CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 82 results for author: <span class="mathjax">Brower, R C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Brower%2C+R+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Brower, R C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Brower%2C+R+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Brower, R C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brower%2C+R+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00512">arXiv:2502.00512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00512">pdf</a>, <a href="https://arxiv.org/format/2502.00512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Energy-momentum tensor in the 2D Ising CFT in full modular space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Flemming%2C+G+T">George T. Flemming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Matsumoto%2C+N">Nobuyuki Matsumoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Misra%2C+R">Rohan Misra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00512v1-abstract-short" style="display: inline;"> A set of lattice operators for the energy-momentum (EM) tensor in the Ising CFT is derived in the spin variables. Our expression works under arbitrary affine transformation both on triangular and hexagonal lattices (where the former includes the rectangular lattices). The correctness of the operators is numerically confirmed in Monte Carlo calculations by comparing the results with the conformal W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00512v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00512v1-abstract-full" style="display: none;"> A set of lattice operators for the energy-momentum (EM) tensor in the Ising CFT is derived in the spin variables. Our expression works under arbitrary affine transformation both on triangular and hexagonal lattices (where the former includes the rectangular lattices). The correctness of the operators is numerically confirmed in Monte Carlo calculations by comparing the results with the conformal Ward identity, including the operator normalization. In the derivation of the EM tensor, a staggered structure of the affine-transformed hexagonal lattice is analyzed, which shows a peculiar shift from the circumcenter dual lattice and appears as a mixing angle between the holomorphic part $T(z)$ and the antiholomorphic part $\tilde T(\bar z)$. The details of this contribution will appear in a subsequent paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00512v1-abstract-full').style.display = 'none'; document.getElementById('2502.00512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, talk presented at the 41st International Symposium on Lattice Field Theory (Lattice2024), July 28th - August 3rd, 2024, Liverpool, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00459">arXiv:2407.00459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00459">pdf</a>, <a href="https://arxiv.org/format/2407.00459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The Ising Model on $\mathbb S^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E+K">Evan K. Owen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00459v1-abstract-short" style="display: inline;"> We define a 2-dimensional Ising model on a triangulated sphere, $\mathbb S^2$, designed to approach the exact conformal field theory (CFT) in the continuum limit. Surprisingly, the derivation leads to a set of geometric constraints that the lattice field theory must satisfy. Monte Carlo simulations are in agreement with the exact Ising CFT on $\mathbb S^2$. We discuss the inherent benefi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00459v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00459v1-abstract-full" style="display: none;"> We define a 2-dimensional Ising model on a triangulated sphere, $\mathbb S^2$, designed to approach the exact conformal field theory (CFT) in the continuum limit. Surprisingly, the derivation leads to a set of geometric constraints that the lattice field theory must satisfy. Monte Carlo simulations are in agreement with the exact Ising CFT on $\mathbb S^2$. We discuss the inherent benefits of using non-uniform simplicial lattices and how these methods may be generalized for use with other quantum theories on curved manifolds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00459v1-abstract-full').style.display = 'none'; document.getElementById('2407.00459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07836">arXiv:2312.07836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07836">pdf</a>, <a href="https://arxiv.org/format/2312.07836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter spectrum using LapH and Irreps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Culver%2C+C">Christopher Culver</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">James Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">Xiao Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">Evan Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07836v1-abstract-short" style="display: inline;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07836v1-abstract-full" style="display: none;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter self-interactions. Here, we focus on reducing excited state contamination in the single baryon channel by applying the Laplacian Heaviside method, as well as projecting our baryon operators onto the irreducible representations of the octahedral group. We compare our resulting spectrum to previous work involving Gaussian smeared non-projected operators and find good agreement with reduced statistical uncertainties. We also present the spectrum of the low-lying odd-parity baryons for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'none'; document.getElementById('2312.07836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-808-T, RIKEN-iTHEMS-Report-23, IPPP/23/71, LLNL-JRNL-858123 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04800">arXiv:2312.04800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04800">pdf</a>, <a href="https://arxiv.org/format/2312.04800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Decimation map in 2D for accelerating HMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Matsumoto%2C+N">Nobuyuki Matsumoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04800v1-abstract-short" style="display: inline;"> To accelerate the HMC with field transformation, we consider a variant of the trivializing map, the decimation map, which can be regarded as a coarse-graining transformation. Using the 2D $U(1)$ pure gauge model, combined with the guided Monte Carlo algorithm, we show that the integrated autocorrelation time of the topological charge can be exponentially improved in the wall clock time. Our study&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04800v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04800v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04800v1-abstract-full" style="display: none;"> To accelerate the HMC with field transformation, we consider a variant of the trivializing map, the decimation map, which can be regarded as a coarse-graining transformation. Using the 2D $U(1)$ pure gauge model, combined with the guided Monte Carlo algorithm, we show that the integrated autocorrelation time of the topological charge can be exponentially improved in the wall clock time. Our study indicates that incorporating renormalization group picture is a powerful and essential ingredient to accelerate the HMC at large $尾$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04800v1-abstract-full').style.display = 'none'; document.getElementById('2312.04800v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, talk presented at the 40th International Symposium on Lattice Field Theory (Lattice 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01100">arXiv:2311.01100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01100">pdf</a>, <a href="https://arxiv.org/format/2311.01100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The Operator Product Expansion for Radial Lattice Quantization of 3D $蠁^4$ Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ayyar%2C+V">Venkitesh Ayyar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gl%C3%BCck%2C+A+E">Anna-Maria E. Gl眉ck</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E+K">Evan K. Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01100v1-abstract-short" style="display: inline;"> At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3d Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the Quantum Finite Elements method to implement radially quantized critical $蠁^4$ theory on simplicial lattices approaching $\mathbb{R} \times S^2$. Computing the four-point function of identical scalars&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01100v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01100v1-abstract-full" style="display: none;"> At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory (CFT), the 3d Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the Quantum Finite Elements method to implement radially quantized critical $蠁^4$ theory on simplicial lattices approaching $\mathbb{R} \times S^2$. Computing the four-point function of identical scalars, we demonstrate the power of radial quantization by the accurate determination of the scaling dimensions $螖_蔚$ and $螖_{T}$ as well as ratios of the operator product expansion (OPE) coefficients $f_{蟽蟽蔚}$ and $f_{蟽蟽T}$ of the first spin-0 and spin-2 primary operators $蔚$ and $T$ of the 3d Ising CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01100v1-abstract-full').style.display = 'none'; document.getElementById('2311.01100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-631-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06095">arXiv:2306.06095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06095">pdf</a>, <a href="https://arxiv.org/format/2306.06095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Light Scalar Meson and Decay Constant in SU(3) Gauge Theory with Eight Dynamical Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lattice+Strong+Dynamics+Collaboration"> Lattice Strong Dynamics Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">E. Owen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Culver%2C+C">C. Culver</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06095v1-abstract-short" style="display: inline;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06095v1-abstract-full" style="display: none;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we study the finite-volume dependence of the $蟽$ meson correlation function computed in lattice gauge theory and determine the $蟽$ meson mass and decay constant extrapolated to the infinite-volume limit. We also determine the infinite volume mass and decay constant of the flavor-nonsinglet scalar meson $a_0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'none'; document.getElementById('2306.06095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures, supplementary data in zenodo https://dx.doi.org/10.5281/zenodo.8007955</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-286-T; LLNL-JRNL-850169; RIKEN-iTHEMS-Report-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03665">arXiv:2305.03665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03665">pdf</a>, <a href="https://arxiv.org/format/2305.03665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.L091505">10.1103/PhysRevD.108.L091505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden Conformal Symmetry from the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=LSD+Collaboration"> LSD Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03665v2-abstract-short" style="display: inline;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars aris&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'inline'; document.getElementById('2305.03665v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03665v2-abstract-full" style="display: none;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars arise from spontaneous breaking of chiral symmetry. Identifying the scalar in this case as an approximate dilaton, we fit the lattice data to a dilaton effective field theory, finding that it yields a good fit even at lowest order. For comparison, we then consider the possibility that the theory is inside the conformal window. The fermion mass provides a deformation, triggering confinement. We employ simple scaling laws to fit the lattice data, and find that it is of lesser quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'none'; document.getElementById('2305.03665v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23, LLNL-JRNL-853554, FERMILAB-CONF-23-260-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, L091505 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15546">arXiv:2209.15546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.15546">pdf</a>, <a href="https://arxiv.org/format/2209.15546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.014511">10.1103/PhysRevD.108.014511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ising Model on the Affine Plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E+K">Evan K. Owen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15546v1-abstract-short" style="display: inline;"> We demonstrate that the Ising model on a general triangular graph with 3 distinct couplings $K_1,K_2,K_3$ corresponds to an affine transformed conformal field theory (CFT). Full conformal invariance of the $c= 1/2$ minimal CFT is restored by introducing a metric on the lattice through the map $\sinh(2K_i) = \ell^*_i/ \ell_i$ which relates critical couplings to the ratio of the dual hexagonal and t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15546v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15546v1-abstract-full" style="display: none;"> We demonstrate that the Ising model on a general triangular graph with 3 distinct couplings $K_1,K_2,K_3$ corresponds to an affine transformed conformal field theory (CFT). Full conformal invariance of the $c= 1/2$ minimal CFT is restored by introducing a metric on the lattice through the map $\sinh(2K_i) = \ell^*_i/ \ell_i$ which relates critical couplings to the ratio of the dual hexagonal and triangular edge lengths. Applied to a 2d toroidal lattice, this provides an exact lattice formulation in the continuum limit to the Ising CFT as a function of the modular parameter. This example can be viewed as a quantum generalization of the finite element method (FEM) applied to the strong coupling CFT at a Wilson-Fisher IR fixed point and suggests a new approach to conformal field theory on curved manifolds based on a synthesis of simplicial geometry and projective geometry on the tangent planes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15546v1-abstract-full').style.display = 'none'; document.getElementById('2209.15546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10758">arXiv:2209.10758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10758">pdf</a>, <a href="https://arxiv.org/format/2209.10758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10758v1-abstract-short" style="display: inline;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10758v1-abstract-full" style="display: none;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'none'; document.getElementById('2209.10758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 1 figure. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report for TF05 - Lattice Gauge Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-08, LA-UR-22-29361, FERMILAB-CONF-22-703-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03464">arXiv:2202.03464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03464">pdf</a>, <a href="https://arxiv.org/format/2202.03464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.114503">10.1103/PhysRevD.105.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperbolic Lattice for Scalar Field Theory in AdS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cogburn%2C+C+V">Cameron V. Cogburn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Owen%2C+E">Evan Owen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03464v1-abstract-short" style="display: inline;"> We construct a tessellation of AdS$_3$, by extending the equilateral triangulation of AdS$_2$ on the Poincar茅 disk based on the $(2,3,7)$ triangle group, suitable for studying strongly coupled phenomena and the AdS/CFT correspondence. A Hamiltonian form conducive to the study of dynamics and quantum computation is presented. We show agreement between lattice calculations and analytic results for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03464v1-abstract-full').style.display = 'inline'; document.getElementById('2202.03464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03464v1-abstract-full" style="display: none;"> We construct a tessellation of AdS$_3$, by extending the equilateral triangulation of AdS$_2$ on the Poincar茅 disk based on the $(2,3,7)$ triangle group, suitable for studying strongly coupled phenomena and the AdS/CFT correspondence. A Hamiltonian form conducive to the study of dynamics and quantum computation is presented. We show agreement between lattice calculations and analytic results for the free scalar theory and find evidence of a second order critical transition for $蠁^4$ theory using Monte Carlo simulations. Applications of this AdS Hamiltonian formulation to real time evolution and quantum computing are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03464v1-abstract-full').style.display = 'none'; document.getElementById('2202.03464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13534">arXiv:2106.13534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13534">pdf</a>, <a href="https://arxiv.org/format/2106.13534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034505">10.1103/PhysRevD.105.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Goldstone Boson Scattering with a Light Composite Scalar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13534v2-abstract-short" style="display: inline;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13534v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13534v2-abstract-full" style="display: none;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is measured both for different values of the underlying fermion mass and for different values of the scattering momentum. We examine the effect of a light flavor-singlet scalar (reported in earlier studies) on Goldstone boson scattering, employing a dilaton effective field theory (EFT) at the tree level. The EFT gives a good description of the scattering data, insofar as the magnitude of deviations between EFT and lattice data are no larger than the expected size of next-to-leading order corrections in the EFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'none'; document.getElementById('2106.13534v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 4 tables. References and clarifying comments added. To match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-21, LLNL-JRNL-823329, SI-HEP-2021-18 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01810">arXiv:2007.01810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.01810">pdf</a>, <a href="https://arxiv.org/format/2007.01810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014504">10.1103/PhysRevD.103.014504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-conformal dynamics in a chirally broken system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01810v2-abstract-short" style="display: inline;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'inline'; document.getElementById('2007.01810v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01810v2-abstract-full" style="display: none;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by a conformal fixed point in the ultraviolet but are chirally broken in the infrared. In this work we use lattice field theory calculations with domain wall fermions to investigate a system with four light and six heavy flavors. We demonstrate how a nearby conformal fixed point affects the properties of the four light flavors that exhibit chiral symmetry breaking in the infrared. Specifically we describe hyperscaling of dimensionful physical quantities and determine the corresponding anomalous mass dimension. We obtain $y_m=1+纬^*= 1.47(5)$ suggesting that $N_f=10$ lies inside the conformal window. Comparing the low energy spectrum to predictions of dilaton chiral perturbation theory, we observe excellent agreement which supports the expectation that the 4+6 mass-split system exhibits near-conformal dynamics with a relatively light $0^{++}$ isosinglet scalar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'none'; document.getElementById('2007.01810v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, v2 version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-812164 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16429">arXiv:2006.16429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16429">pdf</a>, <a href="https://arxiv.org/format/2006.16429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014505">10.1103/PhysRevD.103.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter confinement transition and gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cushman%2C+K">K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">G. D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16429v2-abstract-short" style="display: inline;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'inline'; document.getElementById('2006.16429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16429v2-abstract-full" style="display: none;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in the fundamental representation, producing a stable spin-0 &#39;dark baryon&#39; as a viable composite dark matter candidate. Future searches for stochastic gravitational waves will provide a new way to discover or constrain stealth dark matter, in addition to previously investigated direct-detection and collider experiments. As a first step to enabling this phenomenology, we determine how heavy the dark fermions need to be in order to produce a first-order stealth dark matter confinement transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'none'; document.getElementById('2006.16429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data release at doi.org/10.5281/zenodo.3921870</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-811356; RIKEN-iTHEMS-Report-20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014505 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15636">arXiv:2006.15636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15636">pdf</a>, <a href="https://arxiv.org/format/2006.15636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094502">10.1103/PhysRevD.104.094502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radial Lattice Quantization of 3D $蠁^4$ Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15636v1-abstract-short" style="display: inline;"> The quantum extension of classical finite elements, referred to as quantum finite elements ({\bf QFE})~\cite{Brower:2018szu,Brower:2016vsl}, is applied to the radial quantization of 3d $蠁^4$ theory on a simplicial lattice for the $\mathbb R \times \mathbb S^2$ manifold. Explicit counter terms to cancel the one- and two-loop ultraviolet defects are implemented to reach the quantum continuum theory.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15636v1-abstract-full').style.display = 'inline'; document.getElementById('2006.15636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15636v1-abstract-full" style="display: none;"> The quantum extension of classical finite elements, referred to as quantum finite elements ({\bf QFE})~\cite{Brower:2018szu,Brower:2016vsl}, is applied to the radial quantization of 3d $蠁^4$ theory on a simplicial lattice for the $\mathbb R \times \mathbb S^2$ manifold. Explicit counter terms to cancel the one- and two-loop ultraviolet defects are implemented to reach the quantum continuum theory. Using the Brower-Tamayo~\cite{Brower:1989mt} cluster Monte Carlo algorithm, numerical results support the QFE ansatz that the critical conformal field theory (CFT) is reached in the continuum with the full isometries of $\mathbb R \times \mathbb S^2$ restored. The Ricci curvature term, while technically irrelevant in the quantum theory, is shown to dramatically improve the convergence opening, the way for high precision Monte Carlo simulation to determine the CFT data: operator dimensions, trilinear OPE couplings and the central charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15636v1-abstract-full').style.display = 'none'; document.getElementById('2006.15636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07732">arXiv:2004.07732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.07732">pdf</a>, <a href="https://arxiv.org/format/2004.07732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.094517">10.1103/PhysRevD.102.094517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multigrid for Chiral Lattice Fermions: Domain Wall </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07732v1-abstract-short" style="display: inline;"> Critical slowing down for the Krylov Dirac solver presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. We propose a new multi-grid approach for chiral fermions, applicable to both the 5-d domain wall or 4-d Overlap operator. The central idea is to directly coarsen the 4-d Wilson kernel, giving an effective domain wall or overlap operator on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07732v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07732v1-abstract-full" style="display: none;"> Critical slowing down for the Krylov Dirac solver presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. We propose a new multi-grid approach for chiral fermions, applicable to both the 5-d domain wall or 4-d Overlap operator. The central idea is to directly coarsen the 4-d Wilson kernel, giving an effective domain wall or overlap operator on each level. We provide here an explicit construction for the Shamir domain wall formulation with numerical tests for the 2-d Schwinger prototype, demonstrating near ideal multi-grid scaling. The framework is designed for a natural extension to 4-d lattice QCD chiral fermions, such as the M枚bius, Zolotarev or Borici domain wall discretizations or directly to a rational expansion of the 4-d Overlap operator. For the Shamir operator, the effective overlap operator is isolated by the use of a Pauli-Villars preconditioner in the spirit of the K盲hler-Dirac spectral map used in a recent staggered MG algorithm [1]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07732v1-abstract-full').style.display = 'none'; document.getElementById('2004.07732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10028">arXiv:2002.10028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.10028">pdf</a>, <a href="https://arxiv.org/format/2002.10028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice Gauge Theory for a Quantum Computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berenstein%2C+D">David Berenstein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kawai%2C+H">Hiroki Kawai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10028v1-abstract-short" style="display: inline;"> The quantum link~\cite{Brower:1997ha} Hamiltonian was introduced two decades ago as an alternative to Wilson&#39;s Euclidean lattice QCD with gauge fields represented by bi-linear fermion/anti-fermion operators. When generalized this new microscopic representation of lattice field theories is referred as {\tt D-theory}~\cite{Brower:2003vy}. Recast as a Hamiltonian in Minkowski space for real time evol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10028v1-abstract-full').style.display = 'inline'; document.getElementById('2002.10028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10028v1-abstract-full" style="display: none;"> The quantum link~\cite{Brower:1997ha} Hamiltonian was introduced two decades ago as an alternative to Wilson&#39;s Euclidean lattice QCD with gauge fields represented by bi-linear fermion/anti-fermion operators. When generalized this new microscopic representation of lattice field theories is referred as {\tt D-theory}~\cite{Brower:2003vy}. Recast as a Hamiltonian in Minkowski space for real time evolution, D-theory leads naturally to quantum Qubit algorithms. Here to explore digital quantum computing for gauge theories, the simplest example of U(1) compact QED on triangular lattice is defined and gauge invariant kernels for the Suzuki-Trotter expansions are expressed as Qubit circuits capable of being tested on the IBM-Q and other existing Noisy Intermediate Scale Quantum (NISQ) hardware. This is a modest step in exploring the quantum complexity of D-theory to guide future applications to high energy physics and condensed matter quantum field theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10028v1-abstract-full').style.display = 'none'; document.getElementById('2002.10028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages , 5 figures, 37th International Symposium on Lattice Field Theory - Lattice2019, 16-22 June 2019, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2019)112 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07606">arXiv:1912.07606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07606">pdf</a>, <a href="https://arxiv.org/format/1912.07606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.094507">10.1103/PhysRevD.103.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Setup for Quantum Field Theory in AdS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cogburn%2C+C+V">Cameron V. Cogburn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fitzpatrick%2C+A+L">A. Liam Fitzpatrick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07606v1-abstract-short" style="display: inline;"> Holographic Conformal Field Theories (CFTs) are usually studied in a limit where the gravity description is weakly coupled. By contrast, lattice quantum field theory can be used as a tool for doing computations in a wider class of holographic CFTs where gravity remains weak but nongravitational interactions {\it in AdS} become strong. We take preliminary steps for studying such theories on the lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07606v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07606v1-abstract-full" style="display: none;"> Holographic Conformal Field Theories (CFTs) are usually studied in a limit where the gravity description is weakly coupled. By contrast, lattice quantum field theory can be used as a tool for doing computations in a wider class of holographic CFTs where gravity remains weak but nongravitational interactions {\it in AdS} become strong. We take preliminary steps for studying such theories on the lattice by constructing the discretized theory of a scalar field in AdS$_2$ and investigating its approach to the continuum limit in the free and perturbative regimes. Our main focus is on finite sub-lattices of maximally symmetric tilings of hyperbolic space. Up to boundary effects, these tilings preserve the triangle group as a large discrete subgroup of AdS$_2$, but have a minimum lattice spacing that is comparable to the radius of curvature of the underlying spacetime. We quantify the effects of the lattice spacing as well as the boundary effects, and find that they can be accurately modeled by modifications within the framework of the continuum limit description. We also show how to do refinements of the lattice that shrink the lattice spacing at the cost of breaking the triangle group symmetry of the maximally symmetric tilings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07606v1-abstract-full').style.display = 'none'; document.getElementById('1912.07606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 094507 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09964">arXiv:1904.09964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09964">pdf</a>, <a href="https://arxiv.org/format/1904.09964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12901-5">10.1140/epja/i2019-12901-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Gauge Theory for Physics Beyond the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G">George Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09964v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice field theory research to make an impact on models of new physics beyond the Standard Model, including composite Higgs, composite dark matter, and supersymmetric theories. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09964v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice field theory research to make an impact on models of new physics beyond the Standard Model, including composite Higgs, composite dark matter, and supersymmetric theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09964v1-abstract-full').style.display = 'none'; document.getElementById('1904.09964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-19 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2019) 55: 198 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02624">arXiv:1809.02624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02624">pdf</a>, <a href="https://arxiv.org/ps/1809.02624">ps</a>, <a href="https://arxiv.org/format/1809.02624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.114510">10.1103/PhysRevD.98.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear Sigma EFT for Nearly Conformal Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02624v2-abstract-short" style="display: inline;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the P&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02624v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02624v2-abstract-full" style="display: none;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the PNGBs ($蟺$) over a large range of quark masses. The EFT incorporates this feature. We highlight the crucial role played by the terms in the potential that explicitly break chiral symmetry. The explicit breaking can be large enough so that a limited set of additional terms in the potential can no longer be neglected, with the EFT still weakly coupled in this new range. The additional terms contribute importantly to the scalar and pion masses. In particular, they relax the inequality $M_蟽^2 \ge 3 M_蟺^2$, allowing for consistency with current lattice data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'none'; document.getElementById('1809.02624v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1291 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 114510 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08411">arXiv:1807.08411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.08411">pdf</a>, <a href="https://arxiv.org/format/1807.08411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014509">10.1103/PhysRevD.99.014509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Dynamics%2C+L+S">Lattice Strong Dynamics</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collaboration"> Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08411v2-abstract-short" style="display: inline;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'inline'; document.getElementById('1807.08411v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08411v2-abstract-full" style="display: none;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous chiral symmetry breaking, but finite-temperature transitions with fixed $N_t \leq 24$ enter a strongly coupled lattice phase as the fermion mass decreases, which prevents a direct confirmation of spontaneous chiral symmetry breaking in the chiral limit. In addition to the connected spectrum we focus on the lightest flavor-singlet scalar particle. We find it to be degenerate with the pseudo-Goldstone states down to the lightest masses reached so far by non-perturbative lattice calculations. Using the same lattice approach, we study the behavior of the composite spectrum when the number of light fermions is changed from eight to four. A heavy flavor-singlet scalar in the 4-flavor theory affirms the contrast between QCD-like dynamics and the low-energy behavior of the 8-flavor theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'none'; document.getElementById('1807.08411v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 36 figures, 8 tables. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1286; LLNL-JRNL-753511 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08512">arXiv:1803.08512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08512">pdf</a>, <a href="https://arxiv.org/format/1803.08512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014502">10.1103/PhysRevD.98.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice $蠁^4$ Field Theory on Riemann Manifolds: Numerical Tests for the 2-d Ising CFT on $\mathbb{S}^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08512v1-abstract-short" style="display: inline;"> We present a method for defining a lattice realization of the $蠁^4$ quantum field theory on a simplicial complex in order to enable numerical computation on a general Riemann manifold. The procedure begins with adopting methods from traditional Regge Calculus (RC) and finite element methods (FEM) plus the addition of ultraviolet counter terms required to reach the renormalized field theory in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08512v1-abstract-full').style.display = 'inline'; document.getElementById('1803.08512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08512v1-abstract-full" style="display: none;"> We present a method for defining a lattice realization of the $蠁^4$ quantum field theory on a simplicial complex in order to enable numerical computation on a general Riemann manifold. The procedure begins with adopting methods from traditional Regge Calculus (RC) and finite element methods (FEM) plus the addition of ultraviolet counter terms required to reach the renormalized field theory in the continuum limit. The construction is tested numerically for the two-dimensional $蠁^4$ scalar field theory on the Riemann two-sphere, $\mathbb{S}^2$, in comparison with the exact solutions to the two-dimensional Ising conformal field theory (CFT). Numerical results for the Binder cumulants (up to 12th order) and the two- and four-point correlation functions are in agreement with the exact $c = 1/2$ CFT solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08512v1-abstract-full').style.display = 'none'; document.getElementById('1803.08512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07823">arXiv:1801.07823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.07823">pdf</a>, <a href="https://arxiv.org/format/1801.07823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.114513">10.1103/PhysRevD.97.114513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multigrid for Staggered Lattice Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Strelchenko%2C+A">Alexei Strelchenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07823v1-abstract-short" style="display: inline;"> Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07823v1-abstract-full').style.display = 'inline'; document.getElementById('1801.07823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07823v1-abstract-full" style="display: none;"> Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K盲hler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07823v1-abstract-full').style.display = 'none'; document.getElementById('1801.07823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 37 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 114513 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08587">arXiv:1610.08587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.08587">pdf</a>, <a href="https://arxiv.org/format/1610.08587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.114510">10.1103/PhysRevD.95.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Dirac Fermions on a Simplicial Riemannian Manifold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T+G">Timothy G. Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E+S">Evan S. Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08587v1-abstract-short" style="display: inline;"> The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere ${\mathbb S}^2$ in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08587v1-abstract-full').style.display = 'inline'; document.getElementById('1610.08587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08587v1-abstract-full" style="display: none;"> The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere ${\mathbb S}^2$ in the limit of an increasingly refined sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on ${\mathbb S}^2$. Convergence is tested for the two point, $\langle 蔚(x_1) 蔚(x_2) \rangle$, and the four point, $\langle 蟽(x_1) 蔚(x_2) 蔚(x_3 )蟽(x_4) \rangle $, correlators for the energy, $蔚(x) = i \bar 蠄(x)蠄(x)$, and twist operators, $蟽(x)$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08587v1-abstract-full').style.display = 'none'; document.getElementById('1610.08587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 114510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04027">arXiv:1601.04027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.04027">pdf</a>, <a href="https://arxiv.org/format/1601.04027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.114514">10.1103/PhysRevD.93.114514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly interacting dynamics and the search for new physics at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04027v2-abstract-short" style="display: inline;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'inline'; document.getElementById('1601.04027v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04027v2-abstract-full" style="display: none;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the context of the search for new physics beyond the standard model at the Large Hadron Collider (LHC). Connecting our results to models of dynamical electroweak symmetry breaking, we estimate the vector resonance mass to be about 2 TeV with a width of roughly 450 GeV, and predict additional resonances with masses below ~3 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'none'; document.getElementById('1601.04027v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. Added report number. Version submitted to journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-680732, NSF-KITP-16-004 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 114514 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.01367">arXiv:1601.01367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.01367">pdf</a>, <a href="https://arxiv.org/format/1601.01367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum Finite Elements for Lattice Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G">George Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Raben%2C+T">Timothy Raben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tan%2C+C">Chung-I Tan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.01367v1-abstract-short" style="display: inline;"> Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01367v1-abstract-full').style.display = 'inline'; document.getElementById('1601.01367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.01367v1-abstract-full" style="display: none;"> Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01367v1-abstract-full').style.display = 'none'; document.getElementById('1601.01367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, The 33rd International Symposium on Lattice Field Theory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.02576">arXiv:1512.02576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.02576">pdf</a>, <a href="https://arxiv.org/format/1512.02576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.075028">10.1103/PhysRevD.93.075028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite Higgs model at a conformal fixed point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.02576v2-abstract-short" style="display: inline;"> We propose to construct a chirally broken model based on the infrared fixed point of a conformal system by raising the mass of some flavors while keeping the others massless. In the infrared limit the massive fermions decouple and the massless fermions break chiral symmetry. The running coupling of this system &#34;walks&#34; and the energy range of walking can be tuned by the mass of the heavy flavors. R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02576v2-abstract-full').style.display = 'inline'; document.getElementById('1512.02576v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.02576v2-abstract-full" style="display: none;"> We propose to construct a chirally broken model based on the infrared fixed point of a conformal system by raising the mass of some flavors while keeping the others massless. In the infrared limit the massive fermions decouple and the massless fermions break chiral symmetry. The running coupling of this system &#34;walks&#34; and the energy range of walking can be tuned by the mass of the heavy flavors. Renormalization group considerations predict that the spectrum of such a system shows hyperscaling. We have studied a model with four light and eight heavy flavors coupled to SU(3) gauge fields and verified the above expectations. We determined the mass of several hadronic states and found that some of them are in the 2-3 TeV range if the scale is set by the pseudoscalar decay constant $F_蟺\approx 250$ GeV. The $0^{++}$ scalar state behaves very differently from the other hadronic states. In most of our simulations it is nearly degenerate with the pion and we estimate its mass to be less than half of the vector resonance mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02576v2-abstract-full').style.display = 'none'; document.getElementById('1512.02576v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated and with added references to match published version. 6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EDINBURGH 2015/31 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 075028 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04675">arXiv:1510.04675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04675">pdf</a>, <a href="https://arxiv.org/format/1510.04675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114516">10.1103/PhysRevD.92.114516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiscale Monte Carlo equilibration: Pure Yang-Mills theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Endres%2C+M+G">Michael G. Endres</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04675v2-abstract-short" style="display: inline;"> We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04675v2-abstract-full').style.display = 'inline'; document.getElementById('1510.04675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04675v2-abstract-full" style="display: none;"> We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04675v2-abstract-full').style.display = 'none'; document.getElementById('1510.04675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 19 figures; Eq. 7 - Eq. 9 modified (results unchanged); text added to Sec IV F; typos fixed; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/4726 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114516 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04635">arXiv:1510.04635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.04635">pdf</a>, <a href="https://arxiv.org/format/1510.04635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Strongly coupled gauge theories: What can lattice calculations teach us? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04635v1-abstract-short" style="display: inline;"> The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04635v1-abstract-full').style.display = 'inline'; document.getElementById('1510.04635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04635v1-abstract-full" style="display: none;"> The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light $0^{++}$ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the $vev$ of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could be a generic feature of SU(3) gauge theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04635v1-abstract-full').style.display = 'none'; document.getElementById('1510.04635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures; Contribution to SCGT15, Nagoya</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04205">arXiv:1503.04205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04205">pdf</a>, <a href="https://arxiv.org/format/1503.04205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.171803">10.1103/PhysRevLett.115.171803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Detection of Stealth Dark Matter through Electromagnetic Polarizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04205v2-abstract-short" style="display: inline;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- &#34;Stealth Dark Matter&#34;, that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scatteri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04205v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04205v2-abstract-full" style="display: none;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- &#34;Stealth Dark Matter&#34;, that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest baryons in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure, however the steep dependence on the dark matter mass, $1/m_B^6$, suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'none'; document.getElementById('1503.04205v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, citations added, typos fixed, minor clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-005, LLNL-JRNL-667121 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 171803 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04203">arXiv:1503.04203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04203">pdf</a>, <a href="https://arxiv.org/format/1503.04203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.075030">10.1103/PhysRevD.92.075030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth Dark Matter: Dark scalar baryons through the Higgs portal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04203v2-abstract-short" style="display: inline;"> We present a new model of &#34;Stealth Dark Matter&#34;: a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-bre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04203v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04203v2-abstract-full" style="display: none;"> We present a new model of &#34;Stealth Dark Matter&#34;: a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D \geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to $SU(4)$, and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass $m_B \gtrsim 300$ GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including: collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04203v2-abstract-full').style.display = 'none'; document.getElementById('1503.04203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures, citations added, typos fixed, minor clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-004, LLNL-JRNL-667446 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 075030 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.7597">arXiv:1407.7597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.7597">pdf</a>, <a href="https://arxiv.org/format/1407.7597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Improved Lattice Radial Quantization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.7597v1-abstract-short" style="display: inline;"> Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7597v1-abstract-full').style.display = 'inline'; document.getElementById('1407.7597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.7597v1-abstract-full" style="display: none;"> Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $蠁^4$ Lagrangian on $\mathbb R \times \mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7597v1-abstract-full').style.display = 'none'; document.getElementById('1407.7597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.4752">arXiv:1405.4752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.4752">pdf</a>, <a href="https://arxiv.org/format/1405.4752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.114502">10.1103/PhysRevD.90.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations with eight flavors of domain wall fermions in SU(3) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.4752v2-abstract-short" style="display: inline;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'inline'; document.getElementById('1405.4752v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.4752v2-abstract-full" style="display: none;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our previous studies of the two- and six-flavor systems. Our results for the Nf=8 spectrum suggest spontaneous chiral symmetry breaking, though fits to the fermion mass dependence of spectral quantities do not strongly disfavor the hypothesis of mass-deformed infrared conformality. Compared to Nf=2 we observe a significant enhancement of the chiral condensate relative to the symmetry breaking scale F, similar to the situation for Nf=6. The reduction of the S parameter, related to parity doubling in the vector and axial-vector channels, is also comparable to our six-flavor results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'none'; document.getElementById('1405.4752v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-665913 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 114502 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.2761">arXiv:1403.2761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.2761">pdf</a>, <a href="https://arxiv.org/format/1403.2761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.014503">10.1103/PhysRevD.90.014503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximum-Likelihood Approach to Topological Charge Fluctuations in Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.2761v2-abstract-short" style="display: inline;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'inline'; document.getElementById('1403.2761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.2761v2-abstract-full" style="display: none;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'none'; document.getElementById('1403.2761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-650193 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 014503 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6656">arXiv:1402.6656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6656">pdf</a>, <a href="https://arxiv.org/format/1402.6656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094508">10.1103/PhysRevD.89.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6656v1-abstract-short" style="display: inline;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6656v1-abstract-full" style="display: none;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the latest LUX results leads to tight bounds on the fraction of the constituent-fermion mass that may arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum and the Higgs-dark matter coupling are performed on quenched $16^{3} \times 32$, $32^{3} \times 64$, $48^{3} \times 96$, and $64^{3} \times128$ lattices with three different lattice spacings, using Wilson fermions with moderate to heavy pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical study of composite baryonic dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'none'; document.getElementById('1402.6656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 094508 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4889">arXiv:1311.4889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.4889">pdf</a>, <a href="https://arxiv.org/ps/1311.4889">ps</a>, <a href="https://arxiv.org/format/1311.4889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.111601">10.1103/PhysRevLett.112.111601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Color Theory with Novel Infrared Behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4889v1-abstract-short" style="display: inline;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'inline'; document.getElementById('1311.4889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4889v1-abstract-full" style="display: none;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the theory either is governed in the infrared by a fixed point of considerable strength, unseen so far in non-supersymmetric gauge theories, or breaks its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'none'; document.getElementById('1311.4889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">six pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 111601 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.1693">arXiv:1301.1693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.1693">pdf</a>, <a href="https://arxiv.org/format/1301.1693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.014502">10.1103/PhysRevD.88.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of composite dark matter form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wasem%2C+J">J. Wasem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.1693v2-abstract-short" style="display: inline;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'inline'; document.getElementById('1301.1693v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.1693v2-abstract-full" style="display: none;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'none'; document.getElementById('1301.1693v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. v2: update to journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-608695; NT-LBL-13-002; UCB-NPAT-13-002; FERMILAB-PUB-13-014-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D88, 014502 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.1757">arXiv:1212.1757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.1757">pdf</a>, <a href="https://arxiv.org/ps/1212.1757">ps</a>, <a href="https://arxiv.org/format/1212.1757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Radial Quantization for Conformal Field Theories on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neuberger%2C+H">Herbert Neuberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.1757v1-abstract-short" style="display: inline;"> We consider radial quantization for conformal quantum field theory with a lattice regulator. A Euclidean field theory on $\mathbb R^D$ is mapped to a cylindrical manifold, $\mathbb R\times \mathbb S^{D-1}$, whose length is logarithmic in scale separation. To test the approach, we apply this to the 3D Ising model and compute $畏$ for the first $Z_2$ odd primary operator. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.1757v1-abstract-full" style="display: none;"> We consider radial quantization for conformal quantum field theory with a lattice regulator. A Euclidean field theory on $\mathbb R^D$ is mapped to a cylindrical manifold, $\mathbb R\times \mathbb S^{D-1}$, whose length is logarithmic in scale separation. To test the approach, we apply this to the 3D Ising model and compute $畏$ for the first $Z_2$ odd primary operator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1757v1-abstract-full').style.display = 'none'; document.getElementById('1212.1757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.5214">arXiv:1206.5214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.5214">pdf</a>, <a href="https://arxiv.org/format/1206.5214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The M枚bius Domain Wall Fermion Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neff%2C+H">Harmut Neff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.5214v2-abstract-short" style="display: inline;"> We present a review of the properties of generalized domain wall Fermions, based on a (real) M枚bius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass ($m_{res}$) and the Ward-Takahashi identities. The M枚bius class interpolates between Shamir&#39;s domain wall operator and Bori莽i&#39;s domain wall imp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5214v2-abstract-full').style.display = 'inline'; document.getElementById('1206.5214v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.5214v2-abstract-full" style="display: none;"> We present a review of the properties of generalized domain wall Fermions, based on a (real) M枚bius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass ($m_{res}$) and the Ward-Takahashi identities. The M枚bius class interpolates between Shamir&#39;s domain wall operator and Bori莽i&#39;s domain wall implementation of Neuberger&#39;s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter ($伪$) reduces chiral violations at finite fifth dimension ($L_s$) but yields exactly the same overlap action in the limit $L_s \rightarrow \infty$. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling $伪(L_s)$, we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed $L_s$. At large $L_s$ we argue that the observed scaling for $m_{res} = O(1/L_s)$ for Shamir is replaced by $m_{res} = O(1/L_s^2)$ for the properly tuned M枚bius algorithm with $伪= O(L_s)$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5214v2-abstract-full').style.display = 'none'; document.getElementById('1206.5214v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.2933">arXiv:1205.2933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.2933">pdf</a>, <a href="https://arxiv.org/format/1205.2933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Multigrid Algorithms for Domain-Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.2933v1-abstract-short" style="display: inline;"> We describe an adaptive multigrid algorithm for solving inverses of the domain-wall fermion operator. Our multigrid algorithm uses an adaptive projection of near-null vectors of the domain-wall operator onto coarser four-dimensional lattices. This extension of multigrid techniques to a chiral fermion action will greatly reduce overall computation cost, and the elimination of the fifth dimension in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.2933v1-abstract-full').style.display = 'inline'; document.getElementById('1205.2933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.2933v1-abstract-full" style="display: none;"> We describe an adaptive multigrid algorithm for solving inverses of the domain-wall fermion operator. Our multigrid algorithm uses an adaptive projection of near-null vectors of the domain-wall operator onto coarser four-dimensional lattices. This extension of multigrid techniques to a chiral fermion action will greatly reduce overall computation cost, and the elimination of the fifth dimension in the coarse space reduces the relative cost of using chiral fermions compared to discarding this symmetry. We demonstrate near-elimination of critical slowing as the quark mass is reduced and small volume dependence, which may be suppressed by taking advantage of the recursive nature of the algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.2933v1-abstract-full').style.display = 'none'; document.getElementById('1205.2933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Proceedings of the XXIX International Symposium on Lattice Field Theory - Lattice 2011, July 10-16, 2011, Squaw Valley, Lake Tahoe, California</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2011, 030 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.6000">arXiv:1204.6000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.6000">pdf</a>, <a href="https://arxiv.org/format/1204.6000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Approaching Conformality with Ten Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Na%2C+H">Heechang Na</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.6000v3-abstract-short" style="display: inline;"> We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with ten light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6000v3-abstract-full').style.display = 'inline'; document.getElementById('1204.6000v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.6000v3-abstract-full" style="display: none;"> We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with ten light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window, with mass anomalous dimension consistent with 1 over the range of scales simulated. We stress that we cannot rule out the possibility of spontaneous chiral-symmetry breaking at scales well below our infrared cutoff. We discuss important systematic effects, including finite-volume corrections, and consider directions for future improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6000v3-abstract-full').style.display = 'none'; document.getElementById('1204.6000v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Submitted to Physical Review Letters. v2: corrected global fits. v3: corrected estimation of confidence intervals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-12-111-T; LLNL-JRNL-548639; NSF-KITP-12-069 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.3977">arXiv:1201.3977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.3977">pdf</a>, <a href="https://arxiv.org/format/1201.3977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.074505">10.1103/PhysRevD.85.074505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WW Scattering Parameters via Pseudoscalar Phase Shifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wasem%2C+J">Joseph Wasem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.3977v1-abstract-short" style="display: inline;"> Using domain-wall lattice simulations, we study pseudoscalar-pseudoscalar scattering in the maximal isospin channel for an SU(3) gauge theory with two and six fermion flavors in the fundamental representation. This calculation of the S-wave scattering length is related to the next-to-leading order corrections to WW scattering through the low-energy coefficients of the chiral Lagrangian. While two&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3977v1-abstract-full').style.display = 'inline'; document.getElementById('1201.3977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.3977v1-abstract-full" style="display: none;"> Using domain-wall lattice simulations, we study pseudoscalar-pseudoscalar scattering in the maximal isospin channel for an SU(3) gauge theory with two and six fermion flavors in the fundamental representation. This calculation of the S-wave scattering length is related to the next-to-leading order corrections to WW scattering through the low-energy coefficients of the chiral Lagrangian. While two and six flavor scattering lengths are similar for a fixed ratio of the pseudoscalar mass to its decay constant, six-flavor scattering shows a somewhat less repulsive next-to-leading order interaction than its two-flavor counterpart. Estimates are made for the WW scattering parameters and the plausibility of detection is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3977v1-abstract-full').style.display = 'none'; document.getElementById('1201.3977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-499587; FERMILAB-PUB-12-012-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.2935">arXiv:1109.2935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.2935">pdf</a>, <a href="https://arxiv.org/format/1109.2935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/2063384.2063478">10.1145/2063384.2063478 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling Lattice QCD beyond 100 GPUs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">R. Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B. Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shi%2C+G">G. Shi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">S. Gottlieb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.2935v1-abstract-short" style="display: inline;"> Over the past five years, graphics processing units (GPUs) have had a transformational effect on numerical lattice quantum chromodynamics (LQCD) calculations in nuclear and particle physics. While GPUs have been applied with great success to the post-Monte Carlo &#34;analysis&#34; phase which accounts for a substantial fraction of the workload in a typical LQCD calculation, the initial Monte Carlo &#34;gauge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2935v1-abstract-full').style.display = 'inline'; document.getElementById('1109.2935v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.2935v1-abstract-full" style="display: none;"> Over the past five years, graphics processing units (GPUs) have had a transformational effect on numerical lattice quantum chromodynamics (LQCD) calculations in nuclear and particle physics. While GPUs have been applied with great success to the post-Monte Carlo &#34;analysis&#34; phase which accounts for a substantial fraction of the workload in a typical LQCD calculation, the initial Monte Carlo &#34;gauge field generation&#34; phase requires capability-level supercomputing, corresponding to O(100) GPUs or more. Such strong scaling has not been previously achieved. In this contribution, we demonstrate that using a multi-dimensional parallelization strategy and a domain-decomposed preconditioner allows us to scale into this regime. We present results for two popular discretizations of the Dirac operator, Wilson-clover and improved staggered, employing up to 256 GPUs on the Edge cluster at Lawrence Livermore National Laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2935v1-abstract-full').style.display = 'none'; document.getElementById('1109.2935v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, to appear in the proceedings of the 2011 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC&#39;11)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.5131">arXiv:1101.5131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.5131">pdf</a>, <a href="https://arxiv.org/format/1101.5131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Hybrid Monte Carlo Simulation of Graphene on the Hexagonal Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">D. Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.5131v1-abstract-short" style="display: inline;"> We present a method for direct hybrid Monte Carlo simulation of graphene on the hexagonal lattice. We compare the results of the simulation with exact results for a unit hexagonal cell system, where the Hamiltonian can be solved analytically. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.5131v1-abstract-full" style="display: none;"> We present a method for direct hybrid Monte Carlo simulation of graphene on the hexagonal lattice. We compare the results of the simulation with exact results for a unit hexagonal cell system, where the Hamiltonian can be solved analytically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.5131v1-abstract-full').style.display = 'none'; document.getElementById('1101.5131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.0562">arXiv:1012.0562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.0562">pdf</a>, <a href="https://arxiv.org/ps/1012.0562">ps</a>, <a href="https://arxiv.org/format/1012.0562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.054510">10.1103/PhysRevD.85.054510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring strange nucleon form factors on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ronald Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.0562v3-abstract-short" style="display: inline;"> We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 &lt; 1 GeV^2. The strange electric and magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0562v3-abstract-full').style.display = 'inline'; document.getElementById('1012.0562v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.0562v3-abstract-full" style="display: none;"> We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 &lt; 1 GeV^2. The strange electric and magnetic form factors, G_E^s(Q^2) and G_M^s(Q^2), are found to be small and consistent with zero within the statistics of our calculation. The lattice data favor a small negative value for the strange axial form factor G_A^s(Q^2) and exhibit a strong signal for the bare strange scalar matrix element &lt;N|ss|N&gt;_0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0562v3-abstract-full').style.display = 'none'; document.getElementById('1012.0562v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures; v2 includes additional references; v3 as appears in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 85, 054510 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2775">arXiv:1011.2775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.2775">pdf</a>, <a href="https://arxiv.org/ps/1011.2775">ps</a>, <a href="https://arxiv.org/format/1011.2775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Multigrid solver for clover fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">R. Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brannick%2C+J">J. Brannick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2775v1-abstract-short" style="display: inline;"> We present an adaptive multigrid Dirac solver developed for Wilson clover fermions which offers order-of-magnitude reductions in solution time compared to conventional Krylov solvers. The solver incorporates even-odd preconditioning and mixed precision to solve the Dirac equation to double precision accuracy and shows only a mild increase in time to solution for decreasing quark mass. We show actu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2775v1-abstract-full').style.display = 'inline'; document.getElementById('1011.2775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2775v1-abstract-full" style="display: none;"> We present an adaptive multigrid Dirac solver developed for Wilson clover fermions which offers order-of-magnitude reductions in solution time compared to conventional Krylov solvers. The solver incorporates even-odd preconditioning and mixed precision to solve the Dirac equation to double precision accuracy and shows only a mild increase in time to solution for decreasing quark mass. We show actual time to solution on production lattices in comparison to conventional Krylov solvers and will also discuss the setup process and its relative cost to the total solution time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2775v1-abstract-full').style.display = 'none'; document.getElementById('1011.2775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, talk presented at the XXVIII International Symposium on Lattice Field Theory, June 14-19 2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:037,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.5967">arXiv:1009.5967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.5967">pdf</a>, <a href="https://arxiv.org/format/1009.5967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.231601">10.1103/PhysRevLett.106.231601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parity Doubling and the S Parameter Below the Conformal Window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.5967v1-abstract-short" style="display: inline;"> We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with $N_f = 2$ and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when $N_f$ is increased from 2 to 6, motivating study of these tre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.5967v1-abstract-full').style.display = 'inline'; document.getElementById('1009.5967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.5967v1-abstract-full" style="display: none;"> We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with $N_f = 2$ and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when $N_f$ is increased from 2 to 6, motivating study of these trends as $N_f$ is increased further, toward the critical value for transition from confinement to infrared conformality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.5967v1-abstract-full').style.display = 'none'; document.getElementById('1009.5967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures; to be submitted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.106:231601,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.3043">arXiv:1005.3043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.3043">pdf</a>, <a href="https://arxiv.org/ps/1005.3043">ps</a>, <a href="https://arxiv.org/format/1005.3043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.201602">10.1103/PhysRevLett.105.201602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adaptive multigrid algorithm for the lattice Wilson-Dirac operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">R. Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brannick%2C+J">J. Brannick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Manteuffel%2C+T+A">T. A. Manteuffel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McCormick%2C+S+F">S. F. McCormick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.3043v2-abstract-short" style="display: inline;"> We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called gamma_5-Hermitian symmetry of the Dirac op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.3043v2-abstract-full').style.display = 'inline'; document.getElementById('1005.3043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.3043v2-abstract-full" style="display: none;"> We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called gamma_5-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.3043v2-abstract-full').style.display = 'none'; document.getElementById('1005.3043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.105:201602,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.3777">arXiv:1002.3777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.3777">pdf</a>, <a href="https://arxiv.org/format/1002.3777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice study of ChPT beyond QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Avakian%2C+A">Adam Avakian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kiskis%2C+J">Joseph Kiskis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.3777v2-abstract-short" style="display: inline;"> We describe initial results by the Lattice Strong Dynamics (LSD) collaboration of a study into the variation of chiral properties of chiral properties of SU(3) Yang-Mills gauge theory as the number of massless flavors changes from $N_f = 2$ to $N_f = 6$, with a focus on the use of chiral perturbation theory. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.3777v2-abstract-full" style="display: none;"> We describe initial results by the Lattice Strong Dynamics (LSD) collaboration of a study into the variation of chiral properties of chiral properties of SU(3) Yang-Mills gauge theory as the number of massless flavors changes from $N_f = 2$ to $N_f = 6$, with a focus on the use of chiral perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.3777v2-abstract-full').style.display = 'none'; document.getElementById('1002.3777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures. Presented at the 6th International Workshop on Chiral Dynamics, University of Bern, Switzerland, July 6-10 2009</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS CD09:088,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.2186">arXiv:0912.2186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.2186">pdf</a>, <a href="https://arxiv.org/format/0912.2186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The role of multigrid algorithms for LQCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">Ronald Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brannick%2C+J">James Brannick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">Claudio Rebbi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.2186v1-abstract-short" style="display: inline;"> We report on the first successful QCD multigrid algorithm which demonstrates constant convergence rates independent of quark mass and lattice volume for the Wilson Dirac operator. The new ingredient is the adaptive method for constructing the near null space on which the coarse grid multigrid Dirac operator acts. In addition we speculate on future prospects for extending this algorithm to the Do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2186v1-abstract-full').style.display = 'inline'; document.getElementById('0912.2186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.2186v1-abstract-full" style="display: none;"> We report on the first successful QCD multigrid algorithm which demonstrates constant convergence rates independent of quark mass and lattice volume for the Wilson Dirac operator. The new ingredient is the adaptive method for constructing the near null space on which the coarse grid multigrid Dirac operator acts. In addition we speculate on future prospects for extending this algorithm to the Domain Wall and Staggered discretizations, its exceptional suitability for high performance GPU code and its potential impact on simulations at the physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.2186v1-abstract-full').style.display = 'none'; document.getElementById('0912.2186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, Presented at the XXVII International Symposium on Lattice Field Theory, July 26-31, 2009, Peking University, Beijing, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:031,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.3191">arXiv:0911.3191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.3191">pdf</a>, <a href="https://arxiv.org/ps/0911.3191">ps</a>, <a href="https://arxiv.org/format/0911.3191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2010.05.002">10.1016/j.cpc.2010.05.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solving Lattice QCD systems of equations using mixed precision solvers on GPUs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Babich%2C+R">R. Babich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Barros%2C+K">K. Barros</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rebbi%2C+C">C. Rebbi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.3191v2-abstract-short" style="display: inline;"> Modern graphics hardware is designed for highly parallel numerical tasks and promises significant cost and performance benefits for many scientific applications. One such application is lattice quantum chromodyamics (lattice QCD), where the main computational challenge is to efficiently solve the discretized Dirac equation in the presence of an SU(3) gauge field. Using NVIDIA&#39;s CUDA platform we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3191v2-abstract-full').style.display = 'inline'; document.getElementById('0911.3191v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.3191v2-abstract-full" style="display: none;"> Modern graphics hardware is designed for highly parallel numerical tasks and promises significant cost and performance benefits for many scientific applications. One such application is lattice quantum chromodyamics (lattice QCD), where the main computational challenge is to efficiently solve the discretized Dirac equation in the presence of an SU(3) gauge field. Using NVIDIA&#39;s CUDA platform we have implemented a Wilson-Dirac sparse matrix-vector product that performs at up to 40 Gflops, 135 Gflops and 212 Gflops for double, single and half precision respectively on NVIDIA&#39;s GeForce GTX 280 GPU. We have developed a new mixed precision approach for Krylov solvers using reliable updates which allows for full double precision accuracy while using only single or half precision arithmetic for the bulk of the computation. The resulting BiCGstab and CG solvers run in excess of 100 Gflops and, in terms of iterations until convergence, perform better than the usual defect-correction approach for mixed precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3191v2-abstract-full').style.display = 'none'; document.getElementById('0911.3191v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comput.Phys.Commun.181:1517-1528,2010 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brower%2C+R+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brower%2C+R+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10