pdf</a>, <a href="https://arxiv.org/format/2006.10464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.104424">10.1103/PhysRevB.102.104424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pinning of Helimagnetic Phase Transitions in Zn-Substituted Skyrmion Host Cu$_2$OSeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S+H">S. H. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crisanti%2C+M">M. Crisanti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bewley%2C+O">O. Bewley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">R. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steadman%2C+P">P. Steadman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venero%2C+D+A">D. Alba Venero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cubitt%2C+R">R. Cubitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10464v1-abstract-short" style="display: inline;"> Magnetic skyrmions are nano-sized topological spin textures stabilized by a delicate balance of magnetic energy terms. The chemical substitution of the underlying crystal structure of skyrmion-hosting materials offers a route to manipulate these energy contributions, but also introduces additional effects such as disorder and pinning. While the effects of doping and disorder have been well studied&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10464v1-abstract-full').style.display = 'inline'; document.getElementById('2006.10464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10464v1-abstract-full" style="display: none;"> Magnetic skyrmions are nano-sized topological spin textures stabilized by a delicate balance of magnetic energy terms. The chemical substitution of the underlying crystal structure of skyrmion-hosting materials offers a route to manipulate these energy contributions, but also introduces additional effects such as disorder and pinning. While the effects of doping and disorder have been well studied in B20 metallic materials such as Fe$_{1-x}$Co$_x$Si and Mn$_{1-x}$Fe$_x$Si, the consequences of chemical substitution in the magnetoelectric insulator Cu$_2$OSeO$_3$ have not been fully explored. In this work, we utilize a combination of AC magnetometry and small angle neutron scattering to investigate the magnetic phase transition dynamics in pristine and Zn-substituted Cu$_2$OSeO$_3$. The results demonstrate that the first order helical-conical phase transition exhibits two thermally separated behavioural regimes: at high temperatures, the helimagnetic domains transform by large-scale, continuous rotations, while at low temperatures, the two phases coexist. Remarkably, the effects of pinning in the substituted sample are less prevalent at low temperatures, compared to high temperatures, despite the reduction of available thermal activation energy. We attribute this behaviour to the large, temperature-dependent, cubic anisotropy unique to Cu$_2$OSeO$_3$, which becomes strong enough to overcome the pinning energy at low temperatures. Consideration and further exploration of these effects will be crucial when engineering skyrmion materials towards future applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10464v1-abstract-full').style.display = 'none'; document.getElementById('2006.10464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 104424 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.00413">arXiv:2005.00413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.00413">pdf</a>, <a href="https://arxiv.org/format/2005.00413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-65676-9">10.1038/s41598-020-65676-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Establishing magneto-structural relationships in the solid solutions of the skyrmion hosting family of materials: GaV$_4$S$_{8-y}$Se$_{y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">Ale拧 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">Samuel J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">Martin R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">Clemens Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutmann%2C+M+J">Matthias J. Gutmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">Tom Lancaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.00413v2-abstract-short" style="display: inline;"> The GaV$_4$S$_{8-y}$Se$_y$ $(y = 0$ to $8)$ family of materials have been synthesized in both polycrystalline and single crystal form, and their structural and magnetic properties thoroughly investigated. Each of these materials crystallizes in the $F\bar{4}3m$ space group at ambient temperature. However, in contrast to the end members GaV$_4$S$_8$ and GaV$_4$Se$_8$, that undergo a structural tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00413v2-abstract-full').style.display = 'inline'; document.getElementById('2005.00413v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.00413v2-abstract-full" style="display: none;"> The GaV$_4$S$_{8-y}$Se$_y$ $(y = 0$ to $8)$ family of materials have been synthesized in both polycrystalline and single crystal form, and their structural and magnetic properties thoroughly investigated. Each of these materials crystallizes in the $F\bar{4}3m$ space group at ambient temperature. However, in contrast to the end members GaV$_4$S$_8$ and GaV$_4$Se$_8$, that undergo a structural transition to the $R3m$ space group at 42 and 41 K respectively, the solid solutions $(y = 1$ to $7)$ retain cubic symmetry down to 1.5 K. In zero applied field the end members of the family order ferromagnetically at 13 K (GaV$_4$S$_8$) and 18 K (GaV$_4$Se$_8$), while the intermediate compounds exhibit a spin-glass-like ground state. We demonstrate that the magnetic structure of GaV$_4$S$_8$ shows localization of spins on the V cations, indicating that a charge ordering mechanism drives the structural phase transition. We conclude that the observation of both structural and ferromagnetic transitions in the end members of the series in zero field is a prerequisite for the stabilization of a skyrmion phase, and discuss how the absence of these transitions in the $y = 1$ to $7$ materials can be explained by their structural properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00413v2-abstract-full').style.display = 'none'; document.getElementById('2005.00413v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 14 pages, 5 figures, 1 table. Supplementary information: 10 pages, 6 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08682">arXiv:2003.08682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.08682">pdf</a>, <a href="https://arxiv.org/format/2003.08682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.032001">10.1103/PhysRevResearch.2.032001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism and N茅el skyrmion dynamics in GaV$_{4}$S$_{8-y}$Se$_{y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawkhead%2C+Z">Z. Hawkhead</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomil%C5%A1ek%2C+M">M. Gomil拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">S. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08682v2-abstract-short" style="display: inline;"> We present an investigation of the influence of low-levels of chemical substitution on the magnetic ground state and N{\&#39; e}el skyrmion lattice (SkL) state in GaV$_4$S$_{8-y}$Se$_y$, where $y =0, 0.1, 7.9$, and $8$. Muon-spin spectroscopy ($渭$SR) measurements on $y=0$ and 0.1 materials reveal the magnetic ground state consists of microscopically coexisting incommensurate cycloidal and ferromagneti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08682v2-abstract-full').style.display = 'inline'; document.getElementById('2003.08682v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08682v2-abstract-full" style="display: none;"> We present an investigation of the influence of low-levels of chemical substitution on the magnetic ground state and N{\&#39; e}el skyrmion lattice (SkL) state in GaV$_4$S$_{8-y}$Se$_y$, where $y =0, 0.1, 7.9$, and $8$. Muon-spin spectroscopy ($渭$SR) measurements on $y=0$ and 0.1 materials reveal the magnetic ground state consists of microscopically coexisting incommensurate cycloidal and ferromagnetic environments, while chemical substitution leads to the growth of localized regions of increased spin density. $渭$SR measurements of emergent low-frequency skyrmion dynamics show that the SkL exists under low-levels of substitution at both ends of the series. Skyrmionic excitations persist to temperatures below the equilibrium SkL in substituted samples, suggesting the presence of skyrmion precursors over a wide range of temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08682v2-abstract-full').style.display = 'none'; document.getElementById('2003.08682v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 032001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07855">arXiv:1909.07855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07855">pdf</a>, <a href="https://arxiv.org/format/1909.07855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.013096">10.1103/PhysRevResearch.2.013096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stability and Metastability of Skyrmions in Thin Lamellae of Cu$_2$OSeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Twitchett-Harrison%2C+A+C">A. C. Twitchett-Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">R. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steadman%2C+P">P. Steadman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07855v2-abstract-short" style="display: inline;"> We report small angle X-ray scattering (SAXS) measurements of the skyrmion lattice in two 200~nm thick Cu$_2$OSeO$_3$ lamellae aligned with the applied magnetic field parallel to the out of plane [110] or [100] crystallographic directions. Our measurements show that the equilibrium skyrmion phase in both samples is expanded significantly compared to bulk crystals, existing between approximately 30&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07855v2-abstract-full').style.display = 'inline'; document.getElementById('1909.07855v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07855v2-abstract-full" style="display: none;"> We report small angle X-ray scattering (SAXS) measurements of the skyrmion lattice in two 200~nm thick Cu$_2$OSeO$_3$ lamellae aligned with the applied magnetic field parallel to the out of plane [110] or [100] crystallographic directions. Our measurements show that the equilibrium skyrmion phase in both samples is expanded significantly compared to bulk crystals, existing between approximately 30 and 50~K over a wide region of magnetic field. This skyrmion state is elliptically distorted at low fields for the [110] sample, and symmetric for the [100] sample, possibly due to crystalline anisotropy becoming more important at this sample thickness than it is in bulk samples. Furthermore, we find that a metastable skyrmion state can be observed at low temperature by field cooling through the equilibrium skyrmion pocket in both samples. In contrast to the behavior in bulk samples, the volume fraction of metastable skyrmions does not significantly depend on cooling rate. We show that a possible explanation for this is the change in the lowest temperature of the skyrmion state in this lamellae compared to bulk, without requiring different energetics of the skyrmion state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07855v2-abstract-full').style.display = 'none'; document.getElementById('1909.07855v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 013096 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.11508">arXiv:1901.11508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.11508">pdf</a>, <a href="https://arxiv.org/format/1901.11508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.174421">10.1103/PhysRevB.99.174421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the Formation Energy Barrier of Skyrmions in Zinc Substituted Cu$_2$OSeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crisanti%2C+M">M. Crisanti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barker%2C+C">C. Barker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=White%2C+J+S">J. S. White</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cubitt%2C+R">R. Cubitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.11508v3-abstract-short" style="display: inline;"> We report small angle neutron scattering (SANS) measurements of the skyrmion lattice in (Cu$_{0.976}$Zn$_{0.024}$)$_2$OSeO$_3$ under the application of an electric field. These measurements show an expansion of the skyrmion lattice stability region with electric field similar to that seen in pristine Cu$_2$OSeO$_3$. Furthermore, using time-resolved SANS, we observe the slow formation of skyrmions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11508v3-abstract-full').style.display = 'inline'; document.getElementById('1901.11508v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.11508v3-abstract-full" style="display: none;"> We report small angle neutron scattering (SANS) measurements of the skyrmion lattice in (Cu$_{0.976}$Zn$_{0.024}$)$_2$OSeO$_3$ under the application of an electric field. These measurements show an expansion of the skyrmion lattice stability region with electric field similar to that seen in pristine Cu$_2$OSeO$_3$. Furthermore, using time-resolved SANS, we observe the slow formation of skyrmions after an electric or magnetic field is applied, which has not been observed in pristine Cu$_2$OSeO$_3$ crystals. The measured formation times are dramatically longer than the corresponding skyrmion destruction times after the external field is removed, and increase exponentially from 100~s at 52.5~K to 10,000~s at 51.5~K. This thermally activated behaviour indicates an energy barrier for skyrmion formation of 1.57(2)~eV, the size of which demonstrates the huge cost for creating these complex chiral objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11508v3-abstract-full').style.display = 'none'; document.getElementById('1901.11508v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 174421 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02590">arXiv:1809.02590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02590">pdf</a>, <a href="https://arxiv.org/format/1809.02590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.014425">10.1103/PhysRevB.100.014425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Increased lifetime of metastable skyrmions by doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+M+T">M. T. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+R">R. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seki%2C+S">S. Seki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kagawa%2C+F">F. Kagawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">R. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steadman%2C+P">P. Steadman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ottley%2C+C+J">C. J. Ottley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crisanti%2C+M">M. Crisanti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cubitt%2C+R">R. Cubitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02590v2-abstract-short" style="display: inline;"> Previous observations of metastable magnetic skyrmions have shown that close to the equilibrium pocket the metastable state has a short lifetime, and therefore rapid cooling is required to generate a significant skyrmion population at low temperatures. Here, we report that the lifetime of metastable skyrmions in Cu$_2$OSeO$_3$ is extended by a factor of 50 with the introduction of only 2.5% zinc d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02590v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02590v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02590v2-abstract-full" style="display: none;"> Previous observations of metastable magnetic skyrmions have shown that close to the equilibrium pocket the metastable state has a short lifetime, and therefore rapid cooling is required to generate a significant skyrmion population at low temperatures. Here, we report that the lifetime of metastable skyrmions in Cu$_2$OSeO$_3$ is extended by a factor of 50 with the introduction of only 2.5% zinc doping, allowing over 50% of the population to survive when field-cooling at a rate of just 1 K/min. Our systematic study suggests that the lifetime enhancement is due to the removal of spins by the non-magnetic dopant, which entropically limits the number of skyrmion decay pathways. We expect that doping can be exploited to control the lifetime of the metastable SkL state in other chiral magnets, offering a method of engineering skyrmion materials towards application in future devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02590v2-abstract-full').style.display = 'none'; document.getElementById('1809.02590v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 Pages, 7 Figures, submission in progress</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 014425 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.04641">arXiv:1807.04641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.04641">pdf</a>, <a href="https://arxiv.org/format/1807.04641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.111402">10.1103/PhysRevMaterials.2.111402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of skyrmion lattice phase splitting in Zn-substituted Cu$_{2}$OSeO$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">A. 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moody%2C+S">S. Moody</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birch%2C+T+M">T. M. Birch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barnett%2C+S+A">S. A. Barnett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crisanti%2C+M">M. Crisanti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evans%2C+J+S+O">J. S. O. Evans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franke%2C+K+J+A">K. J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatton%2C+P+D">P. D. Hatton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">B. M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C+C">C. C. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+F">F. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.04641v1-abstract-short" style="display: inline;"> We present an investigation into the structural and magnetic properties of Zn-substituted Cu$_{2}$OSeO$_{3}$, a system in which the skyrmion lattice (SkL) phase in the magnetic field-temperature phase diagram was previously seen to split as a function of increasing Zn concentration. We find that splitting of the SkL is only observed in polycrystalline samples and reflects the occurrence of several&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04641v1-abstract-full').style.display = 'inline'; document.getElementById('1807.04641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.04641v1-abstract-full" style="display: none;"> We present an investigation into the structural and magnetic properties of Zn-substituted Cu$_{2}$OSeO$_{3}$, a system in which the skyrmion lattice (SkL) phase in the magnetic field-temperature phase diagram was previously seen to split as a function of increasing Zn concentration. We find that splitting of the SkL is only observed in polycrystalline samples and reflects the occurrence of several coexisting phases with different Zn content, each distinguished by different magnetic behaviour. No such multiphase behaviour is observed in single crystal samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04641v1-abstract-full').style.display = 'none'; document.getElementById('1807.04641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, includes supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 111402 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00412">arXiv:1806.00412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00412">pdf</a>, <a href="https://arxiv.org/format/1806.00412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.054428">10.1103/PhysRevB.98.054428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic phases of skyrmion-hosting GaV$_4$S$_{8-y}$Se$_{y}$ ($y = 0, 2, 4, 8$) probed with muon spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Franke%2C+K+J+A">K茅vin J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huddart%2C+B+M">Benjamin M. Huddart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">Thomas J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+F">Fan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">Stephen J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">Francis L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crisanti%2C+M">Marta Crisanti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barker%2C+J">Joel Barker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+S+J">Stewart J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0tefan%C4%8Di%C4%8D%2C+A">Ale拧 艩tefan膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">Tom Lancaster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00412v3-abstract-short" style="display: inline;"> We present the results of a muon-spin spectroscopy investigation of GaV$_4$S$_{8-y}$Se$_{y}$ with $y=0, 2, 4$ and 8. Zero-field measurements suggest that GaV$_{4}$Se$_{8}$ and GaV$_{4}$S$_{8}$ have distinct magnetic ground states, with the latter material showing an anomalous temperature-dependence of the local magnetic field. It is not possible to evolve the magnetic state continuously between th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00412v3-abstract-full').style.display = 'inline'; document.getElementById('1806.00412v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00412v3-abstract-full" style="display: none;"> We present the results of a muon-spin spectroscopy investigation of GaV$_4$S$_{8-y}$Se$_{y}$ with $y=0, 2, 4$ and 8. Zero-field measurements suggest that GaV$_{4}$Se$_{8}$ and GaV$_{4}$S$_{8}$ have distinct magnetic ground states, with the latter material showing an anomalous temperature-dependence of the local magnetic field. It is not possible to evolve the magnetic state continuously between these two systems, with the intermediate $y=2$ and $4$ materials showing glassy magnetic behaviour at low temperature. The skyrmion lattice (SkL) phase is evident in the $y=0$ and 8 materials through an enhanced response of the muon-spin relaxation to the emergent dynamics that accompany the SkL. For our polycrystalline samples of GaV$_4$Se$_{8}$, this enhanced dynamic response is confined to a smaller region of the magnetic field-temperature phase diagram than the previous reports of the SkL in single crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00412v3-abstract-full').style.display = 'none'; document.getElementById('1806.00412v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 054428 (2018) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10