CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 118 results for author: <span class="mathjax">Brower, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Brower%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Brower, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Brower%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Brower, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00459">arXiv:2407.00459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00459">pdf</a>, <a href="https://arxiv.org/format/2407.00459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The Ising Model on $\mathbb S^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E+K">Evan K. Owen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00459v1-abstract-short" style="display: inline;"> We define a 2-dimensional Ising model on a triangulated sphere, $\mathbb S^2$, designed to approach the exact conformal field theory (CFT) in the continuum limit. Surprisingly, the derivation leads to a set of geometric constraints that the lattice field theory must satisfy. Monte Carlo simulations are in agreement with the exact Ising CFT on $\mathbb S^2$. We discuss the inherent benefi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00459v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00459v1-abstract-full" style="display: none;"> We define a 2-dimensional Ising model on a triangulated sphere, $\mathbb S^2$, designed to approach the exact conformal field theory (CFT) in the continuum limit. Surprisingly, the derivation leads to a set of geometric constraints that the lattice field theory must satisfy. Monte Carlo simulations are in agreement with the exact Ising CFT on $\mathbb S^2$. We discuss the inherent benefits of using non-uniform simplicial lattices and how these methods may be generalized for use with other quantum theories on curved manifolds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00459v1-abstract-full').style.display = 'none'; document.getElementById('2407.00459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07836">arXiv:2312.07836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07836">pdf</a>, <a href="https://arxiv.org/format/2312.07836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter spectrum using LapH and Irreps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Culver%2C+C">Christopher Culver</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">James Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">Xiao Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">Evan Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07836v1-abstract-short" style="display: inline;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07836v1-abstract-full" style="display: none;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter self-interactions. Here, we focus on reducing excited state contamination in the single baryon channel by applying the Laplacian Heaviside method, as well as projecting our baryon operators onto the irreducible representations of the octahedral group. We compare our resulting spectrum to previous work involving Gaussian smeared non-projected operators and find good agreement with reduced statistical uncertainties. We also present the spectrum of the low-lying odd-parity baryons for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'none'; document.getElementById('2312.07836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-808-T, RIKEN-iTHEMS-Report-23, IPPP/23/71, LLNL-JRNL-858123 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04800">arXiv:2312.04800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04800">pdf</a>, <a href="https://arxiv.org/format/2312.04800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Decimation map in 2D for accelerating HMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Matsumoto%2C+N">Nobuyuki Matsumoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04800v1-abstract-short" style="display: inline;"> To accelerate the HMC with field transformation, we consider a variant of the trivializing map, the decimation map, which can be regarded as a coarse-graining transformation. Using the 2D $U(1)$ pure gauge model, combined with the guided Monte Carlo algorithm, we show that the integrated autocorrelation time of the topological charge can be exponentially improved in the wall clock time. Our study&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04800v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04800v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04800v1-abstract-full" style="display: none;"> To accelerate the HMC with field transformation, we consider a variant of the trivializing map, the decimation map, which can be regarded as a coarse-graining transformation. Using the 2D $U(1)$ pure gauge model, combined with the guided Monte Carlo algorithm, we show that the integrated autocorrelation time of the topological charge can be exponentially improved in the wall clock time. Our study indicates that incorporating renormalization group picture is a powerful and essential ingredient to accelerate the HMC at large $尾$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04800v1-abstract-full').style.display = 'none'; document.getElementById('2312.04800v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, talk presented at the 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01100">arXiv:2311.01100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01100">pdf</a>, <a href="https://arxiv.org/format/2311.01100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The Operator Product Expansion for Radial Lattice Quantization of 3D $蠁^4$ Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ayyar%2C+V">Venkitesh Ayyar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gl%C3%BCck%2C+A+E">Anna-Maria E. Gl眉ck</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E+K">Evan K. Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01100v1-abstract-short" style="display: inline;"> At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3d Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the Quantum Finite Elements method to implement radially quantized critical $蠁^4$ theory on simplicial lattices approaching $\mathbb{R} \times S^2$. Computing the four-point function of identical scalars&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01100v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01100v1-abstract-full" style="display: none;"> At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3d Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the Quantum Finite Elements method to implement radially quantized critical $蠁^4$ theory on simplicial lattices approaching $\mathbb{R} \times S^2$. Computing the four-point function of identical scalars, we demonstrate the power of radial quantization by the accurate determination of the scaling dimensions $螖_蔚$ and $螖_{T}$ as well as ratios of the operator product expansion (OPE) coefficients $f_{蟽蟽蔚}$ and $f_{蟽蟽T}$ of the first spin-0 and spin-2 primary operators $蔚$ and $T$ of the 3d Ising CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01100v1-abstract-full').style.display = 'none'; document.getElementById('2311.01100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-631-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06095">arXiv:2306.06095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06095">pdf</a>, <a href="https://arxiv.org/format/2306.06095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Light Scalar Meson and Decay Constant in SU(3) Gauge Theory with Eight Dynamical Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lattice+Strong+Dynamics+Collaboration"> Lattice Strong Dynamics Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">E. Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Culver%2C+C">C. Culver</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06095v1-abstract-short" style="display: inline;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06095v1-abstract-full" style="display: none;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we study the finite-volume dependence of the $蟽$ meson correlation function computed in lattice gauge theory and determine the $蟽$ meson mass and decay constant extrapolated to the infinite-volume limit. We also determine the infinite volume mass and decay constant of the flavor-nonsinglet scalar meson $a_0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'none'; document.getElementById('2306.06095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures, supplementary data in zenodo https://dx.doi.org/10.5281/zenodo.8007955</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-286-T; LLNL-JRNL-850169; RIKEN-iTHEMS-Report-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03665">arXiv:2305.03665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03665">pdf</a>, <a href="https://arxiv.org/format/2305.03665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.L091505">10.1103/PhysRevD.108.L091505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden Conformal Symmetry from the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=LSD+Collaboration"> LSD Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03665v2-abstract-short" style="display: inline;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars aris&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'inline'; document.getElementById('2305.03665v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03665v2-abstract-full" style="display: none;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars arise from spontaneous breaking of chiral symmetry. Identifying the scalar in this case as an approximate dilaton, we fit the lattice data to a dilaton effective field theory, finding that it yields a good fit even at lowest order. For comparison, we then consider the possibility that the theory is inside the conformal window. The fermion mass provides a deformation, triggering confinement. We employ simple scaling laws to fit the lattice data, and find that it is of lesser quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'none'; document.getElementById('2305.03665v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23, LLNL-JRNL-853554, FERMILAB-CONF-23-260-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, L091505 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12559">arXiv:2212.12559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12559">pdf</a>, <a href="https://arxiv.org/format/2212.12559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.430.0335">10.22323/1.430.0335 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing Staggered Multigrid for Exascale performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ayyar%2C+V">Venkitesh Ayyar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagner%2C+M">Mathias Wagner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12559v1-abstract-short" style="display: inline;"> Adaptive multi-grid methods have proven very successful in dealing with critical slow down for the Wilson-Dirac solver in lattice gauge theory. Multi-grid algorithms developed for Staggered fermions using the K盲hler-Dirac preconditioning~\cite{Brower:2018ymy} have shown remarkable success. In this work, we discuss the performance of this staggered multi-grid algorithm in four dimensions. We also d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12559v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12559v1-abstract-full" style="display: none;"> Adaptive multi-grid methods have proven very successful in dealing with critical slow down for the Wilson-Dirac solver in lattice gauge theory. Multi-grid algorithms developed for Staggered fermions using the K盲hler-Dirac preconditioning~\cite{Brower:2018ymy} have shown remarkable success. In this work, we discuss the performance of this staggered multi-grid algorithm in four dimensions. We also demonstrate that offloading some components of a multi-shift solve to a multi-grid solver leads to a significant performance improvement in an existing MILC spectrum workflow on the Summit and Selene supercomputers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12559v1-abstract-full').style.display = 'none'; document.getElementById('2212.12559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submission to Proceedings of Lattice 2022: the 39th International Symposium on Lattice Field Theory, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15546">arXiv:2209.15546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.15546">pdf</a>, <a href="https://arxiv.org/format/2209.15546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.014511">10.1103/PhysRevD.108.014511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ising Model on the Affine Plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E+K">Evan K. Owen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15546v1-abstract-short" style="display: inline;"> We demonstrate that the Ising model on a general triangular graph with 3 distinct couplings $K_1,K_2,K_3$ corresponds to an affine transformed conformal field theory (CFT). Full conformal invariance of the $c= 1/2$ minimal CFT is restored by introducing a metric on the lattice through the map $\sinh(2K_i) = \ell^*_i/ \ell_i$ which relates critical couplings to the ratio of the dual hexagonal and t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15546v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15546v1-abstract-full" style="display: none;"> We demonstrate that the Ising model on a general triangular graph with 3 distinct couplings $K_1,K_2,K_3$ corresponds to an affine transformed conformal field theory (CFT). Full conformal invariance of the $c= 1/2$ minimal CFT is restored by introducing a metric on the lattice through the map $\sinh(2K_i) = \ell^*_i/ \ell_i$ which relates critical couplings to the ratio of the dual hexagonal and triangular edge lengths. Applied to a 2d toroidal lattice, this provides an exact lattice formulation in the continuum limit to the Ising CFT as a function of the modular parameter. This example can be viewed as a quantum generalization of the finite element method (FEM) applied to the strong coupling CFT at a Wilson-Fisher IR fixed point and suggests a new approach to conformal field theory on curved manifolds based on a synthesis of simplicial geometry and projective geometry on the tangent planes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15546v1-abstract-full').style.display = 'none'; document.getElementById('2209.15546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10758">arXiv:2209.10758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10758">pdf</a>, <a href="https://arxiv.org/format/2209.10758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10758v1-abstract-short" style="display: inline;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10758v1-abstract-full" style="display: none;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'none'; document.getElementById('2209.10758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 1 figure. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report for TF05 - Lattice Gauge Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-08, LA-UR-22-29361, FERMILAB-CONF-22-703-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00039">arXiv:2204.00039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00039">pdf</a>, <a href="https://arxiv.org/format/2204.00039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and the Computational Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joswig%2C+F">Fabian Joswig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A">Andreas Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J">James Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richings%2C+J">James Richings</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00039v1-abstract-short" style="display: inline;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00039v1-abstract-full" style="display: none;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak processes. As experimental measurements become more precise over the next decade, lattice QCD will play an increasing role in providing the needed matching theoretical precision. Achieving the needed precision requires simulations with lattices with substantially increased resolution. As we push to finer lattice spacing we encounter an array of new challenges. They include algorithmic and software-engineering challenges, challenges in computer technology and design, and challenges in maintaining the necessary human resources. In this white paper we describe those challenges and discuss ways they are being dealt with. Overcoming them is key to supporting the community effort required to deliver the needed theoretical support for experiments in the coming decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'none'; document.getElementById('2204.00039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. 22 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03464">arXiv:2202.03464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03464">pdf</a>, <a href="https://arxiv.org/format/2202.03464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.114503">10.1103/PhysRevD.105.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperbolic Lattice for Scalar Field Theory in AdS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cogburn%2C+C+V">Cameron V. Cogburn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">Evan Owen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03464v1-abstract-short" style="display: inline;"> We construct a tessellation of AdS$_3$, by extending the equilateral triangulation of AdS$_2$ on the Poincar茅 disk based on the $(2,3,7)$ triangle group, suitable for studying strongly coupled phenomena and the AdS/CFT correspondence. A Hamiltonian form conducive to the study of dynamics and quantum computation is presented. We show agreement between lattice calculations and analytic results for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03464v1-abstract-full').style.display = 'inline'; document.getElementById('2202.03464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03464v1-abstract-full" style="display: none;"> We construct a tessellation of AdS$_3$, by extending the equilateral triangulation of AdS$_2$ on the Poincar茅 disk based on the $(2,3,7)$ triangle group, suitable for studying strongly coupled phenomena and the AdS/CFT correspondence. A Hamiltonian form conducive to the study of dynamics and quantum computation is presented. We show agreement between lattice calculations and analytic results for the free scalar theory and find evidence of a second order critical transition for $蠁^4$ theory using Monte Carlo simulations. Applications of this AdS Hamiltonian formulation to real time evolution and quantum computing are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03464v1-abstract-full').style.display = 'none'; document.getElementById('2202.03464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02412">arXiv:2201.02412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02412">pdf</a>, <a href="https://arxiv.org/format/2201.02412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> U(1) Fields from Qubits: an Approach via D-theory Algebra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Berenstein%2C+D">David Berenstein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kawai%2C+H">Hiroki Kawai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02412v2-abstract-short" style="display: inline;"> A new quantum link microstructure was proposed for the lattice quantum chromodynamics (QCD) Hamiltonian, replacing the Wilson gauge links with a bilinear of fermionic qubits, later generalized to D-theory. This formalism provides a general framework for building lattice field theory algorithms for quantum computing. We focus mostly on the simplest case of a quantum rotor for a single compact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02412v2-abstract-full').style.display = 'inline'; document.getElementById('2201.02412v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02412v2-abstract-full" style="display: none;"> A new quantum link microstructure was proposed for the lattice quantum chromodynamics (QCD) Hamiltonian, replacing the Wilson gauge links with a bilinear of fermionic qubits, later generalized to D-theory. This formalism provides a general framework for building lattice field theory algorithms for quantum computing. We focus mostly on the simplest case of a quantum rotor for a single compact $U(1)$ field. We also make some progress for non-Abelian setups, making it clear that the ideas developed in the $U(1)$ case extend to other groups. These in turn are building blocks for $1 + 0$-dimensional ($1 + 0$-D) matrix models, $1 + 1$-D sigma models and non-Abelian gauge theories in $2+1$ and $3+1$ dimensions. By introducing multiple flavors for the $U(1)$ field, where the flavor symmetry is gauged, we can efficiently approach the infinite-dimensional Hilbert space of the quantum $O(2)$ rotor with increasing flavors. The emphasis of the method is on preserving the symplectic algebra exchanging fermionic qubits by sigma matrices (or hard bosons) and developing a formal strategy capable of generalization to $SU(3)$ field for lattice QCD and other non-Abelian $1 + 1$-D sigma models or $3 +3$-D gauge theories. For $U(1)$, we discuss briefly the qubit algorithms for the study of the discrete $1+1$-D Sine-Gordon equation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02412v2-abstract-full').style.display = 'none'; document.getElementById('2201.02412v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13534">arXiv:2106.13534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13534">pdf</a>, <a href="https://arxiv.org/format/2106.13534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034505">10.1103/PhysRevD.105.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Goldstone Boson Scattering with a Light Composite Scalar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13534v2-abstract-short" style="display: inline;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13534v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13534v2-abstract-full" style="display: none;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is measured both for different values of the underlying fermion mass and for different values of the scattering momentum. We examine the effect of a light flavor-singlet scalar (reported in earlier studies) on Goldstone boson scattering, employing a dilaton effective field theory (EFT) at the tree level. The EFT gives a good description of the scattering data, insofar as the magnitude of deviations between EFT and lattice data are no larger than the expected size of next-to-leading order corrections in the EFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'none'; document.getElementById('2106.13534v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 4 tables. References and clarifying comments added. To match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-21, LLNL-JRNL-823329, SI-HEP-2021-18 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01810">arXiv:2007.01810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.01810">pdf</a>, <a href="https://arxiv.org/format/2007.01810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014504">10.1103/PhysRevD.103.014504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-conformal dynamics in a chirally broken system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01810v2-abstract-short" style="display: inline;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'inline'; document.getElementById('2007.01810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01810v2-abstract-full" style="display: none;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by a conformal fixed point in the ultraviolet but are chirally broken in the infrared. In this work we use lattice field theory calculations with domain wall fermions to investigate a system with four light and six heavy flavors. We demonstrate how a nearby conformal fixed point affects the properties of the four light flavors that exhibit chiral symmetry breaking in the infrared. Specifically we describe hyperscaling of dimensionful physical quantities and determine the corresponding anomalous mass dimension. We obtain $y_m=1+纬^*= 1.47(5)$ suggesting that $N_f=10$ lies inside the conformal window. Comparing the low energy spectrum to predictions of dilaton chiral perturbation theory, we observe excellent agreement which supports the expectation that the 4+6 mass-split system exhibits near-conformal dynamics with a relatively light $0^{++}$ isosinglet scalar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'none'; document.getElementById('2007.01810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, v2 version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-812164 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16429">arXiv:2006.16429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16429">pdf</a>, <a href="https://arxiv.org/format/2006.16429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014505">10.1103/PhysRevD.103.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter confinement transition and gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K">K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">G. D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16429v2-abstract-short" style="display: inline;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'inline'; document.getElementById('2006.16429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16429v2-abstract-full" style="display: none;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in the fundamental representation, producing a stable spin-0 &#39;dark baryon&#39; as a viable composite dark matter candidate. Future searches for stochastic gravitational waves will provide a new way to discover or constrain stealth dark matter, in addition to previously investigated direct-detection and collider experiments. As a first step to enabling this phenomenology, we determine how heavy the dark fermions need to be in order to produce a first-order stealth dark matter confinement transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'none'; document.getElementById('2006.16429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data release at doi.org/10.5281/zenodo.3921870</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-811356; RIKEN-iTHEMS-Report-20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014505 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15636">arXiv:2006.15636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15636">pdf</a>, <a href="https://arxiv.org/format/2006.15636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094502">10.1103/PhysRevD.104.094502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radial Lattice Quantization of 3D $蠁^4$ Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15636v1-abstract-short" style="display: inline;"> The quantum extension of classical finite elements, referred to as quantum finite elements ({\bf QFE})~\cite{Brower:2018szu,Brower:2016vsl}, is applied to the radial quantization of 3d $蠁^4$ theory on a simplicial lattice for the $\mathbb R \times \mathbb S^2$ manifold. Explicit counter terms to cancel the one- and two-loop ultraviolet defects are implemented to reach the quantum continuum theory.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15636v1-abstract-full').style.display = 'inline'; document.getElementById('2006.15636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15636v1-abstract-full" style="display: none;"> The quantum extension of classical finite elements, referred to as quantum finite elements ({\bf QFE})~\cite{Brower:2018szu,Brower:2016vsl}, is applied to the radial quantization of 3d $蠁^4$ theory on a simplicial lattice for the $\mathbb R \times \mathbb S^2$ manifold. Explicit counter terms to cancel the one- and two-loop ultraviolet defects are implemented to reach the quantum continuum theory. Using the Brower-Tamayo~\cite{Brower:1989mt} cluster Monte Carlo algorithm, numerical results support the QFE ansatz that the critical conformal field theory (CFT) is reached in the continuum with the full isometries of $\mathbb R \times \mathbb S^2$ restored. The Ricci curvature term, while technically irrelevant in the quantum theory, is shown to dramatically improve the convergence opening, the way for high precision Monte Carlo simulation to determine the CFT data: operator dimensions, trilinear OPE couplings and the central charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15636v1-abstract-full').style.display = 'none'; document.getElementById('2006.15636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07732">arXiv:2004.07732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.07732">pdf</a>, <a href="https://arxiv.org/format/2004.07732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.094517">10.1103/PhysRevD.102.094517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multigrid for Chiral Lattice Fermions: Domain Wall </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07732v1-abstract-short" style="display: inline;"> Critical slowing down for the Krylov Dirac solver presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. We propose a new multi-grid approach for chiral fermions, applicable to both the 5-d domain wall or 4-d Overlap operator. The central idea is to directly coarsen the 4-d Wilson kernel, giving an effective domain wall or overlap operator on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07732v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07732v1-abstract-full" style="display: none;"> Critical slowing down for the Krylov Dirac solver presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. We propose a new multi-grid approach for chiral fermions, applicable to both the 5-d domain wall or 4-d Overlap operator. The central idea is to directly coarsen the 4-d Wilson kernel, giving an effective domain wall or overlap operator on each level. We provide here an explicit construction for the Shamir domain wall formulation with numerical tests for the 2-d Schwinger prototype, demonstrating near ideal multi-grid scaling. The framework is designed for a natural extension to 4-d lattice QCD chiral fermions, such as the M枚bius, Zolotarev or Borici domain wall discretizations or directly to a rational expansion of the 4-d Overlap operator. For the Shamir operator, the effective overlap operator is isolated by the use of a Pauli-Villars preconditioner in the spirit of the K盲hler-Dirac spectral map used in a recent staggered MG algorithm [1]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07732v1-abstract-full').style.display = 'none'; document.getElementById('2004.07732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10028">arXiv:2002.10028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.10028">pdf</a>, <a href="https://arxiv.org/format/2002.10028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice Gauge Theory for a Quantum Computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berenstein%2C+D">David Berenstein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kawai%2C+H">Hiroki Kawai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10028v1-abstract-short" style="display: inline;"> The quantum link~\cite{Brower:1997ha} Hamiltonian was introduced two decades ago as an alternative to Wilson&#39;s Euclidean lattice QCD with gauge fields represented by bi-linear fermion/anti-fermion operators. When generalized this new microscopic representation of lattice field theories is referred as {\tt D-theory}~\cite{Brower:2003vy}. Recast as a Hamiltonian in Minkowski space for real time evol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10028v1-abstract-full').style.display = 'inline'; document.getElementById('2002.10028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10028v1-abstract-full" style="display: none;"> The quantum link~\cite{Brower:1997ha} Hamiltonian was introduced two decades ago as an alternative to Wilson&#39;s Euclidean lattice QCD with gauge fields represented by bi-linear fermion/anti-fermion operators. When generalized this new microscopic representation of lattice field theories is referred as {\tt D-theory}~\cite{Brower:2003vy}. Recast as a Hamiltonian in Minkowski space for real time evolution, D-theory leads naturally to quantum Qubit algorithms. Here to explore digital quantum computing for gauge theories, the simplest example of U(1) compact QED on triangular lattice is defined and gauge invariant kernels for the Suzuki-Trotter expansions are expressed as Qubit circuits capable of being tested on the IBM-Q and other existing Noisy Intermediate Scale Quantum (NISQ) hardware. This is a modest step in exploring the quantum complexity of D-theory to guide future applications to high energy physics and condensed matter quantum field theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10028v1-abstract-full').style.display = 'none'; document.getElementById('2002.10028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages , 5 figures, 37th International Symposium on Lattice Field Theory - Lattice2019, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2019)112 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07606">arXiv:1912.07606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07606">pdf</a>, <a href="https://arxiv.org/format/1912.07606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.094507">10.1103/PhysRevD.103.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Setup for Quantum Field Theory in AdS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cogburn%2C+C+V">Cameron V. Cogburn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fitzpatrick%2C+A+L">A. Liam Fitzpatrick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07606v1-abstract-short" style="display: inline;"> Holographic Conformal Field Theories (CFTs) are usually studied in a limit where the gravity description is weakly coupled. By contrast, lattice quantum field theory can be used as a tool for doing computations in a wider class of holographic CFTs where gravity remains weak but nongravitational interactions {\it in AdS} become strong. We take preliminary steps for studying such theories on the lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07606v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07606v1-abstract-full" style="display: none;"> Holographic Conformal Field Theories (CFTs) are usually studied in a limit where the gravity description is weakly coupled. By contrast, lattice quantum field theory can be used as a tool for doing computations in a wider class of holographic CFTs where gravity remains weak but nongravitational interactions {\it in AdS} become strong. We take preliminary steps for studying such theories on the lattice by constructing the discretized theory of a scalar field in AdS$_2$ and investigating its approach to the continuum limit in the free and perturbative regimes. Our main focus is on finite sub-lattices of maximally symmetric tilings of hyperbolic space. Up to boundary effects, these tilings preserve the triangle group as a large discrete subgroup of AdS$_2$, but have a minimum lattice spacing that is comparable to the radius of curvature of the underlying spacetime. We quantify the effects of the lattice spacing as well as the boundary effects, and find that they can be accurately modeled by modifications within the framework of the continuum limit description. We also show how to do refinements of the lattice that shrink the lattice spacing at the cost of breaking the triangle group symmetry of the maximally symmetric tilings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07606v1-abstract-full').style.display = 'none'; document.getElementById('1912.07606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 094507 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09964">arXiv:1904.09964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09964">pdf</a>, <a href="https://arxiv.org/format/1904.09964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12901-5">10.1140/epja/i2019-12901-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Gauge Theory for Physics Beyond the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G">George Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09964v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice field theory research to make an impact on models of new physics beyond the Standard Model, including composite Higgs, composite dark matter, and supersymmetric theories. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09964v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice field theory research to make an impact on models of new physics beyond the Standard Model, including composite Higgs, composite dark matter, and supersymmetric theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09964v1-abstract-full').style.display = 'none'; document.getElementById('1904.09964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-19 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2019) 55: 198 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02624">arXiv:1809.02624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02624">pdf</a>, <a href="https://arxiv.org/ps/1809.02624">ps</a>, <a href="https://arxiv.org/format/1809.02624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.114510">10.1103/PhysRevD.98.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear Sigma EFT for Nearly Conformal Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02624v2-abstract-short" style="display: inline;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02624v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02624v2-abstract-full" style="display: none;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the PNGBs ($蟺$) over a large range of quark masses. The EFT incorporates this feature. We highlight the crucial role played by the terms in the potential that explicitly break chiral symmetry. The explicit breaking can be large enough so that a limited set of additional terms in the potential can no longer be neglected, with the EFT still weakly coupled in this new range. The additional terms contribute importantly to the scalar and pion masses. In particular, they relax the inequality $M_蟽^2 \ge 3 M_蟺^2$, allowing for consistency with current lattice data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'none'; document.getElementById('1809.02624v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1291 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 114510 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08411">arXiv:1807.08411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.08411">pdf</a>, <a href="https://arxiv.org/format/1807.08411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014509">10.1103/PhysRevD.99.014509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dynamics%2C+L+S">Lattice Strong Dynamics</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collaboration"> Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08411v2-abstract-short" style="display: inline;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'inline'; document.getElementById('1807.08411v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08411v2-abstract-full" style="display: none;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous chiral symmetry breaking, but finite-temperature transitions with fixed $N_t \leq 24$ enter a strongly coupled lattice phase as the fermion mass decreases, which prevents a direct confirmation of spontaneous chiral symmetry breaking in the chiral limit. In addition to the connected spectrum we focus on the lightest flavor-singlet scalar particle. We find it to be degenerate with the pseudo-Goldstone states down to the lightest masses reached so far by non-perturbative lattice calculations. Using the same lattice approach, we study the behavior of the composite spectrum when the number of light fermions is changed from eight to four. A heavy flavor-singlet scalar in the 4-flavor theory affirms the contrast between QCD-like dynamics and the low-energy behavior of the 8-flavor theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'none'; document.getElementById('1807.08411v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 36 figures, 8 tables. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1286; LLNL-JRNL-753511 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08512">arXiv:1803.08512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08512">pdf</a>, <a href="https://arxiv.org/format/1803.08512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014502">10.1103/PhysRevD.98.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice $蠁^4$ Field Theory on Riemann Manifolds: Numerical Tests for the 2-d Ising CFT on $\mathbb{S}^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08512v1-abstract-short" style="display: inline;"> We present a method for defining a lattice realization of the $蠁^4$ quantum field theory on a simplicial complex in order to enable numerical computation on a general Riemann manifold. The procedure begins with adopting methods from traditional Regge Calculus (RC) and finite element methods (FEM) plus the addition of ultraviolet counter terms required to reach the renormalized field theory in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08512v1-abstract-full').style.display = 'inline'; document.getElementById('1803.08512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08512v1-abstract-full" style="display: none;"> We present a method for defining a lattice realization of the $蠁^4$ quantum field theory on a simplicial complex in order to enable numerical computation on a general Riemann manifold. The procedure begins with adopting methods from traditional Regge Calculus (RC) and finite element methods (FEM) plus the addition of ultraviolet counter terms required to reach the renormalized field theory in the continuum limit. The construction is tested numerically for the two-dimensional $蠁^4$ scalar field theory on the Riemann two-sphere, $\mathbb{S}^2$, in comparison with the exact solutions to the two-dimensional Ising conformal field theory (CFT). Numerical results for the Binder cumulants (up to 12th order) and the two- and four-point correlation functions are in agreement with the exact $c = 1/2$ CFT solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08512v1-abstract-full').style.display = 'none'; document.getElementById('1803.08512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07823">arXiv:1801.07823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.07823">pdf</a>, <a href="https://arxiv.org/format/1801.07823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.114513">10.1103/PhysRevD.97.114513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multigrid for Staggered Lattice Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Strelchenko%2C+A">Alexei Strelchenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07823v1-abstract-short" style="display: inline;"> Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07823v1-abstract-full').style.display = 'inline'; document.getElementById('1801.07823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07823v1-abstract-full" style="display: none;"> Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K盲hler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07823v1-abstract-full').style.display = 'none'; document.getElementById('1801.07823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 37 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 114513 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.11094">arXiv:1710.11094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.11094">pdf</a>, <a href="https://arxiv.org/format/1710.11094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817509010">10.1051/epjconf/201817509010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Application Development within the US DOE Exascale Computing Project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P">Paul Mackenzie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.11094v1-abstract-short" style="display: inline;"> In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020&#39;s. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11094v1-abstract-full').style.display = 'inline'; document.getElementById('1710.11094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.11094v1-abstract-full" style="display: none;"> In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020&#39;s. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11094v1-abstract-full').style.display = 'none'; document.getElementById('1710.11094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35th International Symposium on Lattice Field Theory (Lattice 2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.07873">arXiv:1612.07873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.07873">pdf</a>, <a href="https://arxiv.org/format/1612.07873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Strelchenko%2C+A">Alexei Strelchenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A">Arjun Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.07873v1-abstract-short" style="display: inline;"> The past decade has witnessed a dramatic acceleration of lattice quantum chromodynamics calculations in nuclear and particle physics. This has been due to both significant progress in accelerating the iterative linear solvers using multi-grid algorithms, and due to the throughput improvements brought by GPUs. Deploying hierarchical algorithms optimally on GPUs is non-trivial owing to the lack of p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07873v1-abstract-full').style.display = 'inline'; document.getElementById('1612.07873v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.07873v1-abstract-full" style="display: none;"> The past decade has witnessed a dramatic acceleration of lattice quantum chromodynamics calculations in nuclear and particle physics. This has been due to both significant progress in accelerating the iterative linear solvers using multi-grid algorithms, and due to the throughput improvements brought by GPUs. Deploying hierarchical algorithms optimally on GPUs is non-trivial owing to the lack of parallelism on the coarse grids, and as such, these advances have not proved multiplicative. Using the QUDA library, we demonstrate that by exposing all sources of parallelism that the underlying stencil problem possesses, and through appropriate mapping of this parallelism to the GPU architecture, we can achieve high efficiency even for the coarsest of grids. Results are presented for the Wilson-Clover discretization, where we demonstrate up to 10x speedup over present state-of-the-art GPU-accelerated methods on Titan. Finally, we look to the future, and consider the software implications of our findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.07873v1-abstract-full').style.display = 'none'; document.getElementById('1612.07873v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">http://dl.acm.org/citation.cfm?id=3014904.3014995}</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC &#39;16), Article 68 (November, 2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08587">arXiv:1610.08587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.08587">pdf</a>, <a href="https://arxiv.org/format/1610.08587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.114510">10.1103/PhysRevD.95.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Dirac Fermions on a Simplicial Riemannian Manifold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08587v1-abstract-short" style="display: inline;"> The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere ${\mathbb S}^2$ in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08587v1-abstract-full').style.display = 'inline'; document.getElementById('1610.08587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08587v1-abstract-full" style="display: none;"> The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere ${\mathbb S}^2$ in the limit of an increasingly refined sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on ${\mathbb S}^2$. Convergence is tested for the two point, $\langle 蔚(x_1) 蔚(x_2) \rangle$, and the four point, $\langle 蟽(x_1) 蔚(x_2) 蔚(x_3 )蟽(x_4) \rangle $, correlators for the energy, $蔚(x) = i \bar 蠄(x)蠄(x)$, and twist operators, $蟽(x)$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08587v1-abstract-full').style.display = 'none'; document.getElementById('1610.08587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 114510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.09303">arXiv:1603.09303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.09303">pdf</a>, <a href="https://arxiv.org/format/1603.09303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> ASCR/HEP Exascale Requirements Review Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Habib%2C+S">Salman Habib</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roser%2C+R">Robert Roser</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gerber%2C+R">Richard Gerber</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Antypas%2C+K">Katie Antypas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Riley%2C+K">Katherine Riley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Williams%2C+T">Tim Williams</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wells%2C+J">Jack Wells</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Straatsma%2C+T">Tjerk Straatsma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Almgren%2C+A">A. Almgren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amundson%2C+J">J. Amundson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bailey%2C+S">S. Bailey</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bard%2C+D">D. Bard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bloom%2C+K">K. Bloom</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bockelman%2C+B">B. Bockelman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borgland%2C+A">A. Borgland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Borrill%2C+J">J. Borrill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boughezal%2C+R">R. Boughezal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">R. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cowan%2C+B">B. Cowan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Finkel%2C+H">H. Finkel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frontiere%2C+N">N. Frontiere</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fuess%2C+S">S. Fuess</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ge%2C+L">L. Ge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gnedin%2C+N">N. Gnedin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">S. Gottlieb</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.09303v2-abstract-short" style="display: inline;"> This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09303v2-abstract-full').style.display = 'inline'; document.getElementById('1603.09303v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.09303v2-abstract-full" style="display: none;"> This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP&#39;s research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09303v2-abstract-full').style.display = 'none'; document.getElementById('1603.09303v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 13 Figures; draft report, subject to further revision</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04027">arXiv:1601.04027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.04027">pdf</a>, <a href="https://arxiv.org/format/1601.04027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.114514">10.1103/PhysRevD.93.114514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly interacting dynamics and the search for new physics at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04027v2-abstract-short" style="display: inline;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'inline'; document.getElementById('1601.04027v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04027v2-abstract-full" style="display: none;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the context of the search for new physics beyond the standard model at the Large Hadron Collider (LHC). Connecting our results to models of dynamical electroweak symmetry breaking, we estimate the vector resonance mass to be about 2 TeV with a width of roughly 450 GeV, and predict additional resonances with masses below ~3 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'none'; document.getElementById('1601.04027v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. Added report number. Version submitted to journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-680732, NSF-KITP-16-004 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 114514 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.01367">arXiv:1601.01367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.01367">pdf</a>, <a href="https://arxiv.org/format/1601.01367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum Finite Elements for Lattice Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G">George Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T">Timothy Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.01367v1-abstract-short" style="display: inline;"> Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01367v1-abstract-full').style.display = 'inline'; document.getElementById('1601.01367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.01367v1-abstract-full" style="display: none;"> Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01367v1-abstract-full').style.display = 'none'; document.getElementById('1601.01367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, The 33rd International Symposium on Lattice Field Theory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.02576">arXiv:1512.02576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.02576">pdf</a>, <a href="https://arxiv.org/format/1512.02576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.075028">10.1103/PhysRevD.93.075028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite Higgs model at a conformal fixed point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.02576v2-abstract-short" style="display: inline;"> We propose to construct a chirally broken model based on the infrared fixed point of a conformal system by raising the mass of some flavors while keeping the others massless. In the infrared limit the massive fermions decouple and the massless fermions break chiral symmetry. The running coupling of this system &#34;walks&#34; and the energy range of walking can be tuned by the mass of the heavy flavors. R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02576v2-abstract-full').style.display = 'inline'; document.getElementById('1512.02576v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.02576v2-abstract-full" style="display: none;"> We propose to construct a chirally broken model based on the infrared fixed point of a conformal system by raising the mass of some flavors while keeping the others massless. In the infrared limit the massive fermions decouple and the massless fermions break chiral symmetry. The running coupling of this system &#34;walks&#34; and the energy range of walking can be tuned by the mass of the heavy flavors. Renormalization group considerations predict that the spectrum of such a system shows hyperscaling. We have studied a model with four light and eight heavy flavors coupled to SU(3) gauge fields and verified the above expectations. We determined the mass of several hadronic states and found that some of them are in the 2-3 TeV range if the scale is set by the pseudoscalar decay constant $F_蟺\approx 250$ GeV. The $0^{++}$ scalar state behaves very differently from the other hadronic states. In most of our simulations it is nearly degenerate with the pion and we estimate its mass to be less than half of the vector resonance mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02576v2-abstract-full').style.display = 'none'; document.getElementById('1512.02576v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated and with added references to match published version. 6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EDINBURGH 2015/31 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 075028 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04675">arXiv:1510.04675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04675">pdf</a>, <a href="https://arxiv.org/format/1510.04675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114516">10.1103/PhysRevD.92.114516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiscale Monte Carlo equilibration: Pure Yang-Mills theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endres%2C+M+G">Michael G. Endres</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04675v2-abstract-short" style="display: inline;"> We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04675v2-abstract-full').style.display = 'inline'; document.getElementById('1510.04675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04675v2-abstract-full" style="display: none;"> We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04675v2-abstract-full').style.display = 'none'; document.getElementById('1510.04675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 19 figures; Eq. 7 - Eq. 9 modified (results unchanged); text added to Sec IV F; typos fixed; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/4726 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114516 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04635">arXiv:1510.04635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04635">pdf</a>, <a href="https://arxiv.org/format/1510.04635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Strongly coupled gauge theories: What can lattice calculations teach us? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04635v1-abstract-short" style="display: inline;"> The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04635v1-abstract-full').style.display = 'inline'; document.getElementById('1510.04635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04635v1-abstract-full" style="display: none;"> The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light $0^{++}$ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the $vev$ of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could be a generic feature of SU(3) gauge theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04635v1-abstract-full').style.display = 'none'; document.getElementById('1510.04635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures; Contribution to SCGT15, Nagoya</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04205">arXiv:1503.04205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04205">pdf</a>, <a href="https://arxiv.org/format/1503.04205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.171803">10.1103/PhysRevLett.115.171803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Detection of Stealth Dark Matter through Electromagnetic Polarizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04205v2-abstract-short" style="display: inline;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- &#34;Stealth Dark Matter&#34;, that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scatteri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04205v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04205v2-abstract-full" style="display: none;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- &#34;Stealth Dark Matter&#34;, that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest baryons in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure, however the steep dependence on the dark matter mass, $1/m_B^6$, suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'none'; document.getElementById('1503.04205v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, citations added, typos fixed, minor clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-005, LLNL-JRNL-667121 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 171803 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04203">arXiv:1503.04203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04203">pdf</a>, <a href="https://arxiv.org/format/1503.04203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.075030">10.1103/PhysRevD.92.075030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth Dark Matter: Dark scalar baryons through the Higgs portal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04203v2-abstract-short" style="display: inline;"> We present a new model of &#34;Stealth Dark Matter&#34;: a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-bre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04203v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04203v2-abstract-full" style="display: none;"> We present a new model of &#34;Stealth Dark Matter&#34;: a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to $SU(4)$, and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass $m_B \gtrsim 300$ GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including: collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04203v2-abstract-full').style.display = 'none'; document.getElementById('1503.04203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures, citations added, typos fixed, minor clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-004, LLNL-JRNL-667446 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 075030 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.2148">arXiv:1412.2148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.2148">pdf</a>, <a href="https://arxiv.org/format/1412.2148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/640/1/012055">10.1088/1742-6596/640/1/012055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Targeting the Conformal Window: Scalars on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Rich Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.2148v1-abstract-short" style="display: inline;"> The light Higgs boson of the Standard Model could arise as the consequence of the weakly broken conformal symmetry in a strongly interacting gauge theory. Here we present a novel idea to study the transition from conformal to confining behavior using an SU(3) gauge theory with four light and eight heavy flavors. This system interpolates between the 12-flavor conformal and the 4 flavor chirally bro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2148v1-abstract-full').style.display = 'inline'; document.getElementById('1412.2148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.2148v1-abstract-full" style="display: none;"> The light Higgs boson of the Standard Model could arise as the consequence of the weakly broken conformal symmetry in a strongly interacting gauge theory. Here we present a novel idea to study the transition from conformal to confining behavior using an SU(3) gauge theory with four light and eight heavy flavors. This system interpolates between the 12-flavor conformal and the 4 flavor chirally broken theory as the mass of the heavy flavors are varied. We show first results on our determination of the iso-singlet 0++ state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2148v1-abstract-full').style.display = 'none'; document.getElementById('1412.2148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, contributed talk to the XXVI IUPAP Conference on Computational Physics (CCP2014), August 11-14 2014, Boston, Massachusetts, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.3243">arXiv:1411.3243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.3243">pdf</a>, <a href="https://arxiv.org/format/1411.3243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Targeting the conformal window with 4+8 flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Rich Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.3243v1-abstract-short" style="display: inline;"> We study the transition between spontaneous chiral symmetry breaking and conformal behavior in the SU(3) theory with multiple fermion flavors. Instead of the traditional approach of changing the number of flavors, we keep the number of fermions fixed but lift the mass of a subset, keeping the remaining fermions near to the massless chiral limit. This way we can interpolate continuously between the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3243v1-abstract-full').style.display = 'inline'; document.getElementById('1411.3243v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.3243v1-abstract-full" style="display: none;"> We study the transition between spontaneous chiral symmetry breaking and conformal behavior in the SU(3) theory with multiple fermion flavors. Instead of the traditional approach of changing the number of flavors, we keep the number of fermions fixed but lift the mass of a subset, keeping the remaining fermions near to the massless chiral limit. This way we can interpolate continuously between the conformal and chirally broken dynamics. In particular, we consider four light and eight heavy flavors and investigate the running/walking gauge coupling and the low energy meson spectrum, including the 0++ iso-singlet scalar state in this system. Our preliminary data reveal an iso-singlet scalar that is considerably lighter than the pion at large fermion mass but becomes heavier at smaller masses. This behavior is of particular phenomenological interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3243v1-abstract-full').style.display = 'none'; document.getElementById('1411.3243v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, combined contributions to the 32nd International Symposium on Lattice Field Theory (Lattice 2014), June 23-28 2014, New York, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.4091">arXiv:1410.4091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.4091">pdf</a>, <a href="https://arxiv.org/format/1410.4091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1134/S1063776115030176">10.1134/S1063776115030176 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A novel approach to the study of conformality in the SU(3) theory with multiple flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.4091v2-abstract-short" style="display: inline;"> We investigate the transition between spontaneous chiral symmetry breaking and conformal behavior in the SU(3) theory with multiple fermion flavors. We propose a new strategy for studying this transition. Instead of changing the number of flavors, we lift the mass of a subset of the fermions, keeping the rest of the fermions near to the massless chiral limit in order to probe the transition. Ded&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4091v2-abstract-full').style.display = 'inline'; document.getElementById('1410.4091v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.4091v2-abstract-full" style="display: none;"> We investigate the transition between spontaneous chiral symmetry breaking and conformal behavior in the SU(3) theory with multiple fermion flavors. We propose a new strategy for studying this transition. Instead of changing the number of flavors, we lift the mass of a subset of the fermions, keeping the rest of the fermions near to the massless chiral limit in order to probe the transition. Dedicated to the 60th birthday of Academician Valery Rubakov. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4091v2-abstract-full').style.display = 'none'; document.getElementById('1410.4091v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, fixed typos, added references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.7597">arXiv:1407.7597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.7597">pdf</a>, <a href="https://arxiv.org/format/1407.7597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Improved Lattice Radial Quantization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.7597v1-abstract-short" style="display: inline;"> Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7597v1-abstract-full').style.display = 'inline'; document.getElementById('1407.7597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.7597v1-abstract-full" style="display: none;"> Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $蠁^4$ Lagrangian on $\mathbb R \times \mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7597v1-abstract-full').style.display = 'none'; document.getElementById('1407.7597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.4752">arXiv:1405.4752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.4752">pdf</a>, <a href="https://arxiv.org/format/1405.4752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.114502">10.1103/PhysRevD.90.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations with eight flavors of domain wall fermions in SU(3) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.4752v2-abstract-short" style="display: inline;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'inline'; document.getElementById('1405.4752v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.4752v2-abstract-full" style="display: none;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our previous studies of the two- and six-flavor systems. Our results for the Nf=8 spectrum suggest spontaneous chiral symmetry breaking, though fits to the fermion mass dependence of spectral quantities do not strongly disfavor the hypothesis of mass-deformed infrared conformality. Compared to Nf=2 we observe a significant enhancement of the chiral condensate relative to the symmetry breaking scale F, similar to the situation for Nf=6. The reduction of the S parameter, related to parity doubling in the vector and axial-vector channels, is also comparable to our six-flavor results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'none'; document.getElementById('1405.4752v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-665913 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 114502 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.2761">arXiv:1403.2761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.2761">pdf</a>, <a href="https://arxiv.org/format/1403.2761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.014503">10.1103/PhysRevD.90.014503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximum-Likelihood Approach to Topological Charge Fluctuations in Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.2761v2-abstract-short" style="display: inline;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'inline'; document.getElementById('1403.2761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.2761v2-abstract-full" style="display: none;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'none'; document.getElementById('1403.2761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-650193 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 014503 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6656">arXiv:1402.6656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6656">pdf</a>, <a href="https://arxiv.org/format/1402.6656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094508">10.1103/PhysRevD.89.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6656v1-abstract-short" style="display: inline;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6656v1-abstract-full" style="display: none;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the latest LUX results leads to tight bounds on the fraction of the constituent-fermion mass that may arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum and the Higgs-dark matter coupling are performed on quenched $16^{3} \times 32$, $32^{3} \times 64$, $48^{3} \times 96$, and $64^{3} \times128$ lattices with three different lattice spacings, using Wilson fermions with moderate to heavy pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical study of composite baryonic dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'none'; document.getElementById('1402.6656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 094508 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4889">arXiv:1311.4889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.4889">pdf</a>, <a href="https://arxiv.org/ps/1311.4889">ps</a>, <a href="https://arxiv.org/format/1311.4889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.111601">10.1103/PhysRevLett.112.111601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Color Theory with Novel Infrared Behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4889v1-abstract-short" style="display: inline;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'inline'; document.getElementById('1311.4889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4889v1-abstract-full" style="display: none;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the theory either is governed in the infrared by a fixed point of considerable strength, unseen so far in non-supersymmetric gauge theories, or breaks its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'none'; document.getElementById('1311.4889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">six pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 111601 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.6087">arXiv:1310.6087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.6087">pdf</a>, <a href="https://arxiv.org/format/1310.6087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2013 Computing Frontier working group on Lattice Field Theory -- Lattice field theory for the energy and intensity frontiers: Scientific goals and computing needs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holmgren%2C+D">D. Holmgren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">R. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">S. Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N">N. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A">A. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">J. Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P">P. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharpe%2C+S+R">S. R. Sharpe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R">R. Sugar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.6087v1-abstract-short" style="display: inline;"> This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study (&#34;Snowmass&#34;). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.6087v1-abstract-full').style.display = 'inline'; document.getElementById('1310.6087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.6087v1-abstract-full" style="display: none;"> This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study (&#34;Snowmass&#34;). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.6087v1-abstract-full').style.display = 'none'; document.getElementById('1310.6087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 2 tables, 2 figures; to be include in proceedings of Community Summer Study (&#34;Snowmass&#34;) 2013</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.1206">arXiv:1309.1206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.1206">pdf</a>, <a href="https://arxiv.org/format/1309.1206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice Gauge Theories at the Energy Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G">George Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kuti%2C+J">Julius Kuti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E">Ethan Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.1206v1-abstract-short" style="display: inline;"> This White Paper has been prepared as a planning document for the Division of High Energy Physics of the U. S. Department of Energy. Recent progress in lattice-based studies of physics beyond the standard model is summarized, and major current goals of USQCD research in this area are presented. Challenges and opportunities associated with the recently discovered 126 GeV Higgs-like particle are hig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.1206v1-abstract-full').style.display = 'inline'; document.getElementById('1309.1206v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.1206v1-abstract-full" style="display: none;"> This White Paper has been prepared as a planning document for the Division of High Energy Physics of the U. S. Department of Energy. Recent progress in lattice-based studies of physics beyond the standard model is summarized, and major current goals of USQCD research in this area are presented. Challenges and opportunities associated with the recently discovered 126 GeV Higgs-like particle are highlighted. Computational resources needed for reaching important goals are described. The document was finalized on February 11, 2013 with references that are not aimed to be complete, or account for an accurate historical record of the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.1206v1-abstract-full').style.display = 'none'; document.getElementById('1309.1206v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for the Snowmass 2013 e-Proceedings with 44 pages, 10 figures, and 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.1693">arXiv:1301.1693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.1693">pdf</a>, <a href="https://arxiv.org/format/1301.1693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.014502">10.1103/PhysRevD.88.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of composite dark matter form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wasem%2C+J">J. Wasem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.1693v2-abstract-short" style="display: inline;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'inline'; document.getElementById('1301.1693v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.1693v2-abstract-full" style="display: none;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'none'; document.getElementById('1301.1693v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. v2: update to journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-608695; NT-LBL-13-002; UCB-NPAT-13-002; FERMILAB-PUB-13-014-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D88, 014502 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.6190">arXiv:1212.6190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.6190">pdf</a>, <a href="https://arxiv.org/ps/1212.6190">ps</a>, <a href="https://arxiv.org/format/1212.6190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2013.03.009">10.1016/j.physletb.2013.03.009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Radial Quantization: 3D Ising </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G">George Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neuberger%2C+H">Herbert Neuberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.6190v1-abstract-short" style="display: inline;"> Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using this method, we obtain the preliminary estimate eta=0.034(1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.6190v1-abstract-full').style.display = 'inline'; document.getElementById('1212.6190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.6190v1-abstract-full" style="display: none;"> Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using this method, we obtain the preliminary estimate eta=0.034(10). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.6190v1-abstract-full').style.display = 'none'; document.getElementById('1212.6190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.1757">arXiv:1212.1757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.1757">pdf</a>, <a href="https://arxiv.org/ps/1212.1757">ps</a>, <a href="https://arxiv.org/format/1212.1757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Radial Quantization for Conformal Field Theories on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neuberger%2C+H">Herbert Neuberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.1757v1-abstract-short" style="display: inline;"> We consider radial quantization for conformal quantum field theory with a lattice regulator. A Euclidean field theory on $\mathbb R^D$ is mapped to a cylindrical manifold, $\mathbb R\times \mathbb S^{D-1}$, whose length is logarithmic in scale separation. To test the approach, we apply this to the 3D Ising model and compute $畏$ for the first $Z_2$ odd primary operator. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.1757v1-abstract-full" style="display: none;"> We consider radial quantization for conformal quantum field theory with a lattice regulator. A Euclidean field theory on $\mathbb R^D$ is mapped to a cylindrical manifold, $\mathbb R\times \mathbb S^{D-1}$, whose length is logarithmic in scale separation. To test the approach, we apply this to the 3D Ising model and compute $畏$ for the first $Z_2$ odd primary operator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1757v1-abstract-full').style.display = 'none'; document.getElementById('1212.1757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.5214">arXiv:1206.5214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.5214">pdf</a>, <a href="https://arxiv.org/format/1206.5214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The M枚bius Domain Wall Fermion Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neff%2C+H">Harmut Neff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.5214v2-abstract-short" style="display: inline;"> We present a review of the properties of generalized domain wall Fermions, based on a (real) M枚bius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass ($m_{res}$) and the Ward-Takahashi identities. The M枚bius class interpolates between Shamir&#39;s domain wall operator and Bori莽i&#39;s domain wall imp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5214v2-abstract-full').style.display = 'inline'; document.getElementById('1206.5214v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.5214v2-abstract-full" style="display: none;"> We present a review of the properties of generalized domain wall Fermions, based on a (real) M枚bius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass ($m_{res}$) and the Ward-Takahashi identities. The M枚bius class interpolates between Shamir&#39;s domain wall operator and Bori莽i&#39;s domain wall implementation of Neuberger&#39;s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter ($伪$) reduces chiral violations at finite fifth dimension ($L_s$) but yields exactly the same overlap action in the limit $L_s \rightarrow \infty$. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling $伪(L_s)$, we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed $L_s$. At large $L_s$ we argue that the observed scaling for $m_{res} = O(1/L_s)$ for Shamir is replaced by $m_{res} = O(1/L_s^2)$ for the properly tuned M枚bius algorithm with $伪= O(L_s)$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5214v2-abstract-full').style.display = 'none'; document.getElementById('1206.5214v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages, 11 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10