CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 191 results for author: <span class="mathjax">Kronfeld, A S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kronfeld, A S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kronfeld%2C+A+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kronfeld, A S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18491">arXiv:2412.18491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18491">pdf</a>, <a href="https://arxiv.org/format/2412.18491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hadronic vacuum polarization for the muon $g-2$ from lattice QCD: Long-distance and full light-quark connected contribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C+W">Claude W. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clarke%2C+D+A">David A. Clarke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C">Christine Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">Elvira G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hostetler%2C+L">Leon Hostetler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jeong%2C+H">Hwancheol Jeong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lahert%2C+S">Shaun Lahert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">Jack Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. Peter Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lynch%2C+M">Michael Lynch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">Andrew T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">Craig McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peterson%2C+C+T">Curtis T. Peterson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sitison%2C+J+W">Jacob W. Sitison</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18491v1-abstract-short" style="display: inline;"> We present results for the dominant light-quark connected contribution to the long-distance window (LD) of the hadronic vacuum polarization contribution (HVP) to the muon $g-2$ from lattice quantum chromodynamics (QCD). Specifically, with a new determination of the lattice scale on MILC&#39;s physical-mass HISQ ensembles, using the $惟^-$ baryon mass, we obtain a result of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18491v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18491v1-abstract-full" style="display: none;"> We present results for the dominant light-quark connected contribution to the long-distance window (LD) of the hadronic vacuum polarization contribution (HVP) to the muon $g-2$ from lattice quantum chromodynamics (QCD). Specifically, with a new determination of the lattice scale on MILC&#39;s physical-mass HISQ ensembles, using the $惟^-$ baryon mass, we obtain a result of $a^{ll,\,{\mathrm{LD}}}_渭(\mathrm{conn.}) = 401.2(2.3)_{\mathrm{stat}}(3.6)_{\mathrm{syst}}[4.3]_{\mathrm{total}} \times 10^{-10}$. In addition, following up on our recent work on the short- (SD) and intermediate-distance (W) windows, we report updated values for these quantities with this new scale-setting determination. Summing these individual window contributions enables a sub-percent precision determination of the light-quark-connected contribution to HVP of $a^{ll}_渭(\mathrm{conn.}) = 656.2(1.9)_{\mathrm{stat}}(4.0)_{\mathrm{syst}}[4.4]_{\mathrm{total}} \times 10^{-10}$. Finally, as a consistency check, we verify that an independent analysis of the full contribution is in agreement with the sum of individual windows. We discuss our future plans for improvements of our HVP calculations to meet the target precision of the Fermilab $g-2$ experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18491v1-abstract-full').style.display = 'none'; document.getElementById('2412.18491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2411.09656</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14300">arXiv:2411.14300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14300">pdf</a>, <a href="https://arxiv.org/format/2411.14300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Toward inclusive observables with staggered quarks: the smeared $R$~ratio </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S+.">Andreas S . Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stewart%2C+D+B+A">Douglas B. A. Stewart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14300v2-abstract-short" style="display: inline;"> Inclusive hadronic observables are ubiquitous in particle and nuclear physics. Computation of these observables using lattice QCD is challenging due the presence of a difficult inverse problem. As a stepping stone to more complicated observables, we report on progress to compute the smeared $R$~ratio with staggered quarks using the spectral reconstruction algorithm of Hansen, Lupo, and Tantalo. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14300v2-abstract-full').style.display = 'inline'; document.getElementById('2411.14300v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14300v2-abstract-full" style="display: none;"> Inclusive hadronic observables are ubiquitous in particle and nuclear physics. Computation of these observables using lattice QCD is challenging due the presence of a difficult inverse problem. As a stepping stone to more complicated observables, we report on progress to compute the smeared $R$~ratio with staggered quarks using the spectral reconstruction algorithm of Hansen, Lupo, and Tantalo. We compare staggered-quark results on two ensembles to domain-wall results on a single ensemble and to the Bernecker-Meyer parameterization. This work utilizes two ensembles generated by the MILC collaboration using highly improved staggered quarks and one ensemble generated by the RBC/UKQCD collaboration using domain-wall quarks. Possible strategies for controlling opposite-parity effects associated with staggered quarks are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14300v2-abstract-full').style.display = 'none'; document.getElementById('2411.14300v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 1 figure, 1 table; Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024). v2: Included additional citations in introduction relevant to semileptonic decays and lN scattering</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-24-0836-T, MIT-CTP/5409 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09656">arXiv:2411.09656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09656">pdf</a>, <a href="https://arxiv.org/format/2411.09656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Hadronic vacuum polarization for the muon $g-2$ from lattice QCD: Complete short and intermediate windows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clarke%2C+D+A">David A. Clarke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C">Christine Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">Elvira G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hostetler%2C+L">Leon Hostetler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jeong%2C+H">Hwancheol Jeong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lahert%2C+S">Shaun Lahert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">Jack Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. Peter Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lynch%2C+M">Michael Lynch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">Andrew T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">Craig McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peterson%2C+C+T">Curtis T. Peterson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sitison%2C+J+W">Jacob W. Sitison</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09656v1-abstract-short" style="display: inline;"> We present complete results for the hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment $a_渭$ in the short- and intermediate-distance window regions, which account for roughly 10% and 35% of the total HVP contribution to $a_渭$, respectively. In particular, we perform lattice-QCD calculations for the isospin-symmetric connected and disconnected contributions, as we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09656v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09656v1-abstract-full" style="display: none;"> We present complete results for the hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment $a_渭$ in the short- and intermediate-distance window regions, which account for roughly 10% and 35% of the total HVP contribution to $a_渭$, respectively. In particular, we perform lattice-QCD calculations for the isospin-symmetric connected and disconnected contributions, as well as corrections due to strong isospin-breaking. For the short-distance window observables, we investigate the so-called log-enhancement effects as well as the significant oscillations associated with staggered quarks in this region. For the dominant, isospin-symmetric light-quark connected contribution, we obtain $a^{ll,\,{\mathrm{SD}}}_渭(\mathrm{conn.}) = 48.116(16)(94)[96] \times 10^{-10}$ and $a^{ll,\,{\mathrm{W}}}_渭(\mathrm{conn.}) = 207.06(17)(63)[66] \times 10^{-10}$. We use Bayesian model averaging combined with a global bootstrap to fully estimate the covariance matrix between the individual contributions. Our determinations of the complete window contributions are $a^{\mathrm{SD}}_渭 = 69.01(2)(21)[21] \times 10^{-10}$ and $a^{\mathrm{W}}_渭 = 236.57(20)(94)[96] \times 10^{-10}$. This work is part of our ongoing effort to compute all contributions to HVP with an overall uncertainty at the few permille level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09656v1-abstract-full').style.display = 'none'; document.getElementById('2411.09656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0835-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23832">arXiv:2410.23832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23832">pdf</a>, <a href="https://arxiv.org/format/2410.23832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Utility of a hybrid approach to the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. P. Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">C. McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23832v2-abstract-short" style="display: inline;"> An accurate calculation of the leading-order hadronic vacuum polarisation (LOHVP) contribution to the anomalous magnetic moment of the muon ($a_渭$) is key to determining whether a discrepancy, suggesting new physics, exists between the Standard Model and experimental results. This calculation can be expressed as an integral over Euclidean time of a current-current correlator $G(t)$, where $G(t)$ c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23832v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23832v2-abstract-full" style="display: none;"> An accurate calculation of the leading-order hadronic vacuum polarisation (LOHVP) contribution to the anomalous magnetic moment of the muon ($a_渭$) is key to determining whether a discrepancy, suggesting new physics, exists between the Standard Model and experimental results. This calculation can be expressed as an integral over Euclidean time of a current-current correlator $G(t)$, where $G(t)$ can be calculated using lattice QCD or, with dispersion relations, from experimental data for $e^+e^-\to\mbox{hadrons}$. The BMW/DMZ collaboration recently presented a hybrid approach in which $G(t)$ is calculated using lattice QCD for most of the contributing $t$ range, but using experimental data for the largest $t$ (lowest energy) region. Here we study the advantages of varying the position $t=t_1$ separating lattice QCD from data-driven contributions. The total LOHVP contribution should be independent of $t_1$, providing both a test of the experimental input and the robustness of the hybrid approach. We use this criterion and a correlated fit to show that Fermilab/HPQCD/MILC lattice QCD results from 2019 strongly favour the CMD-3 cross-section data for $e^+e^-\to蟺^+蟺^-$ over a combination of earlier experimental results for this channel. Further, the resulting total LOHVP contribution obtained is consistent with the result obtained by BMW/DMZ, and supports the scenario in which there is no significant discrepancy between the experimental value for $a_渭$ and that expected in the Standard Model. We then discuss how improved lattice results in this hybrid approach could provide a more accurate total LOHVP across a wider range of $t_1$ values with an uncertainty that is smaller than that from either lattice QCD or data-driven approaches on their own. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23832v2-abstract-full').style.display = 'none'; document.getElementById('2410.23832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. Minor changes to text, added references. Version accepted by Phys. Rev. D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00756">arXiv:2409.00756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00756">pdf</a>, <a href="https://arxiv.org/format/2409.00756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The two-pion contribution to the hadronic vacuum polarization with staggered quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lahert%2C+S">Shaun Lahert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00756v1-abstract-short" style="display: inline;"> We present results from the first lattice QCD calculation of the two-pion contributions to the light-quark connected vector-current correlation function obtained from staggered-quark operators. We employ the MILC collaboration&#39;s gauge-field ensemble with $2+1+1$ flavors of highly improved staggered sea quarks at a lattice spacing of $a\approx 0.15$ fm with a light sea-quark mass at its physical va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00756v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00756v1-abstract-full" style="display: none;"> We present results from the first lattice QCD calculation of the two-pion contributions to the light-quark connected vector-current correlation function obtained from staggered-quark operators. We employ the MILC collaboration&#39;s gauge-field ensemble with $2+1+1$ flavors of highly improved staggered sea quarks at a lattice spacing of $a\approx 0.15$ fm with a light sea-quark mass at its physical value. The two-pion contributions allow for a refined determination of the noisy long-distance tail of the vector-current correlation function, which we use to compute the light-quark connected contribution to HVP with improved statistical precision. We compare our results with traditional noise-reduction techniques used in lattice QCD calculations of the light-quark connected HVP, namely the so-called fit and bounding methods. We observe a factor of roughly three improvement in the statistical precision in the determination of the HVP contribution to the muon&#39;s anomalous magnetic moment over these approaches. We also lay the group theoretical groundwork for extending this calculation to finer lattice spacings with increased numbers of staggered two-pion taste states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00756v1-abstract-full').style.display = 'none'; document.getElementById('2409.00756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07380">arXiv:2401.07380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07380">pdf</a>, <a href="https://arxiv.org/format/2401.07380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> More on minimal renormalon subtraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07380v1-abstract-short" style="display: inline;"> The minimal renormalon subtraction (MRS) [arXiv:1802.04248; arXiv:1712.04983; arXiv:1701.00347; arXiv:2310.15137] technique is summarized. A new result is a study of the scale dependence of the pole-mass--$\overline{\rm MS}$-mass ratio in MRS perturbation theory. As expected, the scale dependence is much milder than in standard perturbation theory, but it is a bit larger than other truncation effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07380v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07380v1-abstract-full" style="display: none;"> The minimal renormalon subtraction (MRS) [arXiv:1802.04248; arXiv:1712.04983; arXiv:1701.00347; arXiv:2310.15137] technique is summarized. A new result is a study of the scale dependence of the pole-mass--$\overline{\rm MS}$-mass ratio in MRS perturbation theory. As expected, the scale dependence is much milder than in standard perturbation theory, but it is a bit larger than other truncation effects such as omitting the N3LO term or varying the normalization of the renormalon subtraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07380v1-abstract-full').style.display = 'none'; document.getElementById('2401.07380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+1 pages, 3 figures; presented at Lattice 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-24-0009-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06522">arXiv:2401.06522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06522">pdf</a>, <a href="https://arxiv.org/format/2401.06522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Update on the gradient flow scale on the 2+1+1 HISQ ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">Claude Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C+E">Carleton E. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">Elvira G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grebe%2C+A+V">Anthony V. Grebe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">Urs M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06522v1-abstract-short" style="display: inline;"> We report on the ongoing effort of improving the determination of the gradient flow scale on the (2+1+1)-flavor HISQ ensembles generated by the MILC collaboration. We compute the scales $\sqrt{t_0}/a$ and $w_0/a$ with the Wilson and Symanzik flow using three discretizations for the action density: clover, Wilson and tree-level Symanzik improved. For the absolute scale setting, we intend to employ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06522v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06522v1-abstract-full" style="display: none;"> We report on the ongoing effort of improving the determination of the gradient flow scale on the (2+1+1)-flavor HISQ ensembles generated by the MILC collaboration. We compute the scales $\sqrt{t_0}/a$ and $w_0/a$ with the Wilson and Symanzik flow using three discretizations for the action density: clover, Wilson and tree-level Symanzik improved. For the absolute scale setting, we intend to employ the $惟$-baryon mass, but are also using the pion decay constant while the $惟$-mass calculations are in progress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06522v1-abstract-full').style.display = 'none'; document.getElementById('2401.06522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, contribution to the 40th International Symposium on Lattice Field Theory (Lattice 2023), July 31 - August 4, 2023, Fermilab, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-0833-T, MIT-CTP/5663 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08274">arXiv:2301.08274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08274">pdf</a>, <a href="https://arxiv.org/format/2301.08274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.114514">10.1103/PhysRevD.107.114514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-quark connected intermediate-window contributions to the muon $g-2$ hadronic vacuum polarization from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C">Christine Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">Elvira G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jeong%2C+H">Hwancheol Jeong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lahert%2C+S">Shaun Lahert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. Peter Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lynch%2C+M">Michael Lynch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">Andrew T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">Paul B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">Craig McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peterson%2C+C+T">Curtis T. Peterson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ray%2C+G">Gaurav Ray</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08274v3-abstract-short" style="display: inline;"> We present a lattice-QCD calculation of the light-quark connected contribution to window observables associated with the leading-order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_渭^{\mathrm{HVP,LO}}$. We employ the MILC Collaboration&#39;s isospin-symmetric QCD gauge-field ensembles, which contain four flavors of dynamical highly-improved-staggered quarks&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08274v3-abstract-full').style.display = 'inline'; document.getElementById('2301.08274v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08274v3-abstract-full" style="display: none;"> We present a lattice-QCD calculation of the light-quark connected contribution to window observables associated with the leading-order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_渭^{\mathrm{HVP,LO}}$. We employ the MILC Collaboration&#39;s isospin-symmetric QCD gauge-field ensembles, which contain four flavors of dynamical highly-improved-staggered quarks with four lattice spacings between $a\approx 0.06$-$0.15$~fm and close-to-physical quark masses. We consider several effective-field-theory-based schemes for finite-volume and other lattice corrections and combine the results via Bayesian model averaging to obtain robust estimates of the associated systematic uncertainties. After unblinding, our final results for the intermediate and ``W2&#39;&#39; windows are $a^{ll,{\mathrm W}}_渭(\mathrm{conn.})=206.6(1.0) \times 10^{-10}$ and $a^{ll,\mathrm {W2}}_渭(\mathrm{conn.}) = 100.7(3.2)\times 10^{-10}$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08274v3-abstract-full').style.display = 'none'; document.getElementById('2301.08274v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: Updated to reflect published version, which includes updates to the text in Sections II.B, III.C,D,E. Numerical results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-006-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 114514 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12648">arXiv:2212.12648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12648">pdf</a>, <a href="https://arxiv.org/format/2212.12648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094516">10.1103/PhysRevD.107.094516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> D-meson semileptonic decays to pseudoscalars from four-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">Elvira G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gelzer%2C+Z">Zechariah Gelzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jeong%2C+H">Hwancheol Jeong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+R">Ruizi Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lytle%2C+A+T">Andrew T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">Paul B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Primer%2C+T">Thomas Primer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R+L">Robert L. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">Doug Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">Alejandro Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12648v2-abstract-short" style="display: inline;"> We present lattice-QCD calculations of the hadronic form factors for the semileptonic decays $D\to蟺\ell谓$, $D\to K\ell谓$, and $D_s\to K\ell谓$. Our calculation uses the highly improved staggered quark (HISQ) action for all valence and sea quarks and includes $N_f=2+1+1$ MILC ensembles with lattice spacings ranging from $a\approx0.12$ fm down to $0.042$ fm. At most lattice spacings, an ensemble with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12648v2-abstract-full').style.display = 'inline'; document.getElementById('2212.12648v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12648v2-abstract-full" style="display: none;"> We present lattice-QCD calculations of the hadronic form factors for the semileptonic decays $D\to蟺\ell谓$, $D\to K\ell谓$, and $D_s\to K\ell谓$. Our calculation uses the highly improved staggered quark (HISQ) action for all valence and sea quarks and includes $N_f=2+1+1$ MILC ensembles with lattice spacings ranging from $a\approx0.12$ fm down to $0.042$ fm. At most lattice spacings, an ensemble with physical-mass light quarks is included. The HISQ action allows all the quarks to be treated with the same relativistic light-quark action, allowing for nonperturbative renormalization using partial conservation of the vector current. We combine our results with experimental measurements of the differential decay rates to determine $|V_{cd}|^{D\to蟺}=0.2238(11)^{\rm Expt}(15)^{\rm QCD}(04)^{\rm EW}(02)^{\rm SIB}[22]^{\rm QED}$ and $|V_{cs}|^{D\to K}=0.9589(23)^{\rm Expt}(40)^{\rm QCD}(15)^{\rm EW}(05)^{\rm SIB}[95]^{\rm QED}$ This result for $|V_{cd}|$ is the most precise to date, with a lattice-QCD error that is, for the first time for the semileptonic extraction, at the same level as the experimental error. Using recent measurements from BES III, we also give the first-ever determination of $|V_{cd}|^{D_s\to K}=0.258(15)^{\rm Expt}(01)^{\rm QCD}[03]^{\rm QED}$ from $D_s\to K \ell谓$. Our results also furnish new Standard Model calculations of the lepton flavor universality ratios $R^{D\to蟺}=0.98671(17)^{\rm QCD}[500]^{\rm QED}$, $R^{D\to K}=0.97606(16)^{\rm QCD}[500]^{\rm QED}$, and $R^{D_s\to K}=0.98099(10)^{\rm QCD}[500]^{\rm QED}$, which are consistent within $2蟽$ with experimental measurements. Our extractions of $|V_{cd}|$ and $|V_{cs}|$, when combined with a value for $|V_{cb}|$, provide the most precise test of second-row CKM unitarity, finding agreement with unitarity at the level of one standard deviation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12648v2-abstract-full').style.display = 'none'; document.getElementById('2212.12648v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">92 pages, V2 matches version accepted for publication in PRD. Expanded supplementary material for reconstructing our final results. An implementation of nonlinear shrinkage is also included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5513, FERMILAB-PUB-22-943-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 094516 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14872">arXiv:2209.14872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14872">pdf</a>, <a href="https://arxiv.org/format/2209.14872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Precision QCD, Hadronic Structure &amp; Forward QCD, Heavy Ions: Report of Energy Frontier Topical Groups 5, 6, 7 submitted to Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Begel%2C+M">M. Begel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoeche%2C+S">S. Hoeche</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schmitt%2C+M">M. Schmitt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+-">H. -W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nadolsky%2C+P+M">P. M. Nadolsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Royon%2C+C">C. Royon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+Y">Y-J. Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">S. Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Baldenegro%2C+C">C. Baldenegro</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Campbell%2C+J">J. Campbell</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chachamis%2C+G">G. Chachamis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Celiberto%2C+F+G">F. G. Celiberto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cooper-Sarkar%2C+A+M">A. M. Cooper-Sarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=d%27Enterria%2C+D">D. d&#39;Enterria</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Diefenthaler%2C+M">M. Diefenthaler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fucilla%2C+M">M. Fucilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garzelli%2C+M+V">M. V. Garzelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guzzi%2C+M">M. Guzzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hentschinski%2C+M">M. Hentschinski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hobbs%2C+T+J">T. J. Hobbs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huston%2C+J">J. Huston</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Isaacson%2C+J">J. Isaacson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Klein%2C+S+R">S. R. Klein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kling%2C+F">F. Kling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotko%2C+P">P. Kotko</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14872v2-abstract-short" style="display: inline;"> This report was prepared on behalf of three Energy Frontier Topical Groups of the Snowmass 2021 Community Planning Exercise. It summarizes the status and implications of studies of strong interactions in high-energy experiments and QCD theory. We emphasize the rich landscape and broad impact of these studies in the decade ahead. Hadronic interactions play a central role in the high-luminosity Larg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14872v2-abstract-full').style.display = 'inline'; document.getElementById('2209.14872v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14872v2-abstract-full" style="display: none;"> This report was prepared on behalf of three Energy Frontier Topical Groups of the Snowmass 2021 Community Planning Exercise. It summarizes the status and implications of studies of strong interactions in high-energy experiments and QCD theory. We emphasize the rich landscape and broad impact of these studies in the decade ahead. Hadronic interactions play a central role in the high-luminosity Large Hadron Collider (LHC) physics program, and strong synergies exist between the (HL-)LHC and planned or proposed experiments at the U.S. Electron-Ion Collider, CERN forward physics experiments, high-intensity facilities, and future TeV-range lepton and hadron colliders. Prospects for precision determinations of the strong coupling and a variety of nonperturbative distribution and fragmentation functions are examined. We also review the potential of envisioned tests of new dynamical regimes of QCD in high-energy and high-density scattering processes with nucleon, ion, and photon initial states. The important role of the high-energy heavy-ion program in studies of nuclear structure and the nuclear medium, and its connections with QCD involving nucleons are summarized. We address ongoing and future theoretical advancements in multi-loop QCD computations, lattice QCD, jet substructure, and event generators. Cross-cutting connections between experimental measurements, theoretical predictions, large-scale data analysis, and high-performance computing are emphasized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14872v2-abstract-full').style.display = 'none'; document.getElementById('2209.14872v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">95 pages (bibliography 30 pages), 28 figures; v.2: minor changes, authors and references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-733-SCD-T, SMU-HEP-22-06 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10758">arXiv:2209.10758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10758">pdf</a>, <a href="https://arxiv.org/format/2209.10758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10758v1-abstract-short" style="display: inline;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10758v1-abstract-full" style="display: none;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'none'; document.getElementById('2209.10758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 1 figure. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report for TF05 - Lattice Gauge Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-08, LA-UR-22-29361, FERMILAB-CONF-22-703-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04765">arXiv:2207.04765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.04765">pdf</a>, <a href="https://arxiv.org/format/2207.04765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Windows on the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hatton%2C+D">D. Hatton</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lahert%2C+S">S. Lahert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. P. Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">C. McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peterson%2C+C+T">C. T. Peterson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ray%2C+G+S">G. S. Ray</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">A. Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04765v2-abstract-short" style="display: inline;"> An accurate determination of the leading-order hadronic vacuum polarisation (HVP) contribution to the anomalous magnetic moment of the muon is critical to understanding the size and significance of any discrepancy between the Standard Model prediction and experimental results being obtained by the Muon g-2 experiment at Fermilab. The Standard Model prediction is currently based on a data-driven ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04765v2-abstract-full').style.display = 'inline'; document.getElementById('2207.04765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04765v2-abstract-full" style="display: none;"> An accurate determination of the leading-order hadronic vacuum polarisation (HVP) contribution to the anomalous magnetic moment of the muon is critical to understanding the size and significance of any discrepancy between the Standard Model prediction and experimental results being obtained by the Muon g-2 experiment at Fermilab. The Standard Model prediction is currently based on a data-driven approach to the HVP using experimental results for $蟽(e^+e^-\rightarrow\,\mathrm{hadrons})$. Lattice QCD aims to provide a result with similar uncertainty from calculated vector-vector correlation functions, but the growth of statistical and systematic errors in the $u/d$ quark correlation functions at large Euclidean time has made this difficult to achieve. We show that restricting the lattice contributions to a one-sided window $0&lt;t&lt;t_1$ can greatly improve lattice results while still capturing a large fraction of the total HVP. We illustrate this by comparing windowed lattice results based on the 2019 Fermilab Lattice/HPQCD/MILC HVP analysis with corresponding results obtained from the KNT19 analysis of $R_{e^+e^-}$ data. For $t_1=1.5$ fm, 70% of the total HVP is contained within the window and our lattice result has an error of~0.7%, only about twice as big as the error from the $e^+e^-$~analysis. We see a tension of 2.7$蟽$ between the two results. With increased statistics in the lattice data the one-sided windows will allow stringent tests of lattice and $R_{e^+e^-}$ results that include a large fraction of the total HVP contribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04765v2-abstract-full').style.display = 'none'; document.getElementById('2207.04765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures. Numbers changed very slightly on dropping some defective a=0.06fm correlators and we have also extended/improved discussion of QED/SIB corrections. Version accepted by Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-450-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03156">arXiv:2206.03156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.03156">pdf</a>, <a href="https://arxiv.org/format/2206.03156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.074503">10.1103/PhysRevD.107.074503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static Energy in ($2+1+1$)-Flavor Lattice QCD: Scale Setting and Charm Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=TUMQCD+Collaboration"> TUMQCD Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">Nora Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delgado%2C+R+L">Rafael L. Delgado</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leino%2C+V">Viljami Leino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Steinbei%C3%9Fer%2C+S">Sebastian Steinbei脽er</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vairo%2C+A">Antonio Vairo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes H. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03156v2-abstract-short" style="display: inline;"> We present results for the static energy in ($2+1+1$)-flavor QCD over a wide range of lattice spacings and several quark masses, including the physical quark mass, with ensembles of lattice-gauge-field configurations made available by the MILC Collaboration. We obtain results for the static energy out to distances of nearly $1$~fm, allowing us to perform a simultaneous determination of the scales&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03156v2-abstract-full').style.display = 'inline'; document.getElementById('2206.03156v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03156v2-abstract-full" style="display: none;"> We present results for the static energy in ($2+1+1$)-flavor QCD over a wide range of lattice spacings and several quark masses, including the physical quark mass, with ensembles of lattice-gauge-field configurations made available by the MILC Collaboration. We obtain results for the static energy out to distances of nearly $1$~fm, allowing us to perform a simultaneous determination of the scales $r_{1}$ and $r_{0}$, as well as the string tension $蟽$. For the smallest three lattice spacings we also determine the scale $r_{2}$. Our results for $r_{0}/r_{1}$ and $r_{0}\sqrt蟽$ agree with published ($2+1$)-flavor results. However, our result for $r_{1}/r_{2}$ differs significantly from the value obtained in the ($2+1$)-flavor case, which is most likely due to the effect of the charm quark. We also report results for $r_{0}$, $r_{1}$, and $r_{2}$ in~fm, with the former two being slightly lower than published ($2+1$)-flavor results. We study in detail the effect of the charm quark on the static energy by comparing our results on the finest two lattices with the previously published ($2+1$)-flavor QCD results at similar lattice spacing. We find that for $r &gt; 0.2$~fm our results on the static energy agree with the ($2+1$)-flavor result, implying the decoupling of the charm quark for these distances. For smaller distances, on the other hand, we find that the effect of the dynamical charm quark is noticeable. The lattice results agree well with the two-loop perturbative expression of the static energy incorporating finite charm mass effects. This is the first time that the decoupling of the charm quark is observed and quantitatively analyzed on lattice data of the static energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03156v2-abstract-full').style.display = 'none'; document.getElementById('2206.03156v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">51 pages, 37 figures, journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-EFT 154/21, HU-EP-22/19-RTG, FERMILAB-PUB-22-438-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 074503 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15810">arXiv:2203.15810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15810">pdf</a>, <a href="https://arxiv.org/format/2203.15810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Prospects for precise predictions of $a_渭$ in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mibe%2C+T">T. Mibe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roberts%2C+B+L">B. L. Roberts</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Teubner%2C+T">T. Teubner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittig%2C+H">H. Wittig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ananthanarayan%2C+B">B. Ananthanarayan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bashir%2C+A">A. Bashir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">P. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bray-Ali%2C+N">N. Bray-Ali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cat%C3%A0%2C+O">O. Cat脿</a>, <a href="/search/hep-lat?searchtype=author&amp;query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Charles%2C+J">J. Charles</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Das%2C+D">D. Das</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15810v1-abstract-short" style="display: inline;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15810v1-abstract-full" style="display: none;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15810v1-abstract-full').style.display = 'none'; document.getElementById('2203.15810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the US Community Study on the Future of Particle Physics (Snowmass 2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-236-T, LTH 1303, MITP-22-030 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09030">arXiv:2203.09030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09030">pdf</a>, <a href="https://arxiv.org/format/2203.09030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/adae26">10.1088/1361-6471/adae26 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ruso%2C+L+A">L. Alvarez Ruso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ankowski%2C+A+M">A. M. Ankowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bacca%2C+S">S. Bacca</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Carlson%2C+J">J. Carlson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gardiner%2C+S">S. Gardiner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gonzalez-Jimenez%2C+R">R. Gonzalez-Jimenez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hobbs%2C+T+J">T. J. Hobbs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Isaacson%2C+J">J. Isaacson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jachowicz%2C+N">N. Jachowicz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">W. I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katori%2C+T">T. Katori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kling%2C+F">F. Kling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+S+W">S. W. Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+-">H. -W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lovato%2C+A">A. Lovato</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mahn%2C+K">K. Mahn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Menendez%2C+J">J. Menendez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morfin%2C+J">J. Morfin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pastore%2C+S">S. Pastore</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09030v2-abstract-short" style="display: inline;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'inline'; document.getElementById('2203.09030v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09030v2-abstract-full" style="display: none;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. This white paper discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'none'; document.getElementById('2203.09030v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">81 pages, contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-05, FERMILAB-FN-1161-T, MITP-22-027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08271">arXiv:2203.08271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08271">pdf</a>, <a href="https://arxiv.org/format/2203.08271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ad1a78">10.1088/1361-6471/ad1a78 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The strong coupling constant: State of the art and the decade ahead </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=d%27Enterria%2C+D">D. d&#39;Enterria</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kluth%2C+S">S. Kluth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanderighi%2C+G">G. Zanderighi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ayala%2C+C">C. Ayala</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Benitez-Rathgeb%2C+M+A">M. A. Benitez-Rathgeb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bluemlein%2C+J">J. Bluemlein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boito%2C+D">D. Boito</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Britzger%2C+D">D. Britzger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Camarda%2C+S">S. Camarda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cooper-Sarkar%2C+A+M">A. M. Cooper-Sarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cridge%2C+T">T. Cridge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cvetic%2C+G">G. Cvetic</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brida%2C+M+D">M. Dalla Brida</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Deur%2C+A">A. Deur</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giuli%2C+F">F. Giuli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoang%2C+A+H">A. H. Hoang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huston%2C+J">J. Huston</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jamin%2C+M">M. Jamin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotikov%2C+A+V">A. V. Kotikov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krivokhizhin%2C+V+G">V. G. Krivokhizhin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leino%2C+V">V. Leino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lipka%2C+K">K. Lipka</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08271v2-abstract-short" style="display: inline;"> Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant $伪_s$. The current $\mathcal{O}(1\%)$ uncertainty of the QCD coupling evaluated at the reference Z boson mass, $伪_s(m_Z) = 0.1179 \pm 0.0009$, is one of the limiting factors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08271v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08271v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08271v2-abstract-full" style="display: none;"> Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant $伪_s$. The current $\mathcal{O}(1\%)$ uncertainty of the QCD coupling evaluated at the reference Z boson mass, $伪_s(m_Z) = 0.1179 \pm 0.0009$, is one of the limiting factors to more precisely describe multiple processes at current and future colliders. A reduction of this uncertainty is thus a prerequisite to perform precision tests of the Standard Model as well as searches for new physics. This report provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling. The current $伪_s(m_Z)$ world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic $蟿$ decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) $e^+e^-$, (vi) e-p, and (vii) p-p collisions, and (viii) quarkonia decays and masses. We review the current status of each of these seven $伪_s(m_Z)$ extraction methods, discuss novel $伪_s$ determinations, and examine the averaging method used to obtain the world-average value. Each of the methods discussed provides a ``wish list&#39;&#39; of experimental and theoretical developments required in order to achieve the goal of a per-mille precision on $伪_s(m_Z)$ within the next decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08271v2-abstract-full').style.display = 'none'; document.getElementById('2203.08271v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">135 pages, 45 figures. White paper for the &#34;Energy Frontier Proceedings of the US Community Study on the Future of Particle Physics&#34; (Snowmass 2021). Matches JPG published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.G 51 (2024) 9, 090501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02288">arXiv:2111.02288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.02288">pdf</a>, <a href="https://arxiv.org/format/2111.02288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0521">10.22323/1.396.0521 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The static energy in 2+1+1-flavor QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Steinbei%C3%9Fer%2C+S">Sebastian Steinbei脽er</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">Nora Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Delgado%2C+R+L">Rafael L. Delgado</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Leino%2C+V">Viljami Leino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vairo%2C+A">Antonio Vairo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02288v1-abstract-short" style="display: inline;"> We report on the status of the analysis of the static energy in $2+1+1$-flavor QCD. The static energy is obtained by measuring Wilson line correlators in Coulomb gauge using the HISQ action, yielding the scales $r_{0}/a$, $r_{1}/a$, $r_{2}/a$, their ratios, and the string tension $蟽r_{i}^{2}$. We put emphasis on the possible effects due to the dynamical charm-quark by comparing the lattice results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02288v1-abstract-full').style.display = 'inline'; document.getElementById('2111.02288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02288v1-abstract-full" style="display: none;"> We report on the status of the analysis of the static energy in $2+1+1$-flavor QCD. The static energy is obtained by measuring Wilson line correlators in Coulomb gauge using the HISQ action, yielding the scales $r_{0}/a$, $r_{1}/a$, $r_{2}/a$, their ratios, and the string tension $蟽r_{i}^{2}$. We put emphasis on the possible effects due to the dynamical charm-quark by comparing the lattice results to continuum results of the static energy with and without a massive flavor at two-loop accuracy. We employ gauge-field ensembles from the HotQCD and MILC Collaborations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02288v1-abstract-full').style.display = 'none'; document.getElementById('2111.02288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, The 38th International Symposium on Lattice Field Theory, LATTICE2021, 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-EFT 153/21, FERMILAB-CONF-21/596-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2021 (2022) 521 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.14019">arXiv:2105.14019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.14019">pdf</a>, <a href="https://arxiv.org/format/2105.14019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10984-9">10.1140/epjc/s10052-022-10984-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semileptonic form factors for $B \to D^\ast\ell谓$ at nonzero recoil from 2 + 1-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C+E">C. E. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">Daping Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gelzer%2C+Z">Z. Gelzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R">R. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">A. Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.14019v3-abstract-short" style="display: inline;"> We present the first unquenched lattice-QCD calculation of the form factors for the decay $B\rightarrow D^\ast\ell谓$ at nonzero recoil. Our analysis includes 15 MILC ensembles with $N_f=2+1$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from $a\approx 0.15$ fm down to $0.045$ fm, while the ratio between the light- and the strange-qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.14019v3-abstract-full').style.display = 'inline'; document.getElementById('2105.14019v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.14019v3-abstract-full" style="display: none;"> We present the first unquenched lattice-QCD calculation of the form factors for the decay $B\rightarrow D^\ast\ell谓$ at nonzero recoil. Our analysis includes 15 MILC ensembles with $N_f=2+1$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from $a\approx 0.15$ fm down to $0.045$ fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence $b$ and $c$ quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element $|V_{cb}|$. We obtain $\left|V_{cb}\right| = (38.40 \pm 0.68_{\textrm{th}} \pm 0.34_{\textrm{exp}} \pm 0.18_{\textrm{EM}})\times 10^{-3}$. The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall $蠂^2\text{/dof} = 126/84$, which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict $R(D^\ast) = 0.265 \pm 0.013$, which confirms the current tension between theory and experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.14019v3-abstract-full').style.display = 'none'; document.getElementById('2105.14019v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 14 figures. Synthetic data, results and full correlation matrices available in the ancillary files. Version accepted for publication in EPJ C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21/261-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 82, 1141 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10455">arXiv:2010.10455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.10455">pdf</a>, <a href="https://arxiv.org/format/2010.10455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Computing Nucleon Charges with Highly Improved Staggered Quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hughes%2C+C">Ciaran Hughes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Strelchenko%2C+A">Alexei Strelchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10455v1-abstract-short" style="display: inline;"> This work continues our program of lattice-QCD baryon physics using staggered fermions for both the sea and valence quarks. We present a proof-of-concept study that demonstrates, for the first time, how to calculate baryon matrix elements using staggered quarks for the valence sector. We show how to relate the representations of the continuum staggered flavor-taste group $\text{SU}(8)_{FT}$ to tho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10455v1-abstract-full').style.display = 'inline'; document.getElementById('2010.10455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10455v1-abstract-full" style="display: none;"> This work continues our program of lattice-QCD baryon physics using staggered fermions for both the sea and valence quarks. We present a proof-of-concept study that demonstrates, for the first time, how to calculate baryon matrix elements using staggered quarks for the valence sector. We show how to relate the representations of the continuum staggered flavor-taste group $\text{SU}(8)_{FT}$ to those of the discrete lattice symmetry group. The resulting calculations yield the normalization factors relating staggered baryon matrix elements to their physical counterparts. We verify this methodology by calculating the isovector vector and axial-vector charges $g_V$ and $g_A$. We use a single ensemble from the MILC Collaboration with 2+1+1 flavors of sea quark, lattice spacing $a\approx 0.12$ fm, and a pion mass $M_蟺\approx305$ MeV. On this ensemble, we find results consistent with expectations from current conservation and neutron beta decay. Thus, this work demonstrates how highly-improved staggered quarks can be used for precision calculations of baryon properties, and, in particular, the isovector nucleon charges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10455v1-abstract-full').style.display = 'none'; document.getElementById('2010.10455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-551-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07287">arXiv:2006.07287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.07287">pdf</a>, <a href="https://arxiv.org/format/2006.07287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08490-x">10.1140/epjc/s10052-020-08490-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Challenges in Semileptonic B Decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gambino%2C+P">P. Gambino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rotondo%2C+M">M. Rotondo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schwanda%2C+C">C. Schwanda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernlochner%2C+F">F. Bernlochner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bharucha%2C+A">A. Bharucha</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bozzi%2C+C">C. Bozzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Calvi%2C+M">M. Calvi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ciezarek%2C+G">G. Ciezarek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+M">M. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Khodjamirian%2C+A">A. Khodjamirian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ligeti%2C+Z">Z. Ligeti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lunghi%2C+E">E. Lunghi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luth%2C+V">V. Luth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mannel%2C+T">T. Mannel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">S. Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Paz%2C+G">G. Paz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schacht%2C+S">S. Schacht</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simula%2C+S">S. Simula</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sutcliffe%2C+W">W. Sutcliffe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aviles-Casco%2C+A+V">A. Vaquero Aviles-Casco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07287v2-abstract-short" style="display: inline;"> Two of the elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix, $|V_{ub}|$ and $|V_{cb}|$, are extracted from semileptonic B decays. The results of the B factories, analysed in the light of the most recent theoretical calculations, remain puzzling, because for both $|V_{ub}|$ and $|V_{cb}|$ the exclusive and inclusive determinations are in clear tension. Further, measurements in the $蟿$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07287v2-abstract-full').style.display = 'inline'; document.getElementById('2006.07287v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07287v2-abstract-full" style="display: none;"> Two of the elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix, $|V_{ub}|$ and $|V_{cb}|$, are extracted from semileptonic B decays. The results of the B factories, analysed in the light of the most recent theoretical calculations, remain puzzling, because for both $|V_{ub}|$ and $|V_{cb}|$ the exclusive and inclusive determinations are in clear tension. Further, measurements in the $蟿$ channels at Belle, Babar, and LHCb show discrepancies with the Standard Model predictions, pointing to a possible violation of lepton flavor universality. LHCb and Belle II have the potential to resolve these issues in the next few years. This article summarizes the discussions and results obtained at the MITP workshop held on April 9--13, 2018, in Mainz, Germany, with the goal to develop a medium-term strategy of analyses and calculations aimed at solving the puzzles. Lattice and continuum theorists working together with experimentalists have discussed how to reshape the semileptonic analyses in view of the much higher luminosity expected at Belle II, searching for ways to systematically validate the theoretical predictions in both exclusive and inclusive B decays, and to exploit the rich possibilities at LHCb. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07287v2-abstract-full').style.display = 'none'; document.getElementById('2006.07287v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-235-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 966 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04822">arXiv:2006.04822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.04822">pdf</a>, <a href="https://arxiv.org/format/2006.04822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.07.006">10.1016/j.physrep.2020.07.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The anomalous magnetic moment of the muon in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Aoyama%2C+T">T. Aoyama</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Asmussen%2C+N">N. Asmussen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Benayoun%2C+M">M. Benayoun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-lat?searchtype=author&amp;query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Czy%C5%BC%2C+H">H. Czy偶</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Eidelman%2C+S+I">S. I. Eidelman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Golterman%2C+M">M. Golterman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hagelstein%2C+F">F. Hagelstein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hayakawa%2C+M">M. Hayakawa</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04822v2-abstract-short" style="display: inline;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'inline'; document.getElementById('2006.04822v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04822v2-abstract-full" style="display: none;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_渭/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $\mathcal{O}(伪^2)$ and is due to hadronic vacuum polarization, whereas at $\mathcal{O}(伪^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_渭^\text{SM}=116\,591\,810(43)\times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$蟽$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'none'; document.getElementById('2006.04822v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">196 pages, 103 figures, version published in Phys. Rept., bib files for the citation references are available from: https://muon-gm2-theory.illinois.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-207-T, INT-PUB-20-021, KEK Preprint 2020-5, MITP/20-028, CERN-TH-2020-075, IFT-UAM/CSIC-20-74, LMU-ASC 18/20, LTH 1234, LU TP 20-20, MAN/HEP/2020/003, PSI-PR-20-06, UWThPh 2020-14, ZU-TH 18/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rept. 887 (2020) 1-166 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.13358">arXiv:1912.13358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.13358">pdf</a>, <a href="https://arxiv.org/format/1912.13358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $B$-meson semileptonic form factors on (2+1+1)-flavor HISQ ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gelzer%2C+Z">Z. Gelzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meurice%2C+Y">Y. Meurice</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.13358v1-abstract-short" style="display: inline;"> We report updates to an ongoing lattice-QCD calculation of the form factors for the semileptonic decays $B \to 蟺\ell 谓$, $B_s \to K \ell 谓$, $B \to 蟺\ell^+ \ell^-$, and $B \to K \ell^+ \ell^-$. The tree-level decays $B_{(s)} \to 蟺(K) \ell 谓$ enable precise determinations of the CKM matrix element $|V_{ub}|$, while the flavor-changing neutral-current interactions $B \to 蟺(K) \ell^+ \ell^-$ are sens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.13358v1-abstract-full').style.display = 'inline'; document.getElementById('1912.13358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.13358v1-abstract-full" style="display: none;"> We report updates to an ongoing lattice-QCD calculation of the form factors for the semileptonic decays $B \to 蟺\ell 谓$, $B_s \to K \ell 谓$, $B \to 蟺\ell^+ \ell^-$, and $B \to K \ell^+ \ell^-$. The tree-level decays $B_{(s)} \to 蟺(K) \ell 谓$ enable precise determinations of the CKM matrix element $|V_{ub}|$, while the flavor-changing neutral-current interactions $B \to 蟺(K) \ell^+ \ell^-$ are sensitive to contributions from new physics. This work uses MILC&#39;s (2+1+1)-flavor HISQ ensembles at approximate lattice spacings between $0.057$ and $0.15$ fm, with physical sea-quark masses on four out of the seven ensembles. The valence sector is comprised of a clover $b$ quark (in the Fermilab interpretation) and HISQ light and $s$ quarks. We present preliminary results for the form factors $f_0$, $f_+$, and $f_T$, including studies of systematic errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.13358v1-abstract-full').style.display = 'none'; document.getElementById('1912.13358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; 3 figures; presented at the 37th International Symposium on Lattice Field Theory, 16-22 June 2019, Wuhan, China</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.05886">arXiv:1912.05886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.05886">pdf</a>, <a href="https://arxiv.org/format/1912.05886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The \boldmath$B\to D^\ast\ell谓$ semileptonic decay at nonzero recoil and its implications for $\ |V_{cb}\ |$ and $R(D^\ast)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Avil%C3%A9s-Casco%2C+A+V">Alejandro Vaquero Avil茅s-Casco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">Jack Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.05886v1-abstract-short" style="display: inline;"> We present nearly final results from our analysis of the form factors for $B\to D^\ast\ell谓$ decay at nonzero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from $a\approx0.15$ fm down to $0.045$ fm. The valence light quarks employ the asqtad action, whereas the $b$ and $c$ quarks are treated using the Fermilab action. We di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05886v1-abstract-full').style.display = 'inline'; document.getElementById('1912.05886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.05886v1-abstract-full" style="display: none;"> We present nearly final results from our analysis of the form factors for $B\to D^\ast\ell谓$ decay at nonzero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from $a\approx0.15$ fm down to $0.045$ fm. The valence light quarks employ the asqtad action, whereas the $b$ and $c$ quarks are treated using the Fermilab action. We discuss the impact that our results will have on $\ |V_{cb}\ |$ and $R(D^\ast)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.05886v1-abstract-full').style.display = 'none'; document.getElementById('1912.05886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Proceedings of the 37th International Symposium on Lattice Field Theory - Lattice 2019, Wuhan (China)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.04382">arXiv:1912.04382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.04382">pdf</a>, <a href="https://arxiv.org/format/1912.04382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The hadronic vacuum polarization of the muon from four-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C+E">C. E. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hatton%2C+D">D. Hatton</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. P. Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">C. McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Primer%2C+T">T. Primer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">A. Vaquero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yamamoto%2C+S">Shuhei Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.04382v1-abstract-short" style="display: inline;"> We present an update on the ongoing calculations by the Fermilab Lattice, HPQCD, and MILC Collaboration of the leading-order (in electromagnetism) hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. Our project employs ensembles with four flavors of highly improved staggered fermions, physical light-quark masses, and four lattice spacings ranging from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04382v1-abstract-full').style.display = 'inline'; document.getElementById('1912.04382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.04382v1-abstract-full" style="display: none;"> We present an update on the ongoing calculations by the Fermilab Lattice, HPQCD, and MILC Collaboration of the leading-order (in electromagnetism) hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. Our project employs ensembles with four flavors of highly improved staggered fermions, physical light-quark masses, and four lattice spacings ranging from $a \approx 0.06$ to 0.15 fm for most of the results thus far. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04382v1-abstract-full').style.display = 'none'; document.getElementById('1912.04382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LATTICE 2019, 7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12256">arXiv:1911.12256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12256">pdf</a>, <a href="https://arxiv.org/format/1911.12256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.034501">10.1103/PhysRevD.103.034501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon Mass with Highly Improved Staggered Quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+Y">Yin Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hughes%2C+C">Ciaran Hughes</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Strelchenko%2C+A">Alexei Strelchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12256v2-abstract-short" style="display: inline;"> We present the first computation in a program of lattice-QCD baryon physics using staggered fermions for sea and valence quarks. For this initial study, we present a calculation of the nucleon mass, obtaining $964\pm16$ MeV with all sources of statistical and systematic errors controlled and accounted for. This result is the most precise determination to date of the nucleon mass from first princip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12256v2-abstract-full').style.display = 'inline'; document.getElementById('1911.12256v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12256v2-abstract-full" style="display: none;"> We present the first computation in a program of lattice-QCD baryon physics using staggered fermions for sea and valence quarks. For this initial study, we present a calculation of the nucleon mass, obtaining $964\pm16$ MeV with all sources of statistical and systematic errors controlled and accounted for. This result is the most precise determination to date of the nucleon mass from first principles. We use the highly-improved staggered quark action, which is computationally efficient. Three gluon ensembles are employed, which have approximate lattice spacings $a=0.09$ fm, $0.12$ fm, and $0.15$ fm, each with equal-mass $u$/$d$, $s$, and $c$ quarks in the sea. Further, all ensembles have the light valence and sea $u$/$d$ quarks tuned to reproduce the physical pion mass, avoiding complications from chiral extrapolations or nonunitarity. Our work opens a new avenue for precise calculations of baryon properties, which are both feasible and relevant to experiments in particle and nuclear physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12256v2-abstract-full').style.display = 'none'; document.getElementById('1911.12256v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 19 figures; published in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-422-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 034501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.01019">arXiv:1906.01019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.01019">pdf</a>, <a href="https://arxiv.org/format/1906.01019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> $B\to D^\ast\ell谓$ at non-zero recoil </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">A. Vaquero</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.01019v2-abstract-short" style="display: inline;"> The current status of the lattice-QCD calculations of the form factors of the $B\to D^\ast\ell谓$ semileptonic decay is reviewed. Particular emphasis is given to the most mature calculation at non-zero recoil coming from the Fermilab Lattice and MILC collaborations. Blinded, preliminary results for the form factors are shown, including a preliminary, but detailed error budget. The lattice results s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01019v2-abstract-full').style.display = 'inline'; document.getElementById('1906.01019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.01019v2-abstract-full" style="display: none;"> The current status of the lattice-QCD calculations of the form factors of the $B\to D^\ast\ell谓$ semileptonic decay is reviewed. Particular emphasis is given to the most mature calculation at non-zero recoil coming from the Fermilab Lattice and MILC collaborations. Blinded, preliminary results for the form factors are shown, including a preliminary, but detailed error budget. The lattice results seem to favor a large slope at small recoil, in contrast to the latest untagged results coming from the Belle collaboration. A comprehensive comparison between the latest BGL $z$ expansions of Belle, Babar, the lattice and a joint BGL fit including lattice and Belle data is presented, and a roadmap to improve the current calculation is discussed. The current implications for $V_{cb}$ and $R(D^\ast)$ are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01019v2-abstract-full').style.display = 'none'; document.getElementById('1906.01019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 12 figures. Proceedings of the 2019 Conference on Flavor Physics and CP Violation (FPCP2019). v2 fixes the contour plots of the coefficients of the BGL expansion for BaBar results (b1/b0 and c1/c0)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-19-265-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09931">arXiv:1904.09931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09931">pdf</a>, <a href="https://arxiv.org/format/1904.09931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12916-x">10.1140/epja/i2019-12916-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Neutrino-Nucleus Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sufian%2C+R">Raza Sufian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsin%2C+S">Sergey Syritsin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09931v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and nuclear structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and nuclear matrix elements, the interplay with models of nuclei is discussed. This program of lattice- QCD calcul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09931v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09931v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and nuclear structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and nuclear matrix elements, the interplay with models of nuclei is discussed. This program of lattice- QCD calculations is relevant to current and upcoming neutrino experiments, becoming increasingly important on the timescale of LBNF/DUNE and HyperK. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09931v1-abstract-full').style.display = 'none'; document.getElementById('1904.09931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pp. One of seven whitepapers from the USQCD Collaboration</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-172-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09479">arXiv:1904.09479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09479">pdf</a>, <a href="https://arxiv.org/format/1904.09479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12891-2">10.1140/epja/i2019-12891-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Opportunities for lattice QCD in quark and lepton flavor physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Tom Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">Jack Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharpe%2C+S+R">Stephen R. Sharpe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09479v2-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in quark and lepton flavor physics. New data generated at Belle II, LHCb, BES III, NA62, KOTO, and Fermilab E989, combined with precise calculations of the relevant hadronic physics, may reveal what lies beyond the Standard Model. We outline a path toward improvements of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09479v2-abstract-full').style.display = 'inline'; document.getElementById('1904.09479v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09479v2-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in quark and lepton flavor physics. New data generated at Belle II, LHCb, BES III, NA62, KOTO, and Fermilab E989, combined with precise calculations of the relevant hadronic physics, may reveal what lies beyond the Standard Model. We outline a path toward improvements of the precision of existing lattice-QCD calculations and discuss groundbreaking new methods that allow lattice QCD to access new observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09479v2-abstract-full').style.display = 'none'; document.getElementById('1904.09479v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">USQCD whitepaper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-173-T, RBRC-1309 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A 55, 195 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04223">arXiv:1902.04223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04223">pdf</a>, <a href="https://arxiv.org/format/1902.04223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034512">10.1103/PhysRevD.101.034512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic-vacuum-polarization contribution to the muon&#39;s anomalous magnetic moment from four-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gamiz%2C+E">E. Gamiz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hatton%2C+D">D. Hatton</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. P. Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">C. McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Primer%2C+T">T. Primer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">A. Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04223v2-abstract-short" style="display: inline;"> We calculate the contribution to the muon anomalous magnetic moment hadronic vacuum polarization from {the} connected diagrams of up and down quarks, omitting electromagnetism. We employ QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks and the physical pion mass, and analyze five ensembles with lattice spacings ranging from $a \approx 0.06$ to~0.15~fm. The up- and down-q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04223v2-abstract-full').style.display = 'inline'; document.getElementById('1902.04223v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04223v2-abstract-full" style="display: none;"> We calculate the contribution to the muon anomalous magnetic moment hadronic vacuum polarization from {the} connected diagrams of up and down quarks, omitting electromagnetism. We employ QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks and the physical pion mass, and analyze five ensembles with lattice spacings ranging from $a \approx 0.06$ to~0.15~fm. The up- and down-quark masses in our simulations have equal masses $m_l$. We obtain, in this world where all pions have the mass of the $蟺^0$, $10^{10} a_渭^{ll}({\rm conn.}) = 637.8\,(8.8)$, in agreement with independent lattice-QCD calculations. We then combine this value with published lattice-QCD results for the connected contributions from strange, charm, and bottom quarks, and an estimate of the uncertainty due to the fact that our calculation does not include strong-isospin breaking, electromagnetism, or contributions from quark-disconnected diagrams. Our final result for the total $\mathcal{O}(伪^2)$ hadronic vacuum polarization to the muon&#39;s anomalous magnetic moment is~$10^{10}a_渭^{\rm HVP,LO} = 699(15)_{u,d}(1)_{s,c,b}$, where the errors are from the light-quark and heavy-quark contributions, respectively. Our result agrees with both {\it ab-initio} lattice-QCD calculations and phenomenological determinations from experimental $e^+e^-$-scattering data. It is $1.3蟽$ below the &#34;no new physics&#34; value of the hadronic-vacuum-polarization contribution inferred from combining the BNL E821 measurement of $a_渭$ with theoretical calculations of the other contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04223v2-abstract-full').style.display = 'none'; document.getElementById('1902.04223v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures, 6 tables; updated to correct a small mistake in the finite volume correction resulting in small changes to the results, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034512 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08989">arXiv:1901.08989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.08989">pdf</a>, <a href="https://arxiv.org/format/1901.08989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> $D$ meson Semileptonic Decay Form Factors at $q^2 = 0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+R">Ruizi Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C+W">C. W. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">Daping Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Primer%2C+T">T. Primer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R+L">R. L. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhou%2C+R">Ran Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08989v1-abstract-short" style="display: inline;"> We discuss preliminary results for the vector form factors $f_+^{\{蟺,K\}}$ at zero-momentum transfer for the decays $D\to蟺\ell谓$ and $D\to K \ell谓$ using MILC&#39;s $N_f = 2+1+1$ HISQ ensembles at four lattice spacings, $a \approx 0.042, 0.06, 0.09$, and 0.12 fm, and various HISQ quark masses down to the (degenerate) physical light quark mass. We use the kinematic constraint $f_+(q^2)= f_0(q^2)$ at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08989v1-abstract-full').style.display = 'inline'; document.getElementById('1901.08989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08989v1-abstract-full" style="display: none;"> We discuss preliminary results for the vector form factors $f_+^{\{蟺,K\}}$ at zero-momentum transfer for the decays $D\to蟺\ell谓$ and $D\to K \ell谓$ using MILC&#39;s $N_f = 2+1+1$ HISQ ensembles at four lattice spacings, $a \approx 0.042, 0.06, 0.09$, and 0.12 fm, and various HISQ quark masses down to the (degenerate) physical light quark mass. We use the kinematic constraint $f_+(q^2)= f_0(q^2)$ at $q^2 = 0$ to determine the vector form factor from our study of the scalar current, which yields $f_0(0)$. Results are extrapolated to the continuum physical point in the framework of hard pion/kaon SU(3) heavy-meson-staggered $蠂$PT and Symanzik effective theory. Our calculation improves upon the precision achieved in existing lattice-QCD calculations of the vector form factors at $q^2=0$. We show the values of the CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$ that we would obtain using our preliminary results for the form factors together with recent experimental results, and discuss the implications of these values for the second row CKM unitarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08989v1-abstract-full').style.display = 'none'; document.getElementById('1901.08989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, proceeding of The 36th Annual International Symposium on Lattice Field Theory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02561">arXiv:1901.02561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.02561">pdf</a>, <a href="https://arxiv.org/format/1901.02561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.034501">10.1103/PhysRevD.100.034501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $B_s\to K\ell谓$ decay from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">Daping Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeland%2C+E+D">E. D. Freeland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gelzer%2C+Z">Z. Gelzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meurice%2C+Y">Y. Meurice</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhou%2C+R">Ran Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02561v1-abstract-short" style="display: inline;"> We use lattice QCD to calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ for the semileptonic decay $B_s\to K\ell谓$. Our calculation uses six MILC asqtad 2+1 flavor gauge-field ensembles with three lattice spacings. At the smallest and largest lattice spacing the light-quark sea mass is set to 1/10 the strange-quark mass. At the intermediate lattice spacing, we use four values for the light-quar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02561v1-abstract-full').style.display = 'inline'; document.getElementById('1901.02561v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02561v1-abstract-full" style="display: none;"> We use lattice QCD to calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ for the semileptonic decay $B_s\to K\ell谓$. Our calculation uses six MILC asqtad 2+1 flavor gauge-field ensembles with three lattice spacings. At the smallest and largest lattice spacing the light-quark sea mass is set to 1/10 the strange-quark mass. At the intermediate lattice spacing, we use four values for the light-quark sea mass ranging from 1/5 to 1/20 of the strange-quark mass. We use the asqtad improved staggered action for the light valence quarks, and the clover action with the Fermilab interpolation for the heavy valence bottom quark. We use SU(2) hard-kaon heavy-meson rooted staggered chiral perturbation theory to take the chiral-continuum limit. A functional $z$ expansion is used to extend the form factors to the full kinematic range. We present predictions for the differential decay rate for both $B_s\to K渭谓$ and $B_s\to K蟿谓$. We also present results for the forward-backward asymmetry, the lepton polarization asymmetry, ratios of the scalar and vector form factors for the decays $B_s\to K\ell谓$ and $B_s\to D_s \ell谓$. Our results, together with future experimental measurements, can be used to determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{ub}|$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02561v1-abstract-full').style.display = 'none'; document.getElementById('1901.02561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 22 figures, 13 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-005-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 034501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00216">arXiv:1901.00216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00216">pdf</a>, <a href="https://arxiv.org/format/1901.00216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> $B\to D^\ast\ell谓$ at non-zero recoil </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Avil%C3%A9s-Casco%2C+A+V">Alejandro Vaquero Avil茅s-Casco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">Jack Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">Ruth S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00216v1-abstract-short" style="display: inline;"> We present preliminary blinded results from our analysis of the form factors for $B\rightarrow D^\ast\ell谓$ decay at non-zero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from $a\approx 0.15$ fm down to $0.045$ fm. The valence light quarks employ the asqtad action, whereas the $b$ and $c$ quarks are treated using the Fermi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00216v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00216v1-abstract-full" style="display: none;"> We present preliminary blinded results from our analysis of the form factors for $B\rightarrow D^\ast\ell谓$ decay at non-zero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from $a\approx 0.15$ fm down to $0.045$ fm. The valence light quarks employ the asqtad action, whereas the $b$ and $c$ quarks are treated using the Fermilab action. We discuss the impact that our results will have on $\left|V_{cb}\right|$ and $R(D^\ast)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00216v1-abstract-full').style.display = 'none'; document.getElementById('1901.00216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, proceedings of the 36th Annual International Symposium on Lattice Field Theory - LATTICE2018</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2018)282 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09983">arXiv:1810.09983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.09983">pdf</a>, <a href="https://arxiv.org/format/1810.09983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.034509">10.1103/PhysRevD.99.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Splittings of low-lying charmonium masses at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+S">Song-haeng Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09983v1-abstract-short" style="display: inline;"> We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are generated in the presence of up, down, and strange sea quarks, based on the improved staggered (asqtad) action, and gluon fields, based on the one-loop, tad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09983v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09983v1-abstract-full" style="display: none;"> We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium states. For the valence charm quark, the calculation uses Wilson-clover quarks in the Fermilab interpretation. The gauge-field ensembles are generated in the presence of up, down, and strange sea quarks, based on the improved staggered (asqtad) action, and gluon fields, based on the one-loop, tadpole-improved gauge action. We use five lattice spacings and two values of the light sea quark mass to extrapolate the results to the physical point. An enlarged set of interpolating operators is used for a variational analysis to improve the determination of the energies of the ground states in each channel. We present and implement a continuum extrapolation within the Fermilab interpretation, based on power-counting arguments, and thoroughly discuss all sources of systematic uncertainty. We compare our results for various mass splittings with their experimental values, namely, the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin-orbit and tensor splittings. Given the uncertainty related to the width of the resonances, we find excellent agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09983v1-abstract-full').style.display = 'none'; document.getElementById('1810.09983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-440-T, MITP/18-097 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 034509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00250">arXiv:1810.00250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.00250">pdf</a>, <a href="https://arxiv.org/format/1810.00250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> B- and D-meson leptonic decay constants and quark masses from four-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lattice%2C+F">Fermilab Lattice</a>, <a href="/search/hep-lat?searchtype=author&amp;query=MILC"> MILC</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collaborations%2C+T">TUMQCD Collaborations</a>, <a href="/search/hep-lat?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brown%2C+N">N. Brown</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+M">P. M. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R+L">R. L. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vairo%2C+A">A. Vairo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00250v1-abstract-short" style="display: inline;"> We describe a recent lattice-QCD calculation of the leptonic decay constants of heavy-light pseudoscalar mesons containing charm and bottom quarks and of the masses of the up, down, strange, charm, and bottom quarks. Results for these quantities are of the highest precision to date. Calculations use 24 isospin-symmetric ensembles of gauge-field configurations with six different lattice spacings as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00250v1-abstract-full').style.display = 'inline'; document.getElementById('1810.00250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00250v1-abstract-full" style="display: none;"> We describe a recent lattice-QCD calculation of the leptonic decay constants of heavy-light pseudoscalar mesons containing charm and bottom quarks and of the masses of the up, down, strange, charm, and bottom quarks. Results for these quantities are of the highest precision to date. Calculations use 24 isospin-symmetric ensembles of gauge-field configurations with six different lattice spacings as small as approximately 0.03 fm and several values of the light quark masses down to physical values of the average up- and down-sea-quark masses. We use the highly-improved staggered quark (HISQ) formulation for valence and sea quarks, including the bottom quark. The analysis employs heavy-quark effective theory (HQET). A novel HQET method is used in the determination of the quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00250v1-abstract-full').style.display = 'none'; document.getElementById('1810.00250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented CIPANP2018. 11 pages, LaTeX, 8 pdf figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CIPANP2018-DeTar </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02827">arXiv:1809.02827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02827">pdf</a>, <a href="https://arxiv.org/format/1809.02827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.114509">10.1103/PhysRevD.99.114509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $|V_{us}|$ from $K_{\ell 3}$ decay and four-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">Daping Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeland%2C+E+D">E. D. Freeland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Primer%2C+T">T. Primer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R">R. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhou%2C+R">Ran Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02827v2-abstract-short" style="display: inline;"> Using HISQ $N_f=2+1+1$ MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we have performed the most precise computation to date of the $K\to蟺\ell谓$ vector form factor at zero momentum transfer, $f_+^{K^0蟺^-}(0)=0.9696(15)_\text{stat}(12)_\text{syst}$. This is the first calculation that includes the dominant finite-volume effects,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02827v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02827v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02827v2-abstract-full" style="display: none;"> Using HISQ $N_f=2+1+1$ MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we have performed the most precise computation to date of the $K\to蟺\ell谓$ vector form factor at zero momentum transfer, $f_+^{K^0蟺^-}(0)=0.9696(15)_\text{stat}(12)_\text{syst}$. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|=0.22333(44)_{f_+(0)}(42)_\text{exp}$, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio $f_{K^+}/f_{蟺^+}$, which uses $|V_{ud}|$ as input. Our value of $|V_{us}|$ is in tension at the 2--$2.6蟽$ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in $|V_{ud}|$, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear $尾$ decays could reduce the $|V_{ud}|^2$ uncertainty nearly to that of $|V_{us}|^2$. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions. As part of our analysis, we calculated the correction to $f_+^{K蟺}(0)$ due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially-quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian $[C_{12}^r+C_{34}^r-(L_5^r)^2](M_蟻)=(2.92\pm0.31)\cdot10^{-6}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02827v2-abstract-full').style.display = 'none'; document.getElementById('1809.02827v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages and 12 figures. Expanded discussion of fit methodology. Finite volume error increased, conclusions unchanged. Version accepted by Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-439-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 114509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10567">arXiv:1808.10567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10567">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptz106">10.1093/ptep/ptz106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Belle II Physics Book </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kou%2C+E">E. Kou</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Urquijo%2C+P">P. Urquijo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Altmannshofer%2C+W">W. Altmannshofer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beaujean%2C+F">F. Beaujean</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bell%2C+G">G. Bell</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beneke%2C+M">M. Beneke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bigi%2C+I+I">I. I. Bigi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blanke%2C+F+B+M">F. Bishara M. Blanke</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bobeth%2C+C">C. Bobeth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bona%2C+M">M. Bona</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Braun%2C+V+M">V. M. Braun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brod%2C+J">J. Brod</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buras%2C+A+J">A. J. Buras</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cheng%2C+H+Y">H. Y. Cheng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chiang%2C+C+W">C. W. Chiang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Czyz%2C+H">H. Czyz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Datta%2C+A">A. Datta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=De+Fazio%2C+F">F. De Fazio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Deppisch%2C+T">T. Deppisch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dolan%2C+M+J">M. J. Dolan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fajfer%2C+S">S. Fajfer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Feldmann%2C+T">T. Feldmann</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Godfrey%2C+S">S. Godfrey</a> , et al. (504 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10567v4-abstract-short" style="display: inline;"> We present the physics program of the Belle II experiment, located on the intensity frontier SuperKEKB $e^+e^-$ collider. Belle II collected its first collisions in 2018, and is expected to operate for the next decade. It is anticipated to collect 50/ab of collision data over its lifetime. This book is the outcome of a joint effort of Belle II collaborators and theorists through the Belle II theor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10567v4-abstract-full').style.display = 'inline'; document.getElementById('1808.10567v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10567v4-abstract-full" style="display: none;"> We present the physics program of the Belle II experiment, located on the intensity frontier SuperKEKB $e^+e^-$ collider. Belle II collected its first collisions in 2018, and is expected to operate for the next decade. It is anticipated to collect 50/ab of collision data over its lifetime. This book is the outcome of a joint effort of Belle II collaborators and theorists through the Belle II theory interface platform (B2TiP), an effort that commenced in 2014. The aim of B2TiP was to elucidate the potential impacts of the Belle II program, which includes a wide scope of physics topics: B physics, charm, tau, quarkonium, electroweak precision measurements and dark sector searches. It is composed of nine working groups (WGs), which are coordinated by teams of theorist and experimentalists conveners: Semileptonic and leptonic B decays, Radiative and Electroweak penguins, phi_1 and phi_2 (time-dependent CP violation) measurements, phi_3 measurements, Charmless hadronic B decay, Charm, Quarkonium(like), tau and low-multiplicity processes, new physics and global fit analyses. This book highlights &#34;golden- and silver-channels&#34;, i.e. those that would have the highest potential impact in the field. Theorists scrutinised the role of those measurements and estimated the respective theoretical uncertainties, achievable now as well as prospects for the future. Experimentalists investigated the expected improvements with the large dataset expected from Belle II, taking into account improved performance from the upgraded detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10567v4-abstract-full').style.display = 'none'; document.getElementById('1808.10567v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">689 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK Preprint 2018-27, BELLE2-PUB-PH-2018-001, FERMILAB-PUB-18-398-T, JLAB-THY-18-2780, INT-PUB-18-047, UWThPh 2018-26 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog Theor Exp Phys (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.04248">arXiv:1802.04248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.04248">pdf</a>, <a href="https://arxiv.org/format/1802.04248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.054517">10.1103/PhysRevD.98.054517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brown%2C+N">N. Brown</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R+L">R. L. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vairo%2C+A">A. Vairo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.04248v2-abstract-short" style="display: inline;"> We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $a\approx0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04248v2-abstract-full').style.display = 'inline'; document.getElementById('1802.04248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.04248v2-abstract-full" style="display: none;"> We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $a\approx0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $\overline{\text{MS}}$-renormalized masses are $m_u(2~\text{GeV}) = 2.130(41)$~MeV, $m_d(2~\text{GeV}) = 4.675(56)$~MeV, $m_s(2~\text{GeV}) = 92.47(69)$~MeV, $m_c(3~\text{GeV}) = 983.7(5.6)$~MeV, and $m_c(m_c) = 1273(10)$~MeV, with four active flavors; and $m_b(m_b) = 4195(14)$~MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.783(25)$, $m_b/m_s = 53.94(12)$, and $m_b/m_c = 4.578(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $伪_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $\overline螞_\text{MRS}=555(31)$~MeV in the minimal renormalon-subtracted (MRS) scheme, $渭_蟺^2 = 0.05(22)~\text{GeV}^2$, and $渭_G^2(m_b)=0.38(2)~\text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph]] is the key new aspect of our method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04248v2-abstract-full').style.display = 'none'; document.getElementById('1802.04248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The published version; 32 pages and 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-17/492-T, TUM-EFT 107/18 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 054517 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09262">arXiv:1712.09262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.09262">pdf</a>, <a href="https://arxiv.org/format/1712.09262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.074512">10.1103/PhysRevD.98.074512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $B$- and $D$-meson leptonic decay constants from four-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brown%2C+N">N. Brown</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R+L">R. L. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09262v4-abstract-short" style="display: inline;"> We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to $a\approx 0.03$~fm and several values of the light-quark mass down to the physical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09262v4-abstract-full').style.display = 'inline'; document.getElementById('1712.09262v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09262v4-abstract-full" style="display: none;"> We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to $a\approx 0.03$~fm and several values of the light-quark mass down to the physical value $\frac{1}{2}(m_u+m_d)$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $f_{D^+} = 212.7(0.6)$~MeV, $f_{D_s} = 249.9(0.4)$~MeV, $f_{D_s}/f_{D^+} = 1.1749(16)$, $f_{B^+} = 189.4 (1.4)$~MeV, $f_{B_s} = 230.7(1.3)$~MeV, $f_{B_s}/f_{B^+} = 1.2180(47)$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $\overline{\mathcal{B}}(B_s \to 渭^+渭^-) = 3.64(11) \times 10^{-9}$, $\overline{\mathcal{B}}(B^0 \to 渭^+渭^-) = 1.00(3) \times 10^{-10}$, and $\overline{\mathcal{B}}(B^0 \to 渭^+渭^-)/\overline{\mathcal{B}}(B_s \to 渭^+渭^-) = 0.0273(9)$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $f_{p4s}$, $M_{p4s}$, and $R_{p4s}$. We obtain the most precise lattice-QCD determination to date of the ratio $f_{K^+}/f_{蟺^+} = 1.1950(^{+16}_{-23})$~MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09262v4-abstract-full').style.display = 'none'; document.getElementById('1712.09262v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Errors related to the standard model prediction for the rare leptonic decays are fixed in the abstract and Eqs. (7.44), (7.45), and (8.3)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-17/491-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 074512 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.04983">arXiv:1712.04983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.04983">pdf</a>, <a href="https://arxiv.org/format/1712.04983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.034503">10.1103/PhysRevD.97.034503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relations between Heavy-light Meson and Quark Masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vairo%2C+A">A. Vairo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.04983v1-abstract-short" style="display: inline;"> The study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definitio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04983v1-abstract-full').style.display = 'inline'; document.getElementById('1712.04983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.04983v1-abstract-full" style="display: none;"> The study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a merger of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory ($蠂$PT). For practical implementations of this merger, we extend the one-loop $蠂$PT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04983v1-abstract-full').style.display = 'none'; document.getElementById('1712.04983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pp</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-17/490-T, TUM-EFT 105/17 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 034503 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.08085">arXiv:1711.08085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.08085">pdf</a>, <a href="https://arxiv.org/ps/1711.08085">ps</a>, <a href="https://arxiv.org/format/1711.08085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513008">10.1051/epjconf/201817513008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $B_s \to K \ell谓$ form factors with 2+1 flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lattice%2C+F">Fermilab Lattice</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collaborations%2C+M">MILC Collaborations</a>, <a href="/search/hep-lat?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bailey%2C+J+A">Jon A. Bailey</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C+M">C. M. Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">Daping Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeland%2C+E+D">E. D. Freeland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gelzer%2C+Z">Z. Gelzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meurice%2C+Y">Y. Meurice</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R">R. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.08085v1-abstract-short" style="display: inline;"> Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors $f_0$ and $f_+$ for the semileptonic $B_s \rightarrow K \ell谓$ decay. A total of six ensembles with lattice spacing from $\approx0.12$ to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass $m&#39;_l$ is one-tenth the strange quark mass $m&#39;_s$. At the intermediate lattice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08085v1-abstract-full').style.display = 'inline'; document.getElementById('1711.08085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.08085v1-abstract-full" style="display: none;"> Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors $f_0$ and $f_+$ for the semileptonic $B_s \rightarrow K \ell谓$ decay. A total of six ensembles with lattice spacing from $\approx0.12$ to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass $m&#39;_l$ is one-tenth the strange quark mass $m&#39;_s$. At the intermediate lattice spacing, the ratio $m&#39;_l/m&#39;_s$ ranges from 0.05 to 0.2. The valence $b$ quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element $|V_{ub}|$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08085v1-abstract-full').style.display = 'none'; document.getElementById('1711.08085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, to appear in the Proceedings of Lattice 2017, June 18-24, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web of Conferences 175, 13008 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.11212">arXiv:1710.11212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.11212">pdf</a>, <a href="https://arxiv.org/format/1710.11212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.152001">10.1103/PhysRevLett.120.152001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong-isospin-breaking correction to the muon anomalous magnetic moment from lattice QCD at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+B">Bipasha Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hatton%2C+D">D. Hatton</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koponen%2C+J">J. Koponen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lepage%2C+G+P">G. P. Lepage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">C. McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R">R. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vaquero%2C+A">A. Vaquero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.11212v2-abstract-short" style="display: inline;"> All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon&#39;s anomalous magnetic moment to-date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to $a_渭^{\rm HVP}$ for the first time with physical values of $m_u$ and $m_d$ and dynamical $u$, $d$, $s$, and $c$ quarks, thereby removing this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11212v2-abstract-full').style.display = 'inline'; document.getElementById('1710.11212v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.11212v2-abstract-full" style="display: none;"> All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon&#39;s anomalous magnetic moment to-date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to $a_渭^{\rm HVP}$ for the first time with physical values of $m_u$ and $m_d$ and dynamical $u$, $d$, $s$, and $c$ quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of $未a_渭^{{\rm HVP,} m_u \neq m_d}$= +1.5(7)%, in agreement with estimates from phenomenology and a recent lattice-QCD calculation with unphysically heavy pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11212v2-abstract-full').style.display = 'none'; document.getElementById('1710.11212v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: 6 pages, 2 tables, 2 figures. Additional references and expanded discussion of systematic errors. Version accepted to Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-17-486-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 152001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09817">arXiv:1710.09817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09817">pdf</a>, <a href="https://arxiv.org/format/1710.09817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $\overline{B}\rightarrow D^\ast\ell\overline谓$ at non-zero recoil </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Avil%C3%A9s-Casco%2C+A+V">A. Vaquero Avil茅s-Casco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">D. Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A">A. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09817v1-abstract-short" style="display: inline;"> We present preliminary results from our analysis of the form factors for the $\overline{B}\rightarrow D^\ast\ell\overline谓$ decay at non-zero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from $a\approx 0.15$ fm down to $0.045$ fm. The valence light quarks employ the asqtad action, whereas the heavy quarks are treated using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09817v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09817v1-abstract-full" style="display: none;"> We present preliminary results from our analysis of the form factors for the $\overline{B}\rightarrow D^\ast\ell\overline谓$ decay at non-zero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from $a\approx 0.15$ fm down to $0.045$ fm. The valence light quarks employ the asqtad action, whereas the heavy quarks are treated using the Fermilab action. We conclude with a discussion of future plans and phenomenological implications. When combined with experimental measurements of the decay rate, our calculation will enable a determination of the CKM matrix element $|V_{cb}|$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09817v1-abstract-full').style.display = 'none'; document.getElementById('1710.09817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, Proceedings of the talk presented at the 35th International Symposium on Lattice Field Theory (Lattice2017), Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09442">arXiv:1710.09442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09442">pdf</a>, <a href="https://arxiv.org/format/1710.09442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513024">10.1051/epjconf/201817513024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semileptonic $B$-meson decays to light pseudoscalar mesons on the HISQ ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gelzer%2C+Z">Zechariah Gelzer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meurice%2C+Y">Y. Meurice</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09442v1-abstract-short" style="display: inline;"> We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$ mesons with both charged currents ($B\to蟺\ell谓$, $B_s\to K\ell谓$) and neutral currents ($B\to蟺\ell^+\ell^-$, $B\to K\ell^+\ell^-$). The results are important for constraining or revealing physics beyond the Standard Model. This work uses MILC&#39;s (2+1+1)-flavor ensembles with the HISQ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09442v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09442v1-abstract-full" style="display: none;"> We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$ mesons with both charged currents ($B\to蟺\ell谓$, $B_s\to K\ell谓$) and neutral currents ($B\to蟺\ell^+\ell^-$, $B\to K\ell^+\ell^-$). The results are important for constraining or revealing physics beyond the Standard Model. This work uses MILC&#39;s (2+1+1)-flavor ensembles with the HISQ action for the sea and light valence quarks and the clover action in the Fermilab interpretation for the $b$ quark. Simulations are carried out at three lattice spacings down to $0.088$ fm, with both physical and unphysical sea-quark masses. We present preliminary results for correlation-function fits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09442v1-abstract-full').style.display = 'none'; document.getElementById('1710.09442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures; presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.04622">arXiv:1706.04622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.04622">pdf</a>, <a href="https://arxiv.org/format/1706.04622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.034513">10.1103/PhysRevD.97.034513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short-distance matrix elements for $D^0$-meson mixing for $N_f=2+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C+M">C. M. Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">C. C. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">D. Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeland%2C+E+D">E. D. Freeland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R">R. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhou%2C+R">R. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.04622v2-abstract-short" style="display: inline;"> We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five $螖C=2$ four-fermion operators that contribute to neutral $D$-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration&#39;s $N_f = 2+1$ lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04622v2-abstract-full').style.display = 'inline'; document.getElementById('1706.04622v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.04622v2-abstract-full" style="display: none;"> We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five $螖C=2$ four-fermion operators that contribute to neutral $D$-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration&#39;s $N_f = 2+1$ lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as $M_蟺\approx 180$ MeV and lattice spacings as fine as $a\approx 0.045$ fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the $\overline{\text{MS}}$-NDR scheme using the choice of evanescent operators proposed by Beneke \emph{et al.}, evaluated at 3 GeV, $\langle D^0|\mathcal{O}_i|\bar{D}^0 \rangle = \{0.0805(55)(16), -0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)\}~\text{GeV}^4$ ($i=1$--5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in $D^0$~mixing, finding lower limits of about 10--50$\times 10^3$ TeV for couplings of $\mathrm{O}(1)$. To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly-used scheme of Buras, Misiak, and Urban. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04622v2-abstract-full').style.display = 'none'; document.getElementById('1706.04622v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 42 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-17-196-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 034513 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.05916">arXiv:1701.05916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.05916">pdf</a>, <a href="https://arxiv.org/format/1701.05916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> D-Meson Mixing in 2+1-Flavor Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bouchard%2C+C+M">C. M. Bouchard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeland%2C+E">E. Freeland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J+W">J. W. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.05916v1-abstract-short" style="display: inline;"> We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05916v1-abstract-full').style.display = 'inline'; document.getElementById('1701.05916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.05916v1-abstract-full" style="display: none;"> We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05916v1-abstract-full').style.display = 'none'; document.getElementById('1701.05916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+1 pp., presented at Lattice 2016</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-17-017-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.00345">arXiv:1701.00345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.00345">pdf</a>, <a href="https://arxiv.org/format/1701.00345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5266-y">10.1140/epjc/s10052-017-5266-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy-quark meson spectrum tests of the Oktay-Kronfeld action </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bailey%2C+J+A">Jon A. Bailey</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+W">Weonjong Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Oktay%2C+M+B">Mehmet B. Oktay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.00345v1-abstract-short" style="display: inline;"> The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through order ${\mathrm{O}}(螞^3/m_Q^3)$ in HQET power counting, for applications to heavy-light systems, and ${\mathrm{O}}(v^6)$ in NRQCD power counting, for applications&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00345v1-abstract-full').style.display = 'inline'; document.getElementById('1701.00345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.00345v1-abstract-full" style="display: none;"> The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through order ${\mathrm{O}}(螞^3/m_Q^3)$ in HQET power counting, for applications to heavy-light systems, and ${\mathrm{O}}(v^6)$ in NRQCD power counting, for applications to quarkonia. In the Symanzik power counting of lattice gauge theory near the continuum limit, the OK action includes all ${\mathrm{O}}(a^2)$ and some ${\mathrm{O}}(a^3)$ terms. To assess whether the theoretical improvement is realized in practice, we study combinations of heavy-strange and quarkonia masses and mass splittings, designed to isolate heavy-quark discretization effects. We find that, with one exception, the results obtained with the tree-level-matched OK action are significantly closer to the continuum limit than the results obtained with the Fermilab action. The exception is the hyperfine splitting of the bottom-strange system, for which our statistical errors are too large to draw a firm conclusion. These studies are carried out with data generated with the tadpole-improved Fermilab and OK actions on 500 gauge configurations from one of MILC&#39;s $a\approx0.12$~fm, $N_f=2+1$-flavor, asqtad-staggered ensembles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00345v1-abstract-full').style.display = 'none'; document.getElementById('1701.00345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-17-001-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.07411">arXiv:1611.07411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.07411">pdf</a>, <a href="https://arxiv.org/format/1611.07411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Decay constants $f_B$ and $f_{B_s}$ and quark masses $m_b$ and $m_c$ from HISQ simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brambilla%2C+N">N. Brambilla</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brown%2C+N">N. Brown</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">D. Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeland%2C+E+D">E. D. Freeland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A1miz%2C+E">E. G谩miz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monahan%2C+C">C. Monahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Na%2C+H">Heechang Na</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R+L">R. L. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vairo%2C+A">A. Vairo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.07411v1-abstract-short" style="display: inline;"> We present a progress report on our calculation of the decay constants $f_B$ and $f_{B_s}$ from lattice-QCD simulations with highly-improved staggered quarks. Simulations are carried out with several heavy valence-quark masses on $(2+1+1)$-flavor ensembles that include charm sea quarks. We include data at six lattice spacings and several light sea-quark masses, including an approximately physical-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07411v1-abstract-full').style.display = 'inline'; document.getElementById('1611.07411v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.07411v1-abstract-full" style="display: none;"> We present a progress report on our calculation of the decay constants $f_B$ and $f_{B_s}$ from lattice-QCD simulations with highly-improved staggered quarks. Simulations are carried out with several heavy valence-quark masses on $(2+1+1)$-flavor ensembles that include charm sea quarks. We include data at six lattice spacings and several light sea-quark masses, including an approximately physical-mass ensemble at all but the smallest lattice spacing, 0.03 fm. This range of parameters provides excellent control of the continuum extrapolation to zero lattice spacing and of heavy-quark discretization errors. Finally, using the heavy-quark effective theory expansion we present a method of extracting from the same correlation functions the charm- and bottom-quark masses as well as some low-energy constants appearing in the heavy-quark expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07411v1-abstract-full').style.display = 'none'; document.getElementById('1611.07411v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, Lattice 2016</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-16-545-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.04118">arXiv:1611.04118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.04118">pdf</a>, <a href="https://arxiv.org/format/1611.04118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Kaon semileptonic decays with $N_f=2+1+1$ HISQ fermions and physical light-quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gamiz%2C+E">E. Gamiz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">A. Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernard%2C+C">C. Bernard</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">C. DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Du%2C+D">D. Du</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Freeland%2C+E+D">E. D. Freeland</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heller%2C+U+M">U. M. Heller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Komijani%2C+J">J. Komijani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mackenzie%2C+P+B">P. B. Mackenzie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Primer%2C+T">T. Primer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">J. N. Simone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sugar%2C+R">R. Sugar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Toussaint%2C+D">D. Toussaint</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+de+Water%2C+R+S">R. S. Van de Water</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhou%2C+R">Ran Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.04118v2-abstract-short" style="display: inline;"> We discuss the reduction of errors in the calculation of the form factor $f_+^{K 蟺}(0)$ with HISQ fermions on the $N_f=2+1+1$ MILC configurations from increased statistics on some key ensembles, new data on ensembles with lattice spacings down to 0.042 fm and the study of finite-volume effects within staggered ChPT. We also study the implications for the unitarity of the CKM matrix in the first ro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04118v2-abstract-full').style.display = 'inline'; document.getElementById('1611.04118v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.04118v2-abstract-full" style="display: none;"> We discuss the reduction of errors in the calculation of the form factor $f_+^{K 蟺}(0)$ with HISQ fermions on the $N_f=2+1+1$ MILC configurations from increased statistics on some key ensembles, new data on ensembles with lattice spacings down to 0.042 fm and the study of finite-volume effects within staggered ChPT. We also study the implications for the unitarity of the CKM matrix in the first row and for current tensions with leptonic determinations of $\vert V_{us}\vert$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04118v2-abstract-full').style.display = 'none'; document.getElementById('1611.04118v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, to appear in the Proceedings of Lattice 2016, The 34th International Symposium on Lattice Field Theory, held 24-30 July 2016, at the University of Southampton, UK. v2: references corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-16-544-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04593">arXiv:1610.04593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04593">pdf</a>, <a href="https://arxiv.org/format/1610.04593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+J">Richard J. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+R">Ruizi Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simone%2C+J+N">James N. Simone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04593v1-abstract-short" style="display: inline;"> The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04593v1-abstract-full').style.display = 'inline'; document.getElementById('1610.04593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04593v1-abstract-full" style="display: none;"> The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04593v1-abstract-full').style.display = 'none'; document.getElementById('1610.04593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-16-451-T </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kronfeld%2C+A+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10