CINXE.COM

Search results for: outdoor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: outdoor</title> <meta name="description" content="Search results for: outdoor"> <meta name="keywords" content="outdoor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="outdoor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="outdoor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 345</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: outdoor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Correlation between Indoor and Outdoor Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Radaideh">Jamal A. Radaideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20N.%20Shatnawi"> Ziad N. Shatnawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria%20air%20pollutants" title="criteria air pollutants">criteria air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20air%20pollution" title=" indoor/outdoor air pollution"> indoor/outdoor air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20ratio" title=" indoor/outdoor ratio"> indoor/outdoor ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/21435/correlation-between-indoor-and-outdoor-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Arfaeinia">Hossein Arfaeinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Nadali"> Azam Nadali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Asadgol"> Zahra Asadgol</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fahiminia"> Mohammad Fahiminia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20matter%20%28PM%29" title="particle matter (PM)">particle matter (PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air" title=" indoor air"> indoor air</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20air%20ions%20%28NAIs%29" title=" negative air ions (NAIs)"> negative air ions (NAIs)</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20building" title=" residential building"> residential building</a> </p> <a href="https://publications.waset.org/abstracts/76064/indoor-and-outdoor-concentration-of-pm10-pm25-and-pm1-in-residential-building-and-evaluation-of-negative-air-ions-nais-in-indoor-pm-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> An Empirical Study on the Effect of Physical Exercise and Outdoor Lighting on Pupils’ Eyesight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Jun%20Xiong">Zhang Jun Xiong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To explore the effect of physical exercise and outdoor lighting on the improvement of pupils' eyesight. Methods: A total of 208 first grade students in a primary school in Chengdu were enrolled in the study, 104 of whom were nearsighted and 104 had normal vision. They were randomly divided into indoor exercise group, outdoor exercise group, indoor control group and outdoor control group. Indoor and outdoor exercise groups performed moderate and high-intensity aerobic exercise three times a week, 60 minutes each time; The indoor and outdoor control groups had normal study and life during the experiment, without exercise intervention. The experiment lasted for one academic year, and the visual indicators of the subjects were tested before and after the experiment. Results: After the experiment, the visual fatigue index of the subjects with normal vision in the outdoor exercise group, indoor exercise group and outdoor control group decreased by 1.5 ± 2.89, 1.4 ± 3.05, 2.12 ± 2.66 respectively, and the diopter index decreased by 0.30D ± 0.09, 0.41D ± 0.16, 0.40D ± 0.19 respectively, while the visual fatigue score of the subjects with normal vision in the indoor control group increased by 2.3 ± 2.15, and the diopter decreased by 0.53D ± 0.22, There were significant differences in visual fatigue and diopter among the subjects with normal vision in each group (P<0.001). After the experiment, the visual fatigue index of the myopic subjects in the outdoor exercise group, indoor exercise group and outdoor control group decreased by 1.8 ± 1.95, 0.8 ± 1.81, 1.1 ± 1.85 respectively, and the diopter index decreased by 0.35D ± 0.21, 0.52D ± 0.24, 0.52D ± 0.15 respectively, while the visual fatigue score of the myopic subjects in the indoor control group increased by 1.3 ± 2.66, and the diopter decreased by 0.62D ± 0.29. There were significant differences between groups in visual fatigue and diopter (P<0.001). Conclusion: Both physical exercise and outdoor lighting can have a beneficial effect on children's vision, and the superposition effect of the two is better. It is suggested that outdoor physical exercise should be carried out more in primary school. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20exercise" title="physical exercise">physical exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20lighting" title=" outdoor lighting"> outdoor lighting</a>, <a href="https://publications.waset.org/abstracts/search?q=pupil" title=" pupil"> pupil</a>, <a href="https://publications.waset.org/abstracts/search?q=vision" title=" vision"> vision</a>, <a href="https://publications.waset.org/abstracts/search?q=myopia" title=" myopia"> myopia</a> </p> <a href="https://publications.waset.org/abstracts/161492/an-empirical-study-on-the-effect-of-physical-exercise-and-outdoor-lighting-on-pupils-eyesight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanjuan%20Sun">Chanjuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Hong"> Shijie Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialing%20Zhang"> Jialing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchao%20Guo"> Yuchao Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Zou"> Zhijun Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Huang"> Chen Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title="air temperature">air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature" title=" extreme air temperature"> extreme air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20difference" title=" air temperature difference"> air temperature difference</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20diseases" title=" respiratory diseases"> respiratory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/120913/childhood-respiratory-diseases-related-to-indoor-and-outdoor-air-temperature-in-shanghai-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Measurement and Evaluation of Outdoor Lighting Environment at Night in Residential Community in China: A Case Study of Hangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiantao%20Weng">Jiantao Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujie%20Zhao"> Yujie Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the improvement of living quality and demand for nighttime activities in China, the current situation of outdoor lighting environment at night needs to be assessed. Lighting environment at night plays an important role to guarantee night safety. Two typical residential communities in Hangzhou were selected. A comprehensive test method of outdoor lighting environment at night was established. The road, fitness area, landscape, playground and entrance were included. Field measurements and questionnaires were conducted in these two residential communities. The characteristics of residents&rsquo; habits and the subjective evaluation on different aspects of outdoor lighting environment at night were collected via questionnaire. A safety evaluation system on the outdoor lighting environment at night in the residential community was established. The results show that there is a big difference in illumination in different areas. The lighting uniformities of roads cannot meet the requirement of lighting standard in China. Residents pay more attention to the lighting environment of the fitness area and road than others. This study can provide guidance for the design and management of outdoor lighting environment at night. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residential%20community" title="residential community">residential community</a>, <a href="https://publications.waset.org/abstracts/search?q=lighting%20environment" title=" lighting environment"> lighting environment</a>, <a href="https://publications.waset.org/abstracts/search?q=night" title=" night"> night</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20measurement" title=" field measurement"> field measurement</a> </p> <a href="https://publications.waset.org/abstracts/109702/measurement-and-evaluation-of-outdoor-lighting-environment-at-night-in-residential-community-in-china-a-case-study-of-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Outdoor Visible Light Communication Channel Modeling under Fog and Smoke Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V%C3%A9ronique%20Georlette">Véronique Georlette</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Bette"> Sebastien Bette</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Brohez"> Sylvain Brohez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Point"> Nicolas Point</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Moeyaert"> Veronique Moeyaert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visible light communication (VLC) is a communication technology that is part of the optical wireless communication (OWC) family. It uses the visible and infrared spectrums to send data. For now, this technology has widely been studied for indoor use-cases, but it is sufficiently mature nowadays to consider the outdoor environment potentials. The main outdoor challenges are the meteorological conditions and the presence of smoke due to fire or pollutants in urban areas. This paper proposes a methodology to assess the robustness of an outdoor VLC system given the outdoor conditions. This methodology is put into practice in two realistic scenarios, a VLC bus stop, and a VLC streetlight. The methodology consists of computing the power margin available in the system, given all the characteristics of the VLC system and its surroundings. This is done thanks to an outdoor VLC communication channel simulator developed in Python. This simulator is able to quantify the effects of fog and smoke thanks to models taken from environmental and fire engineering scientific literature as well as the optical power reaching the receiver. These two phenomena impact the communication by increasing the total attenuation of the medium. The main conclusion drawn in this paper is that the levels of attenuation due to fog and smoke are in the same order of magnitude. The attenuation of fog being the highest under the visibility of 1 km. This gives a promising prospect for the deployment of outdoor VLC uses-cases in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20modeling" title="channel modeling">channel modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=fog%20modeling" title=" fog modeling"> fog modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20conditions" title=" meteorological conditions"> meteorological conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20wireless%20communication" title=" optical wireless communication"> optical wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20modeling" title=" smoke modeling"> smoke modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication" title=" visible light communication"> visible light communication</a> </p> <a href="https://publications.waset.org/abstracts/127864/outdoor-visible-light-communication-channel-modeling-under-fog-and-smoke-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hankun%20Lin">Hankun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqiang%20Xiao"> Yiqiang Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiaosheng%20Zhan"> Qiaosheng Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building fa&ccedil;ade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building fa&ccedil;ade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs&rsquo; effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the fa&ccedil;ade on 2<sup>nd</sup>-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the fa&ccedil;ade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outdoor%20shading%20devices" title="outdoor shading devices">outdoor shading devices</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-humid%20area" title=" hot-humid area"> hot-humid area</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/71054/research-on-the-impact-on-building-temperature-and-ventilation-by-outdoor-shading-devices-in-hot-humid-area-through-measurement-and-simulation-on-an-office-building-in-guangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20Pashneva">Daria Pashneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Julija%20Pauraite"> Julija Pauraite</a>, <a href="https://publications.waset.org/abstracts/search?q=Agne%20Minderyte"> Agne Minderyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadimas%20Dudoitis"> Vadimas Dudoitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Davuliene"> Lina Davuliene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Plauskaite"> Kristina Plauskaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Inga%20Garbariene"> Inga Garbariene</a>, <a href="https://publications.waset.org/abstracts/search?q=Steigvile%20Bycenkiene"> Steigvile Bycenkiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20carbon" title="black carbon">black carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=I%2FO%20ratio" title=" I/O ratio"> I/O ratio</a> </p> <a href="https://publications.waset.org/abstracts/135114/relationship-of-indoor-and-outdoor-levels-of-black-carbon-in-an-urban-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Interior Outdoors of Tomorrow: A Study on the Rising Influence of the &#039;Interior&#039; Vocabulary in the Design of Outdoor Spaces and the Fading Role of the Architectural Discourse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Imparato">Massimo Imparato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to identify the background of the contemporary trends in the design of commercial outdoors, and the reasons for the radical change in the traditional relationship between architecture and interior design, where the latter is taking over the construction of the visual narrative framing the users’ experience, which was ruled in the past by the architectural discourse. The design of commercial interiors, in fact, influences the way in which their outdoor spaces are organized and used more than ever before, and reflects the multi-faceted changes in the consumers’ behaviors and their interaction with the built environment. The study starts with the analysis of the evolution of sheltered outdoor spaces to achieve a broader understanding of the shift of meaning of subjects such as private and public domains, and to consider the varied ways of interaction/integration between the building and its exterior space. The study identifies the major social, physical and cultural aspects influencing the design of contemporary commercial outdoor spaces, suggests a new framework for their understanding and draws the methodological guidelines for the development of a structured approach to the design of commercial outdoors. The purpose of the paper is to stress the influence of the design of interiors into the public realm, to indicate new directions in this field of research, and to provide new methodological tools for interior design professionals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interior%20design" title="interior design">interior design</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20design" title=" landscape design"> landscape design</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20narrative" title=" visual narrative"> visual narrative</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20design" title=" outdoor design"> outdoor design</a> </p> <a href="https://publications.waset.org/abstracts/55889/interior-outdoors-of-tomorrow-a-study-on-the-rising-influence-of-the-interior-vocabulary-in-the-design-of-outdoor-spaces-and-the-fading-role-of-the-architectural-discourse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Preschoolers’ Involvement in Indoor and Outdoor Learning Activities as Predictors of Social Learning Skills in Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okoh%20Charity%20N.">Okoh Charity N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the predictive power of preschoolers’ involvement in indoor and outdoor learning activities on their social learning skills in Niger state, Nigeria. Two research questions and two null hypotheses guided the study. Correlational research design was employed in the study. The population of the study consisted of 8,568 Nursery III preschoolers across the 549 preschools in the five Local Education Authorities in Niger State. A sample of 390 preschoolers drawn through multistage sampling procedure. Two instruments; Preschoolers’ Learning Activities Rating Scale (PLARS) and Preschoolers’ Social Learning Skills Rating Scale (PSLSRS) developed by the researcher were used for data collection. The reliability coefficients obtained for the PLARS and PSLSRS were 0.83 and 0.82, respectively. Data collected were analyzed using simple linear regression. Results showed that 37% of preschoolers’ social learning skills are predicted by their involvement in indoor learning activities, which is statistically significant (p < 0.05). It also shows that 11% of preschoolers’ social learning skills are predicted by their involvement in outdoor learning activities, which is statistically significant (p < 0.05). Therefore, it was recommended among others, that government and school administrators should employ qualified teachers who will stand as role models for preschoolers’ social skills development and provide indoor and outdoor activities and materials for preschoolers in schools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preschooler" title="preschooler">preschooler</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20learning" title=" social learning"> social learning</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20activities" title=" indoor activities"> indoor activities</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20activities" title=" outdoor activities"> outdoor activities</a> </p> <a href="https://publications.waset.org/abstracts/150984/preschoolers-involvement-in-indoor-and-outdoor-learning-activities-as-predictors-of-social-learning-skills-in-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Path loss Signals Determination in a Selected Buildings in Kazaure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musefiu%20Aderinola">Musefiu Aderinola</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Amuda"> F. A. Amuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Outages of GSM signals may be experienced at some indoor locations even when there are strong outdoor receptions. This is often traced to the building penetration loss, which account for increased attenuation of received GSM signals level when a mobile signal device is moved indoor from outdoor. In this work, measurement of two existing GSM operators signal level were made outside and inside two selected buildings- mud and block which represent the prevalent building types in Kazaure, Jigawa State, Nigeria. A gionee P2 mobile phone with RF signal tracker software installed in it was used and the result shows that an average loss of 10.62dBm and 4.25dBm for mud and block buildings respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=penetration%20loss" title="penetration loss">penetration loss</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20reception" title=" outdoor reception"> outdoor reception</a>, <a href="https://publications.waset.org/abstracts/search?q=Gionee%20P2" title=" Gionee P2"> Gionee P2</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20signal%20tracker" title=" RF signal tracker"> RF signal tracker</a>, <a href="https://publications.waset.org/abstracts/search?q=mud%20and%20block%20building" title=" mud and block building"> mud and block building</a> </p> <a href="https://publications.waset.org/abstracts/49651/path-loss-signals-determination-in-a-selected-buildings-in-kazaure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Outdoor Physical Play as Critical to Early Childhood Development: Findings from Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20S.%20Alghamdi">Rana S. Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Play in early childhood education has been stifled across the world due to an overemphasis on academic achievement and a reduced focus on physical play and motor development. In Saudi Arabia, teachers reticent to allocate more time to play for fear of retribution from parents and administrators that children are losing academic seat time. This practice has proven to be detrimental to the social, emotional, physical, and cognitive development of children. Teachers are pressured to prioritize Arabic, math, and science while providing minimal time for physical activities. Administrators tend to push for an ever-increasing emphasis on academia in order to achieve higher test scores. However, young children often find it difficult to concentrate if they are not able to get out energy through physical play. Furthermore, many youth educators are not qualified to oversee physical activities, and many facilities are unprepared for safe, outdoor play. This results in children getting little to no outdoor activity. They are stuck in a strict academic regimen that may dampen the creativity and imagination easily fostered through cooperative play. For a stronger educational system and more well-rounded students, Saudi schools should enact policies that extend the number of required hours dedicated to outdoor and physical play. They should also offer training for unqualified teachers. This training should focus on the benefits of physical play and instruct them on how to facilitate these activities safely and effectively. School administrators must focus on providing adequate equipment and safe environments for the purpose of outdoor play and education. In doing so, they will be setting their students up for a successful future and improving their abilities in all aspects of education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20childhood%20education" title="early childhood education">early childhood education</a>, <a href="https://publications.waset.org/abstracts/search?q=play" title=" play"> play</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor" title=" outdoor"> outdoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/131621/outdoor-physical-play-as-critical-to-early-childhood-development-findings-from-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Effects of Surface Insulation of Silicone Rubber Composites in HVDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Hae%20Park">Min-Hae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Na%20Hwang"> Ju-Na Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheong-won%20Seo"> Cheong-won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Ho%20Kim"> Ji-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber" title=" silicone rubber"> silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20insulation" title=" surface insulation"> surface insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a> </p> <a href="https://publications.waset.org/abstracts/6213/effects-of-surface-insulation-of-silicone-rubber-composites-in-hvdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Outdoor Anomaly Detection with a Spectroscopic Line Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20J.%20G.%20Somsen">O. J. G. Somsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title="anomaly detection">anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopic%20line%20imaging" title=" spectroscopic line imaging"> spectroscopic line imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20detection" title=" outdoor detection "> outdoor detection </a> </p> <a href="https://publications.waset.org/abstracts/34329/outdoor-anomaly-detection-with-a-spectroscopic-line-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Exposure to Natural Outdoor Environment and Positive Health Impacts: A Synthesis of Empirical Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joris%20Zufferey">Joris Zufferey</a>, <a href="https://publications.waset.org/abstracts/search?q=Roderick%20John%20Lawrence"> Roderick John Lawrence</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides an overview of the state of the art about the positive health impacts of exposure to natural outdoor environments. It presents the results of a “review of reviews” in terms of empirical evidence and identifies some key questions. Finally, the authors stress the need to develop more interdisciplinary and systemic contributions. This synthesis of empirical research has been done as part of the EU- FP7 PHENOTYPE research project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Exposure" title="Exposure">Exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotype" title=" phenotype"> phenotype</a>, <a href="https://publications.waset.org/abstracts/search?q=salutogenic%20effects" title=" salutogenic effects"> salutogenic effects</a> </p> <a href="https://publications.waset.org/abstracts/26219/exposure-to-natural-outdoor-environment-and-positive-health-impacts-a-synthesis-of-empirical-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Producing Outdoor Design Conditions based on the Dependency between Meteorological Elements: Copula Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Jiao">Zhichao Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Farnham"> Craig Farnham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihui%20Yuan"> Jihui Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Emura"> Kazuo Emura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The outdoor design weather data are usually comprised of multiple meteorological elements for a 24-hour period separately, but the dependency between the elements is not well considered, which may cause an overestimation of selecting air-conditioning capacity. Considering the dependency between the air temperature and global solar radiation, we used the copula approach to model the joint distributions of those two weather elements and suggest a new method of selecting more credible outdoor design conditions based on the specific simultaneous occurrence probability of air temperature and global solar radiation. In this paper, the 10-year period hourly weather data from 2001 to 2010 in Osaka, Japan, was used to analyze the dependency structure and joint distribution, the result shows that the Joe-Frank copula fit for almost all hourly data. According to calculating the simultaneous occurrence probability and the common exceeding probability of air temperature and global solar radiation, the results have shown that the maximum difference in design air temperature and global solar radiation of the day is about 2 degrees Celsius and 30W/m2, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title="energy conservation">energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20weather%20database" title=" design weather database"> design weather database</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC" title=" HVAC"> HVAC</a>, <a href="https://publications.waset.org/abstracts/search?q=copula%20approach" title=" copula approach"> copula approach</a> </p> <a href="https://publications.waset.org/abstracts/145040/producing-outdoor-design-conditions-based-on-the-dependency-between-meteorological-elements-copula-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subagyo%20Yotopranoto">Subagyo Yotopranoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Wijayanti%20Sulistyawati"> Sri Wijayanti Sulistyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukmawati%20Basuki"> Sukmawati Basuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Armika"> Budi Armika</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoes%20Prijatna%20Dachlan"> Yoes Prijatna Dachlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=vector" title=" vector"> vector</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanjung" title=" Tanjung"> Tanjung</a>, <a href="https://publications.waset.org/abstracts/search?q=West%20Nusa%20Tenggara" title=" West Nusa Tenggara"> West Nusa Tenggara</a> </p> <a href="https://publications.waset.org/abstracts/17270/malaria-vector-situation-in-tanjung-subdistrict-west-lombok-regency-west-nusa-tenggara-province-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Determination of Thermal Properties of Crosslinked EVA in Outdoor Exposure by DSC, TSC and DMTA Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Agroui">Kamel Agroui</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Collins"> George Collins</a>, <a href="https://publications.waset.org/abstracts/search?q=Rydha%20Yaiche"> Rydha Yaiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to better understand the thermal characteristics and molecular behaviour of cured EVA before and after outdoor exposure. Thermal analysis methods as DSC, TSC and DMTA studies were conducted on EVA material. DSC experiments on EVA show a glass transition at about -33.1° C which is characteristic of crystalline phase and an endothermic peak at temperature of 55 °C characteristic of amorphous phase. The magnitude of the integrated temperature DSC peak for EVA is 14.4 J/g. The basic results by TSC technique is that there are two relaxations that are reproducibly observed in cured EVA encapsulant material. At temperature polarization 85°C, a low temperature relaxation occurs at –24.4°C and a high temperature relaxation occurs at +30.4ºC. DMTA results exhibit two tan peaks located at -14.9°C and +66.6°C. After outdoor exposure cured EVA by DSC analysis revealed two endothermic peaks due to post crystallization phenomenon and TSC suggests that prolonged exposure selectively effects the poly(vinyl acetate)-rich phase, with much less impact on the polyethylene-rich phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EVA" title="EVA">EVA</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation%20process" title=" encapsulation process"> encapsulation process</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title=" PV module"> PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a> </p> <a href="https://publications.waset.org/abstracts/185220/determination-of-thermal-properties-of-crosslinked-eva-in-outdoor-exposure-by-dsc-tsc-and-dmta-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> An Indoor Guidance System Combining Near Field Communication and Bluetooth Low Energy Beacon Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rung-Shiang%20Cheng">Rung-Shiang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Jun%20Hong"> Wei-Jun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jheng-Syun%20Wang"> Jheng-Syun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawuu%20W.%20Lin"> Kawuu W. Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Users rely increasingly on Location-Based Services (LBS) and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS) technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study presents a methodology based on GPS, Bluetooth Low Energy (BLE) beacons, and Near Field Communication (NFC) technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoor and outdoor on smartphones, with aim to provide users a smart life through this system. The presented system is implemented on a smartphone and evaluated on a student campus environment. The experimental results confirm the ability of the presented app to switch automatically from an outdoor mode to an indoor mode and to guide the user to the requested target destination via the shortest possible route. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beacon" title="beacon">beacon</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor" title=" indoor"> indoor</a>, <a href="https://publications.waset.org/abstracts/search?q=BLE" title=" BLE"> BLE</a>, <a href="https://publications.waset.org/abstracts/search?q=Dijkstra%20algorithm" title=" Dijkstra algorithm"> Dijkstra algorithm</a> </p> <a href="https://publications.waset.org/abstracts/49106/an-indoor-guidance-system-combining-near-field-communication-and-bluetooth-low-energy-beacon-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Outdoor Performances of Micro Scale Wind Turbine Stand Alone System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed.%20A.%20Hossam%20Eldin">Ahmed. A. Hossam Eldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20H.%20Youssef"> Karim H. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Kareem%20M.%20AboRas"> Kareem M. AboRas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent current rapid industrial development and energy shortage are essential problems, which face most of the developing countries. Moreover, increased prices of fossil fuel and advanced energy conversion technology lead to the need for renewable energy resources. A study, modelling and simulation of an outdoor micro scale stand alone wind turbine was carried out. For model validation an experimental study was applied. In this research the aim was to clarify effects of real outdoor operating conditions and the instantaneous fluctuations of both wind direction and wind speed on the actual produced power. The results were compared with manufacturer’s data. The experiments were carried out in Borg Al-Arab, Alexandria. This location is on the north Western Coast of Alexandria. The results showed a real max output power for outdoor micro scale wind turbine, which is different from manufacturer’s value. This is due to the fact that the direction of wind speed is not the same as that of the manufacturer’s data. The measured wind speed and direction by the portable metrological weather station anemometer varied with time. The blade tail response could not change the blade direction at the same instant of the wind direction variation. Therefore, designers and users of micro scale wind turbine stand alone system cannot rely on the maker’s name plate data to reach the required power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-turbine" title="micro-turbine">micro-turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=inverters" title=" inverters"> inverters</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a> </p> <a href="https://publications.waset.org/abstracts/32896/outdoor-performances-of-micro-scale-wind-turbine-stand-alone-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Dehra">Himanshu Dehra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20solar%20wall" title="photovoltaic solar wall">photovoltaic solar wall</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20ventilation" title=" passive ventilation"> passive ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20ventilation" title=" active ventilation"> active ventilation</a> </p> <a href="https://publications.waset.org/abstracts/68746/electrical-and-thermal-characteristics-of-a-photovoltaic-solar-wall-with-passive-and-active-ventilation-through-a-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Cows Milk Quality on Different Sized Dairy Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramut%C4%97%20Miseikien%C4%97">Ramutė Miseikienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Saulius%20Tusas"> Saulius Tusas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Somatic cell count and bacteria count are the main indicators of cow milk quality. The aim of this study was to analyze and compare parameters of milk quality in different-sized cows herds. Milk quality of ten dairy cows farms during one year period was analyzed. Dairy farms were divided into five groups according to number of cows in the farm (under 50 cows, 51–100 cows, 101–200 cows, 201–400 cows and more than 400 cows). The averages of somatic cells bacteria count in milk and milk freezing temperature were analyzed. Also, these parameters of milk quality were compared during outdoor (from May to September) and indoor (from October to April) periods. The largest number of SCC was established in the smallest farms, i.e., in farms under 50 cows and 51-100 cows (respectively 264±9,19 and 300±10,24 thousand/ml). Reliable link between the smallest and largest dairy farms and farms with 101-200 and 201-400 cows and count of somatic cells in milk has not been established (P > 0.05). Bacteria count had a low tendency to decrease when the number of cows in farms increased. The highest bacteria number was determined in the farms with 51-100 cows and the the lowest bacteria count was in milk when 201-400 and more than 401 cows were kept. With increasing the number of cows milk maximal freezing temperature decreases (significant negative trend), i. e, indicator is improving. It should be noted that in all farms milk freezing point never exceeded requirements (-0.515 °C). The highest difference between SCC in milk during the indoor and outdoor periods was established in farms with 201-400 cows (respectively 218.49 thousand/ml and 268.84 thousand/ml). However, the count of SC was significantly higher (P < 0.05) during outdoor period in large farms (201-400 and more cows). There was no significant difference between bacteria count in milk during both – outdoor and indoor – periods (P > 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=cow" title=" cow"> cow</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20size" title=" farm size"> farm size</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20cell%20count" title=" somatic cell count"> somatic cell count</a> </p> <a href="https://publications.waset.org/abstracts/69022/cows-milk-quality-on-different-sized-dairy-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> An Analysis of Structural Relationship among Perceived Restorative Environment, Relaxing Experience, Subjective Vitality and the Health-Related Quality of Life of the Participants in Nature-Based Urban Outdoor Recreation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Jin-Eui">Lee Jin-Eui</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Jin-OK"> Kim Jin-OK</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Seung-Hoon"> Han Seung-Hoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Nam-Jo"> Kim Nam-Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been a growing interest in wellbeing where individuals pursue a healthy life. About the half of world population is living in cities, and the urban environment is negatively affecting the mental health of modern people. The stress level of urban dwellers continues to increase, and they pursue nature-based recreation activities to relieve their stresses. It was found that activities in green spaces are improving concentration, relieving mental stress, and positively affecting physical activities and social relationship, thus enhancing the quality of life. For that reason, studies have been continuously conducted on the role of nature, which is a green space for pursuing health and relieving the stress of urban dwellers. Therefore, this study investigated the effect of experiencing a restoration from nature-based outdoor recreation activities of urban dwellers on their quality of life for the groups with high and low-stress levels. The results of the analysis against visitors who trekked and climbed Mt. Bukhan National Park in Seoul, South Korea showed that the effect of perceiving restorative environment on relaxation, calmness and subjective vitality, and the effect of relaxation and calmness on the quality of life were similar in both groups. However, it was found that subjective vitality affected the quality of life in the group with the high-stress group, while it did not show a significant result in the low-stress group. This is because the high-stress group increased their belief in the future and themselves and vitality through nature-based outdoor activities, which in turn affected their quality of life, while people in the low-stress group normally have subjective vitality in their daily lives, not affected by nature-based outdoor recreation. This result suggests that urban dwellers feel relaxed and calm through nature-based outdoor recreation activities with perceived restorative environment, and such activities enhance their quality of life. Therefore, a wellbeing policy is needed to enhance the quality of life of citizens by creating green spaces in city centers for the promotion of public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=healing%20tourism" title="healing tourism">healing tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=nature-based%20outdoor%20recreation" title=" nature-based outdoor recreation"> nature-based outdoor recreation</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20restorative%20environment" title=" perceived restorative environment"> perceived restorative environment</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a> </p> <a href="https://publications.waset.org/abstracts/41507/an-analysis-of-structural-relationship-among-perceived-restorative-environment-relaxing-experience-subjective-vitality-and-the-health-related-quality-of-life-of-the-participants-in-nature-based-urban-outdoor-recreation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Effect of Urban Informal Settlements and Outdoor Advertisement on the Quality of Built Environment and Urban Upgrading in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amao%20Funmilayo%20Lanrewaju">Amao Funmilayo Lanrewaju</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ogunlade"> T. Ogunlade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines the causes and characteristics of informal settlements and outdoor advertisement in the evaluation of quality of environment. The paper identifies the problems that have aided informal settlements to: Urbanization, poverty, growth of informal sector, non-affordability of land and housing shortage. The paper asserts that the informal settlements have serious adverse effects on the people’s health, their built environment and quality of life. The secondary data was obtained from books, journals and seminar papers. The paper argues that, although the urban upgrading possesses great potential for improving quality of built environment in informal settlements, there is a need to repackage the upgrading exercise so that majority can benefit from it. It is necessary to incorporate community participation into the urban upgrading in order to assist the very poor that cannot take care of their housing consumption needs. Therefore, government is encouraged to see informal settlements as a solution to new city planning rather than problem to the urban areas. This paper suggests the implementation of policies and planning, physical infrastructural development, social economic improvement, environment and health improvement. Government, private and communities interventions on informal settlements are required in order to prevent further decay for sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20environment" title="quality of environment">quality of environment</a>, <a href="https://publications.waset.org/abstracts/search?q=informal%20settlements" title=" informal settlements"> informal settlements</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20upgrading" title=" urban upgrading"> urban upgrading</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20advertisement" title=" outdoor advertisement"> outdoor advertisement</a> </p> <a href="https://publications.waset.org/abstracts/26292/effect-of-urban-informal-settlements-and-outdoor-advertisement-on-the-quality-of-built-environment-and-urban-upgrading-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Nonlinear Pollution Modelling for Polymeric Outdoor Insulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahisham%20Abd%20Rahman">Rahisham Abd Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20layer" title=" pollution layer"> pollution layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20outdoor%20insulators" title=" polymeric outdoor insulators"> polymeric outdoor insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/29392/nonlinear-pollution-modelling-for-polymeric-outdoor-insulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Potential Distribution and Electric Field Analysis around a Polluted Outdoor Polymeric Insulator with Broken Sheds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Kara">Adel Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Terrab"> Hocine Terrab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study of electric field distribution along of 72 kV polymeric outdoor insulators with broken sheds. Different cases of damaged insulators are modeled and both of clean and polluted cases. By 3D finite element analysis using the software package COMSOL Multiphysics 4.3b. The obtained results of potential and the electrical field distribution around insulators by 3D simulation proved that finite element computations is useful tool for studying insulation electrical field distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator" title=" insulator"> insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=broken%20sheds" title=" broken sheds"> broken sheds</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20distributions" title=" potential distributions"> potential distributions</a> </p> <a href="https://publications.waset.org/abstracts/31053/potential-distribution-and-electric-field-analysis-around-a-polluted-outdoor-polymeric-insulator-with-broken-sheds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minjeong%20Kim">Minjeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungchul%20Lee"> Seungchul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Janghorban%20Esfahani"> Iman Janghorban Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Tai%20Kim"> Jeong Tai Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=ChangKyoo%20Yoo"> ChangKyoo Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title="indoor air quality">indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20dynamic%20algorithm" title=" iterative dynamic algorithm"> iterative dynamic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20air%20information" title=" outdoor air information"> outdoor air information</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20control%20system" title=" ventilation control system"> ventilation control system</a> </p> <a href="https://publications.waset.org/abstracts/26099/optimal-trajectory-finding-of-idp-ventilation-control-with-outdoor-air-information-and-indoor-health-risk-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Performance Analysis of Different PSK Scheme on Receiver Sensitivity and Round Trip Distance for Chipless RFID System for UWB with Rayleigh Fading Channels in Outdoor NLOS Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Mahmud">Khalid Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an analytic approach is presented to evaluate the Bit Error Rate (BER) and round trip distance for a UWB chipless RFID system using diversity technique at the reader receiver using different modulation technique. The analysis is carried out with multiresonator based chipless RFID tags using frequency range from 3 GHz − 6 GHz and bandwidth of 500 M Hz in outdoor non-line-of-sight (NLOS) environment. SISO configuration is used to communicate from the reader to the tag and SIMO configuration is used do vice versa. Maximal Ratio Combining (MRC) technique is used in the reader. MPSK, DQPSK, DBPSK, BPSK, QPSK and DMPSK modulation techniques are considered with coherent demodulation to evaluate the BER performance. From the numerical analysis of the results, it is found that at a given BER maximum possible round trip distance can be achieved using DMPSK modulation technique. In addition, it has been proved that, while using DMPSK modulation technique, the application of diversity has very little effect on the overall improvement in reader receiver sensitivity and achievable distance. Finally the method not only proves to be a very good way for tag detection in case of a chipless RFID system but also gives a clear insight regarding the interrelationship between BER, read range, reader received power, number of receiving antenna in outdoor NLOS environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EGC" title="EGC">EGC</a>, <a href="https://publications.waset.org/abstracts/search?q=MRC" title=" MRC"> MRC</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a>, <a href="https://publications.waset.org/abstracts/search?q=read%20range" title=" read range"> read range</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a> </p> <a href="https://publications.waset.org/abstracts/39438/performance-analysis-of-different-psk-scheme-on-receiver-sensitivity-and-round-trip-distance-for-chipless-rfid-system-for-uwb-with-rayleigh-fading-channels-in-outdoor-nlos-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Esmail%20Seyedi%20Bariran">Seyed Esmail Seyedi Bariran</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Salleh%20Mohamed%20Sahari"> Khairul Salleh Mohamed Sahari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=route%20planning" title="route planning">route planning</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle" title=" obstacle"> obstacle</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20performance" title=" estimation performance"> estimation performance</a>, <a href="https://publications.waset.org/abstracts/search?q=FastSLAM" title=" FastSLAM"> FastSLAM</a>, <a href="https://publications.waset.org/abstracts/search?q=L-SLAM" title=" L-SLAM"> L-SLAM</a>, <a href="https://publications.waset.org/abstracts/search?q=GraphSLAM" title=" GraphSLAM"> GraphSLAM</a>, <a href="https://publications.waset.org/abstracts/search?q=Grid%20SLAM" title=" Grid SLAM"> Grid SLAM</a>, <a href="https://publications.waset.org/abstracts/search?q=DP-SLAM" title=" DP-SLAM"> DP-SLAM</a> </p> <a href="https://publications.waset.org/abstracts/13160/a-diagnostic-comparative-analysis-of-on-simultaneous-localization-and-mapping-slam-models-for-indoor-and-outdoor-route-planning-and-obstacle-avoidance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Three Tier Indoor Localization System for Digital Forensics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dennis%20L.%20Owuor">Dennis L. Owuor</a>, <a href="https://publications.waset.org/abstracts/search?q=Okuthe%20P.%20Kogeda"> Okuthe P. Kogeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20I.%20Agbinya"> Johnson I. Agbinya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20localization" title="indoor localization">indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprinting" title=" fingerprinting"> fingerprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20and%20cloud" title=" tracking and cloud"> tracking and cloud</a> </p> <a href="https://publications.waset.org/abstracts/65789/three-tier-indoor-localization-system-for-digital-forensics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10