CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 257 results for author: <span class="mathjax">Ding, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Ding%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ding, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ding%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ding, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08558">arXiv:2411.08558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08558">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of Top Al$_2$O$_3$ Interlayer Thickness on Memory Window and Reliability of FeFETs With TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) Gate Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+R">Runhao Han</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jia Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+S">Saifei Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zeqi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yajing Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+K">Kai Han</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yanrong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ke%2C+X">Xiaoyu Ke</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wenwu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+T">Tianchun Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08558v1-abstract-short" style="display: inline;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08558v1-abstract-full" style="display: none;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric field of the ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_2$ in the MIFIS structure with a thicker top Al2O3 after a program operation. The lower electric field makes the charges trapped at the top Al2O3/Hf0.5Zr0.5O$_2$ interface, which are injected from the metal gate, cannot be retained. Furthermore, we study the effect of the top Al$_2$O$_3$ interlayer thickness on the reliability (endurance characteristics and retention characteristics). We find that the MIFIS structure with a thicker top Al$_2$O$_3$ interlayer has poorer retention and endurance characteristics. Our work is helpful in deeply understanding the effect of top interlayer thickness on the MW and reliability of Si-FeFETs with MIFIS gate stacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'none'; document.getElementById('2411.08558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07801">arXiv:2411.07801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07801">pdf</a>, <a href="https://arxiv.org/format/2411.07801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Triad of Equivalence Theorems for the Radiant Intensity of Partially Coherent Beams on Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yi Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+D">Daomu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07801v1-abstract-short" style="display: inline;"> By using Laplace&#39;s method for double integrals and the so-called beam condition obeyed by a partially coherent beamlike light field, we report the equivalence theory (ET) of partially coherent beams on scattering for the first time. We present the necessary and sufficient condition for the two scattered fields that have the same normalized radiant intensity distribution when Gaussian Schell-model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07801v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07801v1-abstract-full" style="display: none;"> By using Laplace&#39;s method for double integrals and the so-called beam condition obeyed by a partially coherent beamlike light field, we report the equivalence theory (ET) of partially coherent beams on scattering for the first time. We present the necessary and sufficient condition for the two scattered fields that have the same normalized radiant intensity distribution when Gaussian Schell-model beams whose effective beam widths are much greater than the effective transverse spectral coherence lengths are scattered by Gaussian Schell-model media. We find that the condition contain three implications, and each of them corresponds to a statement of an ET of radiant intensity in a scattering scenario, which exposes the concept of a previously unreported triad of ETs for the radiant intensity of partially coherent beams on scattering. We further find that the existing ET of plane waves on scattering, which only asserts that two scatterers with scattering potentials&#39; correlations whose low-frequency antidiagonal spatial Fourier components are identical, essentially is merely the first member of our triad of ETs, while the other two hidden important members are completely ignored. Our findings are crucial for the inverse scattering problem since they contribute to avoid possible reconstruction errors in realistic situations, where the light field used to illuminate an unknown object is a partially coherent beam rather than an idealized plane wave. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07801v1-abstract-full').style.display = 'none'; document.getElementById('2411.07801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07644">arXiv:2410.07644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07644">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechanics of soft-body rolling motion without external torque </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X">Xudong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yimiao Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zihao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Junqi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zongling Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Fei%2C+P">Peng Fei</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yixuan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+G">Guoying Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Z">Zheng Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Feifei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+G">Guangwei Si</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Z">Zhefeng Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07644v1-abstract-short" style="display: inline;"> The Drosophila larva, a soft-body animal, can bend its body and roll efficiently to escape danger. However, contrary to common belief, this rolling motion is not driven by the imbalance of gravity and ground reaction forces. Through functional imaging and ablation experiments, we demonstrate that the sequential actuation of axial muscles within an appropriate range of angles is critical for genera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07644v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07644v1-abstract-full" style="display: none;"> The Drosophila larva, a soft-body animal, can bend its body and roll efficiently to escape danger. However, contrary to common belief, this rolling motion is not driven by the imbalance of gravity and ground reaction forces. Through functional imaging and ablation experiments, we demonstrate that the sequential actuation of axial muscles within an appropriate range of angles is critical for generating rolling. We model the interplay between muscle contraction, hydrostatic skeleton deformation, and body-environment interactions, and systematically explain how sequential muscle actuation generates the rolling motion. Additionally, we constructed a pneumatic soft robot to mimic the larval rolling strategy, successfully validating our model. This mechanics model of soft-body rolling motion not only advances the study of related neural circuits, but also holds potential for applications in soft robotics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07644v1-abstract-full').style.display = 'none'; document.getElementById('2410.07644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18981">arXiv:2409.18981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18981">pdf</a>, <a href="https://arxiv.org/format/2409.18981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> The role of coal plant retrofitting strategies in developing India&#39;s net-zero power system: a data-driven sub-national analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yifu Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Mallapragada%2C+D">Dharik Mallapragada</a>, <a href="/search/physics?searchtype=author&amp;query=Stoner%2C+R+J">Robert James Stoner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18981v1-abstract-short" style="display: inline;"> India set two Nationally Determined Contribution targets to achieve the net zero carbon emission goal by 2070, which requires deep decarbonization of India&#39;s power generation sector. Yet, coal power generation contributes to more than 60\% of its total power generation, and policies still permit further coal fleet expansion and lifetime extensions. In this paper, we investigate the role of retrofi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18981v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18981v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18981v1-abstract-full" style="display: none;"> India set two Nationally Determined Contribution targets to achieve the net zero carbon emission goal by 2070, which requires deep decarbonization of India&#39;s power generation sector. Yet, coal power generation contributes to more than 60\% of its total power generation, and policies still permit further coal fleet expansion and lifetime extensions. In this paper, we investigate the role of retrofitting India&#39;s coal plants for carbon capture and storage and biomass co-firing in developing the net-zero power system. We model the power generation and transmission network expansions across 30 Indian states in four representative grid evolution scenarios under progressively tighter carbon emission caps, taking into account sub-national coal price variation and thermal efficiency of individual coal plants. We find that coal plant retrofitting could happen by 2035 when an annual carbon cap for the power generation sector is less than 1,000 million tons CO$_2$. This reduces the unabated coal plant capacity, electricity generation, and carbon abatement costs. Exploiting renewable energy potentials solely, such as wind resources, could reduce carbon abatement costs significantly but will result in low coal plant utilization and uneven renewable generation deployment between Southern and Central regions concerning energy justice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18981v1-abstract-full').style.display = 'none'; document.getElementById('2409.18981v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18370">arXiv:2409.18370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18370">pdf</a>, <a href="https://arxiv.org/format/2409.18370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery and inversion of the viscoelastic wave equation in inhomogeneous media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Su Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yi Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Miyake%2C+H">Hiroe Miyake</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaojun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18370v1-abstract-short" style="display: inline;"> In scientific machine learning, the task of identifying partial differential equations accurately from sparse and noisy data poses a significant challenge. Current sparse regression methods may identify inaccurate equations on sparse and noisy datasets and are not suitable for varying coefficients. To address this issue, we propose a hybrid framework that combines two alternating direction optimiz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18370v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18370v1-abstract-full" style="display: none;"> In scientific machine learning, the task of identifying partial differential equations accurately from sparse and noisy data poses a significant challenge. Current sparse regression methods may identify inaccurate equations on sparse and noisy datasets and are not suitable for varying coefficients. To address this issue, we propose a hybrid framework that combines two alternating direction optimization phases: discovery and embedding. The discovery phase employs current well-developed sparse regression techniques to preliminarily identify governing equations from observations. The embedding phase implements a recurrent convolutional neural network (RCNN), enabling efficient processes for time-space iterations involved in discretized forms of wave equation. The RCNN model further optimizes the imperfect sparse regression results to obtain more accurate functional terms and coefficients. Through alternating update of discovery-embedding phases, essential physical equations can be robustly identified from noisy and low-resolution measurements. To assess the performance of proposed framework, numerical experiments are conducted on various scenarios involving wave equation in elastic/viscoelastic and homogeneous/inhomogeneous media. The results demonstrate that the proposed method exhibits excellent robustness and accuracy, even when faced with high levels of noise and limited data availability in both spatial and temporal domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18370v1-abstract-full').style.display = 'none'; document.getElementById('2409.18370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17586">arXiv:2409.17586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17586">pdf</a>, <a href="https://arxiv.org/format/2409.17586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yifan Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">Chenyazhi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenhui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jiadian He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xiaohui Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yanjiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+P">Peng Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinghui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yueshen Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17586v1-abstract-short" style="display: inline;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17586v1-abstract-full" style="display: none;"> The demand for low-power devices is on the rise as semiconductor engineering approaches the quantum limit and quantum computing continues to advance. Two-dimensional (2D) superconductors, thanks to their rich physical properties, hold significant promise for both fundamental physics and potential applications in superconducting integrated circuits and quantum computation. Here, we report a gate-controlled superconducting switch in GaSe/NbSe$_2$ van der Waals (vdW) heterostructure. By injecting high-energy electrons into NbSe$_2$ under an electric field, a non-equilibrium state is induced, resulting in significant modulation of the superconducting properties. Owing to the intrinsic polarization of ferroelectric GaSe, a much steeper subthreshold slope and asymmetric modulation are achieved, which is beneficial to the device performance. Based on these results, a superconducting switch is realized that can reversibly and controllably switch between the superconducting and normal state under an electric field. Our findings highlight a significant high-energy injection effect from band engineering in 2D vdW heterostructures combining superconductors and ferroelectric semiconductors, and demonstrate the potential applications for superconducting integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17586v1-abstract-full').style.display = 'none'; document.getElementById('2409.17586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14699">arXiv:2409.14699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14699">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Laboratorial radiative shocks with multiple parameters and first quantifying verifications to core-collapse supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jianhua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhenghua Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+T">Tianming Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yunfeng Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Kuang%2C+L">Longyu Kuang</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+L">Longfei Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zhiwei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liling Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jinhua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+P">Pin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuxue Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zhibing He</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Ping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+D">Dong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jiamin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zongqing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yongkun Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14699v1-abstract-short" style="display: inline;"> We present experiments to reproduce the characteristics of core-collapse supernovae with different stellar masses and initial explosion energies in the laboratory. In the experiments, shocks are driven in 1.2 atm and 1.9 atm xenon gas by laser with energy from 1600J to 2800J on the SGIII prototype laser facility. The average shock velocities and shocked densities are obtained from experiments. Exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14699v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14699v1-abstract-full" style="display: none;"> We present experiments to reproduce the characteristics of core-collapse supernovae with different stellar masses and initial explosion energies in the laboratory. In the experiments, shocks are driven in 1.2 atm and 1.9 atm xenon gas by laser with energy from 1600J to 2800J on the SGIII prototype laser facility. The average shock velocities and shocked densities are obtained from experiments. Experimental results reveal that higher laser energy and lower Xe gas density led to higher shock velocity, and lower Xe gas initial density has a higher compression. Modeling of the experiments using the 2D radiation hydrodynamic codes Icefire shows excellent agreement with the experimental results and gives the temperature. These results will contribute to time-domain astrophysical systems, such as gravitational supernovae, where a strong radiative shock propagates outward from the center of the star after the core collapses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14699v1-abstract-full').style.display = 'none'; document.getElementById('2409.14699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, 1 supplement (8 pages, 3 figures, 2 tables), accepted for publication in Science Bulletin</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12424">arXiv:2409.12424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12424">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Narrowing band gap chemically and physically: Conductive dense hydrocarbon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nakagawa%2C+T">Takeshi Nakagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Caoshun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+K">Kejun Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Dalladay-Simpson%2C+P">Philip Dalladay-Simpson</a>, <a href="/search/physics?searchtype=author&amp;query=Vranki%C4%87%2C+M">Martina Vranki膰</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+S">Sarah Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Laniel%2C+D">Dominique Laniel</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+A">Akun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Ishii%2C+H">Hirofumi Ishii</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraoka%2C+N">Nozomu Hiraoka</a>, <a href="/search/physics?searchtype=author&amp;query=Garbarino%2C+G">Gaston Garbarino</a>, <a href="/search/physics?searchtype=author&amp;query=Rosa%2C+A+D">Angelika D. Rosa</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q">Qingyang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BC%2C+X">Xujie L眉</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+H">Ho-kwang Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12424v1-abstract-short" style="display: inline;"> Band gap energy of an organic molecule can be reduced by intermolecular interaction enhancement, and thus, certain polycyclic aromatic hydrocarbons (PAHs), which are insulators with wide band gaps, are expected to undergo insulator-metal transitions by simple compression. Such a pressure-induced electronic transition can be exploited to transform non-metallic organic materials into states featurin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12424v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12424v1-abstract-full" style="display: none;"> Band gap energy of an organic molecule can be reduced by intermolecular interaction enhancement, and thus, certain polycyclic aromatic hydrocarbons (PAHs), which are insulators with wide band gaps, are expected to undergo insulator-metal transitions by simple compression. Such a pressure-induced electronic transition can be exploited to transform non-metallic organic materials into states featuring intriguing electronic characteristics such as high-temperature superconductivity. Numerous attempts have been made to metalize various small PAHs, but so far only pressure-induced amorphization well below the megabar region was observed. The wide band gap energy of the small PAHs and low chemical stability under simple compression are the bottlenecks. We have investigated the band gap energy evolution and the crystal structural compression of the large PAH molecules, where the band gap energy is significantly reduced by increasing the number of 蟺-electrons and improved chemical stability with fully benzenoid molecular structure. Herein, we present a pressure-induced transition in dicoronylene, C48H20, an insulator at ambient conditions that transforms into a semi-metallic state above 23.0 GPa with a three-order-of-magnitude reduction in resistivity. In-situ UV-visible absorption, transport property measurement, Raman spectroscopy, X-ray diffraction and density functional theory calculations were performed to provide tentative explanations to the alterations in its electronic structure at high pressure. The discovery of an electronic transition at pressures well below the megabar is a promising step towards realization of a single component purely hydrocarbon molecular metal in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12424v1-abstract-full').style.display = 'none'; document.getElementById('2409.12424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03536">arXiv:2409.03536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03536">pdf</a>, <a href="https://arxiv.org/format/2409.03536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Physics-informed Neural Networks with Fourier Features for Seismic Wavefield Simulation in Time-Domain Nonsmooth Complex Media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yi Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Su Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Miyake%2C+H">Hiroe Miyake</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaojun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03536v1-abstract-short" style="display: inline;"> Physics-informed neural networks (PINNs) have great potential for flexibility and effectiveness in forward modeling and inversion of seismic waves. However, coordinate-based neural networks (NNs) commonly suffer from the &#34;spectral bias&#34; pathology, which greatly limits their ability to model high-frequency wave propagation in sharp and complex media. We propose a unified framework of Fourier featur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03536v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03536v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03536v1-abstract-full" style="display: none;"> Physics-informed neural networks (PINNs) have great potential for flexibility and effectiveness in forward modeling and inversion of seismic waves. However, coordinate-based neural networks (NNs) commonly suffer from the &#34;spectral bias&#34; pathology, which greatly limits their ability to model high-frequency wave propagation in sharp and complex media. We propose a unified framework of Fourier feature physics-informed neural networks (FF-PINNs) for solving the time-domain wave equations. The proposed framework combines the stochastic gradient descent (SGD) strategy with a pre-trained wave velocity surrogate model to mitigate the singularity at the point source. The performance of the activation functions and gradient descent strategies are discussed through ablation experiments. In addition, we evaluate the accuracy comparison of Fourier feature mappings sampled from different families of distributions (Gaussian, Laplace, and uniform). The second-order paraxial approximation-based boundary conditions are incorporated into the loss function as a soft regularizer to eliminate spurious boundary reflections. Through the non-smooth Marmousi and Overthrust model cases, we emphasized the necessity of the absorbing boundary conditions (ABCs) constraints. The results of a series of numerical experiments demonstrate the accuracy and effectiveness of the proposed method for modeling high-frequency wave propagation in sharp and complex media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03536v1-abstract-full').style.display = 'none'; document.getElementById('2409.03536v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05907">arXiv:2408.05907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05907">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cryogenic nonlinear conversion processes in periodically-poled thin-film lithium niobate waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yujie Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaoting Li</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+L">Lantian Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haochuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+W">Wenzhao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+X">Xinyu Song</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuyang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guangcan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+X">Xifeng Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05907v1-abstract-short" style="display: inline;"> Periodically poled thin-film lithium niobate (TFLN) waveguides, which enable efficient quadratic nonlinear processes, serve as crucial foundation for classical and quantum signal processing with photonic integrated circuits. To expand their application scope, we provide, to our best knowledge, the first investigation of nonlinear conversion processes in periodically poled TFLN waveguides at cryoge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05907v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05907v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05907v1-abstract-full" style="display: none;"> Periodically poled thin-film lithium niobate (TFLN) waveguides, which enable efficient quadratic nonlinear processes, serve as crucial foundation for classical and quantum signal processing with photonic integrated circuits. To expand their application scope, we provide, to our best knowledge, the first investigation of nonlinear conversion processes in periodically poled TFLN waveguides at cryogenic condition. Through systematic experimental characterization, we find that the periodically poled TFLN waveguide maintains consistent conversion efficiencies at both cryogenic and room temperatures for both classical second-harmonic generation and quantum photon-pair generation processes, demonstrating the significant potential of TFLN wavelength conversion devices for cryogenic applications. This breakthrough will foster future scalable quantum photonic systems and optical interfacing among different cryogenic platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05907v1-abstract-full').style.display = 'none'; document.getElementById('2408.05907v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02977">arXiv:2408.02977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02977">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Experimental minimum of condensed-phase optical refrigeration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhuoming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Pauzauskie%2C+P+J">Peter J. Pauzauskie</a>, <a href="/search/physics?searchtype=author&amp;query=Sheik-Bahae%2C+M">Mansoor Sheik-Bahae</a>, <a href="/search/physics?searchtype=author&amp;query=Seletskiy%2C+D+V">Denis V. Seletskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+M">Masaru Kuno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02977v1-abstract-short" style="display: inline;"> Since the first demonstration of optical refrigeration in a rare-earth-doped glass nearly 30 years ago, the nascent field of laser cooling solids has progressed significantly. It is now possible to demonstrate payload cooling to ~91 K using laser-excited ytterbium-doped fluoride crystals. Realizing lower temperatures, however, requires achieving ultrahigh purities in existing rare earth-doped crys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02977v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02977v1-abstract-full" style="display: none;"> Since the first demonstration of optical refrigeration in a rare-earth-doped glass nearly 30 years ago, the nascent field of laser cooling solids has progressed significantly. It is now possible to demonstrate payload cooling to ~91 K using laser-excited ytterbium-doped fluoride crystals. Realizing lower temperatures, however, requires achieving ultrahigh purities in existing rare earth-doped crystals or establishing new cooling media. For the latter, semiconductors are an obvious choice given higher cooling power densities and predicted cooling floors as low as 10 K. This has stimulated a race to demonstrate the optical refrigeration of a semiconductor. It is therefore timely to systematize the necessary and sufficient experimental minimum criteria for reporting optical refrigeration results to elevate the reliability and reproducibility of current and future optical refrigeration claims. We distill an optical refrigeration Experimental Minimum (EM) that we propose will standardize the reporting of new cooling results. EM tenets fall into the following categories: demonstrations of explicit heating vs cooling, optical cooling metrics, thermodynamic consistency, and reliable temperature measurements. All optical refrigeration claims should demonstrate the above four criteria to ensure their reliability and verifiability. We further propose that the EM serve as a guide for reviewing literature claims in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02977v1-abstract-full').style.display = 'none'; document.getElementById('2408.02977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03904">arXiv:2407.03904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03904">pdf</a>, <a href="https://arxiv.org/format/2407.03904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Asymmetric Iterated Prisoner&#39;s Dilemma on BA Scale-Free Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yunhao Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chunyan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jianlei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03904v1-abstract-short" style="display: inline;"> In real-world scenarios, individuals often cooperate for mutual benefit. However, differences in wealth can lead to varying outcomes for similar actions. In complex social networks, individuals&#39; choices are also influenced by their neighbors. To explore the evolution of strategies in realistic settings, we conducted repeated asymmetric prisoners dilemma experiments on a weighted BA scale-free netw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03904v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03904v1-abstract-full" style="display: none;"> In real-world scenarios, individuals often cooperate for mutual benefit. However, differences in wealth can lead to varying outcomes for similar actions. In complex social networks, individuals&#39; choices are also influenced by their neighbors. To explore the evolution of strategies in realistic settings, we conducted repeated asymmetric prisoners dilemma experiments on a weighted BA scale-free network. Our analysis highlighted how the four components of memory-one strategies affect win rates, found two special strategies in the evolutionary process, and increased the cooperation levels among individuals. These findings offer practical insights for addressing real-world problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03904v1-abstract-full').style.display = 'none'; document.getElementById('2407.03904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 17 figures, 35 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02207">arXiv:2407.02207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02207">pdf</a>, <a href="https://arxiv.org/format/2407.02207">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.054011">10.1103/PhysRevApplied.22.054011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global calibration of large-scale photonic integrated circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jin-Hao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qin-Qin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+L">Lan-Tian Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yu-Yang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+X">Xi-Feng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02207v3-abstract-short" style="display: inline;"> The growing maturity of photonic integrated circuit (PIC) fabrication technology enables the high integration of an increasing number of optical components onto a single chip. With the incremental circuit complexity, the calibration of active phase shifters in a large-scale PIC becomes a crucially important issue. The traditional one-by-one calibration techniques encounter significant hurdles with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02207v3-abstract-full').style.display = 'inline'; document.getElementById('2407.02207v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02207v3-abstract-full" style="display: none;"> The growing maturity of photonic integrated circuit (PIC) fabrication technology enables the high integration of an increasing number of optical components onto a single chip. With the incremental circuit complexity, the calibration of active phase shifters in a large-scale PIC becomes a crucially important issue. The traditional one-by-one calibration techniques encounter significant hurdles with the propagation of calibration errors, and achieving the decoupling of all phase shifters for independent calibration is not straightforward. To address this issue, we propose a global calibration approach for large-scale PIC. Our method utilizes a custom network to simultaneously learn the nonlinear phase-current relations for all thermo-optic phase shifters on the PIC by minimizing the negative likelihood of the measurement datasets. Moreover, the reflectivities of all static beam splitter components can also be synchronizedly extracted using this calibration method. As an example, a quantum walk PIC with a circuit depth of 12 is calibrated, and a programmable discrete-time quantum walk is experimentally demonstrated. These results will greatly benefit the applications of large-scale PICs in photonic quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02207v3-abstract-full').style.display = 'none'; document.getElementById('2407.02207v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 22, 054011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00661">arXiv:2407.00661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00661">pdf</a>, <a href="https://arxiv.org/format/2407.00661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.104308">10.1103/PhysRevB.110.104308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> When is the Four-phonon Effect in Half-Heusler Materials more Pronounced? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yu Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+S">Shengnan Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+L">Linxuan Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yimin Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jiong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Liujiang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00661v1-abstract-short" style="display: inline;"> Suppressed three-phonon scattering processes have been considered to be the direct cause of materials exhibiting significant higher-order four-phonon interactions. However, after calculating the phonon-phonon interactions of 128 Half-Heusler materials by high-throughput, we find that the acoustic phonon bandwidth dominates the three-phonon and four-phonon scattering channels and keeps them roughly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00661v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00661v1-abstract-full" style="display: none;"> Suppressed three-phonon scattering processes have been considered to be the direct cause of materials exhibiting significant higher-order four-phonon interactions. However, after calculating the phonon-phonon interactions of 128 Half-Heusler materials by high-throughput, we find that the acoustic phonon bandwidth dominates the three-phonon and four-phonon scattering channels and keeps them roughly in a co-increasing or decreasing behavior. The $aao$ and $aaa$ three-phonon scattering channels in Half-Heusler materials are weakly affected by the acoustic-optical gap and acoustic bunched features respectively only when acoustic phonon bandwidths are close. Finally, we found that Half-Heusler materials with smaller acoustic bandwidths tend to have a more pronounced four-phonon effect, although three-phonon scattering may not be significantly suppressed at this time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00661v1-abstract-full').style.display = 'none'; document.getElementById('2407.00661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05324">arXiv:2406.05324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05324">pdf</a>, <a href="https://arxiv.org/format/2406.05324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Bipartite reweight-annealing algorithm to extract large-scale data of entanglement entropy and its derivative in high precision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhiyan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yi-Ming Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+B">Bin-Bin Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Z">Zheng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05324v5-abstract-short" style="display: inline;"> We propose a quantum Monte Carlo (QMC) scheme able to extract large-scale data of entanglement entropy (EE) and its derivative with high precision and low technical barrier. We avoid directly computing the overlap of two partition functions within different spacetime manifolds and instead obtain them separately via reweight-annealing scheme. The incremental process can be designed along the path o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05324v5-abstract-full').style.display = 'inline'; document.getElementById('2406.05324v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05324v5-abstract-full" style="display: none;"> We propose a quantum Monte Carlo (QMC) scheme able to extract large-scale data of entanglement entropy (EE) and its derivative with high precision and low technical barrier. We avoid directly computing the overlap of two partition functions within different spacetime manifolds and instead obtain them separately via reweight-annealing scheme. The incremental process can be designed along the path of real physical parameters in this frame, and all intermediates are EEs of corresponding parameters, so the algorithm efficiency is improved by more than $10^4$ of times. The calculation of EE becomes much cheaper and simpler. It opens a way to numerically detect the novel phases and phase transitions by scanning EE in a wide parameter-region in two and higher dimensional systems. We then show the feasibility of using EE and its derivative to find phase transition points and to probe novel phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05324v5-abstract-full').style.display = 'none'; document.getElementById('2406.05324v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15246">arXiv:2405.15246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15246">pdf</a>, <a href="https://arxiv.org/format/2405.15246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0204128">10.1063/5.0204128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring the Nexus between Thermodynamic Phase Transitions and Geometric Fractals through Systematic Lattice Point Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonglong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15246v1-abstract-short" style="display: inline;"> Fractals are ubiquitous in the natural world, and their connection with phase transitions has been widely observed. This study investigates mechanisms of fractal formation from the perspective of phase transitions. A novel set of probability calculation methods is introduced to establish a direct link between fractals and phase transitions. Notably, in the Ising model, a specific category of bound&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15246v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15246v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15246v1-abstract-full" style="display: none;"> Fractals are ubiquitous in the natural world, and their connection with phase transitions has been widely observed. This study investigates mechanisms of fractal formation from the perspective of phase transitions. A novel set of probability calculation methods is introduced to establish a direct link between fractals and phase transitions. Notably, in the Ising model, a specific category of boundary lattice points undergoes a phase transition when the associated weight reaches approximately 0.4. The identified correlation between phase transitions and fractals suggests the emergence of fractal structures at this critical weight. The paper offers supporting evidence for this conclusion through the deliberate manipulation of the proposed probability-based method. This research contributes to a deeper understanding of the interplay between fractals and phase transitions, providing valuable insights for further exploration in diverse scientific domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15246v1-abstract-full').style.display = 'none'; document.getElementById('2405.15246v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 2405.15246 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 14, 085107 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15233">arXiv:2405.15233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15233">pdf</a>, <a href="https://arxiv.org/format/2405.15233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0219207">10.1063/5.0219207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-Depth Investigation of Phase Transition Phenomena in Network Models Derived from Lattice Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonglong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15233v1-abstract-short" style="display: inline;"> Lattice models exhibit significant potential in investigating phase transitions, yet they encounter numerous computational challenges. To address these issues, this study introduces a Monte Carlo-based approach that transforms lattice models into a network model with intricate inter-node correlations. This framework enables a profound analysis of Ising, JQ, and XY models. By decomposing the networ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15233v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15233v1-abstract-full" style="display: none;"> Lattice models exhibit significant potential in investigating phase transitions, yet they encounter numerous computational challenges. To address these issues, this study introduces a Monte Carlo-based approach that transforms lattice models into a network model with intricate inter-node correlations. This framework enables a profound analysis of Ising, JQ, and XY models. By decomposing the network into a maximum entropy and a conservative component, under the constraint of detailed balance, this work derive an estimation formula for the temperature-dependent magnetic induction in Ising models. Notably, the critical exponent $尾$ in the Ising model aligns well with established results, and the predicted phase transition point in the three-dimensional Ising model exhibits a mere $0.7 \%$ deviation from numerical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15233v1-abstract-full').style.display = 'none'; document.getElementById('2405.15233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 2405.15233 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 14, 085308 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07187">arXiv:2405.07187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07187">pdf</a>, <a href="https://arxiv.org/ps/2405.07187">ps</a>, <a href="https://arxiv.org/format/2405.07187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-Plasmon-Decay Instability Stimulated by a Normal- and Large-Angle-Incidence Laser Pair </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+C+-">C. -W. Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+Y">Y. Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">R. Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S+-">S. -H. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+C">C. Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L+-">L. -F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+-">Y. -K. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">J. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07187v1-abstract-short" style="display: inline;"> The two-plasmon-decay instability (TPD) is a critical target preheating risk in direct-drive inertial confinement fusion. In this paper, TPD collectively driven by a normal-incidence laser beam (Beam-N) and a large-angle-incidence laser beam (Beam-L) is investigated via particle-in-cell simulations. Significant TPD growth is found able to develop in this regime at previously unexpected low laser i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07187v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07187v1-abstract-full" style="display: none;"> The two-plasmon-decay instability (TPD) is a critical target preheating risk in direct-drive inertial confinement fusion. In this paper, TPD collectively driven by a normal-incidence laser beam (Beam-N) and a large-angle-incidence laser beam (Beam-L) is investigated via particle-in-cell simulations. Significant TPD growth is found able to develop in this regime at previously unexpected low laser intensities if the intensity of Beam-L exceeds the large-angle-incidence threshold. Both beams contribute to the growth of TPD in a &#34;seed-amplification&#34; manner where the absolute instability driven by Beam-L provides the seeds that get convectively amplified by Beam-N, making TPD energetically important and causing significant pump depletion and hot electron generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07187v1-abstract-full').style.display = 'none'; document.getElementById('2405.07187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06326">arXiv:2405.06326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06326">pdf</a>, <a href="https://arxiv.org/format/2405.06326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> A practical approach of measuring $^{238}$U and $^{232}$Th in liquid scintillator to sub-ppq level using ICP-MS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuanxia Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jie Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yayun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+J">Jiaxuan Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+J">Jian Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L">Liangjian Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06326v1-abstract-short" style="display: inline;"> Liquid scintillator (LS) is commonly utilized in experiments seeking rare events due to its high light yield, transparency, and radiopurity. The concentration of $^{238}$U and $^{232}$Th in LS consistently remains below 1 ppq (10$^{-15}$ g/g), and the current screening result is based on a minimum 20-ton detector. Inductively coupled plasma mass (ICP-MS) spectroscopy is well-regarded for its high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06326v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06326v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06326v1-abstract-full" style="display: none;"> Liquid scintillator (LS) is commonly utilized in experiments seeking rare events due to its high light yield, transparency, and radiopurity. The concentration of $^{238}$U and $^{232}$Th in LS consistently remains below 1 ppq (10$^{-15}$ g/g), and the current screening result is based on a minimum 20-ton detector. Inductively coupled plasma mass (ICP-MS) spectroscopy is well-regarded for its high sensitivity to trace $^{238}$U and $^{232}$Th. This study outlines a method for detecting $^{238}$U and $^{232}$Th in LS at the sub-ppq level using ICP-MS, involving the enrichment of $^{238}$U/$^{232}$Th from the LS through acid extraction. With meticulous cleanliness control, $^{238}$U/$^{232}$Th in approximately 2 kg of LS is concentrated by acid extraction with 0.4 (0.3) pg $^{238}$U ($^{232}$Th) contamination. Three standard adding methods are employed to assess recovery efficiency, including radon daughter, 2,5-diphenyloxazole (PPO), and natural non-existent $^{233}$U/$^{229}$Th. The method detection limit at a 99% confidence level of this approach can reach approximately 0.2-0.3 ppq for $^{238}$U/$^{232}$Th with nearly 100% recovery efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06326v1-abstract-full').style.display = 'none'; document.getElementById('2405.06326v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08241">arXiv:2404.08241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08241">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Anomaly Detection Disruption Prediction Starting from First Discharge on Tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+B">Binjia Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08241v2-abstract-short" style="display: inline;"> Plasma disruption presents a significant challenge in tokamak fusion, where it can cause severe damage and economic losses. Current disruption predictors mainly rely on data-driven methods, requiring extensive discharge data for training. However, future tokamaks require disruption prediction from the first shot, posing challenges of data scarcity during the early operation period. In this period&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08241v2-abstract-full').style.display = 'inline'; document.getElementById('2404.08241v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08241v2-abstract-full" style="display: none;"> Plasma disruption presents a significant challenge in tokamak fusion, where it can cause severe damage and economic losses. Current disruption predictors mainly rely on data-driven methods, requiring extensive discharge data for training. However, future tokamaks require disruption prediction from the first shot, posing challenges of data scarcity during the early operation period. In this period disruption prediction aims to support safe exploration of operation range and accumulate necessary data to develop advanced prediction models. Thus, predictors must adapt to evolving plasma environments during this exploration phase. To address these issues, this study proposes a cross-tokamak adaptive deployment method using the Enhanced Convolutional Autoencoder Anomaly Detection (E-CAAD) predictor, enabling disruption prediction from the first shot of new devices. Experimental results indicate the ability of E-CAAD model trained on existing devices to effectively differentiate between disruption precursors and non-disruption samples on new devices, proving the feasibility of model cross-device transfer. Building upon this, adaptive learning from scratch and threshold adaptive adjustment strategies are proposed to achieve model cross-device transfer. The adaptive learning from scratch strategy enables the predictor to use scarce data during the early operation of the new device while rapidly adapting to changes in operation environment. The threshold adaptive adjustment strategy addresses the challenge of selecting warning thresholds on new devices where validation set is lacking, ensuring that the warning thresholds adapt to changes in the operation environment. Finally, experiments transferring the model from J-TEXT to EAST exhibit comparable performance to EAST models trained with ample data, achieving a TPR of 85.88% and a FPR of 6.15%, with a 20ms reserved MGI system reaction time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08241v2-abstract-full').style.display = 'none'; document.getElementById('2404.08241v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04259">arXiv:2404.04259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04259">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> The prominent and heterogeneous gender disparities in scientific novelty: evidence from biomedical doctoral theses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Meijun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zihan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+A+J">Alex Jie Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Ying Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Y">Yi Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04259v1-abstract-short" style="display: inline;"> Scientific novelty is the essential driving force for research breakthroughs and innovation. However, little is known about how early-career scientists pursue novel research paths, and the gender disparities in this process. To address this research gap, this study investigates a comprehensive dataset of 279,424 doctoral theses in biomedical sciences authored by US Ph.D. graduates. Spanning from 1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04259v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04259v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04259v1-abstract-full" style="display: none;"> Scientific novelty is the essential driving force for research breakthroughs and innovation. However, little is known about how early-career scientists pursue novel research paths, and the gender disparities in this process. To address this research gap, this study investigates a comprehensive dataset of 279,424 doctoral theses in biomedical sciences authored by US Ph.D. graduates. Spanning from 1980 to 2016, the data originates from the ProQuest Dissertations &amp; Theses Database. This study aims to shed light on Ph.D. students&#39; pursuit of scientific novelty in their doctoral theses and assess gender-related differences in this process. Using a combinatorial approach and a pre-trained Bio-BERT model, we quantify the scientific novelty of doctoral theses based on bio-entities. Applying fractional logistic and quantile regression models, this study reveals a decreasing trend in scientific novelty over time and heterogeneous gender disparities in doctoral theses. Specifically, female students consistently exhibited lower scientific novelty levels than their male peers. When supervised by female advisors, students&#39; theses are found to be less novel than those under male advisors. The significant interaction effect of female students and female advisors suggests that female advisors may amplify the gender disparity in scientific novelty. Moreover, heterogeneous gender disparities in scientific novelty are identified, with non-top-tier universities displaying more pronounced disparities, while the differences at higher percentile ranges were comparatively more minor. These findings indicate a potential underrepresentation of female scientists pursuing novel research during the early stages of their careers. Notably, the outcomes of this study hold significant policy implications for advancing the careers of female scientists. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04259v1-abstract-full').style.display = 'none'; document.getElementById('2404.04259v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11592">arXiv:2403.11592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11592">pdf</a>, <a href="https://arxiv.org/format/2403.11592">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4CP01679C">10.1039/D4CP01679C <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface hopping molecular dynamics simulation of ultrafast methyl iodide photodissociation mapped by Coulomb explosion imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yijue Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Greenman%2C+L">Loren Greenman</a>, <a href="/search/physics?searchtype=author&amp;query=Rolles%2C+D">Daniel Rolles</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11592v2-abstract-short" style="display: inline;"> We present a highly efficient method to directly simulate the photodissociation followed by Coulomb explosion of methyl iodide. In order to achieve statistical reliability, more than 40,000 trajectories are calculated on accurate potential energy surfaces of both the neutral molecule and the doubly charged cation. Non-adiabatic effects during photodissociation are treated using a Landau-Zener surf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11592v2-abstract-full').style.display = 'inline'; document.getElementById('2403.11592v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11592v2-abstract-full" style="display: none;"> We present a highly efficient method to directly simulate the photodissociation followed by Coulomb explosion of methyl iodide. In order to achieve statistical reliability, more than 40,000 trajectories are calculated on accurate potential energy surfaces of both the neutral molecule and the doubly charged cation. Non-adiabatic effects during photodissociation are treated using a Landau-Zener surface hopping algorithm. The simulation is performed analogous to a recent pump-probe experiment using coincident ion momentum imaging [Ziaee \textit{et al., Phys. Chem. Chem. Phys.} 2023, \textbf{25}, 9999]. At large pump-probe delays, the simulated delay-dependent kinetic energy release signals show overall good agreement with the experiment, with two major dissociation channels leading to $\text{I}(^2\text{P}_{3/2})$ and $\text{I}^*(^2\text{P}_{1/2})$ products. At short pump-probe delays, the simulated kinetic energy release shows a clear bifurcation near 12 fs, owing to non-adiabatic transitions through a conical intersection. The developed method is particularly suitable and efficient in simulating processes that highly rely on statistics or for identifying rare reaction channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11592v2-abstract-full').style.display = 'none'; document.getElementById('2403.11592v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Chemistry Chemical Physics, 2024, 26, 22423 - 22432 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08432">arXiv:2402.08432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08432">pdf</a>, <a href="https://arxiv.org/format/2402.08432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Rhythmic soliton interactions for integrated dual-microcomb spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yifei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+B">Baoqi Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chen Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yulei Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Changxi Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Junqiu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+C">Chengying Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08432v1-abstract-short" style="display: inline;"> Rotation symmetry of microresonators supports the generation of phase-locked counter-propagating (CP) solitons that can potentially miniaturize dual-comb systems. Realization of these dual-comb compatible solitons in photonic integrated circuits remains a challenge. Here, we synthesized such CP solitons in an integrated silicon nitride microresonator and observed forced soliton oscillation due to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08432v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08432v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08432v1-abstract-full" style="display: none;"> Rotation symmetry of microresonators supports the generation of phase-locked counter-propagating (CP) solitons that can potentially miniaturize dual-comb systems. Realization of these dual-comb compatible solitons in photonic integrated circuits remains a challenge. Here, we synthesized such CP solitons in an integrated silicon nitride microresonator and observed forced soliton oscillation due to rhythmic, time-varying soliton interactions. The interactions result in seconds mutual-coherence passively. Temporal motion in the soliton streams is discerned by measuring a quadratic-scaling frequency noise peaks and an inverse quadratic-scaling microcomb sidebands. By generating a CP soliton trimer to have two synchronized solitons in one of the orbiting directions, we resolve the incapability of measuring two unsynchronized CP soliton dimer pulses by optical cross-correlation, and show CP solitons undergo complex motion trajectory. We further prove that precise dual-comb spectroscopy with an acquisition time as short as 0.6 $渭$s is feasible using these solitons, although the temporal motion limits the dynamic range. Besides revealing soliton interactions with different group velocities, our work propels the realization of photonic integrated dual-comb spectrometers with high passive coherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08432v1-abstract-full').style.display = 'none'; document.getElementById('2402.08432v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02075">arXiv:2402.02075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02075">pdf</a>, <a href="https://arxiv.org/format/2402.02075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A Compact Gas-Kinetic Scheme with Scalable Geometric Multigrid Acceleration for Steady-State Computation on 3D Unstructured Meshes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hongyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+X">Xing Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+Y">Yunpeng Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuan Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+K">Kun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02075v1-abstract-short" style="display: inline;"> In this paper, we present an advanced high-order compact gas-kinetic scheme (CGKS) for 3D unstructured mixed-element meshes, augmented with a geometric multigrid technique to accelerate steady-state convergence. The scheme evolves cell-averaged flow variables and their gradients on the original mesh. Mesh coarsening employs a two-step parallel agglomeration algorithm using a random hash for cell i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02075v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02075v1-abstract-full" style="display: none;"> In this paper, we present an advanced high-order compact gas-kinetic scheme (CGKS) for 3D unstructured mixed-element meshes, augmented with a geometric multigrid technique to accelerate steady-state convergence. The scheme evolves cell-averaged flow variables and their gradients on the original mesh. Mesh coarsening employs a two-step parallel agglomeration algorithm using a random hash for cell interface selection and a geometric skewness metric for deletion confirmation, ensuring both efficiency and robustness. For the coarser meshes, first-order kinetic flux vector splitting (KFVS) schemes with explicit or implicit time-stepping are used. The proposed multigrid CGKS is tested across various flow regimes on hybrid unstructured meshes, demonstrating significant improvements. A three-layer V-cycle multigrid strategy, coupled with an explicit forward Euler method on coarser levels, results in a convergence rate up to ten times faster than standard CGKS. In contrast, the implicit lower-upper symmetric Gauss-Seidel (LU-SGS) method offers limited convergence acceleration. Our findings indicate that the explicit multigrid CGKS is highly scalable and effective for large-scale computations, marking a substantial step forward in computational fluid dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02075v1-abstract-full').style.display = 'none'; document.getElementById('2402.02075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11657">arXiv:2401.11657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.11657">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> A photon-level broadband dual-comb interferometer for turbulent open-air trace gases detection application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yingyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Q">Qin Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+R">Ruocan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yiwei Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+T">Tindi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Dou%2C+X">Xiankang Dou</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+X">Xianghui Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11657v1-abstract-short" style="display: inline;"> Open-path dual-comb spectroscopy (DCS) significantly enhances our understanding of regional trace gases. However, due to technical challenges, cost considerations, and eye-safety regulations, its sensing range and flexibility remain limited. The photon-counting DCS demonstrated recently heralds potential innovations over open-path DCS. Nevertheless, a major challenge in open-air applications of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11657v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11657v1-abstract-full" style="display: none;"> Open-path dual-comb spectroscopy (DCS) significantly enhances our understanding of regional trace gases. However, due to technical challenges, cost considerations, and eye-safety regulations, its sensing range and flexibility remain limited. The photon-counting DCS demonstrated recently heralds potential innovations over open-path DCS. Nevertheless, a major challenge in open-air applications of this approach lies in accurately extracting information from the arrival time of photons that have traversed the turbulent atmosphere. Here, we demonstrate a photon-level dual-comb interferometer for field deployment in open-air environments, uniquely designed to counteract the impact of optical path-length variations caused by atmospheric turbulence and fiber-length wandering. Under variable optical path-length conditions, 20nm broadband absorption spectrum of H13C14N is acquired, with the power per comb line detected as low as 4 attowatt . Furthermore, this photon-level DCS achieves comb-line resolution with a quantum-noise-limited signal-to-noise (SNR). This paves the way for novel open-path DCS applications, including non-cooperative target sensing and sensing over a hundred-kilometers range, all within a portable, fieldable, eye-safety and low power consumption system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11657v1-abstract-full').style.display = 'none'; document.getElementById('2401.11657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09303">arXiv:2401.09303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09303">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Tailoring chaotic motion of microcavity photons in ray and wave dynamics by tuning the curvature of space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+W">Wei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yechun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yongsheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yanpeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yun%2C+F">Feng Yun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Feng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09303v1-abstract-short" style="display: inline;"> Microcavity photon dynamics in curved space is an emerging interesting area at the crossing point of nanophotonics, chaotic science and non-Euclidean geometry. We report the sharp difference between the regular and chaotic motions of cavity photons subjected to the varying space curvature. While the island modes of regular motion rise in the phase diagram in the curved space, the chaotic modes sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09303v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09303v1-abstract-full" style="display: none;"> Microcavity photon dynamics in curved space is an emerging interesting area at the crossing point of nanophotonics, chaotic science and non-Euclidean geometry. We report the sharp difference between the regular and chaotic motions of cavity photons subjected to the varying space curvature. While the island modes of regular motion rise in the phase diagram in the curved space, the chaotic modes show special mechanisms to adapt to the space curvature, including the fast diffusion of ray dynamics, and the localization and hybridization of the Husimi wavepackets among different periodic orbits. These obser-vations are unique effects enabled by the combination of the chaotic trajectory, the wave nature of light and the non-Euclidean orbital motion, and therefore make the system a versatile optical simulator for chaotic science under quan-tum mechanics in curved space-time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09303v1-abstract-full').style.display = 'none'; document.getElementById('2401.09303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00723">arXiv:2401.00723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00723">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Free electron topological bound state induced by light beam with a twisted wavefront </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yiming Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+R">Ruoyu Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yongcheng Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Huaiqiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Podolsky%2C+D">Daniel Podolsky</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">Bin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00723v2-abstract-short" style="display: inline;"> Recent advances in ultrafast electron emission, microscopy, and diffraction have demonstrated a remarkable ability to manipulate free electrons with quantum coherence using light beams. Here, we present a framework for exploring free electron quantum number in ultrafast electron-light interactions. We derive an explicit Jackiw-Rebbi solution for a low-energy free electron wavefunction subjected to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00723v2-abstract-full').style.display = 'inline'; document.getElementById('2401.00723v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00723v2-abstract-full" style="display: none;"> Recent advances in ultrafast electron emission, microscopy, and diffraction have demonstrated a remarkable ability to manipulate free electrons with quantum coherence using light beams. Here, we present a framework for exploring free electron quantum number in ultrafast electron-light interactions. We derive an explicit Jackiw-Rebbi solution for a low-energy free electron wavefunction subjected to a spatiotemporally twisted laser field, resulting in a flying topologically protected bound state with a quantum number of e/2 - termed a &#34;half-electron&#34;. This flying bound state is dispersion-free due to its topological nature. We demonstrate the topological confinement and pair generation mechanism of half-electrons in free space, expanding their domain beyond the topological states typically found in solids and photonics. This advancement enhances our understanding of emulating exotic quantum and topological effects with low-energy free electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00723v2-abstract-full').style.display = 'none'; document.getElementById('2401.00723v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures, supplementary material, 1 supplementary figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16829">arXiv:2312.16829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16829">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Enlargement of Memory Window of Si Channel FeFET by Inserting Al2O3 Interlayer on Ferroelectric Hf0.5Zr0.5O2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+S">Saifei Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+R">Runhao Han</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yajing Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+H">Hongyang Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+M">Mengwei Si</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wenwu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16829v1-abstract-short" style="display: inline;"> In this work, we demonstrate the enlargement of the memory window of Si channel FeFET with ferroelectric Hf0.5Zr0.5O2 by gate-side dielectric interlayer engineering. By inserting an Al2O3 dielectric interlayer between TiN gate metal and ferroelectric Hf0.5Zr0.5O2, we achieve a memory window of 3.2 V with endurance of ~105 cycles and retention over 10 years. The physical origin of memory window enl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16829v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16829v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16829v1-abstract-full" style="display: none;"> In this work, we demonstrate the enlargement of the memory window of Si channel FeFET with ferroelectric Hf0.5Zr0.5O2 by gate-side dielectric interlayer engineering. By inserting an Al2O3 dielectric interlayer between TiN gate metal and ferroelectric Hf0.5Zr0.5O2, we achieve a memory window of 3.2 V with endurance of ~105 cycles and retention over 10 years. The physical origin of memory window enlargement is clarified to be charge trapping at the Al2O3/Hf0.5Zr0.5O2 interface, which has an opposite charge polarity to the trapped charges at the Hf0.5Zr0.5O2/SiOx interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16829v1-abstract-full').style.display = 'none'; document.getElementById('2312.16829v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages,6 figures;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10643">arXiv:2312.10643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10643">pdf</a>, <a href="https://arxiv.org/ps/2312.10643">ps</a>, <a href="https://arxiv.org/format/2312.10643">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Signal significance incorporating systematic uncertainty for continuous test </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yi Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+W">Weiming Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+K">Kai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10643v1-abstract-short" style="display: inline;"> To properly estimate signal significance while accounting for both statistical and systematic uncertainties, we conducted a study to analyze the impact of typical systematic uncertainties, such as background shape, signal shape, and the number of backgrounds, on significance calculation using the continuous test method. Our investigation reveals unexpected and complex features, leading us to recom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10643v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10643v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10643v1-abstract-full" style="display: none;"> To properly estimate signal significance while accounting for both statistical and systematic uncertainties, we conducted a study to analyze the impact of typical systematic uncertainties, such as background shape, signal shape, and the number of backgrounds, on significance calculation using the continuous test method. Our investigation reveals unexpected and complex features, leading us to recommend a conservative approach: one should estimate signal significance by conducting trials with as many as possible combinations of various uncertainties associated with the fitting procedure, and then select the &#34;worst&#34; outcome as the final result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10643v1-abstract-full').style.display = 'none'; document.getElementById('2312.10643v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09556">arXiv:2312.09556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09556">pdf</a>, <a href="https://arxiv.org/format/2312.09556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical Ranging Using Coherent Kerr Soliton Dual-microcombs with Extended Ambiguity Distance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yuechen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+K">Kailu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">Chenhua Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuanzhuo Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+T">Tinghao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yudong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+L">Liangsen Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+T">Tengfei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+G">Guangqiang He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09556v1-abstract-short" style="display: inline;"> Optical ranging is a key technology in metrology. Optical frequency combs are shown to provide several advantages in light ranging, offering high precision with high acquisition rate. However, performance of traditional ranging systems based on microcombs is limited by the short ambiguity distance and non-real-time processing. Here, we show that dual-comb ranging system using coherent Kerr soliton&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09556v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09556v1-abstract-full" style="display: none;"> Optical ranging is a key technology in metrology. Optical frequency combs are shown to provide several advantages in light ranging, offering high precision with high acquisition rate. However, performance of traditional ranging systems based on microcombs is limited by the short ambiguity distance and non-real-time processing. Here, we show that dual-comb ranging system using coherent Kerr soliton microcombs and optical switch realizes extended ambiguity distance and provides a route to real-time processing. The ambguity distance is extended to 3.28 m from about 1.5 mm and the uncertainty reaches about 1.05 times 10^-7, while the system is compatible with low-bandwidth detectors. Combining coherent microcomb ranging systems with special FPGA could enable comb-based real-time ranging systems for several applications such as industrial process monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09556v1-abstract-full').style.display = 'none'; document.getElementById('2312.09556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14956">arXiv:2311.14956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14956">pdf</a>, <a href="https://arxiv.org/format/2311.14956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalous hot electron generation from two-plasmon decay instability driven by broadband laser pulses with intensity modulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+C">C. Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+L">L. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">R. Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">C. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+A">A. Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Y-K. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">J. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14956v1-abstract-short" style="display: inline;"> We investigate the hot electrons generated from two-plasmon decay (TPD) instability driven by laser pulses with intensity modulated by a frequency $螖蠅_m$. Our primary focus lies on scenarios where $螖蠅_m$ is on the same order of the TPD growth rate $ 纬_0$ ( $螖蠅_m \sim 纬_0$), corresponding to moderate laser frequency bandwidths for TPD mitigation. With $螖蠅_m$ conveniently modeled by a basic two-colo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14956v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14956v1-abstract-full" style="display: none;"> We investigate the hot electrons generated from two-plasmon decay (TPD) instability driven by laser pulses with intensity modulated by a frequency $螖蠅_m$. Our primary focus lies on scenarios where $螖蠅_m$ is on the same order of the TPD growth rate $ 纬_0$ ( $螖蠅_m \sim 纬_0$), corresponding to moderate laser frequency bandwidths for TPD mitigation. With $螖蠅_m$ conveniently modeled by a basic two-color scheme of the laser wave fields in fully-kinetic particle-in-cell simulations, we demonstrate that the energies of TPD modes and hot electrons exhibit intermittent evolution at the frequency $螖蠅_m$, particularly when $螖蠅_m \sim 纬_0$. With the dynamic TPD behavior, the overall ratio of hot electron energy to the incident laser energy, $f_{hot}$, changes significantly with $螖蠅_m$. While $f_{hot}$ drops notably with increasing $螖蠅_m$ at large $螖蠅_m$ limit as expected, it goes anomalously beyond the hot electron energy ratio for a single-frequency incident laser pulse with the same average intensity when $螖蠅_m$ falls below a specific threshold frequency $螖蠅_c$. We find this threshold frequency primarily depends on $纬_0$ and the collisional damping rate of plasma waves, with relatively lower sensitivity to the density scale length. We develop a scaling model characterizing the relation of $螖蠅_c$ and laser plasma conditions, enabling the potential extention of our findings to more complex and realistic scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14956v1-abstract-full').style.display = 'none'; document.getElementById('2311.14956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14399">arXiv:2311.14399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14399">pdf</a>, <a href="https://arxiv.org/format/2311.14399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphot.2023.1324648">10.3389/fphot.2023.1324648 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient and robust second-harmonic generation in thin-film lithium niobate using modal phase matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+M+T">Mikkel T. Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Ulsig%2C+E+Z">Emil Z. Ulsig</a>, <a href="/search/physics?searchtype=author&amp;query=Labbe%2C+F">Fabien Labbe</a>, <a href="/search/physics?searchtype=author&amp;query=Madsen%2C+M+L">Magnus L. Madsen</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yunhong Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Rottwitt%2C+K">Karsten Rottwitt</a>, <a href="/search/physics?searchtype=author&amp;query=Volet%2C+N">Nicolas Volet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14399v1-abstract-short" style="display: inline;"> A double-ridge waveguide is designed for efficient and robust second-harmonic generation (SHG) using the thin-film lithium-niobate-on-insulator (LNOI) platform. Perfect phase matching (PhM) is achieved between the fundamental waveguide mode at 1550 nm and a higher-order mode at the second harmonic. The fabrication tolerances of the PhM condition are simulated using a finite-difference method mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14399v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14399v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14399v1-abstract-full" style="display: none;"> A double-ridge waveguide is designed for efficient and robust second-harmonic generation (SHG) using the thin-film lithium-niobate-on-insulator (LNOI) platform. Perfect phase matching (PhM) is achieved between the fundamental waveguide mode at 1550 nm and a higher-order mode at the second harmonic. The fabrication tolerances of the PhM condition are simulated using a finite-difference method mode solver, and conversion efficiencies as high as 3.92/W are obtained for a 1-cm long waveguide. This design allows access to the largest element of the second-order nonlinear susceptibility tensor, and represents a scalable alternative to waveguides based on periodically-poled lithium niobate (PPLN). The design has the potential for generating pairs of entangled photons in the infrared C-band by spontaneous parametric down-conversion (SPDC). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14399v1-abstract-full').style.display = 'none'; document.getElementById('2311.14399v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Photon., 06 December 2023 Sec. Nonlinear Optics </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13763">arXiv:2311.13763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13763">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Extraction of n = 0 pick-up by locked mode detectors based on neural networks in J-TEXT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jianchao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+J">Jiaolong Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+D">Dongliang. Han</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+F">Feiyue Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Da Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Team%2C+J">J-Text Team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13763v1-abstract-short" style="display: inline;"> Measurement of locked mode (LM) is important for the physical research of Magnetohydrodynamic (MHD) instabilities and plasma disruption. The n = 0 pick-up need to be extracted and subtracted to calculate the amplitude and phase of the LM. A new method to extract this pick-up has been developed by predicting the n = 0 pick-up brn=0 by the LM detectors based on Neural Networks (NNs) in J-TEXT. An ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13763v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13763v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13763v1-abstract-full" style="display: none;"> Measurement of locked mode (LM) is important for the physical research of Magnetohydrodynamic (MHD) instabilities and plasma disruption. The n = 0 pick-up need to be extracted and subtracted to calculate the amplitude and phase of the LM. A new method to extract this pick-up has been developed by predicting the n = 0 pick-up brn=0 by the LM detectors based on Neural Networks (NNs) in J-TEXT. An approach called Power Multiple Time Scale (PMTS) has been developed with outstanding regressing effect in multiple frequency ranges. Three models have been progressed based on PMTS NNs. PMTS could fit the brn=0 on the LM detectors with little errors both in time domain and frequency domain. The n&gt;0 pick-up brn&gt;0 generated by resonant magnetic perturbations (RMPs) can be obtained after subtracting the extracted brn=0. This new method uses only one LM instead of 4 LM detectors to extract brn=0. Therefore, the distribution of the LM detectors can also be optimized based on this new method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13763v1-abstract-full').style.display = 'none'; document.getElementById('2311.13763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages, 10figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10368">arXiv:2311.10368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10368">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ad5934">10.1088/1361-6587/ad5934 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-Tokamak Deployment Study of Plasma Disruption Predictors Based on Convolutional Autoencoder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+B">Binjia Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=team%2C+J">J-TEXT team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10368v3-abstract-short" style="display: inline;"> In the initial stages of operation for future tokamak, facing limited data availability, deploying data-driven disruption predictors requires optimal performance with minimal use of new device data. This paper studies the issue of data utilization in data-driven disruption predictor during cross tokamak deployment. Current predictors primarily employ supervised learning methods and require a large&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10368v3-abstract-full').style.display = 'inline'; document.getElementById('2311.10368v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10368v3-abstract-full" style="display: none;"> In the initial stages of operation for future tokamak, facing limited data availability, deploying data-driven disruption predictors requires optimal performance with minimal use of new device data. This paper studies the issue of data utilization in data-driven disruption predictor during cross tokamak deployment. Current predictors primarily employ supervised learning methods and require a large number of disruption and non-disruption shots for training. However, the scarcity and high cost of obtaining disruption shots for future tokamaks result in imbalanced training datasets, reducing the performance of supervised learning predictors. To solve this problem, we propose the Enhanced Convolutional Autoencoder Anomaly Detection (E-CAAD) predictor. E-CAAD can be only trained by normal samples from non-disruption shots and can also be trained by disruption precursor samples when disruption shots occur. This model not only overcomes the sample imbalance in supervised learning predictors, but also overcomes the inefficient dataset utilization faced by traditional anomaly detection predictors that cannot use disruption precursor samples for training, making it more suitable for the unpredictable datasets of future tokamaks. Compared to traditional anomaly detection predictor, the E-CAAD predictor performs better in disruption prediction and is deployed faster on new devices. Additionally, we explore strategies to accelerate deployment of E-CAAD predictor on the new device by using data from existing devices. Two deployment strategies are presented: mixing data from existing devices and fine-tuning the predictor trained on existing devices. Our comparisons indicate that the data from existing device can accelerate the deployment of predictor on new device. Notably, the fine-tuning strategy yields the fastest deployment on new device among the designed strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10368v3-abstract-full').style.display = 'none'; document.getElementById('2311.10368v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00448">arXiv:2311.00448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00448">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Artificial Intelligence-Facilitated Online Adaptive Proton Therapy Using Pencil Beam Scanning Proton Therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/physics?searchtype=author&amp;query=Vargas%2C+C+E">Carlos E. Vargas</a>, <a href="/search/physics?searchtype=author&amp;query=Keole%2C+S+R">Sameer R. Keole</a>, <a href="/search/physics?searchtype=author&amp;query=Rwigema%2C+J+M">Jean-Claude M. Rwigema</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N+Y">Nathan Y. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuzhen Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Schild%2C+S+E">Steven E. Schild</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+W">William W. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">JiaJian Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00448v1-abstract-short" style="display: inline;"> We propose an oAPT workflow that incorporates all these functionalities and validate its clinical implementation feasibility with prostate patients. AI-based auto-segmentation tool AccuContourTM (Manteia, Xiamen, China) was seamlessly integrated into oAPT. Initial spot arrangement tool on the vCT for re-optimization was implemented using raytracing. An LET-based biological effect evaluation tool w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00448v1-abstract-full').style.display = 'inline'; document.getElementById('2311.00448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00448v1-abstract-full" style="display: none;"> We propose an oAPT workflow that incorporates all these functionalities and validate its clinical implementation feasibility with prostate patients. AI-based auto-segmentation tool AccuContourTM (Manteia, Xiamen, China) was seamlessly integrated into oAPT. Initial spot arrangement tool on the vCT for re-optimization was implemented using raytracing. An LET-based biological effect evaluation tool was developed to assess the overlap region of high dose and high LET in selected OARs. Eleven prostate cancer patients were retrospectively selected to verify the efficacy and efficiency of the proposed oAPT workflow. The time cost of each component in the workflow was recorded for analysis. The verification plan showed significant degradation of the CTV coverage and rectum and bladder sparing due to the interfractional anatomical changes. Re-optimization on the vCT resulted in great improvement of the plan quality. No overlap regions of high dose and high LET distributions were observed in bladder or rectum in re-plans. 3D Gamma analyses in PSQA confirmed the accuracy of the re-plan doses before delivery (Gamma passing rate = 99.57%), and after delivery (98.59%). The robustness of the re-plans passed all clinical requirements. The average time for the complete execution of the workflow was 9.12minutes, excluding manual intervention time. The AI-facilitated oAPT workflow was demonstrated to be both efficient and effective by generating a re-plan that significantly improved the plan quality in prostate cancer treated with PBSPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00448v1-abstract-full').style.display = 'none'; document.getElementById('2311.00448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08838">arXiv:2310.08838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08838">pdf</a>, <a href="https://arxiv.org/format/2310.08838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Higher-dimensional symmetric informationally complete measurement via programmable photonic integrated optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+L">Lan-Tian Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xiao-Min Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yu-Jie Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yu Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yu-Yang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Z">Zhibo Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+F">Fang-Wen Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+D">Dao-Xin Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Tavakoli%2C+A">Armin Tavakoli</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+X">Xi-Feng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bi-Heng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08838v2-abstract-short" style="display: inline;"> Symmetric informationally complete measurements are both important building blocks in many quantum information protocols and the seminal example of a generalised, non-orthogonal, quantum measurement. In higher-dimensional systems, these measurements become both increasingly interesting and increasingly complex to implement. Here, we demonstrate an integrated quantum photonic platform to realize su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08838v2-abstract-full').style.display = 'inline'; document.getElementById('2310.08838v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08838v2-abstract-full" style="display: none;"> Symmetric informationally complete measurements are both important building blocks in many quantum information protocols and the seminal example of a generalised, non-orthogonal, quantum measurement. In higher-dimensional systems, these measurements become both increasingly interesting and increasingly complex to implement. Here, we demonstrate an integrated quantum photonic platform to realize such a measurement on three-level quantum systems. The device operates at the high fidelities necessary for verifying a genuine many-outcome quantum measurement, performing near-optimal quantum state discrimination, and beating the projective limit in quantum random number generation. Moreover, it is programmable and can readily implement other quantum measurements at similarly high quality. Our work paves the way for the implementation of sophisticated higher-dimensional quantum measurements that go beyond the traditional orthogonal projections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08838v2-abstract-full').style.display = 'none'; document.getElementById('2310.08838v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages,13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03874">arXiv:2310.03874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03874">pdf</a>, <a href="https://arxiv.org/format/2310.03874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking a foundation LLM on its ability to re-label structure names in accordance with the AAPM TG-263 report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J">Jason Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuzhen Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Hongying Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+W">William W. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Vora%2C+S+A">Sujay A. Vora</a>, <a href="/search/physics?searchtype=author&amp;query=Ashman%2C+J+B">Jonathan B. Ashman</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03874v1-abstract-short" style="display: inline;"> Purpose: To introduce the concept of using large language models (LLMs) to re-label structure names in accordance with the American Association of Physicists in Medicine (AAPM) Task Group (TG)-263 standard, and to establish a benchmark for future studies to reference. Methods and Materials: The Generative Pre-trained Transformer (GPT)-4 application programming interface (API) was implemented as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03874v1-abstract-full').style.display = 'inline'; document.getElementById('2310.03874v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03874v1-abstract-full" style="display: none;"> Purpose: To introduce the concept of using large language models (LLMs) to re-label structure names in accordance with the American Association of Physicists in Medicine (AAPM) Task Group (TG)-263 standard, and to establish a benchmark for future studies to reference. Methods and Materials: The Generative Pre-trained Transformer (GPT)-4 application programming interface (API) was implemented as a Digital Imaging and Communications in Medicine (DICOM) storage server, which upon receiving a structure set DICOM file, prompts GPT-4 to re-label the structure names of both target volumes and normal tissues according to the AAPM TG-263. Three disease sites, prostate, head and neck, and thorax were selected for evaluation. For each disease site category, 150 patients were randomly selected for manually tuning the instructions prompt (in batches of 50) and 50 patients were randomly selected for evaluation. Structure names that were considered were those that were most likely to be relevant for studies utilizing structure contours for many patients. Results: The overall re-labeling accuracy of both target volumes and normal tissues for prostate, head and neck, and thorax cases was 96.0%, 98.5%, and 96.9% respectively. Re-labeling of target volumes was less accurate on average except for prostate - 100%, 93.1%, and 91.1% respectively. Conclusions: Given the accuracy of GPT-4 in re-labeling structure names of both target volumes and normal tissues as presented in this work, LLMs are poised to be the preferred method for standardizing structure names in radiation oncology, especially considering the rapid advancements in LLM capabilities that are likely to continue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03874v1-abstract-full').style.display = 'none'; document.getElementById('2310.03874v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12677">arXiv:2309.12677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.12677">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> TrTr: A Versatile Pre-Trained Large Traffic Model based on Transformer for Capturing Trajectory Diversity in Vehicle Population </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+R">Ruyi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhibin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bowen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yan Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12677v3-abstract-short" style="display: inline;"> Understanding trajectory diversity is a fundamental aspect of addressing practical traffic tasks. However, capturing the diversity of trajectories presents challenges, particularly with traditional machine learning and recurrent neural networks due to the requirement of large-scale parameters. The emerging Transformer technology, renowned for its parallel computation capabilities enabling the util&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12677v3-abstract-full').style.display = 'inline'; document.getElementById('2309.12677v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12677v3-abstract-full" style="display: none;"> Understanding trajectory diversity is a fundamental aspect of addressing practical traffic tasks. However, capturing the diversity of trajectories presents challenges, particularly with traditional machine learning and recurrent neural networks due to the requirement of large-scale parameters. The emerging Transformer technology, renowned for its parallel computation capabilities enabling the utilization of models with hundreds of millions of parameters, offers a promising solution. In this study, we apply the Transformer architecture to traffic tasks, aiming to learn the diversity of trajectories within vehicle populations. We analyze the Transformer&#39;s attention mechanism and its adaptability to the goals of traffic tasks, and subsequently, design specific pre-training tasks. To achieve this, we create a data structure tailored to the attention mechanism and introduce a set of noises that correspond to spatio-temporal demands, which are incorporated into the structured data during the pre-training process. The designed pre-training model demonstrates excellent performance in capturing the spatial distribution of the vehicle population, with no instances of vehicle overlap and an RMSE of 0.6059 when compared to the ground truth values. In the context of time series prediction, approximately 95% of the predicted trajectories&#39; speeds closely align with the true speeds, within a deviation of 7.5144m/s. Furthermore, in the stability test, the model exhibits robustness by continuously predicting a time series ten times longer than the input sequence, delivering smooth trajectories and showcasing diverse driving behaviors. The pre-trained model also provides a good basis for downstream fine-tuning tasks. The number of parameters of our model is over 50 million. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12677v3-abstract-full').style.display = 'none'; document.getElementById('2309.12677v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, work in update</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07789">arXiv:2309.07789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07789">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> SOT-MRAM-Enabled Probabilistic Binary Neural Networks for Noise-Tolerant and Fast Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+P">Puyang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y">Yu Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Chenyi Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Jiaqi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yiyao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Renhe Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yongqi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yi Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hongchao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+S">Shiyang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+S">Shouzhong Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07789v2-abstract-short" style="display: inline;"> We report the use of spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) to implement a probabilistic binary neural network (PBNN) for resource-saving applications. The in-plane magnetized SOT (i-SOT) MRAM not only enables field-free magnetization switching with high endurance (&gt; 10^11), but also hosts multiple stable probabilistic states with a low device-to-device variation (&lt; 6&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07789v2-abstract-full').style.display = 'inline'; document.getElementById('2309.07789v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07789v2-abstract-full" style="display: none;"> We report the use of spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) to implement a probabilistic binary neural network (PBNN) for resource-saving applications. The in-plane magnetized SOT (i-SOT) MRAM not only enables field-free magnetization switching with high endurance (&gt; 10^11), but also hosts multiple stable probabilistic states with a low device-to-device variation (&lt; 6.35%). Accordingly, the proposed PBNN outperforms other neural networks by achieving an 18* increase in training speed, while maintaining an accuracy above 97% under the write and read noise perturbations. Furthermore, by applying the binarization process with an additional SOT-MRAM dummy module, we demonstrate an on-chip MNIST inference performance close to the ideal baseline using our SOT-PBNN hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07789v2-abstract-full').style.display = 'none'; document.getElementById('2309.07789v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05361">arXiv:2309.05361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05361">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Cross-tokamak Disruption Prediction based on Physics-Guided Feature Extraction and domain adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+F">Fengming Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Y">Yu Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+B">Binjia Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&amp;query=team%2C+J">J-TEXT team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05361v2-abstract-short" style="display: inline;"> The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The first step is to use the existing understanding of physics to extrac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05361v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05361v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05361v2-abstract-full" style="display: none;"> The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The first step is to use the existing understanding of physics to extract physics-guided features from the diagnostic signals of each tokamak, called physics-guided feature extraction (PGFE). The second step is to align a few data from the future tokamak (target domain) and a large amount of data from existing tokamak (source domain) based on a domain adaptation algorithm called CORrelation ALignment (CORAL). It is the first attempt at applying domain adaptation in the task of disruption prediction. PGFE has been successfully applied in J-TEXT to predict disruption with excellent performance. PGFE can also reduce the data volume requirements due to extracting the less device-specific features, thereby establishing a solid foundation for cross-tokamak disruption prediction. We have further improved CORAL (supervised CORAL, S-CORAL) to enhance its appropriateness in feature alignment for the disruption prediction task. To simulate the existing and future tokamak case, we selected J-TEXT as the existing tokamak and EAST as the future tokamak, which has a large gap in the ranges of plasma parameters. The utilization of the S-CORAL improves the disruption prediction performance on future tokamak. Through interpretable analysis, we discovered that the learned knowledge of the disruption prediction model through this approach exhibits more similarities to the model trained on large data volumes of future tokamak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05361v2-abstract-full').style.display = 'none'; document.getElementById('2309.05361v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.02590">arXiv:2309.02590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.02590">pdf</a>, <a href="https://arxiv.org/format/2309.02590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Artificial General Intelligence for Radiation Oncology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chenbin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengliang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Holmes%2C+J">Jason Holmes</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuzhen Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+P">Peng Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zihao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+H">Haixing Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+D">Dinggang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+N">Ninghao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Quanzheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+D">Dajiang Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tianming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.02590v1-abstract-short" style="display: inline;"> The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02590v1-abstract-full').style.display = 'inline'; document.getElementById('2309.02590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.02590v1-abstract-full" style="display: none;"> The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI&#39;s ability to exploit multimodal clinical data at scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02590v1-abstract-full').style.display = 'none'; document.getElementById('2309.02590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00575">arXiv:2309.00575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00575">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Critical roles of edge turbulent transport in the formation of high-field-side high-density front and density limit disruption in J-TEXT tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+P">Peng Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+L">Li Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Sun1%2C+H">Hongjuan Sun1</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qinghu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xin Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yanqiu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+Q">Qinlin Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhipeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Haosheng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhoujun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jingchun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&amp;query=team%2C+J">J-TEXT team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00575v1-abstract-short" style="display: inline;"> This article presents an in-depth study of the sequence of events leading to density limit disruption in J-TEXT tokamak plasmas, with an emphasis on boudary turbulent transport and the high-field-side high-density (HFSHD) front. These phenomena were extensively investigated by using Langmuir probe and Polarimeter-interferometer diagnostics. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00575v1-abstract-full" style="display: none;"> This article presents an in-depth study of the sequence of events leading to density limit disruption in J-TEXT tokamak plasmas, with an emphasis on boudary turbulent transport and the high-field-side high-density (HFSHD) front. These phenomena were extensively investigated by using Langmuir probe and Polarimeter-interferometer diagnostics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00575v1-abstract-full').style.display = 'none'; document.getElementById('2309.00575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11630">arXiv:2308.11630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11630">pdf</a>, <a href="https://arxiv.org/format/2308.11630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using Transfer Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cem%2C+A">Ali Cem</a>, <a href="/search/physics?searchtype=author&amp;query=Jovanovic%2C+O">Ognjen Jovanovic</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+S">Siqi Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yunhong Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zibar%2C+D">Darko Zibar</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Ros%2C+F">Francesco Da Ros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11630v2-abstract-short" style="display: inline;"> We present and experimentally evaluate using transfer learning to address experimental data scarcity when training neural network (NN) models for Mach-Zehnder interferometer mesh-based optical matrix multipliers. Our approach involves pre-training the model using synthetic data generated from a less accurate analytical model and fine-tuning with experimental data. Our investigation demonstrates th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11630v2-abstract-full').style.display = 'inline'; document.getElementById('2308.11630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11630v2-abstract-full" style="display: none;"> We present and experimentally evaluate using transfer learning to address experimental data scarcity when training neural network (NN) models for Mach-Zehnder interferometer mesh-based optical matrix multipliers. Our approach involves pre-training the model using synthetic data generated from a less accurate analytical model and fine-tuning with experimental data. Our investigation demonstrates that this method yields significant reductions in modeling errors compared to using an analytical model, or a standalone NN model when training data is limited. Utilizing regularization techniques and ensemble averaging, we achieve &lt; 1 dB root-mean-square error on the matrix weights implemented by a 3x3 photonic chip while using only 25% of the available data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11630v2-abstract-full').style.display = 'none'; document.getElementById('2308.11630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00907">arXiv:2308.00907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00907">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Frequency Tunable Magnetostatic Wave Filters With Zero Static Power Magnetic Biasing Circuitry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+X">Xingyu Du</a>, <a href="/search/physics?searchtype=author&amp;query=Idjadi%2C+M+H">Mohamad Hossein Idjadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yixiao Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Geers%2C+A+J">Alexander J. Geers</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+S">Shun Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Pyo%2C+J+B">Jun Beom Pyo</a>, <a href="/search/physics?searchtype=author&amp;query=Aflatouni%2C+F">Firooz Aflatouni</a>, <a href="/search/physics?searchtype=author&amp;query=Allen%2C+M">Mark Allen</a>, <a href="/search/physics?searchtype=author&amp;query=Olsson%2C+R+H">Roy H. Olsson III</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00907v3-abstract-short" style="display: inline;"> A single tunable filter simplifies complexity, reduces insertion loss, and minimizes size compared to frequency switchable filter banks commonly used for radio frequency (RF) band selection. Magnetostatic wave (MSW) filters stand out for their wide, continuous frequency tuning and high-quality factor. However, MSW filters employing electromagnets for tuning consume excessive power and space, unsui&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00907v3-abstract-full').style.display = 'inline'; document.getElementById('2308.00907v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00907v3-abstract-full" style="display: none;"> A single tunable filter simplifies complexity, reduces insertion loss, and minimizes size compared to frequency switchable filter banks commonly used for radio frequency (RF) band selection. Magnetostatic wave (MSW) filters stand out for their wide, continuous frequency tuning and high-quality factor. However, MSW filters employing electromagnets for tuning consume excessive power and space, unsuitable for consumer wireless applications. Here, we demonstrate miniature and high selectivity MSW tunable filters with zero static power consumption, occupying less than 2 cc. The center frequency is continuously tunable from 3.4 GHz to 11.1 GHz via current pulses of sub-millisecond duration applied to a small and nonvolatile magnetic bias assembly. This assembly is limited in the area over which it can achieve a large and uniform magnetic field, necessitating filters realized from small resonant cavities micromachined in thin films of Yttrium Iron Garnet. Filter insertion loss of 3.2 dB to 5.1 dB and out-of-band third order input intercept point greater than 41 dBm are achieved. The filter&#39;s broad frequency range, compact size, low insertion loss, high out-of-band linearity, and zero static power consumption are essential for protecting RF transceivers and antennas from interference, thus facilitating their use in mobile applications like IoT and 6G networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00907v3-abstract-full').style.display = 'none'; document.getElementById('2308.00907v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">65 pages, PDF; one supplementary note added, Revised spelling error in acknowledgement, results unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00844">arXiv:2307.00844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00844">pdf</a>, <a href="https://arxiv.org/format/2307.00844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Rotationally symmetric momentum flow produced by scattering on an anisotropic random medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yi Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00844v1-abstract-short" style="display: inline;"> As is well known that the distribution of the scattered radiation generated by an anisotropic scatterer usually lacks rotational symmetry about the direction of incidence due to the spatial anisotropy of the scatterer itself. Here we show that the rotationally symmetric distribution of the far-zone scattered momentum flow may be realized provided that the structural parameters of both the medium a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00844v1-abstract-full').style.display = 'inline'; document.getElementById('2307.00844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00844v1-abstract-full" style="display: none;"> As is well known that the distribution of the scattered radiation generated by an anisotropic scatterer usually lacks rotational symmetry about the direction of incidence due to the spatial anisotropy of the scatterer itself. Here we show that the rotationally symmetric distribution of the far-zone scattered momentum flow may be realized provided that the structural parameters of both the medium and the source are chosen suitably, when a polychromatic electromagnetic plane wave is scattered by an anisotropic Gaussian Schell-model medium. We derive necessary and sufficient conditions for producing such a symmetric distribution, and further elucidated the relationship between the spectral degree of polarization of the incident source and the rotationally symmetric momentum flow of the scattered field in the far zone. It is found that the realization of the rotationally symmetric scattered momentum flow is independent of the spectral degree of polarization of the source, i.e., the rotationally symmetric distribution of the far-zone scattered momentum flow is always realizable regardless of whether the incident source is fully polarized, partially polarized or completely unpolarized. Our results may find useful application in optical micromanipulation, especially when the optical force used to manipulate particles requires to be rotationally symmetric. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00844v1-abstract-full').style.display = 'none'; document.getElementById('2307.00844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16590">arXiv:2306.16590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16590">pdf</a>, <a href="https://arxiv.org/format/2306.16590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonlinearly Shaped Pulses in Photoinjectors and Free-Electron Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Neveu%2C+N">Nicole Neveu</a>, <a href="/search/physics?searchtype=author&amp;query=Lemons%2C+R">Randy Lemons</a>, <a href="/search/physics?searchtype=author&amp;query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jingyi Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yuantao Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Marinelli%2C+A">Agostino Marinelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carbajo%2C+S">Sergio Carbajo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16590v1-abstract-short" style="display: inline;"> Photoinjectors and Free Electron Lasers (FEL) are amongst the most advanced systems in accelerator physics and have consistently pushed the boundaries of emittance and x-ray peak power. In this paper, laser shaping at the cathode is proposed to further lower the emittance and reduce electron beam tails, which would result in brighter x-ray production. Using dispersion controlled nonlinear shaping&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16590v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16590v1-abstract-full" style="display: none;"> Photoinjectors and Free Electron Lasers (FEL) are amongst the most advanced systems in accelerator physics and have consistently pushed the boundaries of emittance and x-ray peak power. In this paper, laser shaping at the cathode is proposed to further lower the emittance and reduce electron beam tails, which would result in brighter x-ray production. Using dispersion controlled nonlinear shaping (DCNS), laser pulses and beam dynamics were simulated in LCLS-II. The photoinjector emittance was optimized and the resulting e-beam profiles were then simulated and optimized in the linac. Finally, the expected FEL performance is estimated and compared to the current technology: Gaussian laser pulses on the cathode. The e-beams produced by DCNS pulses show a potential for 35% increase in x-ray power per pulse during SASE when compared to the standard Gaussian laser pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16590v1-abstract-full').style.display = 'none'; document.getElementById('2306.16590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15804">arXiv:2306.15804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.15804">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> The Impact of Heterogeneous Shared Leadership in Scientific Teams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Huimin Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Meijun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Y">Yi Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Shujing Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chenwei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Acuna%2C+D+E">Daniel E. Acuna</a>, <a href="/search/physics?searchtype=author&amp;query=Gray%2C+S">Steven Gray</a>, <a href="/search/physics?searchtype=author&amp;query=Meyer%2C+E">Eric Meyer</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Ying Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15804v1-abstract-short" style="display: inline;"> Leadership is evolving dynamically from an individual endeavor to shared efforts. This paper aims to advance our understanding of shared leadership in scientific teams. We define three kinds of leaders, junior (10-15), mid (15-20), and senior (20+) based on career age. By considering the combinations of any two leaders, we distinguish shared leadership as heterogeneous when leaders are in differen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15804v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15804v1-abstract-full" style="display: none;"> Leadership is evolving dynamically from an individual endeavor to shared efforts. This paper aims to advance our understanding of shared leadership in scientific teams. We define three kinds of leaders, junior (10-15), mid (15-20), and senior (20+) based on career age. By considering the combinations of any two leaders, we distinguish shared leadership as heterogeneous when leaders are in different age cohorts and homogeneous when leaders are in the same age cohort. Drawing on 1,845,351 CS, 254,039 Sociology, and 193,338 Business teams with two leaders in the OpenAlex dataset, we identify that heterogeneous shared leadership brings higher citation impact for teams than homogeneous shared leadership. Specifically, when junior leaders are paired with senior leaders, it significantly increases team citation ranking by 1-2%, in comparison with two leaders of similar age. We explore the patterns between homogeneous leaders and heterogeneous leaders from team scale, expertise composition, and knowledge recency perspectives. Compared with homogeneous leaders, heterogeneous leaders are more adaptive in large teams, have more diverse expertise, and trace both the newest and oldest references. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15804v1-abstract-full').style.display = 'none'; document.getElementById('2306.15804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08723">arXiv:2306.08723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.08723">pdf</a>, <a href="https://arxiv.org/format/2306.08723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Hippocampus Substructure Segmentation Using Morphological Vision Transformer Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lei%2C+Y">Yang Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yifu Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+R+L+J">Richard L. J. Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Tonghe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Roper%2C+J">Justin Roper</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Y">Yabo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+H">Hui-Kuo Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+H">Hui Mao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xiaofeng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08723v1-abstract-short" style="display: inline;"> Background: The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. Purpose: To achieve accurate segmentation of the anterior and posterior regions of the hippoc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08723v1-abstract-full').style.display = 'inline'; document.getElementById('2306.08723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08723v1-abstract-full" style="display: none;"> Background: The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. Purpose: To achieve accurate segmentation of the anterior and posterior regions of the hippocampus from T1 weighted (T1w) MRI images, we developed a novel model, Hippo-Net, which uses a mutually enhanced strategy. Methods: The proposed model consists of two major parts: 1) a localization model is used to detect the volume-of-interest (VOI) of hippocampus. 2) An end-to-end morphological vision transformer network is used to perform substructures segmentation within the hippocampus VOI. A total of 260 T1w MRI datasets were used in this study. We conducted a five-fold cross-validation on the first 200 T1w MR images and then performed a hold-out test on the remaining 60 T1w MR images with the model trained on the first 200 images. Results: In five-fold cross-validation, the DSCs were 0.900+-0.029 and 0.886+-0.031for the hippocampus proper and parts of the subiculum, respectively. The MSD were 0.426+-0.115mm and 0.401+-0.100 mm for the hippocampus proper and parts of the subiculum, respectively. Conclusions: The proposed method showed great promise in automatically delineating hippocampus substructures on T1w MRI images. It may facilitate the current clinical workflow and reduce the physician effort. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08723v1-abstract-full').style.display = 'none'; document.getElementById('2306.08723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09968">arXiv:2305.09968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.09968">pdf</a>, <a href="https://arxiv.org/format/2305.09968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Phase Transition Points and Classical Probability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonglong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09968v1-abstract-short" style="display: inline;"> In order to gain a deeper understanding of complex systems and infer key information using minimal data, I classify all configurations based on classical probability, starting from the dimensions of energy and different categories of configurations. By utilizing the principle of maximum entropy, it is concluded that all possible configurations with the same energy have equal probabilities of occur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09968v1-abstract-full').style.display = 'inline'; document.getElementById('2305.09968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09968v1-abstract-full" style="display: none;"> In order to gain a deeper understanding of complex systems and infer key information using minimal data, I classify all configurations based on classical probability, starting from the dimensions of energy and different categories of configurations. By utilizing the principle of maximum entropy, it is concluded that all possible configurations with the same energy have equal probabilities of occurrence. By using different representations of high and low energy, the emergence of a transition point has been inferred. Finally, I take the Ising model as an example and calculate the transition point of the thermodynamic phase transition, which is determined to be 2.25. This value is very close to the simulation value obtained by Monte Carlo method, but I have only consumed a small amount of computational resources in the process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09968v1-abstract-full').style.display = 'none'; document.getElementById('2305.09968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ding%2C+Y&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10