CINXE.COM

Search results for: extreme air temperature

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: extreme air temperature</title> <meta name="description" content="Search results for: extreme air temperature"> <meta name="keywords" content="extreme air temperature"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="extreme air temperature" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="extreme air temperature"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7706</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: extreme air temperature</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7706</span> Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanjuan%20Sun">Chanjuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Hong"> Shijie Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialing%20Zhang"> Jialing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchao%20Guo"> Yuchao Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Zou"> Zhijun Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Huang"> Chen Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title="air temperature">air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature" title=" extreme air temperature"> extreme air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20difference" title=" air temperature difference"> air temperature difference</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20diseases" title=" respiratory diseases"> respiratory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/120913/childhood-respiratory-diseases-related-to-indoor-and-outdoor-air-temperature-in-shanghai-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7705</span> Changes in Temperature and Precipitation Extremes in Northern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakrit%20Chotamonsak">Chakrit Chotamonsak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was analyzed changes in temperature and precipitation extremes in northern Thailand for the period 1981-2011.The study includes an analysis of the average and trends of changes in temperature and precipitation using 22 climate indices, related to the intensity, frequency and duration of extreme climate events. The results showed that the averaged trend of maximum, minimum and mean temperature is likely to increase over the study area in rate of 0.5, 0.9 and 0.7 °C in last 30 years. Changes in temperature at nighttime, then rising at a rate higher daytime is resulting to decline of diurnal temperature range throughout the area. Trend of changes in average precipitation during the year 1981-2011 is expected to increase at an average rate of 21%. The intensity of extreme temperature events is increasing almost all station. In particular, the changes of the night were unusually hot has intensified throughout the region. In some provinces such as Chiang Mai and Lampang are likely be faced with the severity of hot days and hot nights in increasing rate. Frequency of extreme temperature events are likely to increase each station, especially hot days, and hot nights are increasing at a rate of 2.38 and 3.58 days per decade. Changes in the cold days and cold nights are declining at a rate of 0.82 and 3.03 days per decade. The duration of extreme temperature events is expected to increase the events hot in every station. An average of 17.8 days per decade for the number of consecutive cold winter nights likely shortens the rate of 2.90 days per decade. The analysis of the precipitation indices reveals the intensity of extreme precipitation is increasing almost across the region. The intensify expressed the heavy rain in one day (Rx1day) and very heavy rain accumulated in 5 days (RX5day) which is likely to increase, and very heavy rainfall is likely to increase in intensity. Frequency of extreme precipitation events is likely to increase over the station. The average frequency of heavy precipitation events increased xxx days per decade. The duration of extreme precipitation events, such as the consecutive dry days are likely to reduce the numbers almost all station while the consecutive wet days tends to increase and decrease at different numbers in different areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20extreme" title="climate extreme">climate extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20extreme" title=" temperature extreme"> temperature extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20extreme" title=" precipitation extreme"> precipitation extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=Northern%20Thailand" title=" Northern Thailand"> Northern Thailand</a> </p> <a href="https://publications.waset.org/abstracts/35651/changes-in-temperature-and-precipitation-extremes-in-northern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7704</span> Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Iyamuremye">Emmanuel Iyamuremye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edouard%20Singirankabo"> Edouard Singirankabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Habineza"> Alexis Habineza</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunvirusaba%20Nelson"> Yunvirusaba Nelson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20value%20theory" title=" extreme value theory"> extreme value theory</a>, <a href="https://publications.waset.org/abstracts/search?q=rwanda" title=" rwanda"> rwanda</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=generalised%20extreme%20value%20distribution" title=" generalised extreme value distribution"> generalised extreme value distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=generalised%20pareto%20distribution" title=" generalised pareto distribution"> generalised pareto distribution</a> </p> <a href="https://publications.waset.org/abstracts/132786/statistical-modelling-of-maximum-temperature-in-rwanda-using-extreme-value-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7703</span> Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkongho%20Ayuketang%20Arreyndip">Nkongho Ayuketang Arreyndip</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebobenow%20Joseph"> Ebobenow Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20extreme%20value%20%28GEV%29" title=" generalized extreme value (GEV)"> generalized extreme value (GEV)</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorology" title=" meteorology"> meteorology</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20level" title=" return level"> return level</a> </p> <a href="https://publications.waset.org/abstracts/34244/extreme-temperature-forecast-in-mbonge-cameroon-through-return-level-analysis-of-the-generalized-extreme-value-gev-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7702</span> Short-Term Effects of Extreme Temperatures on Cause Specific Cardiovascular Admissions in Beijing, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deginet%20Aklilu">Deginet Aklilu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianqi%20Wang"> Tianqi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Endwoke%20Amsalu"> Endwoke Amsalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Feng"> Wei Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Li"> Zhiwei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xia%20Li"> Xia Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Tao"> Lixin Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanxia%20Luo"> Yanxia Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Moning%20Guo"> Moning Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangtong%20Liu"> Xiangtong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuhua%20Guo"> Xiuhua Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a "J" shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=admission" title="admission">admission</a>, <a href="https://publications.waset.org/abstracts/search?q=Beijing" title=" Beijing"> Beijing</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20diseases" title=" cardiovascular diseases"> cardiovascular diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20lag%20non%20linear%20model" title=" distributed lag non linear model"> distributed lag non linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/176111/short-term-effects-of-extreme-temperatures-on-cause-specific-cardiovascular-admissions-in-beijing-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7701</span> Damage Cost for Private Property by Extreme Wind over the past 10 Years in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gou-Moon%20Choi">Gou-Moon Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-Young%20Jung"> Woo-Young Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan-Young%20Yune"> Chan-Young Yune</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the natural disaster has increased worldwide. In Korea, the damage to life and property caused by a typhoon, heavy rain, heavy snow, and an extreme wind also increases every year. Among natural disasters, the frequency and the strength of wind have increased because sea surface temperature has risen due to the increase of the average temperature of the Earth. In the case of extreme wind disaster, it is impossible to control or reduce the occurrence, and the recovery cost always exceeds the damage cost. Therefore, quantitative estimation of the damage cost for extreme wind needs to be established beforehand to install proactive countermeasures. In this study, the damage cost for private properties was analyzed based on the data for the past 10 years in Korea. The damage cost curve was also suggested for the metropolitan cities and provinces. The result shows the possibility for the regional application of the damage cost curve because the damage cost of the regional area is estimated based on the cost of cities and provinces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20cost" title="damage cost">damage cost</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20wind" title=" extreme wind"> extreme wind</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disaster" title=" natural disaster"> natural disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20property" title=" private property"> private property</a> </p> <a href="https://publications.waset.org/abstracts/44424/damage-cost-for-private-property-by-extreme-wind-over-the-past-10-years-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7700</span> Concerns for Extreme Climate Conditions and Their Implications in Southwest Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyenike%20Eludoyin">Oyenike Eludoyin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme climate conditions are deviation from the norms and are capable of causing upsets in many important environmental parameter including disruption of water balance and air temperature balance. Studies have shown that extreme climate conditions can foretell disaster in regions with inadequate early warning systems. In this paper, we combined geographical information systems, statistics and social surveys to evaluate the physiologic indices [(Dewpoint Temperature (Td), Effective Temperature Index (ETI) and Relative Strain Index (RSI)] and extreme climate conditions in different parts of southwest Nigeria. This was with the view to assessing the nature and the impact of the conditions on the people and their coping strategies. The results indicate that minimum, mean and maximum temperatures were higher in 1960-1990 than 1991-2013 periods at most areas, and more than 80% of the people adapt to thermal stress by changing wear type or cloth, installing air conditioner and fan at home and/or work place and sleeping outside at certain period of the night and day. With respect to livelihoods, about 52% of the interviewed farmers indicated that too early rainfall, late rainfall, prolonged dryness after an initial rainfall, excessive rainfall and windstorms caused low crop yields. Main (76%) coping strategies were changing of planting dates, diversification of crops, and practices of mulching and intercropping. Government or institutional support was less than 20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coping%20strategies" title="coping strategies">coping strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20climate" title=" extreme climate"> extreme climate</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihoods" title=" livelihoods"> livelihoods</a>, <a href="https://publications.waset.org/abstracts/search?q=physiologic%20comfort" title=" physiologic comfort"> physiologic comfort</a> </p> <a href="https://publications.waset.org/abstracts/47474/concerns-for-extreme-climate-conditions-and-their-implications-in-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7699</span> Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Nebbali">Djamila Nebbali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezki%20Nebbali"> Rezki Nebbali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ouibrahim"> Ahmed Ouibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000 W.m2) in a case of no wind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title="energy conversion">energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=balance%20energy" title=" balance energy"> balance energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/15688/numerical-simulation-of-a-solar-photovoltaic-panel-cooled-by-a-forced-air-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7698</span> Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Angiuli">Riccardo Angiuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Giannuzzi"> Michele Giannuzzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodolfo%20Franchi"> Rodolfo Franchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Papadia"> Gabriele Papadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurement" title=" temperature measurement"> temperature measurement</a> </p> <a href="https://publications.waset.org/abstracts/92363/experimental-chiptool-temperature-fem-model-calibration-by-infrared-thermography-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7697</span> A Machine Learning-Based Approach to Capture Extreme Rainfall Events</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Willy%20Mbenza">Willy Mbenza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sho%20Kenjiro"> Sho Kenjiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20%28ML%29" title="machine learning (ML)">machine learning (ML)</a>, <a href="https://publications.waset.org/abstracts/search?q=predictions" title=" predictions"> predictions</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20events" title=" rainfall events"> rainfall events</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20variables" title=" regional variables"> regional variables</a> </p> <a href="https://publications.waset.org/abstracts/168878/a-machine-learning-based-approach-to-capture-extreme-rainfall-events" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7696</span> An Extension of the Generalized Extreme Value Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20Provost">Serge Provost</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdous%20Saboor"> Abdous Saboor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A q-analogue of the generalized extreme value distribution which includes the Gumbel distribution is introduced. The additional parameter q allows for increased modeling flexibility. The resulting distribution can have a finite, semi-infinite or infinite support. It can also produce several types of hazard rate functions. The model parameters are determined by making use of the method of maximum likelihood. It will be shown that it compares favourably to three related distributions in connection with the modeling of a certain hydrological data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extreme%20value%20theory" title="extreme value theory">extreme value theory</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20extreme%20value%20distribution" title=" generalized extreme value distribution"> generalized extreme value distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=goodness-of-fit%20statistics" title=" goodness-of-fit statistics"> goodness-of-fit statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel%20distribution" title=" Gumbel distribution"> Gumbel distribution</a> </p> <a href="https://publications.waset.org/abstracts/72656/an-extension-of-the-generalized-extreme-value-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7695</span> Influence of Precipitation and Land Use on Extreme Flow in Prek Thnot River Basin of Mekong River in Cambodia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chhordaneath%20Hen">Chhordaneath Hen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ty%20Sok"> Ty Sok</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilan%20Ich"> Ilan Ich</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratboren%20Chan"> Ratboren Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chantha%20Oeurng"> Chantha Oeurng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damages caused by hydrological extremes such as flooding have been severe globally, and several research studies indicated extreme precipitations play a crucial role. Cambodia is one of the most vulnerable countries exposed to floods and drought as consequences of climate impact. Prek Thnot River Basin in the southwest part of Cambodia, which is in the plate and plateau region and a part of the Mekong Delta, was selected to investigate the changes in extreme precipitation and hydrological extreme. Furthermore, to develop a statistical relationship between these phenomena in this basin from 1995 to 2020 using Multiple Linear Regression. The precipitation and hydrological extreme were assessed via the attributes and trends of rainfall patterns during the study periods. The extreme flow was defined as a dependent variable, while the independent variables are various extreme precipitation indices. The study showed that all extreme precipitations indices (R10, R20, R35, CWD, R95p, R99p, and PRCPTOT) had increasing decency. However, the number of rain days per year had a decreasing tendency, which can conclude that extreme rainfall was more intense in a shorter period of the year. The study showed a similar relationship between extreme precipitation and hydrological extreme and land use change association with hydrological extreme. The direct combination of land use and precipitation equals 37% of the flood causes in this river. This study provided information on these two causes of flood events and an understanding of expectations of climate change consequences for flood and water resources management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extreme%20precipitation" title="extreme precipitation">extreme precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20extreme" title=" hydrological extreme"> hydrological extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=Prek%20Thnot%20river%20basin" title=" Prek Thnot river basin"> Prek Thnot river basin</a> </p> <a href="https://publications.waset.org/abstracts/155816/influence-of-precipitation-and-land-use-on-extreme-flow-in-prek-thnot-river-basin-of-mekong-river-in-cambodia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7694</span> Extreme Temperature Response to Solar Radiation Management in Southeast Asia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heri%20Kuswanto">Heri Kuswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Brina%20Miftahurrohmah"> Brina Miftahurrohmah</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatkhurokhman%20Fauzi"> Fatkhurokhman Fauzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Southeast Asia has experienced rising temperatures and is predicted to reach a 1.5°C increase by 2030, which is earlier than the Paris Agreement target. Solar Radiation Management (SRM) has been proposed as an alternative to combat global warming. This research investigates changes in the annual maximum temperature (TXx) with and without SRM over southeast Asia. We examined outputs from three ensemble members of the Geoengineering Large Ensemble Project (GLENS) experiment for the period 2051 to 2080. One ensemble member generated outputs that significantly deviated from the others, leading to the removal of ensemble 3 from the impact analysis. Our observations indicate that the magnitude of TXx changes with SRM is heterogeneous across countries. We found that SRM significantly reduces TXx levels compared to historical periods. Furthermore, SRM can reduce temperatures by up to 5°C compared to scenarios without SRM, with even more pronounced effects in Thailand, Cambodia, Laos, and Myanmar. This indicates that SRM can mitigate climate change by lowering future TXx levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation%20management" title="solar radiation management">solar radiation management</a>, <a href="https://publications.waset.org/abstracts/search?q=GLENS" title=" GLENS"> GLENS</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme" title=" extreme"> extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble" title=" ensemble"> ensemble</a> </p> <a href="https://publications.waset.org/abstracts/193495/extreme-temperature-response-to-solar-radiation-management-in-southeast-asia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7693</span> The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyo%20Makido">Yasuyo Makido</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Shandas"> Vivek Shandas</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20J.%20Sailor"> David J. Sailor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salim%20Ferwati"> M. Salim Ferwati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desert%20cities" title="desert cities">desert cities</a>, <a href="https://publications.waset.org/abstracts/search?q=tree-structure%20regression%20model" title=" tree-structure regression model"> tree-structure regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20cool%20Island" title=" urban cool Island"> urban cool Island</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20temperature%20traverse" title=" vehicle temperature traverse"> vehicle temperature traverse</a> </p> <a href="https://publications.waset.org/abstracts/31720/the-role-of-urban-development-patterns-for-mitigating-extreme-urban-heat-the-case-study-of-doha-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7692</span> Estimating The Population Mean by Using Stratified Double Extreme Ranked Set Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20I.%20Syam">Mahmoud I. Syam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamarulzaman%20Ibrahim"> Kamarulzaman Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20I.%20Al-Omari"> Amer I. Al-Omari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20extreme%20ranked%20set%20sampling" title="double extreme ranked set sampling">double extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20ranked%20set%20sampling" title=" extreme ranked set sampling"> extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20double%20extreme%20ranked%20set%20sampling" title=" stratified double extreme ranked set sampling"> stratified double extreme ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/25207/estimating-the-population-mean-by-using-stratified-double-extreme-ranked-set-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7691</span> Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Jafari">V. Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jafari"> M. Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal&#39;s greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaharmahal%20and%20Bakhtiari" title="Chaharmahal and Bakhtiari">Chaharmahal and Bakhtiari</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=impacts" title=" impacts"> impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a> </p> <a href="https://publications.waset.org/abstracts/101069/reverse-impact-of-temperature-as-climate-factor-on-milk-production-in-chaharmahal-and-bakhtiari" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7690</span> Regional Changes under Extreme Meteorological Events</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renalda%20El%20Samra">Renalda El Samra</a>, <a href="https://publications.waset.org/abstracts/search?q=Elie%20Bou-Zeid"> Elie Bou-Zeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Kunhu%20Bangalath"> Hamza Kunhu Bangalath</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgiy%20Stenchikov"> Georgiy Stenchikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutasem%20El%20Fadel"> Mutasem El Fadel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HiRAM" title="HiRAM">HiRAM</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20climate%20modeling" title=" regional climate modeling"> regional climate modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=WRF" title=" WRF"> WRF</a>, <a href="https://publications.waset.org/abstracts/search?q=Representative%20Concentration%20Pathway%20%28RCP%29" title=" Representative Concentration Pathway (RCP)"> Representative Concentration Pathway (RCP)</a> </p> <a href="https://publications.waset.org/abstracts/35261/regional-changes-under-extreme-meteorological-events" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7689</span> Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Razmi">Ali Razmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Golian"> Saeed Golian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20variables" title=" climate variables"> climate variables</a>, <a href="https://publications.waset.org/abstracts/search?q=copula" title=" copula"> copula</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20probability" title=" joint probability"> joint probability</a> </p> <a href="https://publications.waset.org/abstracts/49083/joint-probability-distribution-of-extreme-water-level-with-rainfall-and-temperature-trend-analysis-of-potential-impacts-of-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7688</span> Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumya%20Bhattacharjya">Soumya Bhattacharjya</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinandan%20Sahoo"> Avinandan Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Datta"> Gaurav Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20metamodelling%20technique" title="adaptive metamodelling technique">adaptive metamodelling technique</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20chimney" title=" concrete chimney"> concrete chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20analysis" title=" fragility analysis"> fragility analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20extreme%20wind%20load" title=" stochastic extreme wind load"> stochastic extreme wind load</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a> </p> <a href="https://publications.waset.org/abstracts/87237/efficient-wind-fragility-analysis-of-concrete-chimney-under-stochastic-extreme-wind-incorporating-temperature-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7687</span> Orthogonal Basis Extreme Learning Algorithm and Function Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Li">Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Li"> Yan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20basis%20extreme%20learning" title=" orthogonal basis extreme learning"> orthogonal basis extreme learning</a>, <a href="https://publications.waset.org/abstracts/search?q=function%20approximation" title=" function approximation"> function approximation</a> </p> <a href="https://publications.waset.org/abstracts/15129/orthogonal-basis-extreme-learning-algorithm-and-function-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7686</span> Degradation of Mechanical Properties of Offshoring Polymer Composite Pipes in Thermal Environment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Benyahia">Hamza Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Moumen"> Ahmed El-Moumen</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Ouinas"> Djamel Ouinas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite pipes are commonly used in the oil industry, and extreme flow of hot and cold gas fluid can cause degradation of their mechanical performance and properties. Therefore, it is necessary to consider thermomechanical behavior as an important parameter in designing these tubular structures. In this paper, an experimental study is conducted on composite glass/epoxy tubes, with a thickness of 6.2 mm and 86 mm internal diameter made by filament winding of (Փ = ± 55°), to investigate the effects of extreme thermal condition on their mechanical properties b over a temperature range from -40 to 80°C. The climatic chamber is used for the thermal aging and then, combine split disk system is used to perform tensile tests on these composite pies. Thermal aging is carried out for 8hr but each specimen was subjected to various temperature ranges and then, uniaxial tensile test is conducted to evaluate their mechanical performance. Experimental results show degradation in the mechanical properties of composite pipes with an increase in temperature. The rigidity of pipes increases progressively with a decrease in thermal load and results in a radical decrease in their elongation before fracture, thus, decreasing their ductility. However, with an increase in the temperature, there is a decrease in the yield strength and an increase in yield strain, which confirmed an increase in the plasticity of composite pipes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20pipes" title="composite pipes">composite pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal-mechanical%20properties" title=" thermal-mechanical properties"> thermal-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=filament%20winding" title=" filament winding"> filament winding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20degradation" title=" thermal degradation"> thermal degradation</a> </p> <a href="https://publications.waset.org/abstracts/109224/degradation-of-mechanical-properties-of-offshoring-polymer-composite-pipes-in-thermal-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7685</span> Climate Change and Extreme Weather: Understanding Interconnections and Implications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnstone%20Walubengo%20Wangusi">Johnstone Walubengo Wangusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is undeniably altering the frequency, intensity, and geographic distribution of extreme weather events worldwide. In this paper, we explore the complex interconnections between climate change and extreme weather phenomena, drawing upon research from atmospheric science, geology, and climatology. We examine the underlying mechanisms driving these changes, the impacts on natural ecosystems and human societies, and strategies for adaptation and mitigation. By synthesizing insights from interdisciplinary research, this paper aims to provide a comprehensive understanding of the multifaceted relationship between climate change and extreme weather, informing efforts to address the challenges posed by a changing climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20weather" title=" extreme weather"> extreme weather</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20science" title=" atmospheric science"> atmospheric science</a>, <a href="https://publications.waset.org/abstracts/search?q=geology" title=" geology"> geology</a>, <a href="https://publications.waset.org/abstracts/search?q=climatology" title=" climatology"> climatology</a>, <a href="https://publications.waset.org/abstracts/search?q=impacts" title=" impacts"> impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation" title=" adaptation"> adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a> </p> <a href="https://publications.waset.org/abstracts/184530/climate-change-and-extreme-weather-understanding-interconnections-and-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7684</span> Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Redouane%20Larbi%20Boufeniza">Redouane Larbi Boufeniza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Jia%20Luo"> Jing-Jia Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20Sea" title="Mediterranean Sea">Mediterranean Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20surface%20temperature" title=" sea surface temperature"> sea surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20forecasting" title=" seasonal forecasting"> seasonal forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=downscaling" title=" downscaling"> downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/166824/downscaling-seasonal-sea-surface-temperature-forecasts-over-the-mediterranean-sea-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7683</span> Climate Change, Global Warming and Future of Our Planet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Gupta">Indu Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and global warming is most burning issue for “our common future”. For this common global interest. Countries organize conferences of government and nongovernment type. Human being destroying the non-renewable resources and polluting the renewable resources of planet for economic growth. Air pollution is mainly responsible for global warming and climate change .Due to global warming ice glaciers are shrinking and melting. Forests are shrinking, deserts expanding and soil eroding. The depletion of stratospheric ozone layer is depleting and hole in ozone layer that protect us from harmful ultra violet radiation. Extreme high temperature in summer and extreme low temperature and smog in winters, floods in rainy season. These all are indication of climate change. The level of carbon dioxide and other heat trapping gases in the atmosphere is increasing at high speed. Nation’s are worried about environmental degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20degradation" title="environmental degradation">environmental degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20eroding" title=" soil eroding"> soil eroding</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-Violate%20radiation" title=" ultra-Violate radiation "> ultra-Violate radiation </a> </p> <a href="https://publications.waset.org/abstracts/14817/climate-change-global-warming-and-future-of-our-planet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7682</span> Highly Sensitive and Selective H2 Gas Sensor Based on Pd-Pt Decorated Nanostructured Silicon Carbide Thin Films for Extreme Environment Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20Mourya">Satyendra Mourya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Jaiswal"> Jyoti Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Malik"> Gaurav Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Brijesh%20Kumar"> Brijesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Chandra"> Ramesh Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work describes the fabrication and sensing characteristics of the Pd-Pt decorated nanostructured silicon carbide (SiC) thin films on anodized porous silicon (PSi) substrate by RF magnetron sputtering. The gas sensing performance of Pd-Pt/SiC/PSi sensing electrode towards H2 gas under low (10–400 ppm) detection limit and high operating temperature regime (25–600 °C) were studied in detail. The chemiresistive sensor exhibited high selectivity, good sensing response, fast response/recovery time with excellent stability towards H2 at high temperature. The selectivity measurement of the sensing electrode was done towards different oxidizing and reducing gases and proposed sensing mechanism discussed in detail. Therefore, the investigated Pd-Pt/SiC/PSi structure may be a highly sensitive and selective hydrogen gas sensing electrode for deployment in extreme environment applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20Sputtering" title="RF Sputtering">RF Sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20gas%20sensor" title=" hydrogen gas sensor"> hydrogen gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/93164/highly-sensitive-and-selective-h2-gas-sensor-based-on-pd-pt-decorated-nanostructured-silicon-carbide-thin-films-for-extreme-environment-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7681</span> Application of Stochastic Models to Annual Extreme Streamflow Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958&ndash;2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20models" title="stochastic models">stochastic models</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title=" ARIMA"> ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20streamflow" title=" extreme streamflow"> extreme streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20river" title=" Karkheh river"> Karkheh river</a> </p> <a href="https://publications.waset.org/abstracts/97759/application-of-stochastic-models-to-annual-extreme-streamflow-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7680</span> Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Vucicevic">Jelena Vucicevic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extreme%20value%20theory" title="extreme value theory">extreme value theory</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=statistic" title=" statistic"> statistic</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20failure" title=" time to failure"> time to failure</a> </p> <a href="https://publications.waset.org/abstracts/78201/extreme-value-theory-applied-in-reliability-analysis-case-study-of-diesel-generator-fans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7679</span> Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Iyamuremye">Emmanuel Iyamuremye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exceedances" title="exceedances">exceedances</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20value%20theory" title=" extreme value theory"> extreme value theory</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Pareto%20distribution" title=" generalized Pareto distribution"> generalized Pareto distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20generalized%20Pareto%20distribution" title=" Poisson generalized Pareto distribution"> Poisson generalized Pareto distribution</a> </p> <a href="https://publications.waset.org/abstracts/127379/modeling-of-maximum-rainfall-using-poisson-generalized-pareto-distribution-in-kigali-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7678</span> Prediction of Extreme Precipitation in East Asia Using Complex Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Guolin">Feng Guolin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gong%20Zhiqiang"> Gong Zhiqiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronization" title="synchronization">synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20network" title=" climate network"> climate network</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a> </p> <a href="https://publications.waset.org/abstracts/64827/prediction-of-extreme-precipitation-in-east-asia-using-complex-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7677</span> Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leon%20Pan">Leon Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort in their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model — aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extreme-based%20teaching%20model" title="extreme-based teaching model">extreme-based teaching model</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20pedagogical%20methods" title=" innovative pedagogical methods"> innovative pedagogical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=project-based%20learning" title=" project-based learning"> project-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=team-based%20learning" title=" team-based learning"> team-based learning</a> </p> <a href="https://publications.waset.org/abstracts/171936/applying-the-extreme-based-teaching-model-in-post-secondary-online-classroom-setting-a-field-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=256">256</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=257">257</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10