CINXE.COM

Search results for: outdoor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: outdoor</title> <meta name="description" content="Search results for: outdoor"> <meta name="keywords" content="outdoor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="outdoor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="outdoor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 351</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: outdoor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mourtzikou">A. Mourtzikou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sygkridou"> D. Sygkridou</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Georgakopoulos"> T. Georgakopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Katsagounos"> G. Katsagounos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Stathatos"> E. Stathatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm<sup>2</sup> were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I<sup>-</sup>/I<sub>3</sub><sup>-</sup>) redox couple of the electrolyte. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dye-sensitized%20solar%20panels" title="Dye-sensitized solar panels">Dye-sensitized solar panels</a>, <a href="https://publications.waset.org/abstracts/search?q=inkjet%20printing" title=" inkjet printing"> inkjet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-solid%20state%20electrolyte" title=" quasi-solid state electrolyte"> quasi-solid state electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-transparency" title=" semi-transparency"> semi-transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20up" title=" scale up"> scale up</a> </p> <a href="https://publications.waset.org/abstracts/120655/semi-transparent-dye-sensitized-solar-panels-for-energy-autonomous-greenhouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Parental Investment in Education: A Pathway for the Children&#039;s Access to Quality Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tukur%20Husaini%20Nahuche">Tukur Husaini Nahuche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The parent resources play a vital role in the life of the offspring. It help give children basic necessities of life like food, clothing, and housing. In a like manner financial assets allow parents to move into neighborhood with more affluent school systems, to pay school bills, purchase expensive technologies like personal computer, save money for tutoring books, magazines, journals, Newspapers etc. Making of proper provision in the home environment conducive for learning after school hours and creation of other outdoor activities for them are what necessitate in enhancing and accelerating children’s learning opportunities. Indeed, this paper intends to discuss parental investment in education, parent income resources, parental education, occupation, and income as relatively influencing children’s access to quality education. With the hope that families would provide equal opportunities for children irrespective of their sex, intelligence, subject choice,etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parental%20investment" title="parental investment">parental investment</a>, <a href="https://publications.waset.org/abstracts/search?q=children%27s%20access" title=" children&#039;s access"> children&#039;s access</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20education" title=" quality education"> quality education</a> </p> <a href="https://publications.waset.org/abstracts/22371/parental-investment-in-education-a-pathway-for-the-childrens-access-to-quality-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Asif">Ayesha Asif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zeeshan"> Muhammad Zeeshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title="indoor air quality">indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20concentration" title=" CO₂ concentration"> CO₂ concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20building" title=" hospital building"> hospital building</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20assessment" title=" comfort assessment"> comfort assessment</a> </p> <a href="https://publications.waset.org/abstracts/112320/indoor-temperature-relative-humidity-and-co2-level-assessment-in-a-publically-managed-hospital-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Osman">Manal Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20operating%20pressure" title="low operating pressure">low operating pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinkler%20irrigation%20system" title=" sprinkler irrigation system"> sprinkler irrigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20distribution%20uniformity" title=" water distribution uniformity"> water distribution uniformity</a> </p> <a href="https://publications.waset.org/abstracts/7412/water-distribution-uniformity-of-solid-set-sprinkler-irrigation-under-low-operating-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adnan%20Landolsi">Mohamed Adnan Landolsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20F.%20Almutairi"> Ali F. Almutairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the &ldquo;skewness&rdquo; of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters&rsquo; statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB" title="UWB">UWB</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=LOS" title=" LOS"> LOS</a>, <a href="https://publications.waset.org/abstracts/search?q=NLOS" title=" NLOS"> NLOS</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a> </p> <a href="https://publications.waset.org/abstracts/55684/reliable-line-of-sight-and-non-line-of-sight-propagation-channel-identification-in-ultra-wideband-wireless-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Exploring Pisa Monuments Using Mobile Augmented Reality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihai%20Duguleana">Mihai Duguleana</a>, <a href="https://publications.waset.org/abstracts/search?q=Florin%20Girbacia"> Florin Girbacia</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Postelnicu"> Cristian Postelnicu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaello%20Brodi"> Raffaello Brodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcello%20Carrozzino"> Marcello Carrozzino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user&rsquo;s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments&rsquo; 3D map database and the navigation algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20compass" title=" electronic compass"> electronic compass</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=location-based%20service" title=" location-based service"> location-based service</a> </p> <a href="https://publications.waset.org/abstracts/54319/exploring-pisa-monuments-using-mobile-augmented-reality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Hasan%20Omar">Mustafa Hasan Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solutions" title=" hydrocarbon solutions"> hydrocarbon solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20concrete" title=" polymer concrete"> polymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a> </p> <a href="https://publications.waset.org/abstracts/110602/studying-the-effect-of-hydrocarbon-solutions-on-the-properties-of-epoxy-polymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> The Effect of Gas Pollutants on Museum Environment: Case Study of an Oil Paintings in Ethnographic Museum, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hagar%20%20Ezzat">Hagar Ezzat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20%20Attia"> Mostafa Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20%20Bedeir"> Ahmed Bedeir</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelrazek%20%20Elnagger"> Abdelrazek Elnagger</a>, <a href="https://publications.waset.org/abstracts/search?q=Matija%20%20Strlic"> Matija Strlic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethnographic Museum in Cairo- Egypt is a place of valuable collections (manuscripts, paintings, textiles and other ethnographic materials), the museum experiences serious neglecting with unacceptable display and storage conditions, the museum is located in Tahrir sq., which consider a high traffic area where pollution levels exceed the acceptable levels in museums. The materials used in manufacturing the display cases are expected to be source of many pollutants which affecting the sensitive oil paintings objects in the galleries. 24 diffusion tubes (12 No2, So2 & 12 O3) have been used in "winter 2014 and spring 2014" for monitoring museum environment with three cases "outdoor & indoor and in the gallery display". A series of analytical techniques with scientific tools: Ion Chromatography have been used to assess measurements and effects of gas pollutants on the museum which help us to make good assessment for the damage of oil paintings objects and the condition of the museum and understand the effect of the museum environment on the deterioration of the sensitive oil paintings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=museum" title=" museum"> museum</a>, <a href="https://publications.waset.org/abstracts/search?q=paintings" title=" paintings"> paintings</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnographic" title=" ethnographic"> ethnographic</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/51332/the-effect-of-gas-pollutants-on-museum-environment-case-study-of-an-oil-paintings-in-ethnographic-museum-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Spatial Correlation of Channel State Information in Real Long Range Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdelghany">Ahmed Abdelghany</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Uguen"> Bernard Uguen</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Moy"> Christophe Moy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Lemur"> Dominique Lemur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=LPWAN" title=" LPWAN"> LPWAN</a>, <a href="https://publications.waset.org/abstracts/search?q=LoRa" title=" LoRa"> LoRa</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20signal%20power" title=" effective signal power"> effective signal power</a>, <a href="https://publications.waset.org/abstracts/search?q=onsite%20measurement" title=" onsite measurement"> onsite measurement</a> </p> <a href="https://publications.waset.org/abstracts/137827/spatial-correlation-of-channel-state-information-in-real-long-range-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Relation between Low Thermal Stress and Antioxidant Enzymes Activity in a Sweetening Plant: Stevia Rebaudiana Bert</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Bettaieb">T. Bettaieb</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Soufi"> S. Soufi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Arbaoui"> S. Arbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stevia rebaudiana Bert. is a natural sweet plant. The leaves contain diterpene glycosides stevioside, rebaudiosides A-F, steviolbioside and dulcoside, which are responsible for its sweet taste and have commercial value all over the world as sugar substitute in foods and medicines. Stevia rebaudiana Bert. is sensitive temperature lower than 9°C. The possibility of its outdoor culture in Tunisian conditions demand genotypes tolerant to low temperatures. In order to evaluate the low temperature tolerance of eight genotypes of Stevia rebaudiana, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalases (CAT) were measured. Before carrying out the analyses, three genotypes of Stevia were exposed for 1 month at a temperature regime of 18°C during the day and 7°C at night similar to winter conditions in Tunisia. In response to the stress generated by low temperature, antioxidant enzymes activity revealed on native gel and quantified by spectrophotometry showed variable levels according to their degree of tolerance to low temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chilling%20tolerance" title="chilling tolerance">chilling tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20activity" title=" enzymatic activity"> enzymatic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=stevia%20rebaudiana%20bert" title=" stevia rebaudiana bert"> stevia rebaudiana bert</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20thermal%20stress" title=" low thermal stress"> low thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/16932/relation-between-low-thermal-stress-and-antioxidant-enzymes-activity-in-a-sweetening-plant-stevia-rebaudiana-bert" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Investigation of Thermal Comfort Conditions of Vernacular Buildings Taking into Consideration Various Use Patterns: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Kalogirou">Christina Kalogirou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to explore the thermal comfort conditions in traditional buildings during all seasons of the year taking into consideration various use patterns. For this purpose a dwelling of vernacular architecture is selected and data regarding the indoor and outdoor air and surface temperature as well as the relative humidity are collected. These measurements are conducted in situ during the period of a year. Also, this building is occupied periodically and a calendar of occupancy was kept (duration of residence, hours of heating system operation, hours of natural ventilation, etc.) in order to correlate the indoor conditions recorded with the use patterns via statistical analysis. Furthermore, the effect of the high thermal inertia of the stone masonry walls and the different orientation of the rooms is addressed. Thus, this paper concludes in some interesting results on the effect of the users in the indoor climate conditions in the case of buildings with high thermal inertia envelops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title="thermal comfort">thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20measurements" title=" in situ measurements"> in situ measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=occupant%20behaviour" title=" occupant behaviour"> occupant behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=vernacular%20architecture" title=" vernacular architecture"> vernacular architecture</a> </p> <a href="https://publications.waset.org/abstracts/67831/investigation-of-thermal-comfort-conditions-of-vernacular-buildings-taking-into-consideration-various-use-patterns-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Sustainable Energy Production from Microalgae in Queshm Island, Persian Gulf </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Moazami">N. Moazami</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ranjbar"> R. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashori"> A. Ashori </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out of hundreds of microalgal strains reported, only very few of them are capable for production of high content of lipid. Therefore, the key technical challenges include identifying the strains with the highest growth rates and oil contents with adequate composition, which were the main aims of this work. From 147 microalgae screened for high biomass and oil productivity, the Nannochloropsis sp. PTCC 6016, which attained 52% lipid content, was selected for large scale cultivation in Persian Gulf Knowledge Island. Nannochloropsis strain PTCC 6016 belongs to Eustigmatophyceae (Phylum heterokontophyta) isolated from Mangrove forest area of Qheshm Island and Persian Gulf (Iran) in 2008. The strain PTCC 6016 had an average biomass productivity of 2.83 g/L/day and 52% lipid content. The biomass productivity and the oil production potential could be projected to be more than 200 tons biomass and 100000 L oil per hectare per year, in an outdoor algal culture (300 day/year) in the Persian Gulf climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuels" title="biofuels">biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=Nannochloropsis" title=" Nannochloropsis"> Nannochloropsis</a>, <a href="https://publications.waset.org/abstracts/search?q=raceway%20open%20pond" title=" raceway open pond"> raceway open pond</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-jet" title=" bio-jet"> bio-jet</a> </p> <a href="https://publications.waset.org/abstracts/12748/sustainable-energy-production-from-microalgae-in-queshm-island-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Performance Evaluation of Different Technologies of PV Modules in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Balaska">Amira Balaska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Tahri"> Ali Tahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Boudghene%20Stambouli"> Amine Boudghene Stambouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Oozeki"> Takashi Oozeki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20modules" title="photovoltaic modules">photovoltaic modules</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20ratio" title=" performance ratio"> performance ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20yield" title=" energy yield"> energy yield</a>, <a href="https://publications.waset.org/abstracts/search?q=sahara%20solar%20breeder" title=" sahara solar breeder"> sahara solar breeder</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20conditions" title=" outdoor conditions"> outdoor conditions</a> </p> <a href="https://publications.waset.org/abstracts/27239/performance-evaluation-of-different-technologies-of-pv-modules-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Cellular Architecture of Future Wireless Communication Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yahaghifar">Mohammad Yahaghifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=future%20challenges%20in%20networks" title="future challenges in networks">future challenges in networks</a>, <a href="https://publications.waset.org/abstracts/search?q=cellur%20architecture" title=" cellur architecture"> cellur architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication" title=" visible light communication"> visible light communication</a>, <a href="https://publications.waset.org/abstracts/search?q=5G%20wireless%20technologies" title=" 5G wireless technologies"> 5G wireless technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20modulation" title=" spatial modulation"> spatial modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=massiva%20mimo" title=" massiva mimo"> massiva mimo</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio%20network" title=" cognitive radio network"> cognitive radio network</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20communications" title=" green communications "> green communications </a> </p> <a href="https://publications.waset.org/abstracts/19938/cellular-architecture-of-future-wireless-communication-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Yudhi%20Purba">Raymond Yudhi Purba</a>, <a href="https://publications.waset.org/abstracts/search?q=Levy%20Olivia%20Nur"> Levy Olivia Nur</a>, <a href="https://publications.waset.org/abstracts/search?q=Radial%20Anwar"> Radial Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skew%20planar%20wheel" title="skew planar wheel">skew planar wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=cloverleaf" title=" cloverleaf"> cloverleaf</a>, <a href="https://publications.waset.org/abstracts/search?q=first-person%20view" title=" first-person view"> first-person view</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20sweep" title=" parameter sweep"> parameter sweep</a> </p> <a href="https://publications.waset.org/abstracts/139082/skew-planar-wheel-antenna-for-first-person-view-of-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bongsoo%20Jeon">Bongsoo Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayoung%20Kim"> Jayoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihong%20Lee"> Jihong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20unit" title="inertial measurement unit">inertial measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20range%20finder" title=" laser range finder"> laser range finder</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20recognition%20of%20the%20ground%20shape" title=" real-time recognition of the ground shape"> real-time recognition of the ground shape</a>, <a href="https://publications.waset.org/abstracts/search?q=proprioceptive%20sensor" title=" proprioceptive sensor"> proprioceptive sensor</a> </p> <a href="https://publications.waset.org/abstracts/2646/real-time-recognition-of-the-terrain-configuration-to-improve-driving-stability-for-unmanned-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Estimation of Gaseous Pollutants at Kalyanpur, Dhaka City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhana%20Tarannum">Farhana Tarannum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ambient (outdoor) air pollution is now recognized as an important problem, both nationally and worldwide. The concentrations of gaseous pollutants (SOx, NOx, CO and O3) have been determined from samples collected at Kallyanpur along Shamoli corridor in Dhaka city. Pollutants were determined in a sample collected at ground level and a roof of a 7-storied building. These pollutants are emitted largely from stationary sources like fossil fuel fired power plants, industrial plants, and manufacturing facilities as well as mobile sources. The incomplete combustion of fuel, wood and the Sulphur containing fuel used in the vehicles are one of the main causes of CO and SOx respectively in our natural environment. When the temperature of combustion in high enough and some of that nitrogen reacts with oxygen in the air, various nitrogen oxides (NOx) are then formed. The VOCs react with NOx in the presence of sunlight to form O3. UV Visible spectrophotometric method has been used for the determination of SOx, NOx and O3. The sensor type device was used for the estimation of CO. It was found that the air pollutants (CO, SOx, NOx and O3) of a sample collected at the roof of a building were lower compared to the ground level; it indicated that ground level people are mostly affected by the gaseous pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gaseous%20pollutants" title="gaseous pollutants">gaseous pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-visible%20spectrophotometry" title=" UV-visible spectrophotometry"> UV-visible spectrophotometry</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20air%20quality" title=" ambient air quality"> ambient air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhaka%20city" title=" Dhaka city"> Dhaka city</a> </p> <a href="https://publications.waset.org/abstracts/33016/estimation-of-gaseous-pollutants-at-kalyanpur-dhaka-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Performance Evaluation of Grid Connected Photovoltaic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20Magaji">Abdulkadir Magaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzes and compares the actual measured and simulated performance of a 3.2 kwP grid-connected photovoltaic system. The system is located at the Outdoor Facility of Government Day secondary School Katsina State, which lies approximately between coordinate of 12°15′N 7°30′E. The system consists of 14 Mono crystalline silicon modules connected in two strings of 7 series-connected modules, each facing north at a fixed tilt of 340. The data presented in this study were measured in the year 2015, where the system supplied a total of 4628 kWh to the local electric utility grid. The performance of the system was simulated using PVsyst software using measured and Meteonorm derived climate data sets (solar radiation, ambient temperature and wind speed). The comparison between measured and simulated energy yield are discussed. Although, both simulation results were similar, better comparison between measured and predicted monthly energy yield is observed with simulation performed using measured weather data at the site. The measured performance ratio in the present study shows 58.4% is higher than those reported elsewhere as compared in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance" title="performance">performance</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20connection" title=" grid connection"> grid connection</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20system" title=" photovoltaic system"> photovoltaic system</a> </p> <a href="https://publications.waset.org/abstracts/75614/performance-evaluation-of-grid-connected-photovoltaic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Energy Saving and Performance Evaluation of an Air Handling Unit Integrated with a Membrane Energy Exchanger for Cold Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Liu">Peng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Justo%20Alonso"> Maria Justo Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20Martin%20Mathisen"> Hans Martin Mathisen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical model is developed to evaluate the performance and energy saving potential of an air handling unit integrated with a membrane energy exchanger in cold climates. The recovered sensible and latent heat, fan preheating use for frost prevention and heating energy consumed by heating coil after the ventilator is compared for the air handling unit combined heat and energy exchanger respectively. A concept of coefficient of performance of air handling unit is presented and applied to assess the energy use of air handling unit (AHU) in cold climates. The analytic results indicate downsizing of the preheating coil before exchanger and heating coils after exchanger are expected since the required power to preheat and condition the air is reduced compared to heat exchanger when the MEE is integrated with AHU. Simultaneously, a superior ratio of energy recovered (RER) is obtained from AHU build-in a counter-flow MEE. The AHU with sensible-only heat exchanger has noticeably low RER, around 1 at low outdoor air temperature where the maximum energy rate is desired to condition the severe cold and dry air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20energy%20exchanger" title="membrane energy exchanger">membrane energy exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20climate" title=" cold climate"> cold climate</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20building" title=" energy efficient building"> energy efficient building</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC" title=" HVAC"> HVAC</a> </p> <a href="https://publications.waset.org/abstracts/53355/energy-saving-and-performance-evaluation-of-an-air-handling-unit-integrated-with-a-membrane-energy-exchanger-for-cold-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Reviving the Past, Enhancing the Future: Preservation of Urban Heritage Connectivity as a Tool for Developing Liveability in Historical Cities in Jordan, Using Salt City as a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Yousef">Sahar Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Chantelle%20Niblock"> Chantelle Niblock</a>, <a href="https://publications.waset.org/abstracts/search?q=Gul%20Kacmaz"> Gul Kacmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salt City, in the context of Jordan’s heritage landscape, is a significant case to explore when it comes to the interaction between tangible and intangible qualities of liveable cities. Most city centers, including Jerash, Salt, Irbid, and Amman, are historical locations. Six of these extraordinary sites were designated UNESCO World Heritage Sites. Jordan is widely acknowledged as a developing country characterized by swift urbanization and unrestrained expansion that exacerbate the challenges associated with the preservation of historic urban areas. The aim of this study is to conduct an examination and analysis of the existing condition of heritage connectivity within heritage city centers. This includes outdoor staircases, pedestrian pathways, footpaths, and other public spaces. Case study-style analysis of the urban core of As-Salt is the focus of this investigation. Salt City is widely acknowledged for its substantial tangible and intangible cultural heritage and has been designated as ‘The Place of Tolerance and Urban Hospitality’ by UNESCO since 2021. Liveability in urban heritage, particularly in historic city centers, incorporates several factors that affect our well-being; its enhancement is a critical issue in contemporary society. The dynamic interaction between humans and historical materials, which serves as a vehicle for the expression of their identity and historical narrative, constitutes preservation that transcends simple conservation. This form of engagement enables people to appreciate the diversity of their heritage recognising their previous and planned futures. Heritage preservation is inextricably linked to a larger physical and emotional context; therefore, it is difficult to examine it in isolation. Urban environments, including roads, structures, and other infrastructure, are undergoing unprecedented physical design and construction requirements. Concurrently, heritage reinforces a sense of affiliation with a particular location or space and unifies individuals with their ancestry, thereby defining their identity. However, a considerable body of research has focused on the conservation of heritage buildings in a fragmented manner without considering their integration within a holistic urban context. Insufficient attention is given to the significance of the physical and social roles played by the heritage staircases and baths that serve as connectors between these valued historical buildings. In doing so, the research uses a methodology that is based on consensus. Given that liveability is considered a complex matter with several dimensions. The discussion starts by making initial observations on the physical context and societal norms inside the urban center while simultaneously establishing the definitions of liveability and connectivity and examining the key criteria associated with these concepts. Then, identify the key elements that contribute to liveable connectivity within the framework of urban heritage in Jordanian city centers. Some of the outcomes that will be discussed in the presentation are: (1) There is not enough connectivity between heritage buildings as can be seen, for example, between buildings in Jada and Qala'. (2) Most of the outdoor spaces suffer from physical issues that hinder their use by the public, like in Salalem. (3) Existing activities in the city center are not well attended because of lack of communication between the organisers and the citizens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connectivity" title="connectivity">connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=liveability" title=" liveability"> liveability</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20city" title=" salt city"> salt city</a>, <a href="https://publications.waset.org/abstracts/search?q=tangible%20and%20intangible%20heritage" title=" tangible and intangible heritage"> tangible and intangible heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heritage" title=" urban heritage"> urban heritage</a> </p> <a href="https://publications.waset.org/abstracts/177678/reviving-the-past-enhancing-the-future-preservation-of-urban-heritage-connectivity-as-a-tool-for-developing-liveability-in-historical-cities-in-jordan-using-salt-city-as-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Matulova">Lenka Matulova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20properties" title=" long-term properties"> long-term properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title=" metakaolin"> metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a> </p> <a href="https://publications.waset.org/abstracts/53969/long-term-mechanical-and-structural-properties-of-metakaolin-based-geopolymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewole%20A.%20Ayoade">Adewole A. Ayoade</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshall%20R.%20Sweatt"> Marshall R. Sweatt</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20P.%20H.%20Steele"> John P. H. Steele</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Han"> Qi Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Al-Wahedi"> Khaled Al-Wahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Karki"> Hamad Karki</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20A.%20Yearsley"> William A. Yearsley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inspection%20mobile%20robot" title="inspection mobile robot">inspection mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fusion" title=" sensor fusion"> sensor fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20update%20extended%20Kalman%20filter" title=" sequential update extended Kalman filter"> sequential update extended Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/42808/real-time-sensor-fusion-for-mobile-robot-localization-in-an-oil-and-gas-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Evaluating the Performance of Existing Full-Reference Quality Metrics on High Dynamic Range (HDR) Video Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Azimi">Maryam Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Banitalebi-Dehkordi"> Amin Banitalebi-Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanyuan%20Dong"> Yuanyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20T.%20Pourazad"> Mahsa T. Pourazad</a>, <a href="https://publications.waset.org/abstracts/search?q=Panos%20Nasiopoulos"> Panos Nasiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While there exists a wide variety of Low Dynamic Range (LDR) quality metrics, only a limited number of metrics are designed specifically for the High Dynamic Range (HDR) content. With the introduction of HDR video compression standardization effort by international standardization bodies, the need for an efficient video quality metric for HDR applications has become more pronounced. The objective of this study is to compare the performance of the existing full-reference LDR and HDR video quality metrics on HDR content and identify the most effective one for HDR applications. To this end, a new HDR video data set is created, which consists of representative indoor and outdoor video sequences with different brightness, motion levels and different representing types of distortions. The quality of each distorted video in this data set is evaluated both subjectively and objectively. The correlation between the subjective and objective results confirm that VIF quality metric outperforms all to their tested metrics in the presence of the tested types of distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HDR" title="HDR">HDR</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20range" title=" dynamic range"> dynamic range</a>, <a href="https://publications.waset.org/abstracts/search?q=LDR" title=" LDR"> LDR</a>, <a href="https://publications.waset.org/abstracts/search?q=subjective%20evaluation" title=" subjective evaluation"> subjective evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20compression" title=" video compression"> video compression</a>, <a href="https://publications.waset.org/abstracts/search?q=HEVC" title=" HEVC"> HEVC</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20quality%20metrics" title=" video quality metrics"> video quality metrics</a> </p> <a href="https://publications.waset.org/abstracts/18171/evaluating-the-performance-of-existing-full-reference-quality-metrics-on-high-dynamic-range-hdr-video-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Balordi">M. Balordi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Santucci%20de%20Magistris"> G. Santucci de Magistris</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pini"> F. Pini</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Marcacci"> P. Marcacci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20coatings" title="superhydrophobic coatings">superhydrophobic coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-icing" title=" anti-icing"> anti-icing</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-snow" title=" anti-snow"> anti-snow</a>, <a href="https://publications.waset.org/abstracts/search?q=overheads%20lines" title=" overheads lines"> overheads lines</a> </p> <a href="https://publications.waset.org/abstracts/136459/superhydrophobic-materials-a-promising-way-to-enhance-resilience-of-electric-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Outdoor Thermal Environment Measurement and Simulations in Traditional Settlements in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Ping%20Lin">Tzu-Ping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shing-Ru%20Yang"> Shing-Ru Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change has a significant impact on human living environment, while the traditional settlement may suffer extreme thermal stress due to its specific building type and living behavior. This study selected Lutaoyang, which is the largest settlement in mountainous areas of Tainan County, for the investigation area. The microclimate parameters, such as air temperature, relative humidity, wind speed, and mean radiant temperature. The micro climate parameters were also simulated by the ENVI-met model. The results showed the banyan tree area providing good thermal comfort condition due to the shading. On the contrary, the courtyard (traditionally for the crops drying) surrounded by low rise building and consisted of artificial pavement contributing heat stress especially in summer noon. In the climate change simulations, the courtyard will become very hot and are not suitable for residents activities. These analytical results will shed light on the sustainability related to thermal environment in traditional settlements and develop adaptive measure towards sustainable development under the climate change challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20environment" title="thermal environment">thermal environment</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20settlement" title=" traditional settlement"> traditional settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=ENVI-met" title=" ENVI-met"> ENVI-met</a>, <a href="https://publications.waset.org/abstracts/search?q=Taiwan" title=" Taiwan"> Taiwan</a> </p> <a href="https://publications.waset.org/abstracts/46523/outdoor-thermal-environment-measurement-and-simulations-in-traditional-settlements-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Use of Waste Road-Asphalt as Aggregate in Pavement Block Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babagana%20Mohammed">Babagana Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulmuminu%20Mustapha%20Ali"> Abdulmuminu Mustapha Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Ibrahim"> Solomon Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Buba%20Ahmad%20Umdagas"> Buba Ahmad Umdagas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated the possibility of replacing coarse and fine aggregates with waste road-asphalt (RWA), when sieved appropriately, in concrete production. Interlock pavement block is used widely in many parts of the world as modern day solution to outdoor flooring applications. The weight-percentage replacements of both coarse and fine aggregates with RWA at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively using a concrete mix ratio of 1:2:4 and water-to-cement ratio of 0.45 were carried out. The interlock block samples produced were then cured for 28days. Unconfined compressive strength (UCS) and the water absorption properties of the samples were then tested. Comparison of the results of the RWA-containing samples to those of the respective control samples shows significant benefits of using RWA in interlock block production. UCS results of RWA-containing samples compared well with those of the control samples and the RWA content also influenced the lowering of the water absorption of the samples. Overall, the research shows that it is possible to replace both coarse and fine aggregates with RWA materials when sieved appropriately, hence indicating that RWA could be recycled beneficially. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate" title="aggregate">aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=block-production" title=" block-production"> block-production</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=road-asphalt" title=" road-asphalt"> road-asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=use" title=" use"> use</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/79948/use-of-waste-road-asphalt-as-aggregate-in-pavement-block-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Overview About Sludge Produced From Treatment Plant of Bahr El-Baqar Drain and Reusing It With Cement in Outdoor Paving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.Naguib">Khaled M.Naguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.Noureldin"> Ahmed M.Noureldin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to achieve many goals such as knowing (quantities produced- main properties- characteristics) of sludge produced from Bahr EL-Baqar drains treatment plant. This prediction or projection was made by laboratory analysis and modelling of Model samples from sludge depending on many studies that have previously done, second check the feasibility and do a risk analysis to know the best alternatives for reuse in producing secondary products that add value to sludge. Also, to know alternatives that have no value to add. All recovery methods are relatively very expensive and challenging to be done in this mega plant, so the recommendation from this study is to use the sludge as a coagulant to reduce some compounds or in secondary products. The study utilized sludge-cement replacement percentages of 10%, 20%, 30%, 40% and 50%. Produced tiles were tested for water absorption and breaking (bending) strength. The study showed that all produced tiles exhibited a water absorption ratio of around 10%. The study concluded that produced tiles, except for 50% sludge-cement replacement, comply with the breaking strength requirements of 2.8 MPa for tiles for external use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=tiles" title=" tiles"> tiles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20sludge" title=" water treatment sludge"> water treatment sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20strength" title=" breaking strength"> breaking strength</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a> </p> <a href="https://publications.waset.org/abstracts/167746/overview-about-sludge-produced-from-treatment-plant-of-bahr-el-baqar-drain-and-reusing-it-with-cement-in-outdoor-paving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> The Construction of the Residential Landscape in the Mountain Environment: Taking the Eling Peak, &#039;Mirror of the Sky&#039;, in Chongqing, China as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuhang%20Zou">Yuhang Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Wang"> Zhu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the western part of China is mountainous and hilly region, with abundant resources of mountainous space. However, the resources are complex, and the ecological factors are diverse. As urbanization expands rapidly today, the landscape of the mountain residence needs to be changed. This paper, starting with the ecological environment and visual landscape of the mountain living space, analyzes the basic conditions of the Eling Peak, ‘Mirror of the Sky’, in Chongqing, China before its landscape renovation. Then, it analyzes some parts of the project, including the overall planning, ecological coordination, space expansion and local conditions in mountain environment. After that, this paper concludes the intention of designer and 4 methods, appropriate demolition, space reconstruction, landscape modeling and reasonable road system, to transform the master’s mountain residential works. Finally, through the analysis and understanding of the project, it sums up that the most beautiful landscape is not only the outdoor space, but also borrowing scene from the city and the sky, making them a part of the mountainous residential buildings. Only in this way can people, landscape, building, sky, and city become integrated and coexist harmoniously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landscape%20design" title="landscape design">landscape design</a>, <a href="https://publications.waset.org/abstracts/search?q=mountainous%20architecture" title=" mountainous architecture"> mountainous architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=renovation" title=" renovation"> renovation</a>, <a href="https://publications.waset.org/abstracts/search?q=residence" title=" residence"> residence</a> </p> <a href="https://publications.waset.org/abstracts/93047/the-construction-of-the-residential-landscape-in-the-mountain-environment-taking-the-eling-peak-mirror-of-the-sky-in-chongqing-china-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azzam%20Alosaimi">Azzam Alosaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title="infiltration rate">infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demands" title=" energy demands"> energy demands</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20loss" title=" heating loss"> heating loss</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20loss" title=" cooling loss"> cooling loss</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a> </p> <a href="https://publications.waset.org/abstracts/144883/modeling-approach-for-evaluating-infiltration-rate-of-a-large-scale-housing-stock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> The Future of Adventure Tourism in a Warmer World: An Exploratory Study of Mountain Guides’ Perception of Environmental Change in Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brooklyn%20Rushton">Brooklyn Rushton</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Rutty"> Michelle Rutty</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Knowles"> Natalie Knowles</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Scott"> Daniel Scott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As people are increasingly on the search for extraordinary experiences and connections with nature, adventure tourism is experiencing significant growth and providing tourists with life-changing experiences. Unlike built attraction-based tourism, adventure tourism relies entirely on natural heritage, which leaves communities dependent on adventure tourism extremely vulnerable to environmental and climatic changes. A growing body of evidence suggests that global climate change will influence the future of adventure tourism and mountain outdoor recreation opportunities on a global scale. Across Canada, more specifically, climate change is broadly anticipated to present risks for winter-snow sports, while opportunities are anticipated to arise for green season activities. These broad seasonal shifts do not account for the indirect impacts of climate change on adventure tourism, such as the cost of adaptation or the increase of natural hazards and the associated likelihood of accidents. While some research has examined the impact of climate change on natural environments that adventure tourism relies on, a very small body of research has specifically focused on guides’ perspectives or included hard adventure tourism activities. The guiding industry is unique, as guides are trained through an elegant blend of art and science to make decisions based on experience, observation, and intuition. While quantitative research can monitor change in natural environments, guides local knowledge can provide eye-witness accounts and outline what environmental changes mean for the future sustainability of adventure tourism. This research will capture the extensive knowledge of mountain guides to better understand the implications of climate change for mountain adventure and potential adaptive responses for the adventure tourism industry. This study uses a structured online survey with open and close-ended questions that will be administered using Qualtrics (an online survey platform). This survey is disseminated to current members of the Association of Canadian Mountain Guides (ACMG). Participation in this study will be exclusive to members of the ACMG operating in the outdoor guiding streams. The 25 survey questions are organized into four sections: demographic and professional operation (9 questions), physical change (4 questions), climate change perception (6 questions), and climate change adaptation (6 questions). How mountain guides perceive and respond to climate change is important knowledge for the future of the expanding adventure tourism industry. Results from this study are expected to provide important information to mountain destinations on climate change vulnerability and adaptive capacity. Expected results of this study include guides insight into: (1) experience-safety relevant observed physical changes in guided regions (i.e. glacial coverage, permafrost coverage, precipitation, temperature, and slope instability) (2) changes in hazards within the guiding environment (i.e. avalanches, rockfall, icefall, forest fires, flooding, and extreme weather events), (3) existing and potential adaptation strategies, and (4) key information and other barriers for adaptation. By gaining insight from the knowledge of mountain guides, this research can help the tourism industry at large understand climate risk and create adaptation strategies to ensure the resiliency of the adventure tourism industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adventure%20tourism" title="adventure tourism">adventure tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20change" title=" environmental change"> environmental change</a>, <a href="https://publications.waset.org/abstracts/search?q=mountain%20hazards" title=" mountain hazards"> mountain hazards</a> </p> <a href="https://publications.waset.org/abstracts/134776/the-future-of-adventure-tourism-in-a-warmer-world-an-exploratory-study-of-mountain-guides-perception-of-environmental-change-in-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=4" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outdoor&amp;page=6" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10