CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;45 of 45 results for author: <span class="mathjax">Meng, Q</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Meng%2C+Q">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Meng, Q"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Meng%2C+Q&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Meng, Q"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23529">arXiv:2410.23529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23529">pdf</a>, <a href="https://arxiv.org/format/2410.23529">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Canonical-Polyadic-Decomposition of the Potential Energy Surface Fitted by Warm-Started Support Vector Regression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Miao%2C+Z">Zekai Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xingyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Q">Qingfei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingyong Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23529v1-abstract-short" style="display: inline;"> In this work, we propose a decoupled support vector regression (SVR) approach for direct canonical polyadic decomposition (CPD) of a potential energy surface (PES) through a set of discrete training energy data. This approach, denoted by CPD-SVR, is able to directly construct the PES in CPD with a more compressed form than previously developed Gaussian process regression (GPR) for CPD, denoted by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23529v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23529v1-abstract-full" style="display: none;"> In this work, we propose a decoupled support vector regression (SVR) approach for direct canonical polyadic decomposition (CPD) of a potential energy surface (PES) through a set of discrete training energy data. This approach, denoted by CPD-SVR, is able to directly construct the PES in CPD with a more compressed form than previously developed Gaussian process regression (GPR) for CPD, denoted by CPD-GRP ({\it J. Phys. Chem. Lett.} {\bf 13} (2022), 11128). Similar to CPD-GPR, the present CPD-SVR method requires the multi-dimension kernel function in a product of a series of one-dimensional functions. We shall show that, only a small set of support vectors play a role in SVR prediction making CPD-SVR predict lower-rank CPD than CPD-GPR. To save computational cost in determining support vectors, we propose a warm-started (ws) algorithm where a pre-existed crude PES is employed to classify the training data. With the warm-started algorithm, the present CPD-SVR approach is extended to the CPD-ws-SVR approach. Then, we test CPD-ws-SVR and compare it with CPD-GPR through constructions and applications of the PESs of H + H$_2$, H$_2$ + H$_2$, and H$_2$/Cu(111). To this end, the training data are computed by existed PESs. Calculations on H + H$_2$ predict a good agreement of dynamics results among various CPD forms, which are constructed through different approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23529v1-abstract-full').style.display = 'none'; document.getElementById('2410.23529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15100">arXiv:2410.15100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15100">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Flat Plasmonic Biosensing Interface on Optical Fiber End-Facet via SPP-MIM Hybridization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chenjia He</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xiaqing Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Hao Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingfeng Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xuetong Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Sihang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+L">Li Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+X">Xiangyang Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shengfu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+S">Shengce Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">Tian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15100v1-abstract-short" style="display: inline;"> We found that the specific dispersion of metal-insulator-metal (MIM) waveguide allows the hybridization of surface plasmon polaritons (SPPs) and the waveguide, which is not possible with dielectric waveguides. The SPP-MIM hybridization structure forms such a meta-film that integrates the previously incompatible respective merits of SPR and LSPR, including flat interfaces, high sensitivities, short&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15100v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15100v1-abstract-full" style="display: none;"> We found that the specific dispersion of metal-insulator-metal (MIM) waveguide allows the hybridization of surface plasmon polaritons (SPPs) and the waveguide, which is not possible with dielectric waveguides. The SPP-MIM hybridization structure forms such a meta-film that integrates the previously incompatible respective merits of SPR and LSPR, including flat interfaces, high sensitivities, short evanescent fields and easy coupling with confined light. On the other hand, to achieve stable and reproducible performance is one of the greatest unresolved challenges for the development of nanophotonic biosensors. We point out that the key is to obtain well-controlled biomolecular behaviors using simple physical interfaces, for which the SPP-MIM meta-film provides a capable solution. We embed the SPP-MIM meta-film with a plasmonic crystal cavity and integrate it on a single-mode fiber&#39;s end-facet to detect biomolecular interactions. This device demonstrates highly reproducible sensorgrams and convincing detection of biotinylated proteins at down to 30 fM, with the sensorgrams following the Langmuir model. By unprecedentedly having both high sensitivity and high reproducibility, our device proposal provides a comprehensive solution for optical fiber-tip plasmonic devices to turn into a useful industrial biosensing technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15100v1-abstract-full').style.display = 'none'; document.getElementById('2410.15100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">article + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02788">arXiv:2407.02788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02788">pdf</a>, <a href="https://arxiv.org/format/2407.02788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W">Wei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+L">Liang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Silenko%2C+A+J">Alexander J. Silenko</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Pengming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+L">Liping Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02788v1-abstract-short" style="display: inline;"> The rotation of electron vortex beams (EVBs) presents a complex interplay of the Gouy phase characterizing free-space behavior and Landau states or Larmor rotation observed in magnetic fields. Despite being studied separately, these phenomena manifest within a single beam during its propagation in magnetic fields, lacking a comprehensive description. We address this by utilizing exact solutions of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02788v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02788v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02788v1-abstract-full" style="display: none;"> The rotation of electron vortex beams (EVBs) presents a complex interplay of the Gouy phase characterizing free-space behavior and Landau states or Larmor rotation observed in magnetic fields. Despite being studied separately, these phenomena manifest within a single beam during its propagation in magnetic fields, lacking a comprehensive description. We address this by utilizing exact solutions of the relativistic paraxial equation in magnetic fields, termed &#34;paraxial Landau modes&#34;. The paraxial Landau modes describe the quantum states of EVBs in magnetic fields. Our study of rotation angles demonstrates consistency with experimental data, supporting the practical presence of these modes. We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles. This connection enhances our understanding of the Gouy phase and can be extended to nonuniform magnetic fields. Our theoretical analysis is validated through numerical simulations using the Chebyshev method. This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02788v1-abstract-full').style.display = 'none'; document.getElementById('2407.02788v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14085">arXiv:2404.14085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14085">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High efficient sunlight-driven CO2 hydrogenation to methanol over NiZn intermetallic catalysts under atmospheric pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+L">Linjia Han</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">Xianhua Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Q">Qixuan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yaguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14085v1-abstract-short" style="display: inline;"> The synthesis of solar methanol through direct CO2 hydrogenation using solar energy is of great importance in advancing a sustainable energy economy. In this study, non-precious NiZn intermetallic/ZnO catalyst is reported to catalyze the hydrogenation of CO2 to methanol using sunlight irradiation (1sun). The NiZn-ZnO interface is identified as the active site to stabilize the key intermediates of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14085v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14085v1-abstract-full" style="display: none;"> The synthesis of solar methanol through direct CO2 hydrogenation using solar energy is of great importance in advancing a sustainable energy economy. In this study, non-precious NiZn intermetallic/ZnO catalyst is reported to catalyze the hydrogenation of CO2 to methanol using sunlight irradiation (1sun). The NiZn-ZnO interface is identified as the active site to stabilize the key intermediates of HxCO*. At ambient pressure, the NiZn-ZnO catalyst demonstrates a methanol production rate of 127.5 umol g-1h-1 from solar driven CO2 hydrogenation, with a remarkable 100% selectivity towards methanol in the total organic products. Notably, this production rate stands as the highest record for photothermic CO2 hydrogenation to methanol in continuous-flow reactors with sunlight as the only requisite energy input. This discovery not only paves the way for the development of novel catalysts for CO2 hydrogenation to methanol but also marks a significant stride towards a full solar-driven chemical energy storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14085v1-abstract-full').style.display = 'none'; document.getElementById('2404.14085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06901">arXiv:2404.06901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06901">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-interface engineering to realize all-solution processed highly efficient Kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lou%2C+L">Licheng Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+K">Kang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+M">Menghan Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shudan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">Tan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06901v1-abstract-short" style="display: inline;"> With the rapid development of Kesterite Cu2ZnSn(S, Se)4 solar cells in the past few years, how to achieve higher cost-performance ratio has become an important topic in the future development and industrialization of this technology. Herein, we demonstrate an all-solution route for the cell fabrication, in particular targeting at the solution processed window layer comprised of ZnO nanoparticles/A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06901v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06901v1-abstract-full" style="display: none;"> With the rapid development of Kesterite Cu2ZnSn(S, Se)4 solar cells in the past few years, how to achieve higher cost-performance ratio has become an important topic in the future development and industrialization of this technology. Herein, we demonstrate an all-solution route for the cell fabrication, in particular targeting at the solution processed window layer comprised of ZnO nanoparticles/Ag nanowires. A multi-interface engineering strategy assisted by organic polymers and molecules is explored to synergistically improve the film deposition, passivate the surface defects and facilitate the charge transfer. These efforts help us achieve high-performance and robust Kesterite solar cells at extremely low time and energy costs, with efficiency records of 14.37% and 13.12% being realized in rigid and flexible Kesterite solar cells, respectively. Our strategy here is also promising to be transplanted into other solar cells with similar geometric and energy band structures, helping reduce production costs and shorten the production cycle (i.e. increasing production capacity) of these photovoltaic industries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06901v1-abstract-full').style.display = 'none'; document.getElementById('2404.06901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05974">arXiv:2404.05974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05974">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Vacancy enhanced cation ordering enables &gt;15% efficiency in Kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+L">Licheng Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+K">Kang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+M">Menghan Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05974v1-abstract-short" style="display: inline;"> Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and sev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05974v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05974v1-abstract-full" style="display: none;"> Atomic disorder, a widespread problem in compound crystalline materials, is a imperative affecting the performance of multi-chalcogenide Cu2ZnSn(S, Se)4 (CZTSSe) photovoltaic device known for its low cost and environmental friendliness. Cu-Zn disorder is particularly abundantly present in CZTSSe due to its extraordinarily low formation energy, having induced high-concentration deep defects and severe charge loss, while its regulation remains challenging due to the contradiction between disorder-order phase transition thermodynamics and atom-interchange kinetics. Herein, through introducing more vacancies in the CZTSSe surface, we explored a vacancy-assisted strategy to reduce the atom-interchange barrier limit to facilitate the Cu-Zn ordering kinetic process. The improvement in the Cu-Zn order degree has significantly reduced the charge loss in the device and helped us realize 15.4% (certified at 14.9%) and 13.5% efficiency (certified at 13.3%) in 0.27 cm2 and 1.1 cm2-area CZTSSe solar cells, respectively, thus bringing substantial advancement for emerging inorganic thin-film photovoltaics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05974v1-abstract-full').style.display = 'none'; document.getElementById('2404.05974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00291">arXiv:2404.00291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00291">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Gradient bandgap enables &gt;13% efficiency sulfide Kesterite solar cells with open-circuit voltage over 800 mV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yin%2C+K">Kang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+L">Licheng Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+M">Menghan Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00291v1-abstract-short" style="display: inline;"> Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues, however, has not been effectively realized in Kesterite solar cells due to the challenges in contr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00291v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00291v1-abstract-full" style="display: none;"> Sulfide Kesterite Cu2ZnSnS4 (CZTS), a nontoxic and low-cost photovoltaic material, has always being facing severe charge recombination and poor carrier transport, resulting in the cell efficiency record stagnating around 11% for years. Gradient bandgap is a promising approach to relieve these issues, however, has not been effectively realized in Kesterite solar cells due to the challenges in controlling the gradient distribution of alloying elements at high temperatures. Herein, targeting at the Cd alloyed CZTS, we propose a pre-crystallization strategy to reduce the intense vertical mass transport and Cd rapid diffusion in the film growth process, thereby realizing front Cd-gradient CZTS absorber. The Cd-gradient CZTS absorber, exhibiting downward bending conduction band structure, has significantly enhanced the minority carrier transport and additionally improved band alignment and interface property of CZTS/CdS heterojunction. Ultimately, we have achieved a champion total-area efficiency of 13.5% (active-area efficiency: 14.1%) in the cell and in particular a high open-circuit voltage of &gt;800 mV. We have also achieved a certified total-area cell efficiency of 13.16%, realizing a substantial step forward for the pure sulfide Kesterite solar cell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00291v1-abstract-full').style.display = 'none'; document.getElementById('2404.00291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14361">arXiv:2311.14361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14361">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwad336">10.1093/nsr/nwad336 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deciphering and integrating invariants for neural operator learning with various physical mechanisms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhi-Ming Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14361v2-abstract-short" style="display: inline;"> Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Inv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14361v2-abstract-full').style.display = 'inline'; document.getElementById('2311.14361v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14361v2-abstract-full" style="display: none;"> Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Invariant Attention Neural Operator (PIANO) to decipher and integrate the physical invariants (PI) for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6\%-82.2\% on PDE forecasting tasks across varying coefficients, forces, or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO. The source code will be publicly available at: https://github.com/optray/PIANO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14361v2-abstract-full').style.display = 'none'; document.getElementById('2311.14361v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03954">arXiv:2311.03954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03954">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48850-9">10.1038/s41467-024-48850-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Defect Regulation by Palladium Incorporation towards Grain Boundaries of Kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+K">Kang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+L">Licheng Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiazheng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shiyou Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03954v1-abstract-short" style="display: inline;"> Kesterite Cu2ZnSn(S, Se)4 (CZTSSe) solar cell has emerged as one of the most promising candidates for thin-film photovoltaics. However, severe charge losses occurring at the grain boundaries (GBs) of Kesterite polycrystalline absorbers has hindered the improvement of cell performance. Herein, we report a redox reaction strategy involving palladium (Pd) to eliminate atomic vacancy defects such as V&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03954v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03954v1-abstract-full" style="display: none;"> Kesterite Cu2ZnSn(S, Se)4 (CZTSSe) solar cell has emerged as one of the most promising candidates for thin-film photovoltaics. However, severe charge losses occurring at the grain boundaries (GBs) of Kesterite polycrystalline absorbers has hindered the improvement of cell performance. Herein, we report a redox reaction strategy involving palladium (Pd) to eliminate atomic vacancy defects such as VSn and VSe in GBs of the Kesterite absorbers. We demonstrate that PdSex compounds could form during the selenization process and distribute at the GBs and the absorber surfaces; thereby aid in the suppression of Sn and Se volatilization loss and inhibiting the formation of VSn and VSe defects. Furthermore, Pd(II)/Pd(IV) serves as a redox shuttle, i.e., on one hand, Pd(II) captures Se vapor from the reaction environment to produce PdSe2, on the other hand, PdSe2 provides Se atoms to the Kesterite absorber by being reduced to PdSe, thus contributing to the elimination of pre-existing VSe defects within GBs. These effects collectively reduce defects and enhance the p-type characteristics of the Kesterite absorber, leading to a significant reduction in charge recombination loss within the cell. As a result, high-performance Kesterite solar cells with a total-area efficiency of 14.5% have been achieved. This remarkable efficiency increase benefited from the redox reaction strategy offers a promising avenue for the precise regulation of defects in Kesterite solar cells and holds generally significant implications for the exploration of various other photovoltaic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03954v1-abstract-full').style.display = 'none'; document.getElementById('2311.03954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 2024, 15, 4344 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12587">arXiv:2309.12587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.12587">pdf</a>, <a href="https://arxiv.org/ps/2309.12587">ps</a>, <a href="https://arxiv.org/format/2309.12587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Coverage Dependent H$_2$ Desorption Energy: a Quantitative Explanation Based on Encounter Desorption Mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingkuan Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Q">Qiang Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+G">Gang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Quan%2C+D">Donghui Quan</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuge%2C+M">Masashi Tsuge</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xia Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiao-Hu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12587v1-abstract-short" style="display: inline;"> Recent experiments show that the desorption energy of H$_2$ on a diamond-like carbon (DLC) surface depends on the H$_2$ coverage of the surface. We aim to quantitatively explain the coverage dependent H$_2$ desorption energy measured by the experiments. We derive a math formula to calculate an effective H$_2$ desorption energy based on the encounter desorption mechanism. The effective H$_2$ desorp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12587v1-abstract-full').style.display = 'inline'; document.getElementById('2309.12587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12587v1-abstract-full" style="display: none;"> Recent experiments show that the desorption energy of H$_2$ on a diamond-like carbon (DLC) surface depends on the H$_2$ coverage of the surface. We aim to quantitatively explain the coverage dependent H$_2$ desorption energy measured by the experiments. We derive a math formula to calculate an effective H$_2$ desorption energy based on the encounter desorption mechanism. The effective H$_2$ desorption energy depends on two key parameters, the desorption energy of H$_2$ on H$_2$ substrate and the ratio of H$_2$ diffusion barrier to its desorption energy. The calculated effective H$_2$ desorption energy qualitatively agrees with the coverage dependent H$_2$ desorption energy measured by the experiments if the values of these two parameters in literature are used in the calculations. We argue that the difference between the effective H$_2$ desorption energy and the experimental results is due to the lacking of knowledge about these two parameters. So, we recalculate these two parameters based on experimental data. Good agreement between theoretical and experimental results can be achieved if these two updated parameters are used in the calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12587v1-abstract-full').style.display = 'none'; document.getElementById('2309.12587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,6 figures,2 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12783">arXiv:2307.12783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12783">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Ni-O-Ag catalyst enables 103-m$^2$ artificial photosynthesis with &gt;16% solar-to-chemical energy conversion efficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yaguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Q">Qixuan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+D">Dachao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haixiao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=San%2C+X">Xingyuan San</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shufang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12783v1-abstract-short" style="display: inline;"> Herein, NiO nanosheets supported with Ag single atoms are synthesized for photothermal CO2 hydrogenation to achieve 1065 mmol g$^{-1}$ h$^{-1}$ of CO production rate under 1 sun irradiation, revealing the unparalleled weak sunlight driven reverse water-gas shift reaction (RWGS) activity. This performance is attributed to the coupling effect of Ag-O-Ni sites to enhance the hydrogenation of CO$_2$ a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12783v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12783v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12783v1-abstract-full" style="display: none;"> Herein, NiO nanosheets supported with Ag single atoms are synthesized for photothermal CO2 hydrogenation to achieve 1065 mmol g$^{-1}$ h$^{-1}$ of CO production rate under 1 sun irradiation, revealing the unparalleled weak sunlight driven reverse water-gas shift reaction (RWGS) activity. This performance is attributed to the coupling effect of Ag-O-Ni sites to enhance the hydrogenation of CO$_2$ and weaken the CO adsorption, resulting in 1434 mmol g$^{-1}$ h$^{-1}$ of CO yield at 300$^\circ$ C, surpassing any low-temperature RWGS performances ever reported. Building on this, we integrated the 2D Ni$_1$Ag$_{0.02}$O$_1$ supported photothermal RWGS with commercial photovoltaic electrolytic water splitting, leading to the realization of 103 m$^2$ scale artificial photosynthesis system (CO$_2$+H$_2$$\to$CO+H$_2$O) with a daily CO yield of 18.70 m$^3$, a photochemical energy conversion efficiency of &gt;16%, over 90% H$_2$ ultilization efficiency, outperforming other types of artificial photosynthesis. The results of this research chart a promising course for designing practical, natural sunlight-driven artificial photosynthesis systems and highly efficient platinum-free CO$_2$ hydrogenation catalysts. This work is a significant step towards harnessing solar energy more efficiently and sustainably, opening exciting possibilities for future research and development in this area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12783v1-abstract-full').style.display = 'none'; document.getElementById('2307.12783v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11583">arXiv:2306.11583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11583">pdf</a>, <a href="https://arxiv.org/ps/2306.11583">ps</a>, <a href="https://arxiv.org/format/2306.11583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-08109-1">10.1038/s41586-024-08109-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A broadband hyperspectral image sensor with high spatio-temporal resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bian%2C+L">Liheng Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuzhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lianjie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yinuo Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+W">Wen Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jiajun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+C">Chunli Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qinghao Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xuan Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11583v4-abstract-short" style="display: inline;"> Hyperspectral imaging provides high-dimensional spatial-temporal-spectral information revealing intrinsic matter characteristics. Here we report an on-chip computational hyperspectral imaging framework with high spatial and temporal resolution. By integrating different broadband modulation materials on the image sensor chip, the target spectral information is non-uniformly and intrinsically couple&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11583v4-abstract-full').style.display = 'inline'; document.getElementById('2306.11583v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11583v4-abstract-full" style="display: none;"> Hyperspectral imaging provides high-dimensional spatial-temporal-spectral information revealing intrinsic matter characteristics. Here we report an on-chip computational hyperspectral imaging framework with high spatial and temporal resolution. By integrating different broadband modulation materials on the image sensor chip, the target spectral information is non-uniformly and intrinsically coupled on each pixel with high light throughput. Using intelligent reconstruction algorithms, multi-channel images can be recovered from each frame, realizing real-time hyperspectral imaging. Following such a framework, we for the first time fabricated a broadband VIS-NIR (400-1700 nm) hyperspectral imaging sensor using photolithography, with an average light throughput of 74.8% and 96 wavelength channels. The demonstrated resolution is 1,024*1,024 pixels at 124 fps. We demonstrated its wide applications including chlorophyll and sugar quantification for intelligent agriculture, blood oxygen and water quality monitoring for human health, textile classification and apple bruise detection for industrial automation, and remote lunar detection for astronomy. The integrated hyperspectral image sensor weighs only tens of grams, and can be assembled on various resource-limited platforms or equipped with off-the-shelf optical systems. The technique transforms the challenge of high-dimensional imaging from a high-cost manufacturing and cumbersome system to one that is solvable through on-chip compression and agile computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11583v4-abstract-full').style.display = 'none'; document.getElementById('2306.11583v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18209">arXiv:2305.18209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18209">pdf</a>, <a href="https://arxiv.org/format/2305.18209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Complex-valued neural operator assisted soliton identification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Deng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guanghui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhiming Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18209v1-abstract-short" style="display: inline;"> The numerical determination of solitary states is an important topic for such research areas as Bose-Einstein condensates, nonlinear optics, plasma physics, etc. In this paper, we propose a data-driven approach for identifying solitons based on dynamical solutions of real-time differential equations. Our approach combines a machine-learning architecture called the complex-valued neural operator (C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18209v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18209v1-abstract-full" style="display: none;"> The numerical determination of solitary states is an important topic for such research areas as Bose-Einstein condensates, nonlinear optics, plasma physics, etc. In this paper, we propose a data-driven approach for identifying solitons based on dynamical solutions of real-time differential equations. Our approach combines a machine-learning architecture called the complex-valued neural operator (CNO) with an energy-restricted gradient optimization. The former serves as a generalization of the traditional neural operator to the complex domain, and constructs a smooth mapping between the initial and final states; the latter facilitates the search for solitons by constraining the energy space. We concretely demonstrate this approach on the quasi-one-dimensional Bose-Einstein condensate with homogeneous and inhomogeneous nonlinearities. Our work offers a new idea for data-driven effective modeling and studies of solitary waves in nonlinear physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18209v1-abstract-full').style.display = 'none'; document.getElementById('2305.18209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06041">arXiv:2305.06041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06041">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/aenm.202301701">10.1002/aenm.202301701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heterojunction interface regulation to realize high-performance flexible Kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiazheng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+K">Kang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+L">Licheng Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06041v1-abstract-short" style="display: inline;"> Flexible Cu2ZnSn(S, Se)4 (CZTSSe) solar cells take the advantages of environmental friendliness, low cost, and multi-scenario applications, and have drawn extensive attention in recent years. Compared with rigid devices, the lack of alkali metal elements in the flexible substrate is the main factor limiting the performance of flexible CZTSSe solar cells. This work proposes a Rb ion additive strate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06041v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06041v1-abstract-full" style="display: none;"> Flexible Cu2ZnSn(S, Se)4 (CZTSSe) solar cells take the advantages of environmental friendliness, low cost, and multi-scenario applications, and have drawn extensive attention in recent years. Compared with rigid devices, the lack of alkali metal elements in the flexible substrate is the main factor limiting the performance of flexible CZTSSe solar cells. This work proposes a Rb ion additive strategy to simultaneously regulate the CZTSSe film surface properties and the CdS chemical bath deposition (CBD) processes. Material and chemical characterization reveals that Rb ions can passivate the detrimental Se0 cluster defect and additionally provide a more active surface for the CdS epitaxial growth. Furthermore, Rb can also coordinate with thiourea (TU) in the CBD solution and improve the ion-by-ion deposition of the CdS layer. Finally, the flexible CZTSSe cell fabricated by this strategy has reached a high total-area efficiency of 12.63% (active-area efficiency of 13.2%), with its VOC and FF reaching 538 mV and 0.70, respectively. This work enriches the alkali metal passivation strategies and provides new ideas for further improving flexible CZTSSe solar cells in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06041v1-abstract-full').style.display = 'none'; document.getElementById('2305.06041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Energy Materials 2023, 13 (38), 2301701 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.10255">arXiv:2302.10255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.10255">pdf</a>, <a href="https://arxiv.org/format/2302.10255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xinquan Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+W">Wenlei Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">Xiaotian Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.10255v2-abstract-short" style="display: inline;"> Neural networks have shown great potential in accelerating the solution of partial differential equations (PDEs). Recently, there has been a growing interest in introducing physics constraints into training neural PDE solvers to reduce the use of costly data and improve the generalization ability. However, these physics constraints, based on certain finite dimensional approximations over the funct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10255v2-abstract-full').style.display = 'inline'; document.getElementById('2302.10255v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.10255v2-abstract-full" style="display: none;"> Neural networks have shown great potential in accelerating the solution of partial differential equations (PDEs). Recently, there has been a growing interest in introducing physics constraints into training neural PDE solvers to reduce the use of costly data and improve the generalization ability. However, these physics constraints, based on certain finite dimensional approximations over the function space, must resolve the smallest scaled physics to ensure the accuracy and stability of the simulation, resulting in high computational costs from large input, output, and neural networks. This paper proposes a general acceleration methodology called NeuralStagger by spatially and temporally decomposing the original learning tasks into several coarser-resolution subtasks. We define a coarse-resolution neural solver for each subtask, which requires fewer computational resources, and jointly train them with the vanilla physics-constrained loss by simply arranging their outputs to reconstruct the original solution. Due to the perfect parallelism between them, the solution is achieved as fast as a coarse-resolution neural solver. In addition, the trained solvers bring the flexibility of simulating with multiple levels of resolution. We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations, which leads to an additional $10\sim100\times$ speed-up. Moreover, the experiment also shows that the learned model could be well used for optimal control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10255v2-abstract-full').style.display = 'none'; document.getElementById('2302.10255v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICML 2023 accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04618">arXiv:2212.04618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.04618">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0138088">10.1063/5.0138088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling particle collisions in moderately dense curtain impacted by an incident shock wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Pikai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+F">Yun Feng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shangpeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingyang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04618v1-abstract-short" style="display: inline;"> The interactions between an incident shock and moderately dense particle curtain are simulated with the Eulerian-Lagrangian method. A customized solver based on OpenFOAM is extended with an improved drag model and collision model, and then validated against two benchmark experiments. In this work, parametric studies are performed considering different particle sizes, volume fractions, and curtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04618v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04618v1-abstract-full" style="display: none;"> The interactions between an incident shock and moderately dense particle curtain are simulated with the Eulerian-Lagrangian method. A customized solver based on OpenFOAM is extended with an improved drag model and collision model, and then validated against two benchmark experiments. In this work, parametric studies are performed considering different particle sizes, volume fractions, and curtain thicknesses. It is found that smaller particle size and larger volume fractions lead to stronger reflected shock and weaker transmitted shock. Different expansion stages of the curtain fronts are also studied in detail. Attention is paid to the particle collision effects on the curtain evolution behaviours. According to our results, for the mono-dispersed particle curtain, the collision effects on curtain front behaviors are small, even when the initial particle volume fraction is as high as 20%. This is due to the positive velocity gradient across the curtain after the shock wave passage, leading to faster motion of downstream particles than the upstream ones and hence no collision occurs. For the bi-dispersed particle curtain, the collision effects become important in the mixing region of different-size particles. Collisions decelerate small particles while accelerate large ones and cause velocity scattering. Moreover, increasing the bi-dispersed curtain thickness leads to multiple collision force peaks due to the local particle accumulations, which is the result of the delayed separation of different particle groups. Our results indicate that the collision model may be unnecessary to predict curtain fronts in mono-dispersed particles, but in bi-dispersed particles, the collision effects are important and therefore must be modelled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04618v1-abstract-full').style.display = 'none'; document.getElementById('2212.04618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13714">arXiv:2210.13714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13714">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41560-023-01251-6">10.1038/s41560-023-01251-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A precisely regulating phase evolution strategy for highly efficient kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiazheng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+L">Licheng Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+K">Kang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Y">Yuancai Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xin%2C+H">Hao Xin</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13714v1-abstract-short" style="display: inline;"> Phase evolution during the selenization is crucial for high-quality kesterite Cu2ZnSn(S, Se)4 (CZTSSe) absorbers and efficient solar cells. Herein, we regulate kinetic process of phase evolution from Cu+-Sn4+-MOE (MOE: 2-methoxyethanol) system by precisely controlling positive chamber pressure. We found that, at the heating-up stage, Se vapor concentration is intentionally suppressed in low-temper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13714v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13714v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13714v1-abstract-full" style="display: none;"> Phase evolution during the selenization is crucial for high-quality kesterite Cu2ZnSn(S, Se)4 (CZTSSe) absorbers and efficient solar cells. Herein, we regulate kinetic process of phase evolution from Cu+-Sn4+-MOE (MOE: 2-methoxyethanol) system by precisely controlling positive chamber pressure. We found that, at the heating-up stage, Se vapor concentration is intentionally suppressed in low-temperature region, which effectively reduces collision probability between the CZTS and Se atoms, thus remarkably inhibiting formation of secondary phases on the surface and multiple-step phase evolution processes. This strategy enables the phase evolution to start at relatively higher temperature and thereby leading to high crystalline quality CZTSSe absorber with fewer defects, and corresponding CZTSSe solar cell can present 14.1% efficiency (total area), which is the highest result so far. This work provides important insights into selenization mechanism of CZTSSe absorbers and explores a new way of kinetic regulation strategy to simplify the phase evolution path to efficient CZTSSe solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13714v1-abstract-full').style.display = 'none'; document.getElementById('2210.13714v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Energy 8, 526 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04025">arXiv:2210.04025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.04025">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Transmission of hydrogen detonation across a curtain of dilute inert particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Pikai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingyang Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shangpeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04025v1-abstract-short" style="display: inline;"> Transmission of hydrogen detonation wave (DW) in an inert particle curtain is simulated using the Eulerian-Lagrangian approach with gas-particle two-way coupling. A detailed chemical mechanism is used for hydrogen detonative combustion and parametric studies are conducted based on a two-dimensional computational domain. A detonation map of propagation and extinction corresponding to various partic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04025v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04025v1-abstract-full" style="display: none;"> Transmission of hydrogen detonation wave (DW) in an inert particle curtain is simulated using the Eulerian-Lagrangian approach with gas-particle two-way coupling. A detailed chemical mechanism is used for hydrogen detonative combustion and parametric studies are conducted based on a two-dimensional computational domain. A detonation map of propagation and extinction corresponding to various particle sizes, concentrations, and curtain thicknesses is plotted. It is shown that the critical curtain thickness decreases considerably when the particle concentration is less than the critical value. The effects of curtain thickness on the trajectories of peak pressure, shock front speed, and heat release rate are examined. Three propagation modes of the DW in particle curtain are found: detonation transmission, partial extinction and detonation reinitiation, and detonation extinction. The chemical explosive mode analysis confirms that a detonation re-initiation event is caused by a re-initiation point with high pressure and explosive propensity, resulting from transverse shock focusing. The influence of particle dimeter and concentration, and curtain thickness on the DW are also examined with peak pressure trajectories, shock speed, and interphase exchange rates of energy and momentum. Furthermore, the evolutions of curtain morphologies are analyzed by the particle velocity, volume fraction, Stokes drag and Archimedes force. This analysis confirms the importance of the drag force in influencing the change of curtain morphologies. Different curtain evolution regimes are found: quasi-stationary regime, shrinkage regime, constant-thickness regime, and expansion regime. Finally, the influences of the curtain thickness on the characteristic time of curtain evolutions are studied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04025v1-abstract-full').style.display = 'none'; document.getElementById('2210.04025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02639">arXiv:2210.02639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02639">pdf</a>, <a href="https://arxiv.org/format/2210.02639">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.075435">10.1103/PhysRevB.107.075435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optomechanical Effects in Nanocavity-enhanced Resonant Raman Scattering of a Single Molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">Xuan-Ming Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shunping Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qiu-Shi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+G">Guangchao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+S">Siyuan Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Luxia Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Boto%2C+R+A">Roberto A. Boto</a>, <a href="/search/physics?searchtype=author&amp;query=Shan%2C+C">Chongxin Shan</a>, <a href="/search/physics?searchtype=author&amp;query=Aizpurua%2C+J">Javier Aizpurua</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02639v1-abstract-short" style="display: inline;"> In this article, we address the optomechanical effects in surface-enhanced resonant Raman scattering (SERRS) from a single molecule in a nano-particle on mirror (NPoM) nanocavity by developing a quantum master equation theory, which combines macroscopic quantum electrodynamics and electron-vibration interaction within the framework of open quantum system theory. We supplement the theory with elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02639v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02639v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02639v1-abstract-full" style="display: none;"> In this article, we address the optomechanical effects in surface-enhanced resonant Raman scattering (SERRS) from a single molecule in a nano-particle on mirror (NPoM) nanocavity by developing a quantum master equation theory, which combines macroscopic quantum electrodynamics and electron-vibration interaction within the framework of open quantum system theory. We supplement the theory with electromagnetic simulations and time-dependent density functional theory calculations in order to study the SERRS of a methylene blue molecule in a realistic NPoM nanocavity. The simulations allow us not only to identify the conditions to achieve conventional optomechanical effects, such as vibrational pumping, non-linear scaling of Stokes and anti-Stokes scattering, but also to discovery distinct behaviors, such as the saturation of exciton population, the emergence of Mollow triplet side-bands, and higher-order Raman scattering. All in all, our study might guide further investigations of optomechanical effects in resonant Raman scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02639v1-abstract-full').style.display = 'none'; document.getElementById('2210.02639v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages; 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11913">arXiv:2209.11913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11913">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Structure and dynamics of spray detonation in n-heptane droplet-vapor-air mixtures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingyang Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Majie Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Liangqi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11913v1-abstract-short" style="display: inline;"> Spray detonation in n-heptane two-phase mixtures is simulated using Eulerian Lagrangian method. Two-dimensional configuration is considered, and the effects of droplet diameter and liquid equivalence ratio on detonation propagation, structure, and dynamics are investigated. The results show that the average detonation propagation speed first increases and then decreases as liquid equivalence ratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11913v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11913v1-abstract-full" style="display: none;"> Spray detonation in n-heptane two-phase mixtures is simulated using Eulerian Lagrangian method. Two-dimensional configuration is considered, and the effects of droplet diameter and liquid equivalence ratio on detonation propagation, structure, and dynamics are investigated. The results show that the average detonation propagation speed first increases and then decreases as liquid equivalence ratio changes, and the speed peaks at higher liquid equivalence ratio for larger droplets. The triple points and transverse detonations vaporize or aerodynamically expel the droplets from their trajectories, resulting in non-uniform distributions of fuel vapor and reaction zones behind the detonation. In addition, droplet dispersion distance in the post-detonation area increases for larger droplets due to lower evaporation. Moreover, small droplets generally lead to higher detonated n-heptane fraction, and fuel detonative combustion directly affects the variations of detonated fuel fraction. For larger droplets, V shaped dependence on liquid equivalence ratio is seen for large droplets, dominated by variations of post-detonation deflagration. It is found that spray detonation structure is significantly influenced by liquid fuel equivalence ratio and droplet diameter. The dependence of key locations in spray detonation structure on liquid fuel properties is also evaluated, e.g., reaction front and sonic plane. Furthermore, the leading shock Mach number slightly decreases with droplet size. When the liquid equivalence ratio is high, spray detonation exhibits pronounced unsteadiness, such as instantaneous or complete extinction. Either extinction is caused by strong heat absorption of evaporating droplets behind the shock. Moreover, localized detonative spot is observed due to the compression of multiple transverse shocks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11913v1-abstract-full').style.display = 'none'; document.getElementById('2209.11913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02202">arXiv:2209.02202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02202">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient Extraction of Hot Carriers in Perovskite Quantum Dot through Building State Coupled Complex </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yusheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Junke Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dandan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yajima%2C+S">Shota Yajima</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hua Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchimoto%2C+A">Akihito Fuchimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hongshi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+G">Guozheng Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Hayase%2C+S">Shuzi Hayase</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+S">Shuxia Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+C">Chao Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Q">Qing Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02202v1-abstract-short" style="display: inline;"> Utilizing hot carriers is the crucial approach for solar cell to exceed the thermodynamic detailed balance limit, yet effective extraction of hot carriers in absorber materials via most commonly used semiconductor acceptors has been a challenge in both materials and photophysics research for many years. Herein, we build series of CsPbI3 quantum dot and fullerene derivative systems to explore the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02202v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02202v1-abstract-full" style="display: none;"> Utilizing hot carriers is the crucial approach for solar cell to exceed the thermodynamic detailed balance limit, yet effective extraction of hot carriers in absorber materials via most commonly used semiconductor acceptors has been a challenge in both materials and photophysics research for many years. Herein, we build series of CsPbI3 quantum dot and fullerene derivative systems to explore the decisive factors of this process and have for the first time realized efficient hot carrier extraction in these systems (maximum extraction efficiency ~ 84%). We find building the systems as state-coupled complexes creates new carrier transport channels at about 0.22 eV above CsPbI3 quantum dot bandgap, which facilitates highly efficient HC extraction. Our research directly visualizes the inner connection of molecule interaction and ultrafast hot carrier extraction. The knowledge and strategy gained here are of universal meaning, taking an important step forward true hot carrier photovoltaics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02202v1-abstract-full').style.display = 'none'; document.getElementById('2209.02202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07814">arXiv:2208.07814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07814">pdf</a>, <a href="https://arxiv.org/format/2208.07814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.056003">10.1103/PhysRevD.109.056003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Does Lorentz-symmetric design boost network performance in jet physics? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Congqiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+H">Huilin Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+S">Sitian Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+S">Shiqi Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jue Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tie-Yan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07814v3-abstract-short" style="display: inline;"> In the deep learning era, improving the neural network performance in jet physics is a rewarding task as it directly contributes to more accurate physics measurements at the LHC. Recent research has proposed various network designs in consideration of the full Lorentz symmetry, but its benefit is still not systematically asserted, given that there remain many successful networks without taking it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07814v3-abstract-full').style.display = 'inline'; document.getElementById('2208.07814v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07814v3-abstract-full" style="display: none;"> In the deep learning era, improving the neural network performance in jet physics is a rewarding task as it directly contributes to more accurate physics measurements at the LHC. Recent research has proposed various network designs in consideration of the full Lorentz symmetry, but its benefit is still not systematically asserted, given that there remain many successful networks without taking it into account. We conduct a detailed study on the Lorentz-symmetric design. We propose two generalized approaches for modifying a network - these methods are experimented on Particle Flow Network, ParticleNet, and LorentzNet, and exhibit a general performance gain. We also reveal that the notable improvement attributed to the &#34;pairwise mass&#34; feature in the network is due to its introduction of a structure that fully complies with Lorentz symmetry. We confirm that Lorentz-symmetry preservation serves as a strong inductive bias of jet physics, hence calling for attention to such general recipes in future network designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07814v3-abstract-full').style.display = 'none'; document.getElementById('2208.07814v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 056003 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09571">arXiv:2206.09571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09571">pdf</a>, <a href="https://arxiv.org/format/2206.09571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Deep Random Vortex Method for Simulation and Inference of Navier-Stokes Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+P">Peiyan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+R">Rongchan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Bingguang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhi-Ming Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09571v2-abstract-short" style="display: inline;"> Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air. Due to the importance of Navier-Stokes equations, the development on efficient numerical schemes is important for both science and engineer. Recently, with the development of AI techniques, several approaches have been designed to integrate deep neural networks in simu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09571v2-abstract-full').style.display = 'inline'; document.getElementById('2206.09571v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09571v2-abstract-full" style="display: none;"> Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air. Due to the importance of Navier-Stokes equations, the development on efficient numerical schemes is important for both science and engineer. Recently, with the development of AI techniques, several approaches have been designed to integrate deep neural networks in simulating and inferring the fluid dynamics governed by incompressible Navier-Stokes equations, which can accelerate the simulation or inferring process in a mesh-free and differentiable way. In this paper, we point out that the capability of existing deep Navier-Stokes informed methods is limited to handle non-smooth or fractional equations, which are two critical situations in reality. To this end, we propose the \emph{Deep Random Vortex Method} (DRVM), which combines the neural network with a random vortex dynamics system equivalent to the Navier-Stokes equation. Specifically, the random vortex dynamics motivates a Monte Carlo based loss function for training the neural network, which avoids the calculation of derivatives through auto-differentiation. Therefore, DRVM not only can efficiently solve Navier-Stokes equations involving rough path, non-differentiable initial conditions and fractional operators, but also inherits the mesh-free and differentiable benefits of the deep-learning-based solver. We conduct experiments on the Cauchy problem, parametric solver learning, and the inverse problem of both 2-d and 3-d incompressible Navier-Stokes equations. The proposed method achieves accurate results for simulation and inference of Navier-Stokes equations. Especially for the cases that include singular initial conditions, DRVM significantly outperforms existing PINN method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09571v2-abstract-full').style.display = 'none'; document.getElementById('2206.09571v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.00765">arXiv:2206.00765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.00765">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Positional uncertainty and quality assurance of digital elevation change detection (DECD) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">Dong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+W">Wenzhong Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+M">Ming Hao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.00765v1-abstract-short" style="display: inline;"> Studies on rapid change detection of large area urgently need to be extended from 2D image to digital elevation model (DEM) due to the challenge of changes caused by disasters. This research investigates positional uncertainty of digital elevation change detection (DECD) caused by different degrees of DEM complexity and DEM misregistration. Unfortunately, using three-sigma rule (3蟽R) for DECD is d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00765v1-abstract-full').style.display = 'inline'; document.getElementById('2206.00765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.00765v1-abstract-full" style="display: none;"> Studies on rapid change detection of large area urgently need to be extended from 2D image to digital elevation model (DEM) due to the challenge of changes caused by disasters. This research investigates positional uncertainty of digital elevation change detection (DECD) caused by different degrees of DEM complexity and DEM misregistration. Unfortunately, using three-sigma rule (3蟽R) for DECD is disturbed by accuracy of parameter estimation, which is affected by the outliers (i.e., varied DEM) from DEM differencing samples. Hence, to reduce the aforementioned uncertainty of DECD, we propose a new strategy of quality assurance, adaptively censored three-sigma rule (AC3蟽R), in which with the samples censored, outliers of global DEM differencing samples outside the standard deviations of the mean calculated by moment estimation are iteratively removed. Compared with the 3蟽R and censored three-sigma rule (C3蟽R) that is similar to AC3蟽R but without iteration for both simulation and real-world data experiments, the proposed global AC3蟽R method always exhibits the highest accuracies of DECD in terms of both the overall accuracies 0.99967, 0.98740 and kappa coefficients 0.99598, 0.81803 respectively, and the strongest robustness with a large convergence interval [0, 0.30010] under the simulated maximum registration error and most complex terrain complexity conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00765v1-abstract-full').style.display = 'none'; document.getElementById('2206.00765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13103">arXiv:2205.13103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13103">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous Radiative Cooling to Enhance the Operational Stability of Perovskite Solar Cells via a Black-body-like Full Carbon Electrode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+B">Bingcheng Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+S">Shan Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+Y">Yuqi Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13103v1-abstract-short" style="display: inline;"> Operational stability of perovskite solar cells is remarkably influenced by the device temperature, therefore, decreasing the interior temperature of the device is one of the most effective approaches to prolong the service life. Herein, we introduce the spontaneous radiative cooling effect into the perovskite solar cell and amplified this effect via functional structure design of a full-carbon el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13103v1-abstract-full').style.display = 'inline'; document.getElementById('2205.13103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13103v1-abstract-full" style="display: none;"> Operational stability of perovskite solar cells is remarkably influenced by the device temperature, therefore, decreasing the interior temperature of the device is one of the most effective approaches to prolong the service life. Herein, we introduce the spontaneous radiative cooling effect into the perovskite solar cell and amplified this effect via functional structure design of a full-carbon electrode (F-CE). Firstly, with interface engineering, &gt;19% and &gt;23% power conversion efficiencies of F-CE based inorganic CsPbI3 and hybrid perovskite solar cells have been achieved, respectively, both of which are the highest reported efficiencies based on carbon electrode and are comparative to the results for metal electrodes. Highly efficient thermal radiation of this F-CE can reduce the temperature of the operating cell by about 10 掳C. Compared with the conventional metal electrode-based control cells, the operational stability of the above two types of cells have been significantly improved due to this cooling effect. Especially, the CsPbI3 PSCs exhibited no efficiency degradation after 2000 hours of continuous operational tracking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13103v1-abstract-full').style.display = 'none'; document.getElementById('2205.13103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06255">arXiv:2204.06255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.06255">pdf</a>, <a href="https://arxiv.org/format/2204.06255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Analysis of PDEs">math.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Neural Operator with Regularity Structure for Modeling Dynamics Driven by SPDEs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+P">Peiyan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Bingguang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+S">Shiqi Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+R">Rongchan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhi-Ming Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06255v4-abstract-short" style="display: inline;"> Stochastic partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics. Neural Operators, generations of neural networks with capability of learning maps between infinite-dimensional spaces, are strong tools for solving parametric PDEs. However, they lack the ability to modeling SPDEs which usually have poor regularity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06255v4-abstract-full').style.display = 'inline'; document.getElementById('2204.06255v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06255v4-abstract-full" style="display: none;"> Stochastic partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics. Neural Operators, generations of neural networks with capability of learning maps between infinite-dimensional spaces, are strong tools for solving parametric PDEs. However, they lack the ability to modeling SPDEs which usually have poor regularity due to the driving noise. As the theory of regularity structure has achieved great successes in analyzing SPDEs and provides the concept model feature vectors that well-approximate SPDEs&#39; solutions, we propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs. We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d stochastic Navier-Stokes equation, and the results demonstrate that the NORS is resolution-invariant, efficient, and achieves one order of magnitude lower error with a modest amount of data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06255v4-abstract-full').style.display = 'none'; document.getElementById('2204.06255v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04971">arXiv:2204.04971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04971">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A new artificial photosynthetic system coupling photovoltaic electrocatalysis with photothermal catalysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yaguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">Xianhua Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+D">Dachao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=San%2C+X">Xingyuan San</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baolai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+G">Guangsheng Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shufang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04971v1-abstract-short" style="display: inline;"> In this work, we present a novel artificial photosynthetic paradigm with square meter (m2) level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO2 hydrogenation device, successfully achieving the synergy of 1 sun driven 19.4% solar to chemical energy efficiency (STC) for CO production (2.7 times higher than state of the art of large-sized art&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04971v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04971v1-abstract-full" style="display: none;"> In this work, we present a novel artificial photosynthetic paradigm with square meter (m2) level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO2 hydrogenation device, successfully achieving the synergy of 1 sun driven 19.4% solar to chemical energy efficiency (STC) for CO production (2.7 times higher than state of the art of large-sized artificial photosynthetic systems) with a low cost (equivalent to 1/7 of reported artificial photosynthetic systems). Furthermore, the outdoor artificial photosynthetic demonstration with 1.268 m2 of scale exhibits the CO generation amount of 258.4 L per day, the STC of ~15.5% for CO production in winter, which could recover the cost within 833 suuny days of operation by selling CO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04971v1-abstract-full').style.display = 'none'; document.getElementById('2204.04971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22pages,3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14811">arXiv:2110.14811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.14811">pdf</a>, <a href="https://arxiv.org/format/2110.14811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> SE(3) Equivariant Graph Neural Networks with Complete Local Frames </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+W">Weitao Du</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">He Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y">Yuanqi Du</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+B">Bin Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14811v2-abstract-short" style="display: inline;"> Group equivariance (e.g. SE(3) equivariance) is a critical physical symmetry in science, from classical and quantum physics to computational biology. It enables robust and accurate prediction under arbitrary reference transformations. In light of this, great efforts have been put on encoding this symmetry into deep neural networks, which has been shown to improve the generalization performance and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14811v2-abstract-full').style.display = 'inline'; document.getElementById('2110.14811v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14811v2-abstract-full" style="display: none;"> Group equivariance (e.g. SE(3) equivariance) is a critical physical symmetry in science, from classical and quantum physics to computational biology. It enables robust and accurate prediction under arbitrary reference transformations. In light of this, great efforts have been put on encoding this symmetry into deep neural networks, which has been shown to improve the generalization performance and data efficiency for downstream tasks. Constructing an equivariant neural network generally brings high computational costs to ensure expressiveness. Therefore, how to better trade-off the expressiveness and computational efficiency plays a core role in the design of the equivariant deep learning models. In this paper, we propose a framework to construct SE(3) equivariant graph neural networks that can approximate the geometric quantities efficiently. Inspired by differential geometry and physics, we introduce equivariant local complete frames to graph neural networks, such that tensor information at given orders can be projected onto the frames. The local frame is constructed to form an orthonormal basis that avoids direction degeneration and ensure completeness. Since the frames are built only by cross product operations, our method is computationally efficient. We evaluate our method on two tasks: Newton mechanics modeling and equilibrium molecule conformation generation. Extensive experimental results demonstrate that our model achieves the best or competitive performance in two types of datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14811v2-abstract-full').style.display = 'none'; document.getElementById('2110.14811v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICML 2022 accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12552">arXiv:2109.12552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.12552">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Theoretical Chemistry Course for Students in Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingyong Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12552v1-abstract-short" style="display: inline;"> In this work, the teaching content of a theoretical-chemistry (TC) course is reformed, establishing a theoretical contents from micro- to macro-system, and comprehensively introducing the theory of chemical reaction to undergraduate students in chemistry. In order to develop such TC course based on the general physical-chemistry course, we focus on the last-mile problem between the physics and che&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12552v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12552v1-abstract-full" style="display: none;"> In this work, the teaching content of a theoretical-chemistry (TC) course is reformed, establishing a theoretical contents from micro- to macro-system, and comprehensively introducing the theory of chemical reaction to undergraduate students in chemistry. In order to develop such TC course based on the general physical-chemistry course, we focus on the last-mile problem between the physics and chemistry courses to train the critical thinking of undergraduate students in chemistry. To clearly show this, a reduction scheme of polymer molecular dynamics was discussed as an example, which shows a different theoretical content in polymer chemistry. Moreover, we propose a series of experiences and dependent measures that can provide information regarding students&#39; levels of knowledge and understanding. This assessment quiz was designed to test students on the fundamental concepts and applications of TC, such as dynamics, statistical ensemble, kinetics, and so on. From the actual teaching for 36 students, it was found that these students performed significantly improvement from the present TC content. Further analysis of each individual question revealed that approximately two-third of the students learn new knowledge. Although the present TC course might be considered to be a certain degree of difficulty for chemists, these analyses show that students can effectively accept these complicated concepts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12552v1-abstract-full').style.display = 'none'; document.getElementById('2109.12552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11122">arXiv:2109.11122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11122">pdf</a>, <a href="https://arxiv.org/format/2109.11122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L020402">10.1103/PhysRevB.106.L020402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The free energy of twisting spins in Mn$_3$Sn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+S">Shan Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingkai Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Balents%2C+L">Leon Balents</a>, <a href="/search/physics?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11122v1-abstract-short" style="display: inline;"> The magnetic free energy is usually quadratic in magnetic field and depends on the mutual orientation of the magnetic field and the crystalline axes. Tiny in magnitude, this magnetocrystalline anisotropy energy (MAE) is nevertheless indispensable for the existence of permanent magnets. Here, we show that in Mn$_3$Sn, a non-collinear antiferromagnet attracting much attention following the discovery&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11122v1-abstract-full').style.display = 'inline'; document.getElementById('2109.11122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11122v1-abstract-full" style="display: none;"> The magnetic free energy is usually quadratic in magnetic field and depends on the mutual orientation of the magnetic field and the crystalline axes. Tiny in magnitude, this magnetocrystalline anisotropy energy (MAE) is nevertheless indispensable for the existence of permanent magnets. Here, we show that in Mn$_3$Sn, a non-collinear antiferromagnet attracting much attention following the discovery of its large anomalous Hall effect, the free energy of spins has superquadratic components, which drive the MAE. We experimentally demonstrate that the thermodynamic free energy includes terms odd in magnetic field ($\mathcal{O}(H^3)+\mathcal{O}(H^5)$) and generating sixfold and twelve-fold angular oscillations in the torque response. We show that they are quantitatively explained by theory, which can be used to quantify relevant energy scales (Heisenberg, Dzyaloshinskii-Moriya, Zeeman and single-ion anisotropy) of the system. Based on the theory, we conclude that, in contrast with common magnets, what drives the MAE in Mn$_3$Sn is the field-induced deformation of the spin texture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11122v1-abstract-full').style.display = 'none'; document.getElementById('2109.11122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, Supplemental Material is included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, L020402 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00026">arXiv:2106.00026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00026">pdf</a>, <a href="https://arxiv.org/format/2106.00026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.104.055302">10.1103/PhysRevE.104.055302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine-Learning Non-Conservative Dynamics for New-Physics Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Ziming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bohan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tegmark%2C+M">Max Tegmark</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00026v2-abstract-short" style="display: inline;"> Energy conservation is a basic physics principle, the breakdown of which often implies new physics. This paper presents a method for data-driven &#34;new physics&#34; discovery. Specifically, given a trajectory governed by unknown forces, our Neural New-Physics Detector (NNPhD) aims to detect new physics by decomposing the force field into conservative and non-conservative components, which are represente&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00026v2-abstract-full').style.display = 'inline'; document.getElementById('2106.00026v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00026v2-abstract-full" style="display: none;"> Energy conservation is a basic physics principle, the breakdown of which often implies new physics. This paper presents a method for data-driven &#34;new physics&#34; discovery. Specifically, given a trajectory governed by unknown forces, our Neural New-Physics Detector (NNPhD) aims to detect new physics by decomposing the force field into conservative and non-conservative components, which are represented by a Lagrangian Neural Network (LNN) and a universal approximator network (UAN), respectively, trained to minimize the force recovery error plus a constant $位$ times the magnitude of the predicted non-conservative force. We show that a phase transition occurs at $位$=1, universally for arbitrary forces. We demonstrate that NNPhD successfully discovers new physics in toy numerical experiments, rediscovering friction (1493) from a damped double pendulum, Neptune from Uranus&#39; orbit (1846) and gravitational waves (2017) from an inspiraling orbit. We also show how NNPhD coupled with an integrator outperforms previous methods for predicting the future of a damped double pendulum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00026v2-abstract-full').style.display = 'none'; document.getElementById('2106.00026v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figs, 2 tables; typo correction</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05188">arXiv:2103.05188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05188">pdf</a>, <a href="https://arxiv.org/format/2103.05188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> High-dimensional Quantum Dynamics Study on Excitation-Specific Surface Scattering including Lattice Effects of a Five-Atoms Surface Cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingyong Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Schroeder%2C+M">Markus Schroeder</a>, <a href="/search/physics?searchtype=author&amp;query=Meyer%2C+H">Hans-Dieter Meyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05188v1-abstract-short" style="display: inline;"> In this work high-dimensional (21D) quantum dynamics calculations on mode-specific surface scattering of a carbon monoxide molecule on a copper (100) surface with lattice effects of a five-atom surface cell are performed through the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. We employ a surface model in which five surface atoms near the impact site are treated as fully&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05188v1-abstract-full').style.display = 'inline'; document.getElementById('2103.05188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05188v1-abstract-full" style="display: none;"> In this work high-dimensional (21D) quantum dynamics calculations on mode-specific surface scattering of a carbon monoxide molecule on a copper (100) surface with lattice effects of a five-atom surface cell are performed through the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. We employ a surface model in which five surface atoms near the impact site are treated as fully flexible quantum particles while all other more distant atoms are kept at fixed locations. To efficiently perform the 21D ML-MCTDH wavepacket propagation, the potential energy surface is transferred to canonical polyadic decomposition form with the aid of a Monte Carlo based method. Excitation-specific sticking probabilities of CO on Cu(100) are computed and lattice effects caused by the flexible surface atoms are demonstrated by comparison with sticking probabilities computed for a rigid surface. The dependence of the sticking probability of the initial state of the system is studied, and it is found that the sticking probability is reduced, when the surface atom on the impact site is initially vibrationally excited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05188v1-abstract-full').style.display = 'none'; document.getElementById('2103.05188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03187">arXiv:2011.03187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.03187">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Eulerian-Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingyang Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Majie Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H">Hongtao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03187v1-abstract-short" style="display: inline;"> Rotating detonation combustion (RDC) fuelled with partially pre-vaporized n-heptane sprays and gaseous hydrogen is studied with an Eulerian-Lagrangian method. Our focus is the effects of pre-vaporized n-heptane equivalence ratios and droplet diameters on detonation wave propagation and droplet dynamics in two-phase RDC. The results show that when the droplets are small, they are fully vaporized by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03187v1-abstract-full').style.display = 'inline'; document.getElementById('2011.03187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03187v1-abstract-full" style="display: none;"> Rotating detonation combustion (RDC) fuelled with partially pre-vaporized n-heptane sprays and gaseous hydrogen is studied with an Eulerian-Lagrangian method. Our focus is the effects of pre-vaporized n-heptane equivalence ratios and droplet diameters on detonation wave propagation and droplet dynamics in two-phase RDC. The results show that when the droplets are small, they are fully vaporized by the detonation wave. However, when the droplet diameter is relatively large and/or the detonation wave number is bifurcated, liquid droplets are observable beyond the refill zone. Moreover, the detonation speed is considerably influenced by the droplet pre-vaporization and diameter. The velocity deficits vary between 5% and 30%. Over 70% n-heptane is detonated in the simulated cases, and there exists a critical droplet diameter (about 20 um), around which the detonated fuel fraction is minimal. Four droplet trajectories in RDC are identified, which are differentiated by various evaporation times, residence times and interactions between droplets and the basic RDC flow structures. Inside the refill zone, three droplet categories are qualitatively identified. Droplets injected at the right end of the refill zone directly interact with the deflagration surface and meanwhile have relatively long residence time. However, droplets injected closer to the travelling detonation front have insufficient time to be heated and vaporized. Our results also demonstrate that when pre-vaporization level is low and initial droplet diameter is large, the liquid fuel droplets may disperse towards the combustor exit. Furthermore, the droplet dispersion height decreases with liquid fuel pre-vaporization, while increases with droplet diameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03187v1-abstract-full').style.display = 'none'; document.getElementById('2011.03187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.01956">arXiv:2008.01956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.01956">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Eliminating the Electric Field Response in a Perovskite Heterojunction Solar Cell to Improve Operational Stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yusheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.01956v1-abstract-short" style="display: inline;"> Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the existence of internal electric field. We propose a heterojunction route to help suppress ion migration, thus improving the operational stability of the cell from the perspective of elim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01956v1-abstract-full').style.display = 'inline'; document.getElementById('2008.01956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.01956v1-abstract-full" style="display: none;"> Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the existence of internal electric field. We propose a heterojunction route to help suppress ion migration, thus improving the operational stability of the cell from the perspective of eliminating the electric field response in the perovskite absorber. A heavily doped p-type (p+) thin layer semiconductor is introduced between the electron transporting layer (ETL) and perovskite absorber. The heterojunction charge depletion and electric field are limited to the ETL and p+ layers, while the perovskite absorber and hole transporting layer remain neutral. The p+ layer has a variety of candidate materials and is tolerant of defect density and carrier mobility, which makes this heterojunction route highly feasible and promising for use in practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01956v1-abstract-full').style.display = 'none'; document.getElementById('2008.01956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09038">arXiv:2006.09038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09038">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.043112">10.1103/PhysRevA.102.043112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ellipticity-dependent sequential over-barrier ionization of cold rubidium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+J">Junyang Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shiwei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xincheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhenjie Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yixuan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Huanyu Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qiuxiang Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+T">Tian-Min Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yizhu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Dorn%2C+A">Alexander Dorn</a>, <a href="/search/physics?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+D">Difa Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yuhai Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09038v1-abstract-short" style="display: inline;"> We perform high-resolution measurements of momentum distribution on Rb$^{n+}$ recoil ions up to charge state $n=4$, where laser-cooled rubidium atoms are ionized by femtosecond elliptically polarized lasers with the pulse duration of 35 fs and the intensity of 3.3$\times$10$^{15}$ W/cm$^2$ in the over-barrier ionization (OBI) regime. The momentum distributions of the recoil ions are found to exhib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09038v1-abstract-full').style.display = 'inline'; document.getElementById('2006.09038v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09038v1-abstract-full" style="display: none;"> We perform high-resolution measurements of momentum distribution on Rb$^{n+}$ recoil ions up to charge state $n=4$, where laser-cooled rubidium atoms are ionized by femtosecond elliptically polarized lasers with the pulse duration of 35 fs and the intensity of 3.3$\times$10$^{15}$ W/cm$^2$ in the over-barrier ionization (OBI) regime. The momentum distributions of the recoil ions are found to exhibit multi-band structures as the ellipticity varies from the linear to circular polarizations. The origin of these band structures can be explained quantitatively by the classical OBI model and dedicated classical trajectory Monte Carlo simulations with Heisenberg potential. Specifically, with back analysis of the classical trajectories, we reveal the ionization time and the OBI geometry of the sequentially released electrons, disentangling the mechanisms behind the tilted angle of the band structures. These results indicate that the classical treatment can describe the strong-field multiple ionization processes of alkali atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09038v1-abstract-full').style.display = 'none'; document.getElementById('2006.09038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 043112 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08499">arXiv:1912.08499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.08499">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Imaging the geometrical structure of complex symmetric molecules by above-threshold ionization spectrum in an IR+XUV laser field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xu-Cong Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+S">Shang Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Ying-Chun Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yu-Jun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qing-Tian Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Jun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bingbing Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08499v2-abstract-short" style="display: inline;"> Based on the frequency-domain theory, we put forward a method of imaging the complex symmetrical polyatomic molecules by using IR+XUV two-color laser fields. Although the wave function of a polyatomic molecule, such as SF6, is quite complex in momentum space, it can be simplified by several terms in the region of high value of momentum, where the destructive interference fringes from these terms c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08499v2-abstract-full').style.display = 'inline'; document.getElementById('1912.08499v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08499v2-abstract-full" style="display: none;"> Based on the frequency-domain theory, we put forward a method of imaging the complex symmetrical polyatomic molecules by using IR+XUV two-color laser fields. Although the wave function of a polyatomic molecule, such as SF6, is quite complex in momentum space, it can be simplified by several terms in the region of high value of momentum, where the destructive interference fringes from these terms carry the information of the molecular structure. In this work, we find that, since the XUV laser field may increases the kinetic energy of the photoelectron dramatically in the above-threshold ionization (ATI) process of a molecule in an IR+XUV two-color laser field, the information of the molecular structure can be obtained by analyzing the interference fringes of the ATI spectrum in the high-energy region, where the simplified wave function of the molecule plays a dominant role in this part of the ATI spectrum. This method provides a unique accessible route towards imaging polyatomic molecules from a frequency perspective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08499v2-abstract-full').style.display = 'none'; document.getElementById('1912.08499v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.09986">arXiv:1911.09986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.09986">pdf</a>, <a href="https://arxiv.org/format/1911.09986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.384207">10.1364/OE.384207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingxin Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Harrington%2C+K">Kerrianne Harrington</a>, <a href="/search/physics?searchtype=author&amp;query=Stirling%2C+J">Julian Stirling</a>, <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+R">Richard Bowman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.09986v1-abstract-short" style="display: inline;"> As 3D printers become more widely available, researchers are able to rapidly produce components that may have previously taken weeks to have machined. The resulting plastic components, having high surface roughness, are often not suitable for high-precision optomechanics. However, by playing to the strengths of 3D printing---namely the ability to print complex internal geometries---it is possible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09986v1-abstract-full').style.display = 'inline'; document.getElementById('1911.09986v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.09986v1-abstract-full" style="display: none;"> As 3D printers become more widely available, researchers are able to rapidly produce components that may have previously taken weeks to have machined. The resulting plastic components, having high surface roughness, are often not suitable for high-precision optomechanics. However, by playing to the strengths of 3D printing---namely the ability to print complex internal geometries---it is possible to design monolithic mechanisms that do not rely on tight integration of high-precision parts. Here we present a motorised monolithic 3D-printed plastic flexure stage with sub-100 nm resolution, that can perform automated optical fibre alignment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09986v1-abstract-full').style.display = 'none'; document.getElementById('1911.09986v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.05985">arXiv:1911.05985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.05985">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2020.01.005">10.1016/j.scib.2020.01.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coordination Engineering of Cu-Zn-Sn-S Aqueous Precursor for Efficient Kesterite Solar Cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guo%2C+L">Linbao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Q">Qing Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+B">Biwen Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiazheng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jionghua Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yusheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.05985v1-abstract-short" style="display: inline;"> Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. The key is to find an appropriate molecular agent to prepare a stable solution and optimize the coordination structure to facilitate the subsequent crystallization process. Herein, we introduce thioglycolic acid, which possesses strong coordina&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05985v1-abstract-full').style.display = 'inline'; document.getElementById('1911.05985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.05985v1-abstract-full" style="display: none;"> Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. The key is to find an appropriate molecular agent to prepare a stable solution and optimize the coordination structure to facilitate the subsequent crystallization process. Herein, we introduce thioglycolic acid, which possesses strong coordination (-SH) and hydrophilic (-COOH) groups, as the agent and use deprotonation to regulate the coordination competition within the aqueous solution. Ultimately, metal cations are adequately coordinated with thiolate anions, and carboxylate anions are released to become hydrated to form an ultrastable aqueous solution. These factors have contributed to achieving CZTSSe solar cells with efficiency of as high as 12.2% (a certified efficiency of 12.0%) and providing an extremely wide time window for precursor storage and usage. This work represents significant progress in the non-toxic solution fabrication of CZTSSe solar cells and holds great potential for the development of CZTSSe and other metal sulfide solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05985v1-abstract-full').style.display = 'none'; document.getElementById('1911.05985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin 65, 738 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13098">arXiv:1910.13098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13098">pdf</a>, <a href="https://arxiv.org/ps/1910.13098">ps</a>, <a href="https://arxiv.org/format/1910.13098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-020-00211-y">10.1140/epja/s10050-020-00211-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beam Test of the PIN-diode Readout Units with Electron Energies from 5 to 40 GeV at CERN SPS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chengbo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaomei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qiuying Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jing Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+S">Shuhua Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+J">Jian Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13098v2-abstract-short" style="display: inline;"> The Chinese large-area violet-light-sensitive silicon photodiode PIN is one of the candidates of the lead tungstate crystal detector readout component of the photon spectrometer in the large heavy ion collision experiment. The PIN diode was assembled with the lead tungstate crystal and the low-noise preamplifier into a complete detector unit. The beam test was carried out on the SPS accelerator at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13098v2-abstract-full').style.display = 'inline'; document.getElementById('1910.13098v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13098v2-abstract-full" style="display: none;"> The Chinese large-area violet-light-sensitive silicon photodiode PIN is one of the candidates of the lead tungstate crystal detector readout component of the photon spectrometer in the large heavy ion collision experiment. The PIN diode was assembled with the lead tungstate crystal and the low-noise preamplifier into a complete detector unit. The beam test was carried out on the SPS accelerator at CERN. The energy resolution was measured with the electron beam energy ranging from 5 to 40 GeV. The summation correction method was discussed, and an excellent linearity of the nominal beam energy versus the peak position of the detector was obtained, which showed the punch-through effect can be ignored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13098v2-abstract-full').style.display = 'none'; document.getElementById('1910.13098v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2020) 56:219 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13030">arXiv:1910.13030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13030">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.joule.2019.12.016">10.1016/j.joule.2019.12.016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploiting Electrical Transients to Reveal Charge Loss Mechanism of Junction Solar Cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+B">Bingcheng Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+B">Biwen Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jionghua Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hongshi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13030v1-abstract-short" style="display: inline;"> Electrical transients enabled by optical excitation and electric detection provide a distinctive opportunity to study the charge transport, recombination and even the hysteresis of a solar cell in a much wider time window ranging from nanoseconds to seconds. However, controversies on how to exploit these investigations to unravel the charge loss mechanism of the cell have been ongoing. Herein, a n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13030v1-abstract-full').style.display = 'inline'; document.getElementById('1910.13030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13030v1-abstract-full" style="display: none;"> Electrical transients enabled by optical excitation and electric detection provide a distinctive opportunity to study the charge transport, recombination and even the hysteresis of a solar cell in a much wider time window ranging from nanoseconds to seconds. However, controversies on how to exploit these investigations to unravel the charge loss mechanism of the cell have been ongoing. Herein, a new methodology of quantifying the charge loss within the bulk absorber or at the interfaces and the defect properties of junction solar cells has been proposed after the conventional tail-state framework is firstly demonstrated to be unreasonable. This methodology has been successfully applied in the study of commercialized silicon and emerging Cu2ZnSn(S, Se)4 and perovskite solar cells herein and should be universal to other photovoltaic device systems with similar structures. Overall, this work provides an alluring route for comprehensive investigation of dynamic physics processes and charge loss mechanism of junction solar cells and possesses potential applications for other optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13030v1-abstract-full').style.display = 'none'; document.getElementById('1910.13030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Joule 4, 472 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07258">arXiv:1910.07258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07258">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5112057">10.1063/1.5112057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Carbon State in Dilute Germanium Carbides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gulyas%2C+I+A">I. A. Gulyas</a>, <a href="/search/physics?searchtype=author&amp;query=Stephenson%2C+C+A">C. A. Stephenson</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qian Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Bank%2C+S+R">S. R. Bank</a>, <a href="/search/physics?searchtype=author&amp;query=Wistey%2C+M+A">M. A. Wistey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07258v1-abstract-short" style="display: inline;"> Conduction and valence band states for the highly mismatched alloy (HMA) Ge:C are projected onto Ge crystal states, Ge vacancy states, and Ge/C atomic orbitals, revealing that substitutional carbon not only creates a direct bandgap, but the new conduction band is optically active. Overlap integrals of the new Ge:C conduction band with bands of pure Ge shows the new band has almost no Ge band chara&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07258v1-abstract-full').style.display = 'inline'; document.getElementById('1910.07258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07258v1-abstract-full" style="display: none;"> Conduction and valence band states for the highly mismatched alloy (HMA) Ge:C are projected onto Ge crystal states, Ge vacancy states, and Ge/C atomic orbitals, revealing that substitutional carbon not only creates a direct bandgap, but the new conduction band is optically active. Overlap integrals of the new Ge:C conduction band with bands of pure Ge shows the new band has almost no Ge band character. C sites structurally mimic uncharged vacancies in the Ge lattice, similar to Hjalmarson&#39;s model for other HMAs. C perturbs the entire Ge band structure even at the deepest crystal core energy levels. Projection onto atomic sites shows relatively weak localization compared with other HMAs, but does show a strong anisotropy in probability distribution. L-valley conduction band states in Ge are ruled out as major contributors to the carbon state in Ge:C, both by weak inner products between these states and by a negligible effect on optical transition strength when adding C. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07258v1-abstract-full').style.display = 'none'; document.getElementById('1910.07258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages with references, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.12084">arXiv:1906.12084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.12084">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adom.201902026">10.1002/adom.201902026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clearly Discriminate the Continuum Band and Exciton State of the Hybrid Lead Bromide Perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jionghua Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jasieniak%2C+J+J">Jacek J. Jasieniak</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.12084v1-abstract-short" style="display: inline;"> Electronic states of the hybrid perovskite enable their promising applications as distinctive optoelectronic materials. The understanding of their electronic structures and charge characters remains highly controversial. The electronic mechanism such as reabsorption, Urbach tail and indirect band for interpreting dual-peak emissions is one of the controversial focuses. Herein, we report that throu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.12084v1-abstract-full').style.display = 'inline'; document.getElementById('1906.12084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.12084v1-abstract-full" style="display: none;"> Electronic states of the hybrid perovskite enable their promising applications as distinctive optoelectronic materials. The understanding of their electronic structures and charge characters remains highly controversial. The electronic mechanism such as reabsorption, Urbach tail and indirect band for interpreting dual-peak emissions is one of the controversial focuses. Herein, we report that through heterojunction enhanced exciton dissociation and global tracing of multiple radiative electronic states across wide temperature regions, we have succeeded in directly observing free carrier emissions from the hybrid lead bromide perovskite and clearly discriminating the direct continuum band and exciton states. The widely-concerned dual-peak emissions are clarified to be excitonic, arising from two types of exciton states of the perovskite. These excitons possess giant binding energies and superior phase stability compared to conventional inorganic semiconductors, providing important implications for exploiting the excitonic mechanism for realizing novel optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.12084v1-abstract-full').style.display = 'none'; document.getElementById('1906.12084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Optical Materials 8, 1902026 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.07371">arXiv:1902.07371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.07371">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Low-threshold Stimulated Emission of Hybrid Perovskites at Room Temperature through Defect-Mediated Bound Excitons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiangjian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jionghua Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Huijue Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yanhong Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongmei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jasieniak%2C+J+J">Jacek J. Jasieniak</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.07371v1-abstract-short" style="display: inline;"> Excitonic stimulated emission provides a promising mechanism and route to achieve low-threshold semiconductor lasers for micro-nano optoelectronic integrations. However, excitonic stimulated emission from quantum structure-free semiconductors has rarely been realised at room temperature due to the phase transition between excitonic and electron-hole plasma states. Herein, we show that through trap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07371v1-abstract-full').style.display = 'inline'; document.getElementById('1902.07371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.07371v1-abstract-full" style="display: none;"> Excitonic stimulated emission provides a promising mechanism and route to achieve low-threshold semiconductor lasers for micro-nano optoelectronic integrations. However, excitonic stimulated emission from quantum structure-free semiconductors has rarely been realised at room temperature due to the phase transition between excitonic and electron-hole plasma states. Herein, we show that through trap-state and band-edge engineering, bound exciton states can be stabilised within the hybrid lead bromide perovskite. Under modest pumping conditions, these states enable stimulated emission behaviour that exhibits a low threshold carrier density of only 1.6*1017 cm-3, as well as a high peak gain coefficient of ~1300 cm-1. This is the first time that bound exciton stimulated emission has been realised at room temperature from a quantum structure-free semiconductor. Not only does this open up new research horizons for perovskite materials, but also it has important implications for semiconductor excitonic physics and the development of next-generation optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.07371v1-abstract-full').style.display = 'none'; document.getElementById('1902.07371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00332">arXiv:1608.00332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.00332">pdf</a>, <a href="https://arxiv.org/ps/1608.00332">ps</a>, <a href="https://arxiv.org/format/1608.00332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Scattering of flexural--gravity waves by a group of elastic plates floating on a stratified fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q+R">Q. R. Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+D+Q">D. Q. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00332v2-abstract-short" style="display: inline;"> A hydroelastic problem of flexural--gravity waves scattering by a demarcation between two floating elastic plates is investigated within the frame of linear potential-flow theory, where the method of matched eigenfunction expansions is employed for analysis. A generalized extension is subsequently derived to promote the formulae to the case of multiple elastic plates on a stratified fluid with mul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00332v2-abstract-full').style.display = 'inline'; document.getElementById('1608.00332v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00332v2-abstract-full" style="display: none;"> A hydroelastic problem of flexural--gravity waves scattering by a demarcation between two floating elastic plates is investigated within the frame of linear potential-flow theory, where the method of matched eigenfunction expansions is employed for analysis. A generalized extension is subsequently derived to promote the formulae to the case of multiple elastic plates on a stratified fluid with multiple layers, which is helpful to study the hydrodynamic behaviors of inhomogeneous floating covers as well as the effects of density stratification in seawater. The eigenfunction expansions are numerically calculated by an inner product technique, in which an orthogonal definition involving an explicit differential term exhibits the effectiveness in dealing with the multi-layer matching relations between adjacent regions covered by different elastic plates. By use of Green&#39;s theorem, an energy conversation relation is deduced to assure the convergence of the calculation to the physical reality, and the high converging rates are exhibited afterwards. The correctness of numerical results are also verified by comparing with a previous analytical method. The details of the hydrodynamic responses of the generalized extension, especially the impact of the fluid stratification on the inner forces of the elastic plates, are discussed under different situations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00332v2-abstract-full').style.display = 'none'; document.getElementById('1608.00332v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.0309">arXiv:1001.0309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1001.0309">pdf</a>, <a href="https://arxiv.org/ps/1001.0309">ps</a>, <a href="https://arxiv.org/format/1001.0309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Ternary Social Networks: Dynamic Balance and Self-Organized Criticality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qing-Kuan Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jian-Yang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.0309v1-abstract-short" style="display: inline;"> Antal et al. [Phys. Rev. E \textbf{72}, 036121 (2005)] have studied the balance dynamics on the social networks. In this paper, based on the model proposed by Antal et al., we improve it and generalize the binary social networks to the ternary social networks. When the social networks get dynamically balanced, we obtain the distributions of each relation and the time needed for dynamic balance.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.0309v1-abstract-full').style.display = 'inline'; document.getElementById('1001.0309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.0309v1-abstract-full" style="display: none;"> Antal et al. [Phys. Rev. E \textbf{72}, 036121 (2005)] have studied the balance dynamics on the social networks. In this paper, based on the model proposed by Antal et al., we improve it and generalize the binary social networks to the ternary social networks. When the social networks get dynamically balanced, we obtain the distributions of each relation and the time needed for dynamic balance. Besides, we study the self-organized criticality on the ternary social networks based on our model. For the ternary social networks evolving to the sensitive state, any small disturbance may result in an avalanche. The occurrence of the avalanche satisfies the power-law form both spatially and temporally. Numerical results verify our theoretical expectations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.0309v1-abstract-full').style.display = 'none'; document.getElementById('1001.0309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10