CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;19 of 19 results for author: <span class="mathjax">Su, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Su%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Su, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Su%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Su, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12554">arXiv:2411.12554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12554">pdf</a>, <a href="https://arxiv.org/format/2411.12554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Light Cone Distribution Amplitude for the $螞$ Baryon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+H">Haoyang Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12554v1-abstract-short" style="display: inline;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12554v1-abstract-full" style="display: none;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime, we simulate the equal-time correlations with the hadron momentum $P^z = \{2.52, 3.02, 3.52\}$ GeV. By investigating the potential analytic characteristics of the baryon quasi-distribution amplitude in coordinate space, we validate these findings through our lattice calculations. After renormalization and extrapolation, we present results for the three-dimensional distribution of momentum fractions for the two light quarks. Based on these findings the paper briefly discusses the phenomenological impact on weak decays of $螞_b$, and outlines potential systematic uncertainties that can be improved in the future. This work lays the theoretical foundation for accessing baryon LCDAs from lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'none'; document.getElementById('2411.12554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18654">arXiv:2410.18654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18654">pdf</a>, <a href="https://arxiv.org/format/2410.18654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Calculation of heavy meson light-cone distribution amplitudes from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Han%2C+X">Xue-Ying Han</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%BC%2C+C">Cai-Dian L眉</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18654v1-abstract-short" style="display: inline;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18654v1-abstract-full" style="display: none;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approach by demonstrating the rationale behind devising a hierarchical ordering for the three involved scales, discussing the factorization at each step, clarifying the underlying reason for obtaining HQET LCDAs in the final phase, and addressing potential theoretical challenges. The lattice QCD simulation aspect is explored in detail, and the computations of quasi DAs are presented. We employ three fitting strategies to handle contributions from excited states and extract the bare matrix elements. For renormalization purposes, we apply hybrid renormalization schemes at short and long distance separations. To mitigate long-distance perturbations, we perform an extrapolation in $位= z\cdot P^z$ and assess the stability against various parameters. After two-step matching, our results for HQET LCDAs are found in agreement with existing model parametrizations. The potential phenomenological implications of the results are discussed, shedding light on how these findings could impact our understanding of the strong interaction dynamics and physics beyond the standard model. It should be noted, however, that systematic uncertainties have not been accounted for yet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'none'; document.getElementById('2410.18654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12910">arXiv:2410.12910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12910">pdf</a>, <a href="https://arxiv.org/format/2410.12910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Effects of threshold resummation for large-$x$ PDF in large momentum effective theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12910v1-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) at large $x$ are challenging to extract from experimental data, yet they are essential for understanding hadron structure and searching for new physics beyond the Standard Model. Within the framework of the large momentum $P^z$ expansion of lattice quasi-PDFs, we investigate large $x$ PDFs, where the matching coefficient is factorized into the hard kernel, rela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12910v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12910v1-abstract-full" style="display: none;"> Parton distribution functions (PDFs) at large $x$ are challenging to extract from experimental data, yet they are essential for understanding hadron structure and searching for new physics beyond the Standard Model. Within the framework of the large momentum $P^z$ expansion of lattice quasi-PDFs, we investigate large $x$ PDFs, where the matching coefficient is factorized into the hard kernel, related to the active quark momentum $x P^z$, and the threshold soft function, associated with the spectator momentum $(1-x) P^z$. The renormalization group equation of the soft function enables the resummation of the threshold double logarithms $伪^{k} \ln^{2k-1}(1-x)$, which is crucial for a reliable and controllable calculation of large $x$ PDFs. Our analysis with pion valence PDFs indicates that perturbative matching breaks down when the spectator momentum $(1-x)P^z$ approaches $螞_{\rm QCD}$, but remains valid when both $x P^z$ and $(1-x)P^z$ are much larger than $螞_{\rm QCD}$. Additionally, we incorporate leading renormalon resummation within the threshold framework, demonstrating good perturbative convergence in the region where both spectator and active quark momenta are perturbative scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12910v1-abstract-full').style.display = 'none'; document.getElementById('2410.12910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04674">arXiv:2408.04674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04674">pdf</a>, <a href="https://arxiv.org/format/2408.04674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Comments on &#34;Non-local Nucleon Matrix Elements in the Rest Frame&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=He%2C+J">Jinchen He</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04674v1-abstract-short" style="display: inline;"> In a recent paper, &#34;Non-local Nucleon Matrix Elements in the Rest Frame&#34; (arXiv: 2407.16577), it was demonstrated that the next-to-leading order perturbative theory can describe, to a few percent accuracy, the lattice QCD static nucleon matrix elements of spatial correlators with separations up to 0.6~fm. We argue that perturbative QCD breaks down at such a distance scale after resumming the assoc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04674v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04674v1-abstract-full" style="display: none;"> In a recent paper, &#34;Non-local Nucleon Matrix Elements in the Rest Frame&#34; (arXiv: 2407.16577), it was demonstrated that the next-to-leading order perturbative theory can describe, to a few percent accuracy, the lattice QCD static nucleon matrix elements of spatial correlators with separations up to 0.6~fm. We argue that perturbative QCD breaks down at such a distance scale after resumming the associated large logarithms, while the ansatz used in the analysis there did not account for resummation or the leading renormalon, both of which significantly affect the convergence of perturbation theory. Besides, we provide an explanation why the ansatz appears to describe the lattice data despite the breakdown of perturbation theory at large distances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04674v1-abstract-full').style.display = 'none'; document.getElementById('2408.04674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 3 figures; comment on arXiv:2407.16577</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16793">arXiv:2308.16793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16793">pdf</a>, <a href="https://arxiv.org/format/2308.16793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Hybrid Renormalization for Quasi Distribution Amplitudes of A Light Baryon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Han%2C+C">Chao Han</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jia-Lu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16793v2-abstract-short" style="display: inline;"> We develop a hybrid scheme to renormalize quasi distribution amplitudes of a light baryon on the lattice, which combines the self-renormalization and ratio scheme. By employing self-renormalization, the UV divergences and linear divergence at large spatial separations in quasi distribution amplitudes are removed without introducing extra nonperturbative effects, while making a ratio with respect t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16793v2-abstract-full').style.display = 'inline'; document.getElementById('2308.16793v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16793v2-abstract-full" style="display: none;"> We develop a hybrid scheme to renormalize quasi distribution amplitudes of a light baryon on the lattice, which combines the self-renormalization and ratio scheme. By employing self-renormalization, the UV divergences and linear divergence at large spatial separations in quasi distribution amplitudes are removed without introducing extra nonperturbative effects, while making a ratio with respect to the zero-momentum matrix element can properly remove the UV divergences in small spatial separations. As a specific application, distribution amplitudes of the $螞$ baryon made of $uds$ are investigated, and the requisite equal-time correlators, which define quasi distribution amplitudes in coordinate space, are perturbatively calculated up to the next-to-leading order in strong coupling constant $伪_s$. These perturbative equal-time correlators are used to convert lattice QCD matrix elements to the continuum space during the renormalization process. Subsequently, quasi distribution amplitudes are matched onto lightcone distribution amplitudes by integrating out hard modes and the corresponding hard kernels are derived up to next-to-leading order in $伪_s$ including the hybrid counterterms. These results are valuable in the lattice-based investigation of the lightcone distribution amplitudes of a light baryon from the first principles of QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16793v2-abstract-full').style.display = 'none'; document.getElementById('2308.16793v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06488">arXiv:2306.06488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06488">pdf</a>, <a href="https://arxiv.org/format/2306.06488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2023)172">10.1007/JHEP08(2023)172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Calculation of the Intrinsic Soft Function and the Collins-Soper Kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06488v3-abstract-short" style="display: inline;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-depen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06488v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06488v3-abstract-full" style="display: none;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-dependent part called Collins-Soper kernel. We have adopted appropriate normalization when constructing the pseudo-scalar meson form factor that is needed in the determination of the intrinsic part and applied Fierz rearrangement to suppress the higher-twist effects. In the calculation of CS kernel we consider a CLS ensemble other than the MILC ensemble used in a previous study. We have also compared the applicability of determining the CS kernel using quasi TMDWFs and quasi TMDPDFs. As an example, the determined soft function is used to obtain the physical TMD wave functions (WFs) of pion and unpolarized iso-vector TMD parton distribution functions (PDFs) of proton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'none'; document.getElementById('2306.06488v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2023)172 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05212">arXiv:2305.05212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05212">pdf</a>, <a href="https://arxiv.org/format/2305.05212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.138081">10.1016/j.physletb.2023.138081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leading Power Accuracy in Lattice Calculations of Parton Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05212v2-abstract-short" style="display: inline;"> In lattice-QCD calculations of parton distribution functions (PDFs) via large-momentum effective theory, the leading power (twist-three) correction appears as ${\cal O}(螞_{\rm QCD}/P^z)$ due to the linear-divergent self-energy of Wilson line in quasi-PDF operators. For lattice data with hadron momentum $P^z$ of a few GeV, this correction is dominant in matching, as large as 30\% or more. We show h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05212v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05212v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05212v2-abstract-full" style="display: none;"> In lattice-QCD calculations of parton distribution functions (PDFs) via large-momentum effective theory, the leading power (twist-three) correction appears as ${\cal O}(螞_{\rm QCD}/P^z)$ due to the linear-divergent self-energy of Wilson line in quasi-PDF operators. For lattice data with hadron momentum $P^z$ of a few GeV, this correction is dominant in matching, as large as 30\% or more. We show how to eliminate this uncertainty through choosing the mass renormalization parameter consistently with the resummation scheme of the infrared-renormalon series in perturbative matching coefficients. An example on the lattice pion PDF data at $P^z = 1.9$ GeV shows an improvement of matching accuracy by a factor of more than $3\sim 5$ in the expansion region $x= 0.2\sim 0.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05212v2-abstract-full').style.display = 'none'; document.getElementById('2305.05212v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to version published on PLB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04416">arXiv:2305.04416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.04416">pdf</a>, <a href="https://arxiv.org/ps/2305.04416">ps</a>, <a href="https://arxiv.org/format/2305.04416">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Threshold resummation for computing large-$x$ parton distribution through large-momentum effective theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04416v1-abstract-short" style="display: inline;"> Parton distribution functions (PDFs) at large $x$ are poorly constrained by high-energy experimental data, but extremely important for probing physics beyond standard model at colliders. We study the calculation of PDFs at large-$x$ through large-momentum $P^z$ expansion of the lattice quasi PDFs. Similar to deep-inelastic scattering, there are two distinct perturbative scales in the threshold lim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04416v1-abstract-full').style.display = 'inline'; document.getElementById('2305.04416v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04416v1-abstract-full" style="display: none;"> Parton distribution functions (PDFs) at large $x$ are poorly constrained by high-energy experimental data, but extremely important for probing physics beyond standard model at colliders. We study the calculation of PDFs at large-$x$ through large-momentum $P^z$ expansion of the lattice quasi PDFs. Similar to deep-inelastic scattering, there are two distinct perturbative scales in the threshold limit where the matching coefficient can be factorized into a space-like jet function at scale $P^z|1-y|$ and a pair of heavy-light Sudakov form factors at scale $P^z$. The matching formula allows us to derive a full renormalization group resummation of large threshold logarithms, and the result is consistent with the known calculation to the next-to-next to leading order (NNLO). This paves the way for direct large-$x$ PDFs calculations in lattice QCD. As by-products, we find that the space-like jet function is related to a time-like version calculated previously through analytic continuation, and the heavy-light Sudakov form factor, calculated here to NNLO, is a universal object appearing as well in the large momentum expansion of quasi transverse-momentum-dependent PDFs and quasi wave-function amplitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04416v1-abstract-full').style.display = 'none'; document.getElementById('2305.04416v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09961">arXiv:2302.09961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09961">pdf</a>, <a href="https://arxiv.org/format/2302.09961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Transverse-Momentum-Dependent Wave Functions of Pion from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09961v1-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09961v1-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge action generated by the CLS Collaboration with $a=0.098$~fm. As a key ingredient, the soft function is first obtained by incorporating the one-loop perturbative contributions and a proper normalization. Based on this and the equal-time quasi-TMDWFs simulated on the lattice, we extract the light-cone TMDWFs. The results are comparable between the two lattice ensembles and a comparison with phenomenological parametrization is made. Our studies provide a first attempt of $ab$ $initio$ calculation of TMDWFs which will eventually lead to crucial theory inputs for making predictions for exclusive processes under QCD factorization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'none'; document.getElementById('2302.09961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10372">arXiv:2301.10372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.10372">pdf</a>, <a href="https://arxiv.org/format/2301.10372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2023.116282">10.1016/j.nuclphysb.2023.116282 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Control in Lattice Calculation of $x$-dependent Pion Distribution Amplitude </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10372v2-abstract-short" style="display: inline;"> We present a new Bjorken $x$-dependence analysis of a previous lattice quantum chromodynamics data for the pion distribution amplitude from MILC configurations with three lattice spacing $a=0.06,0.09, 0.12$~fm. A leading renormalon resummation in renormalization as well as the perturbative matching kernel in the framework of large momentum expansion generates the power accuracy of the matching to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10372v2-abstract-full').style.display = 'inline'; document.getElementById('2301.10372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10372v2-abstract-full" style="display: none;"> We present a new Bjorken $x$-dependence analysis of a previous lattice quantum chromodynamics data for the pion distribution amplitude from MILC configurations with three lattice spacing $a=0.06,0.09, 0.12$~fm. A leading renormalon resummation in renormalization as well as the perturbative matching kernel in the framework of large momentum expansion generates the power accuracy of the matching to the light-cone amplitude. Meanwhile, a small momentum log resummation is implemented for both the quark momentum $xP_z$ and the antiquark momentum $(1-x)P_z$ inside a meson of boost momentum $P_z$ up to 1.72 GeV along the $z$ direction, allowing us to have more accurate determination of the $x$-dependence in the middle range. Finally, we use the complementarity between the short-distance factorization and the large momentum expansion to constrain the endpoint regions $x\sim 0, 1$, thus obtaining the full-range $x$-dependence of the amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10372v2-abstract-full').style.display = 'none'; document.getElementById('2301.10372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Update to the published version in NPB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.B 993 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02340">arXiv:2211.02340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.02340">pdf</a>, <a href="https://arxiv.org/format/2211.02340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02340v3-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the unpolarized nucleon&#39;s isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'inline'; document.getElementById('2211.02340v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02340v3-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the unpolarized nucleon&#39;s isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentum distributions in a large-momentum nucleon on the lattice. The state-of-the-art techniques in renormalization and extrapolation in the correlation distance on the lattice are adopted. {The perturbative kernel up to next-to-next-to-leading order is taken into account}, and the dependence on the pion mass and the hadron momentum is explored. Our results are qualitatively comparable with phenomenological TMDPDFs, which provide an opportunity to predict high energy scatterings from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'none'; document.getElementById('2211.02340v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&amp;(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&amp;(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&amp;(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01236">arXiv:2209.01236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01236">pdf</a>, <a href="https://arxiv.org/format/2209.01236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2023.116201">10.1016/j.nuclphysb.2023.116201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resumming Quark&#39;s Longitudinal Momentum Logarithms in LaMET Expansion of Lattice PDFs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holligan%2C+J">Jack Holligan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01236v2-abstract-short" style="display: inline;"> In the large-momentum expansion for parton distribution functions (PDFs), the natural physics scale is the longitudinal momentum ($p_z$) of the quarks (or gluons) in a large-momentum hadron. We show how to expose this scale dependence through resumming logarithms of the type $\ln^n p_z/渭$ in the matching coefficient, where $渭$ is a fixed renormalization scale. The result enhances the accuracy of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01236v2-abstract-full').style.display = 'inline'; document.getElementById('2209.01236v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01236v2-abstract-full" style="display: none;"> In the large-momentum expansion for parton distribution functions (PDFs), the natural physics scale is the longitudinal momentum ($p_z$) of the quarks (or gluons) in a large-momentum hadron. We show how to expose this scale dependence through resumming logarithms of the type $\ln^n p_z/渭$ in the matching coefficient, where $渭$ is a fixed renormalization scale. The result enhances the accuracy of the expansion at moderate $p_z&gt;1$ GeV, and at the same time, clearly shows that the partons cannot be approximated from quarks with $p_z\sim 螞_{\rm QCD}$ which are not predominantly collinear with the parent hadron momentum, consistent with power counting of the large-momentum effective theory. The same physics mechanism constrains the coordinate space expansion at large distances $z$, the conjugate of $p_z$, as illustrated in the example of fitting the moments of the PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01236v2-abstract-full').style.display = 'none'; document.getElementById('2209.01236v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08008">arXiv:2208.08008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.08008">pdf</a>, <a href="https://arxiv.org/format/2208.08008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Transversity Distribution in the Continuum and Physical Mass Limit from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lahrtz%2C+S">Sebastian Lahrtz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ma%2C+L">Lingquan Ma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohanta%2C+P">Protick Mohanta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Xiong%2C+X">Xiaonu Xiong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08008v2-abstract-short" style="display: inline;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-pert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'inline'; document.getElementById('2208.08008v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08008v2-abstract-full" style="display: none;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-perturbatively renormalized in the hybrid scheme with self renormalization which treats the infrared physics at large correlation distance properly, and extrapolated to the continuum, physical mass and infinite momentum limit. We also compare with recent global analyses for the nucleon isovector quark transversity distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'none'; document.getElementById('2208.08008v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00200">arXiv:2204.00200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00200">pdf</a>, <a href="https://arxiv.org/ps/2204.00200">ps</a>, <a href="https://arxiv.org/format/2204.00200">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.034509">10.1103/PhysRevD.106.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Determination of Collins-Soper Kernel from Quasi Transverse-Momentum Dependent Wave Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Deng%2C+Z">Zhi-Fu Deng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jialu Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00200v1-abstract-short" style="display: inline;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00200v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00200v1-abstract-full" style="display: none;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing $a=0.12$~fm from MILC, and renormalize the pertinent linear divergences using Wilson loops. Through one-loop matching to the light-cone wave functions, we determine the Collins-Soper kernel with transverse separation up to 0.6~fm. We study the systematic uncertainties from operator mixing and scale dependence, as well as the impact from higher power corrections. Our results potentially allow for a determination of the soft function and other transverse-momentum dependent quantities at one-loop accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'none'; document.getElementById('2204.00200v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16012">arXiv:2203.16012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16012">pdf</a>, <a href="https://arxiv.org/ps/2203.16012">ps</a>, <a href="https://arxiv.org/format/2203.16012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement area law for 1D gauge theories and bosonic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abrahamsen%2C+N">Nilin Abrahamsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tong%2C+Y">Yu Tong</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bao%2C+N">Ning Bao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yuan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wiebe%2C+N">Nathan Wiebe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16012v2-abstract-short" style="display: inline;"> We prove an entanglement area law for a class of 1D quantum systems involving infinite-dimensional local Hilbert spaces. This class of quantum systems include bosonic models such as the Hubbard-Holstein model, and both U(1) and SU(2) lattice gauge theories in one spatial dimension. Our proof relies on new results concerning the robustness of the ground state and spectral gap to the truncation of H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16012v2-abstract-full').style.display = 'inline'; document.getElementById('2203.16012v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16012v2-abstract-full" style="display: none;"> We prove an entanglement area law for a class of 1D quantum systems involving infinite-dimensional local Hilbert spaces. This class of quantum systems include bosonic models such as the Hubbard-Holstein model, and both U(1) and SU(2) lattice gauge theories in one spatial dimension. Our proof relies on new results concerning the robustness of the ground state and spectral gap to the truncation of Hilbert space, applied within the approximate ground state projector (AGSP) framework from previous work. In establishing this area law, we develop a system-size independent bound on the expectation value of local observables for Hamiltonians without translation symmetry, which may be of separate interest. Our result provides theoretical justification for using tensor network methods to study the ground state properties of quantum systems with infinite local degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16012v2-abstract-full').style.display = 'none'; document.getElementById('2203.16012v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09173">arXiv:2201.09173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09173">pdf</a>, <a href="https://arxiv.org/format/2201.09173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.132001">10.1103/PhysRevLett.129.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion and Kaon Distribution Amplitudes from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09173v1-abstract-short" style="display: inline;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09173v1-abstract-full" style="display: none;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hybrid scheme with self renormalization, and extrapolated to the continuum as well as the infinite momentum limit. We find a significant deviation of the pion and kaon DAs from the asymptotic form, and a large $SU(3)$ flavor breaking effect in the kaon DA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'none'; document.getElementById('2201.09173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02965">arXiv:2103.02965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02965">pdf</a>, <a href="https://arxiv.org/format/2103.02965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115443">10.1016/j.nuclphysb.2021.115443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Renormalization of Quasi-Light-Front Correlators on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Li%2C+Y">Yuan-Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zhang%2C+K">Kuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02965v1-abstract-short" style="display: inline;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02965v1-abstract-full" style="display: none;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to disentangle the divergent renormalization factors from finite physics matrix elements, which can be matched to a continuum scheme at short distance such as dimensional regularization and minimal subtraction. Our results indicate that the renormalization factors are universal in the hadron state matrix elements. Moreover, the physical matrix elements appear independent of the valence fermion formulations. These conclusions remain valid even with HYP smearing which reduces the statistical errors albeit reducing control of the renormalization procedure. Moreover, we find a large non-perturbative effect in the popular RI/MOM and ratio renormalization scheme, suggesting favor of the hybrid renormalization procedure proposed recently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'none'; document.getElementById('2103.02965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 30 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10