CINXE.COM
Celso Benedetti - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Celso Benedetti - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="jEFPzyNWuQREYJ86Yrgovu95/xWNDD2+6fCBTH2Tfo5yF2AgDN8VRW6dUle+NdY4O+GsDQ0WEGtqs26hoMwIcw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="celso benedetti" /> <meta name="description" content="Celso Benedetti: 18 Followers, 3 Following, 14 Research papers. Research interests: Microbial Enzymes, Enzyme Engineering, and Enzymology." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277148481,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732415492000); window.Aedu.timeDifference = new Date().getTime() - 1732415492000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/CelsoBenedetti" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":61742,"name":"Microbial Enzymes","url":"https://www.academia.edu/Documents/in/Microbial_Enzymes"},{"id":924160,"name":"Enzyme Engineering","url":"https://www.academia.edu/Documents/in/Enzyme_Engineering"},{"id":2235,"name":"Enzymology","url":"https://www.academia.edu/Documents/in/Enzymology"},{"id":49646,"name":"Protein Structure and Function","url":"https://www.academia.edu/Documents/in/Protein_Structure_and_Function"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/CelsoBenedetti","location":"/CelsoBenedetti","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/CelsoBenedetti","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c465a958-d044-4a36-9390-ac8d7995d56c"></div> <div id="ProfileCheckPaperUpdate-react-component-c465a958-d044-4a36-9390-ac8d7995d56c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Celso Benedetti</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Celso" data-follow-user-id="29198179" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="29198179"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">18</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">7</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="29198179" href="https://www.academia.edu/Documents/in/Microbial_Enzymes"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/CelsoBenedetti","location":"/CelsoBenedetti","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/CelsoBenedetti","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Microbial Enzymes"]}" data-trace="false" data-dom-id="Pill-react-component-f3e75f7e-fd03-4710-92cb-7ad2deb2fd13"></div> <div id="Pill-react-component-f3e75f7e-fd03-4710-92cb-7ad2deb2fd13"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="29198179" href="https://www.academia.edu/Documents/in/Enzyme_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Enzyme Engineering"]}" data-trace="false" data-dom-id="Pill-react-component-79f7177c-a1f0-4ac8-942c-d6f7e0424231"></div> <div id="Pill-react-component-79f7177c-a1f0-4ac8-942c-d6f7e0424231"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="29198179" href="https://www.academia.edu/Documents/in/Enzymology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Enzymology"]}" data-trace="false" data-dom-id="Pill-react-component-4fbfcb81-e2db-4492-bda5-97459a9f59e4"></div> <div id="Pill-react-component-4fbfcb81-e2db-4492-bda5-97459a9f59e4"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="29198179" href="https://www.academia.edu/Documents/in/Protein_Structure_and_Function"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Protein Structure and Function"]}" data-trace="false" data-dom-id="Pill-react-component-e8b17161-278e-4647-92a6-98803a65f42b"></div> <div id="Pill-react-component-e8b17161-278e-4647-92a6-98803a65f42b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="29198179" href="https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Macromolecular X-Ray Crystallography"]}" data-trace="false" data-dom-id="Pill-react-component-4149a4fd-4d3b-4f60-a61d-0c97522388a2"></div> <div id="Pill-react-component-4149a4fd-4d3b-4f60-a61d-0c97522388a2"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Celso Benedetti</h3></div><div class="js-work-strip profile--work_container" data-work-id="11833325"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833325/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair"><img alt="Research paper thumbnail of The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair" class="work-thumbnail" src="https://attachments.academia-assets.com/46496739/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833325/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair">The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TSouza1">T. Souza</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6e9edd39755b839083e1cf4ffc47ebbb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496739,"asset_id":11833325,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496739/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833325"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833325"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833325; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833325]").text(description); $(".js-view-count[data-work-id=11833325]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833325; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833325']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833325, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6e9edd39755b839083e1cf4ffc47ebbb" } } $('.js-work-strip[data-work-id=11833325]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833325,"title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair","translated_title":"","metadata":{"grobid_abstract":"Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo-and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with a-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitinconjugating enzyme complex formed by Ubc13 and ubiquitinconjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Dubc13 and Dmms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":46496739},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833325/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_internal_url":"","created_at":"2015-04-07T12:07:50.681-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383155,"work_id":11833325,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153587,"email":"t***a@lnls.br","display_order":null,"name":"Tiago Antonio De Souza","title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair"},{"id":383161,"work_id":11833325,"tagging_user_id":29198179,"tagged_user_id":29332632,"co_author_invite_id":153589,"email":"t***a@tecpar.br","display_order":null,"name":"T. Souza","title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair"}],"downloadable_attachments":[{"id":46496739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496739/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68.pdf","download_url":"https://www.academia.edu/attachments/46496739/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496739/The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419091\u0026Signature=MIn~UiUilaoa2~dPDmixMEkw0cIk~0FsQHAs7chKaVNTOyiFy2wZViLLgRqS8bcu7-ivfbSK4yHoske7uBG~sOSsxmDykAZ7jd9CEYl93AdqfoQwJO9X2GhTe6Gy32mQHoXa5laF4FcXi6az~Nfax9XfY6Stp51vzLSTIAqKosMrf5g4z-xS-KHzVxk2gAqFxMTaCh9j-u~KefXeFPD3UbbZvX~vojeCKW4~w-cP4alw~KdVn7jRykmVpEcyB1lkry330tclXXicDEvw94cbsZXO00Zr73zz6nq1e3ZM1CC9g0wFNEzo8kP4bdz3O6DdB0uLB7AiIgaI070SKYmE4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496739/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68.pdf","download_url":"https://www.academia.edu/attachments/46496739/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496739/The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419091\u0026Signature=MIn~UiUilaoa2~dPDmixMEkw0cIk~0FsQHAs7chKaVNTOyiFy2wZViLLgRqS8bcu7-ivfbSK4yHoske7uBG~sOSsxmDykAZ7jd9CEYl93AdqfoQwJO9X2GhTe6Gy32mQHoXa5laF4FcXi6az~Nfax9XfY6Stp51vzLSTIAqKosMrf5g4z-xS-KHzVxk2gAqFxMTaCh9j-u~KefXeFPD3UbbZvX~vojeCKW4~w-cP4alw~KdVn7jRykmVpEcyB1lkry330tclXXicDEvw94cbsZXO00Zr73zz6nq1e3ZM1CC9g0wFNEzo8kP4bdz3O6DdB0uLB7AiIgaI070SKYmE4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":3971,"name":"Protein Folding","url":"https://www.academia.edu/Documents/in/Protein_Folding"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":9109,"name":"Tobacco","url":"https://www.academia.edu/Documents/in/Tobacco"},{"id":23067,"name":"DNA repair","url":"https://www.academia.edu/Documents/in/DNA_repair"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":55266,"name":"Ubiquitin","url":"https://www.academia.edu/Documents/in/Ubiquitin"},{"id":71260,"name":"Molecular plant pathology","url":"https://www.academia.edu/Documents/in/Molecular_plant_pathology"},{"id":113903,"name":"Bacteria","url":"https://www.academia.edu/Documents/in/Bacteria"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":317801,"name":"Cell nucleus","url":"https://www.academia.edu/Documents/in/Cell_nucleus"},{"id":373650,"name":"Lysine","url":"https://www.academia.edu/Documents/in/Lysine"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1969247,"name":"Ubiquitination","url":"https://www.academia.edu/Documents/in/Ubiquitination"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833324/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis"><img alt="Research paper thumbnail of COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis" class="work-thumbnail" src="https://attachments.academia-assets.com/46496737/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833324/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis">COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2a66e7184fe30289bf615a56c9f0442e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496737,"asset_id":11833324,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496737/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833324]").text(description); $(".js-view-count[data-work-id=11833324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833324, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2a66e7184fe30289bf615a56c9f0442e" } } $('.js-work-strip[data-work-id=11833324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833324,"title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis","translated_title":"","metadata":{"grobid_abstract":"Two cDNA clones homologous to myrosinasebinding proteins (MBPs) were identi®ed by dierential display in Arabidopsis thaliana (L.) Heynh. The cDNAs (MBP1 and MBP2) correspond to two open-reading frames found in a gene cluster of seven putative MBP genes located on chromosome 1. The predicted proteins MBP1 and MBP2 are similar to lectins and plant aggregating factors. In addition, MBP2 contains a region of high content of proline and alanine residues, commonly found in arabinogalactan proteins and hydroxyprolinerich glycoproteins. Transcripts corresponding to MBP1 and MBP2 genes are exclusively and abundantly expressed in¯owers but are not detected in male-sterilē owers of coi1 plants, insensitive to jasmonic acid. Northern analysis and in situ hybridization revealed that MBP mRNAs are present in higher levels in immaturē owers and are localized in several¯oral organs, including the ovary, ovules, style, anthers and ®lament. Transcripts of the Arabidopsis myrosinase gene TGG1 show a pattern of expression similar to that observed for the MBP genes during¯ower development; however, they are also abundant in green tissues and are only partially aected by COI1. Crude preparations of soluble proteins from leaf and¯ower extracts of wild-type Arabidopsis showed myrosinase activity when sinigrin was used as substrate. In contrast, coi1 plants showed signi®cantly reduced myrosinase activities in both leaves and¯owers. The results show that COI1 controls MBP expression in¯owers and signi®cantly aects the expression and activity of myrosinase in Arabidopsis.","publication_date":{"day":1,"month":9,"year":2001,"errors":{}},"grobid_abstract_attachment_id":46496737},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833324/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_internal_url":"","created_at":"2015-04-07T12:07:50.540-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383157,"work_id":11833324,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153588,"email":"c***p@oxfordeventos.com.br","display_order":null,"name":"Adriana Capella","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"},{"id":383159,"work_id":11833324,"tagging_user_id":29198179,"tagged_user_id":28827821,"co_author_invite_id":null,"email":"m***i@lgf.ib.unicamp.br","display_order":null,"name":"Marcelo Menossi","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"}],"downloadable_attachments":[{"id":46496737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496737/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx.pdf","download_url":"https://www.academia.edu/attachments/46496737/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496737/COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419091\u0026Signature=J4HAxzvK2tmfiEg8CbK9Gkc1WqdTbdHcaCtF3qRuri3el4kU6W6DvBbigcgawX~969LCZX-o4csUQEJIzklCXIUdl8eu0Hp8Y0hS0eurFf5EzDGsuoNjCrX8anOGk1WZnj7gbYgHjxd-H22YxQJSQWjTY4InJiSTEPie3xUD2LfJyvokIXu5gS68KPQUjXr8KtWCwQP~DJLpmH1SyHqekYWeM5jGLcX1dXYcIq6PCO7i9N~4BRIjIc8Vm7lwq-ol6Xl6OM8-mFSkdhK1aMwNRoUJJ60Jp3UnHjulkCPk2VkxMbMgGNc0DPMRo57xGzoK-jzGwWlKNR6Ajd6NidwTYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496737/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx.pdf","download_url":"https://www.academia.edu/attachments/46496737/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496737/COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419091\u0026Signature=J4HAxzvK2tmfiEg8CbK9Gkc1WqdTbdHcaCtF3qRuri3el4kU6W6DvBbigcgawX~969LCZX-o4csUQEJIzklCXIUdl8eu0Hp8Y0hS0eurFf5EzDGsuoNjCrX8anOGk1WZnj7gbYgHjxd-H22YxQJSQWjTY4InJiSTEPie3xUD2LfJyvokIXu5gS68KPQUjXr8KtWCwQP~DJLpmH1SyHqekYWeM5jGLcX1dXYcIq6PCO7i9N~4BRIjIc8Vm7lwq-ol6Xl6OM8-mFSkdhK1aMwNRoUJJ60Jp3UnHjulkCPk2VkxMbMgGNc0DPMRo57xGzoK-jzGwWlKNR6Ajd6NidwTYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":13365,"name":"Flower Development","url":"https://www.academia.edu/Documents/in/Flower_Development"},{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":41553,"name":"Arabidopsis thaliana","url":"https://www.academia.edu/Documents/in/Arabidopsis_thaliana"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":573466,"name":"Male Sterility","url":"https://www.academia.edu/Documents/in/Male_Sterility"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":844925,"name":"Open Reading Frame","url":"https://www.academia.edu/Documents/in/Open_Reading_Frame"},{"id":964769,"name":"Differential Display","url":"https://www.academia.edu/Documents/in/Differential_Display"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1322750,"name":"Planta","url":"https://www.academia.edu/Documents/in/Planta"},{"id":1891270,"name":"Jasmonic Acid","url":"https://www.academia.edu/Documents/in/Jasmonic_Acid"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833323/A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins"><img alt="Research paper thumbnail of A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833323/A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins">A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://cnpem.academia.edu/MauricioSfor%C3%A7a">Mauricio Sforça</a></span></div><div class="wp-workCard_item"><span>Plant physiology</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833323]").text(description); $(".js-view-count[data-work-id=11833323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=11833323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833323,"title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins","translated_title":"","metadata":{"abstract":"The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Plant physiology"},"translated_abstract":"The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.","internal_url":"https://www.academia.edu/11833323/A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins","translated_internal_url":"","created_at":"2015-04-07T12:07:50.386-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383154,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153586,"email":"c***z@lnls.br","display_order":null,"name":"Carlos Perez","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383152,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153584,"email":"a***o@lnbio.org.br","display_order":null,"name":"Andre Luis Berteli Ambrosio","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383149,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":29117218,"co_author_invite_id":null,"email":"m***i@gmail.com","affiliation":"CNPEM","display_order":null,"name":"Mario Murakami","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383151,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153583,"email":"b***s@lnbio.org.br","display_order":null,"name":"Bruna Campos","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383153,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153585,"email":"a***e@lnbio.org.br","display_order":null,"name":"Adriana Franco Paes Leme","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383150,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":29326027,"co_author_invite_id":153582,"email":"m***a@lnbio.cnpem.br","affiliation":"CNPEM","display_order":null,"name":"Mauricio Sforça","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383160,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":29332632,"co_author_invite_id":153589,"email":"t***a@tecpar.br","display_order":null,"name":"T. Souza","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"}],"downloadable_attachments":[],"slug":"A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[],"research_interests":[{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57461,"name":"Plant Physiology","url":"https://www.academia.edu/Documents/in/Plant_Physiology"},{"id":158165,"name":"Zinc","url":"https://www.academia.edu/Documents/in/Zinc"},{"id":168352,"name":"Cyclosporine","url":"https://www.academia.edu/Documents/in/Cyclosporine"},{"id":614749,"name":"Cysteine","url":"https://www.academia.edu/Documents/in/Cysteine"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":868172,"name":"Citrus Sinensis","url":"https://www.academia.edu/Documents/in/Citrus_Sinensis"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833322/Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase"><img alt="Research paper thumbnail of Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase" class="work-thumbnail" src="https://attachments.academia-assets.com/46496744/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833322/Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase">Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MarcioGilbertoCardosoCosta">Marcio Gilberto Cardoso Costa</a></span></div><div class="wp-workCard_item"><span>Molecular plant-microbe interactions : MPMI</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ed3b8273609707b7185a8fdaf9fa287" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496744,"asset_id":11833322,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496744/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833322]").text(description); $(".js-view-count[data-work-id=11833322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ed3b8273609707b7185a8fdaf9fa287" } } $('.js-work-strip[data-work-id=11833322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833322,"title":"Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase","translated_title":"","metadata":{"grobid_abstract":"The e-Xtra logo stands for \"electronic extra\" and indicates that appears in color online.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Molecular plant-microbe interactions : MPMI","grobid_abstract_attachment_id":46496744},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833322/Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase","translated_internal_url":"","created_at":"2015-04-07T12:07:50.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383147,"work_id":11833322,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153580,"email":"l***s@guarany.unb.br","display_order":null,"name":"Caio Cesar Lima Silva","title":"Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase"},{"id":383148,"work_id":11833322,"tagging_user_id":29198179,"tagged_user_id":29336611,"co_author_invite_id":153581,"email":"m***a@gmail.com","display_order":null,"name":"Marcio Gilberto Cardoso Costa","title":"Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase"}],"downloadable_attachments":[{"id":46496744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496744/thumbnails/1.jpg","file_name":"Increased_resistance_against_citrus_cank20160614-4687-qn4gnz.pdf","download_url":"https://www.academia.edu/attachments/46496744/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Increased_resistance_against_citrus_cank.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496744/Increased_resistance_against_citrus_cank20160614-4687-qn4gnz-libre.pdf?1465968370=\u0026response-content-disposition=attachment%3B+filename%3DIncreased_resistance_against_citrus_cank.pdf\u0026Expires=1732419091\u0026Signature=GIZe-sKBDUo5ciRdtSGPHTOxIKUIClMexcCLcugvCGHVVaPaWDCxrWRkiVwM0TiBiramZGLS4~J610JE0ZUb6wjHWL6AItl4yzrGOS5iiinhfNp00sSVIGOu~IdJrKZ3w6SLOCP2N59hEvl-9ATfwWrB1mjI1GZI3Rc23ucpHeJqYkaTNCmqDE3vNPFlXM6sPaUGph7DBmUjzitdeHwWowtw30t1jvtEZ7bIVx3yWh9~jM4gbrQvf4digtPj9B6SL5lBOn~~Lk5vcXovDPEcr89RQlMIfYMEflQaOI2GGRgZ~CbBJG9yZmvE0uxn5w3MskzerTKKdf7T51b-tHa86w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496744/thumbnails/1.jpg","file_name":"Increased_resistance_against_citrus_cank20160614-4687-qn4gnz.pdf","download_url":"https://www.academia.edu/attachments/46496744/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Increased_resistance_against_citrus_cank.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496744/Increased_resistance_against_citrus_cank20160614-4687-qn4gnz-libre.pdf?1465968370=\u0026response-content-disposition=attachment%3B+filename%3DIncreased_resistance_against_citrus_cank.pdf\u0026Expires=1732419091\u0026Signature=GIZe-sKBDUo5ciRdtSGPHTOxIKUIClMexcCLcugvCGHVVaPaWDCxrWRkiVwM0TiBiramZGLS4~J610JE0ZUb6wjHWL6AItl4yzrGOS5iiinhfNp00sSVIGOu~IdJrKZ3w6SLOCP2N59hEvl-9ATfwWrB1mjI1GZI3Rc23ucpHeJqYkaTNCmqDE3vNPFlXM6sPaUGph7DBmUjzitdeHwWowtw30t1jvtEZ7bIVx3yWh9~jM4gbrQvf4digtPj9B6SL5lBOn~~Lk5vcXovDPEcr89RQlMIfYMEflQaOI2GGRgZ~CbBJG9yZmvE0uxn5w3MskzerTKKdf7T51b-tHa86w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":82978,"name":"Reactive Oxygen Species","url":"https://www.academia.edu/Documents/in/Reactive_Oxygen_Species"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":274826,"name":"Hydrogen Peroxide","url":"https://www.academia.edu/Documents/in/Hydrogen_Peroxide"},{"id":676491,"name":"Xanthomonas","url":"https://www.academia.edu/Documents/in/Xanthomonas"},{"id":783233,"name":"Plant immunity","url":"https://www.academia.edu/Documents/in/Plant_immunity"},{"id":868172,"name":"Citrus Sinensis","url":"https://www.academia.edu/Documents/in/Citrus_Sinensis"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1824374,"name":"Plant Epidermis","url":"https://www.academia.edu/Documents/in/Plant_Epidermis"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833321"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833321/Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development"><img alt="Research paper thumbnail of Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development" class="work-thumbnail" src="https://attachments.academia-assets.com/46496734/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833321/Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development">Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JulianaHelenaCostaSmetana">Juliana Helena Costa Smetana</a></span></div><div class="wp-workCard_item"><span>PLANT PHYSIOLOGY</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8deb24c9a4cdab7cc6109c3061e05b46" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496734,"asset_id":11833321,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496734/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833321"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833321"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833321; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833321]").text(description); $(".js-view-count[data-work-id=11833321]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833321; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833321']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833321, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8deb24c9a4cdab7cc6109c3061e05b46" } } $('.js-work-strip[data-work-id=11833321]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833321,"title":"Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development","translated_title":"","metadata":{"grobid_abstract":"Transcription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription factors in plant cells; however, how TAL effectors activate host transcription is unknown. We found previously that TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-terminal domain of the sweet orange (Citrus sinensis) RNA polymerase II (Pol II) and inhibit the activity of CsCYP, a cyclophilin associated with the carboxyl-terminal domain of the citrus RNA Pol II that functions as a negative regulator of cell growth. Here, we show that PthA4 specifically interacted with the sweet orange MAF1 (CsMAF1) protein, an RNA polymerase III (Pol III) repressor that controls ribosome biogenesis and cell growth in yeast (Saccharomyces cerevisiae) and human. CsMAF1 bound the human RNA Pol III and rescued the yeast maf1 mutant by repressing tRNA His transcription. The expression of PthA4 in the maf1 mutant slightly restored tRNA His synthesis, indicating that PthA4 counteracts CsMAF1 activity. In addition, we show that sweet orange RNA interference plants with reduced CsMAF1 levels displayed a dramatic increase in tRNA transcription and a marked phenotype of cell proliferation during canker formation. Conversely, CsMAF1 overexpression was detrimental to seedling growth, inhibited tRNA synthesis, and attenuated canker development. Furthermore, we found that PthA4 is required to elicit cankers in sweet orange leaves and that depletion of CsMAF1 in X. citri-infected tissues correlates with the development of hyperplastic lesions and the presence of PthA4. Considering that CsMAF1 and CsCYP function as canker suppressors in sweet orange, our data indicate that TAL effectors from X. citri target negative regulators of RNA Pol II and Pol III to coordinately increase the transcription of host genes involved in ribosome biogenesis and cell proliferation.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"PLANT PHYSIOLOGY","grobid_abstract_attachment_id":46496734},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833321/Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development","translated_internal_url":"","created_at":"2015-04-07T12:07:50.080-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383145,"work_id":11833321,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153578,"email":"a***o@hotmail.com","display_order":null,"name":"Adriana Soprano","title":"Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development"},{"id":383146,"work_id":11833321,"tagging_user_id":29198179,"tagged_user_id":29325940,"co_author_invite_id":153579,"email":"j***a@lnbio.org.br","display_order":null,"name":"Juliana Helena Costa Smetana","title":"Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development"}],"downloadable_attachments":[{"id":46496734,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496734/thumbnails/1.jpg","file_name":"232.full.pdf","download_url":"https://www.academia.edu/attachments/46496734/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Citrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496734/232.full-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DCitrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf\u0026Expires=1732419091\u0026Signature=KMxdws5JuqKiBgrgRafoCNiPEY41l5af4~9BnSm2ueNYV5JGBbEKupRnGer36WPpwzsU1ld7xNbSuNsSxz0ZMZv8WaWHHisX8tX5O7qAC~2YgB8OgII0vtP6oJrg4UErcOellMVsdLclMFYX8L3xHBNETbx-MLQfSn7yuyWQpjrRyE7b2cVJMv0c-vrlEomVe2jvCGbF74dJUCWCWTDzFfQ2NNs9gZizuWDeSIhpcVA8gQqrooHR69QZ-G~dRvgqTwLSnieR~n7JUyiqsNmhYhg~4Yi1DVc9RQzXmasHULZmEBVPEFkjbfkd9ajsCYJHiOKT3rblfdwTzxARejgqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496734,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496734/thumbnails/1.jpg","file_name":"232.full.pdf","download_url":"https://www.academia.edu/attachments/46496734/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Citrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496734/232.full-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DCitrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf\u0026Expires=1732419091\u0026Signature=KMxdws5JuqKiBgrgRafoCNiPEY41l5af4~9BnSm2ueNYV5JGBbEKupRnGer36WPpwzsU1ld7xNbSuNsSxz0ZMZv8WaWHHisX8tX5O7qAC~2YgB8OgII0vtP6oJrg4UErcOellMVsdLclMFYX8L3xHBNETbx-MLQfSn7yuyWQpjrRyE7b2cVJMv0c-vrlEomVe2jvCGbF74dJUCWCWTDzFfQ2NNs9gZizuWDeSIhpcVA8gQqrooHR69QZ-G~dRvgqTwLSnieR~n7JUyiqsNmhYhg~4Yi1DVc9RQzXmasHULZmEBVPEFkjbfkd9ajsCYJHiOKT3rblfdwTzxARejgqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49123,"name":"Saccharomyces cerevisiae","url":"https://www.academia.edu/Documents/in/Saccharomyces_cerevisiae"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":57461,"name":"Plant Physiology","url":"https://www.academia.edu/Documents/in/Plant_Physiology"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":676491,"name":"Xanthomonas","url":"https://www.academia.edu/Documents/in/Xanthomonas"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833320"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833320/An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases"><img alt="Research paper thumbnail of An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases" class="work-thumbnail" src="https://attachments.academia-assets.com/46496732/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833320/An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases">An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases</a></div><div class="wp-workCard_item"><span>Plant Molecular Biology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e2c1c7468ebdb8983cead089aa37f04" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496732,"asset_id":11833320,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496732/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833320"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833320"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833320; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833320]").text(description); $(".js-view-count[data-work-id=11833320]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833320; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833320']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833320, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e2c1c7468ebdb8983cead089aa37f04" } } $('.js-work-strip[data-work-id=11833320]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833320,"title":"An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases","translated_title":"","metadata":{"abstract":"The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Plant Molecular Biology"},"translated_abstract":"The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.","internal_url":"https://www.academia.edu/11833320/An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases","translated_internal_url":"","created_at":"2015-04-07T12:07:49.806-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383164,"work_id":11833320,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153590,"email":"p***a@unicamp.br","display_order":null,"name":"Paulo Arruda","title":"An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases"}],"downloadable_attachments":[{"id":46496732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496732/thumbnails/1.jpg","file_name":"An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o.pdf","download_url":"https://www.academia.edu/attachments/46496732/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Arabidopsis_gene_induced_by_wounding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496732/An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o-libre.pdf?1465968369=\u0026response-content-disposition=attachment%3B+filename%3DAn_Arabidopsis_gene_induced_by_wounding.pdf\u0026Expires=1732419091\u0026Signature=VddBShdtwAAclJ2fqmoeI7Ex1Z0UhcwJ0FxsEDam7abhykFVK3ucsP45HMouOipu5~fgF4FhgrIvUFhfkPjY1CWOa6L3yjpU4DUnFrNILCzjiDVtf~6GznLrZX04HsBcVP09qaACLAKcDMSyW0uapOjNW1ujgRhBHHqvM9IbEabOpkUVKcsBe27mN-dKXJ-3dl-0cKr9iVAehD2~0YPOCmog2lEfG8BD9HLjx3Dxy7SFLAY7WAFgJCEbmqW1gT6Xm-AsO5ujFeuIVTy9PV1xqKWYH6s0H~5zcg8haGqgCYWeLzHmfEN4dOWefmZM9T1xD9F9Ja-P2HQjVRXpb5r5pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496732/thumbnails/1.jpg","file_name":"An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o.pdf","download_url":"https://www.academia.edu/attachments/46496732/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Arabidopsis_gene_induced_by_wounding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496732/An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o-libre.pdf?1465968369=\u0026response-content-disposition=attachment%3B+filename%3DAn_Arabidopsis_gene_induced_by_wounding.pdf\u0026Expires=1732419091\u0026Signature=VddBShdtwAAclJ2fqmoeI7Ex1Z0UhcwJ0FxsEDam7abhykFVK3ucsP45HMouOipu5~fgF4FhgrIvUFhfkPjY1CWOa6L3yjpU4DUnFrNILCzjiDVtf~6GznLrZX04HsBcVP09qaACLAKcDMSyW0uapOjNW1ujgRhBHHqvM9IbEabOpkUVKcsBe27mN-dKXJ-3dl-0cKr9iVAehD2~0YPOCmog2lEfG8BD9HLjx3Dxy7SFLAY7WAFgJCEbmqW1gT6Xm-AsO5ujFeuIVTy9PV1xqKWYH6s0H~5zcg8haGqgCYWeLzHmfEN4dOWefmZM9T1xD9F9Ja-P2HQjVRXpb5r5pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":112338,"name":"Oxidoreductases","url":"https://www.academia.edu/Documents/in/Oxidoreductases"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":432129,"name":"Substrate Specificity","url":"https://www.academia.edu/Documents/in/Substrate_Specificity"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":911001,"name":"Methyl Jasmonate","url":"https://www.academia.edu/Documents/in/Methyl_Jasmonate"},{"id":959510,"name":"Recombinant Protein","url":"https://www.academia.edu/Documents/in/Recombinant_Protein"},{"id":964769,"name":"Differential Display","url":"https://www.academia.edu/Documents/in/Differential_Display"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1358142,"name":"Methyl Ester","url":"https://www.academia.edu/Documents/in/Methyl_Ester"},{"id":1626168,"name":"Prostaglandin E2","url":"https://www.academia.edu/Documents/in/Prostaglandin_E2"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1891270,"name":"Jasmonic Acid","url":"https://www.academia.edu/Documents/in/Jasmonic_Acid"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[{"id":4655145,"url":"http://dx.doi.org/10.1023/A:1006464822434"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833319"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833319/On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein"><img alt="Research paper thumbnail of On the biosynthesis of Rhodnius prolixus heme-binding protein" class="work-thumbnail" src="https://attachments.academia-assets.com/46496738/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833319/On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein">On the biosynthesis of Rhodnius prolixus heme-binding protein</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://ufrj.academia.edu/GPaivaSilva">G Paiva-Silva</a></span></div><div class="wp-workCard_item"><span>Insect Biochemistry and Molecular Biology</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemoly...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemolymph and oocytes of Rhodnius prolixus, was investigated. Fat bodies of female insects incubated in vitro with 14C-leucine were able to synthesize and secrete 14C-RHBP to the culture medium. Titration of synthesized RHBP with hemin showed that the protein secreted by the fat bodies is bound to heme, despite the presence of apo-RHBP in the hemolymph. The sequence of the RHBP cDNA encodes a pre-protein of 128 amino acids with no significant homology to any known protein. Northern-blot assays revealed that RHBP expression was limited to fat bodies. The levels of both RHBP mRNA and secreted protein increased in response to blood meal. In addition, the time-course of RHBP secretion in vitro paralleled mRNA accumulation observed in vivo. The inhibition of the de novo heme biosynthesis by treatment of fat bodies with succinyl acetone (SA), an irreversible inhibitor of delta-aminolevulinic acid-dehydratase, led to a significant decrease of heme-RHBP secretion. Nevertheless, the levels of RHBP mRNA were not modified by SA treatment, suggesting that the heme availability is involved in a post-transcriptional control of the RHBP synthesis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fa059f704460ad84d140844c489d3e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496738,"asset_id":11833319,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496738/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833319"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833319"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833319; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833319]").text(description); $(".js-view-count[data-work-id=11833319]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833319; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833319']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833319, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fa059f704460ad84d140844c489d3e8" } } $('.js-work-strip[data-work-id=11833319]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833319,"title":"On the biosynthesis of Rhodnius prolixus heme-binding protein","translated_title":"","metadata":{"abstract":"The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemolymph and oocytes of Rhodnius prolixus, was investigated. Fat bodies of female insects incubated in vitro with 14C-leucine were able to synthesize and secrete 14C-RHBP to the culture medium. Titration of synthesized RHBP with hemin showed that the protein secreted by the fat bodies is bound to heme, despite the presence of apo-RHBP in the hemolymph. The sequence of the RHBP cDNA encodes a pre-protein of 128 amino acids with no significant homology to any known protein. Northern-blot assays revealed that RHBP expression was limited to fat bodies. The levels of both RHBP mRNA and secreted protein increased in response to blood meal. In addition, the time-course of RHBP secretion in vitro paralleled mRNA accumulation observed in vivo. The inhibition of the de novo heme biosynthesis by treatment of fat bodies with succinyl acetone (SA), an irreversible inhibitor of delta-aminolevulinic acid-dehydratase, led to a significant decrease of heme-RHBP secretion. Nevertheless, the levels of RHBP mRNA were not modified by SA treatment, suggesting that the heme availability is involved in a post-transcriptional control of the RHBP synthesis.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Insect Biochemistry and Molecular Biology"},"translated_abstract":"The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemolymph and oocytes of Rhodnius prolixus, was investigated. Fat bodies of female insects incubated in vitro with 14C-leucine were able to synthesize and secrete 14C-RHBP to the culture medium. Titration of synthesized RHBP with hemin showed that the protein secreted by the fat bodies is bound to heme, despite the presence of apo-RHBP in the hemolymph. The sequence of the RHBP cDNA encodes a pre-protein of 128 amino acids with no significant homology to any known protein. Northern-blot assays revealed that RHBP expression was limited to fat bodies. The levels of both RHBP mRNA and secreted protein increased in response to blood meal. In addition, the time-course of RHBP secretion in vitro paralleled mRNA accumulation observed in vivo. The inhibition of the de novo heme biosynthesis by treatment of fat bodies with succinyl acetone (SA), an irreversible inhibitor of delta-aminolevulinic acid-dehydratase, led to a significant decrease of heme-RHBP secretion. Nevertheless, the levels of RHBP mRNA were not modified by SA treatment, suggesting that the heme availability is involved in a post-transcriptional control of the RHBP synthesis.","internal_url":"https://www.academia.edu/11833319/On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein","translated_internal_url":"","created_at":"2015-04-07T12:07:49.569-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383142,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153576,"email":"g***a@granbio.com.br","display_order":null,"name":"G. Paiva-silva","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"},{"id":383144,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":29198955,"co_author_invite_id":151353,"email":"p***a@lnbio.cnpem.br","display_order":null,"name":"Paulo Oliveira","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"},{"id":383143,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153577,"email":"r***i@bireme.org","display_order":null,"name":"R. Meneghini","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"},{"id":383141,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":29528676,"co_author_invite_id":153575,"email":"g***a@bioqmed.ufrj.br","affiliation":"Universidade Federal do Rio de Janeiro (UFRJ)","display_order":null,"name":"G Paiva-Silva","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"}],"downloadable_attachments":[{"id":46496738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496738/thumbnails/1.jpg","file_name":"On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima.pdf","download_url":"https://www.academia.edu/attachments/46496738/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_biosynthesis_of_Rhodnius_prolixus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496738/On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_biosynthesis_of_Rhodnius_prolixus.pdf\u0026Expires=1732419091\u0026Signature=WnykDAmAF4TwWm8vZqxFEx6KdxgkjQ5hQLcGF4h-YJoVnYG5oflhJLlqgdIlICBGCYgRHjAqen~YwjdaJAU-Rc7isjL8U~kWnX-PB7S~ORFENoEcoiFR~QWkGad4yIEFwRZK5nYu1yC1Ruuvvxg2j3RJtycwAEVmIgPTFz1XEaMDS4p6u97VAJChf7~uIpi4lpA2OK8-jX7lSHVI5YSp0w5xxzWmqGdxeS89aRjjci8GKd6EU6jYo36HevLgaZAoZOi0wWckxcv1P-mjprGPyl0VWk-ym9MINxvUlWsChoRFFdceUXGKDVEFrcJ0o552BT6sEAbOActJHmyMOKOGcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496738/thumbnails/1.jpg","file_name":"On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima.pdf","download_url":"https://www.academia.edu/attachments/46496738/download_file?st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_biosynthesis_of_Rhodnius_prolixus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496738/On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_biosynthesis_of_Rhodnius_prolixus.pdf\u0026Expires=1732419091\u0026Signature=WnykDAmAF4TwWm8vZqxFEx6KdxgkjQ5hQLcGF4h-YJoVnYG5oflhJLlqgdIlICBGCYgRHjAqen~YwjdaJAU-Rc7isjL8U~kWnX-PB7S~ORFENoEcoiFR~QWkGad4yIEFwRZK5nYu1yC1Ruuvvxg2j3RJtycwAEVmIgPTFz1XEaMDS4p6u97VAJChf7~uIpi4lpA2OK8-jX7lSHVI5YSp0w5xxzWmqGdxeS89aRjjci8GKd6EU6jYo36HevLgaZAoZOi0wWckxcv1P-mjprGPyl0VWk-ym9MINxvUlWsChoRFFdceUXGKDVEFrcJ0o552BT6sEAbOActJHmyMOKOGcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":29290,"name":"Oogenesis","url":"https://www.academia.edu/Documents/in/Oogenesis"},{"id":98925,"name":"Female","url":"https://www.academia.edu/Documents/in/Female"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":204375,"name":"Heme","url":"https://www.academia.edu/Documents/in/Heme"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":544188,"name":"Hemolymph","url":"https://www.academia.edu/Documents/in/Hemolymph"},{"id":585573,"name":"Amino Acid Profile","url":"https://www.academia.edu/Documents/in/Amino_Acid_Profile"},{"id":608156,"name":"Insect Biochemistry and Molecular Biology","url":"https://www.academia.edu/Documents/in/Insect_Biochemistry_and_Molecular_Biology"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":956315,"name":"Oocytes","url":"https://www.academia.edu/Documents/in/Oocytes"},{"id":975992,"name":"Polyacrylamide Gel Electrophoresis","url":"https://www.academia.edu/Documents/in/Polyacrylamide_Gel_Electrophoresis"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1315979,"name":"Time Course","url":"https://www.academia.edu/Documents/in/Time_Course"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1763968,"name":"Gene Expression Regulation","url":"https://www.academia.edu/Documents/in/Gene_Expression_Regulation"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[{"id":4655144,"url":"http://www.sciencedirect.com/science/article/pii/S0965174802000747"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833318"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833318/Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response"><img alt="Research paper thumbnail of Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response" class="work-thumbnail" src="https://attachments.academia-assets.com/46496792/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833318/Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response">Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/OliveiraMariaDe">Maria De Oliveira</a></span></div><div class="wp-workCard_item"><span>BMC Genomics</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="61bda995b02fed19838fe8295d47ba50" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496792,"asset_id":11833318,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496792/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833318"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833318"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833318; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833318]").text(description); $(".js-view-count[data-work-id=11833318]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833318; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833318']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833318, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "61bda995b02fed19838fe8295d47ba50" } } $('.js-work-strip[data-work-id=11833318]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833318,"title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response","translated_title":"","metadata":{"grobid_abstract":"Background: Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA\"s\" and PthC\"s\" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"BMC Genomics","grobid_abstract_attachment_id":46496792},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833318/Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response","translated_internal_url":"","created_at":"2015-04-07T12:07:49.409-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383140,"work_id":11833318,"tagging_user_id":29198179,"tagged_user_id":1096955,"co_author_invite_id":null,"email":"o***a@cpqrr.fiocruz.br","display_order":null,"name":"Guilherme Oliveira","title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response"},{"id":383139,"work_id":11833318,"tagging_user_id":29198179,"tagged_user_id":29527428,"co_author_invite_id":153574,"email":"m***a@ars.usda.gov","display_order":null,"name":"Maria De Oliveira","title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response"},{"id":383138,"work_id":11833318,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153573,"email":"m***o@lge.ibi.unicamp.br","display_order":null,"name":"Marcelo Carazzolle","title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response"}],"downloadable_attachments":[{"id":46496792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496792/thumbnails/1.jpg","file_name":"Identification_of_putative_TAL_effector_20160614-12965-13s61fo.pdf","download_url":"https://www.academia.edu/attachments/46496792/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_putative_TAL_effector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496792/Identification_of_putative_TAL_effector_20160614-12965-13s61fo-libre.pdf?1465968588=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_putative_TAL_effector.pdf\u0026Expires=1732419092\u0026Signature=ebYbKd59WRg5RXgyfdO9nuzuPS~Q3soJAvz0c486uY1cIG4hoCSy9HhUyjpjlU5Lq1yX~j~DRv2Bx~5VRHTgVBChydl-X9c6VssEBxRGOdGyy02hFQGKPLwsDNtSMjgGAwZ50Up7cZcKW0JQDO8dI1jz4XQ7zjV0GOfbtnIWXhMFL3uB8SUQQHGI5USVmLM0oTObMeVmBaiA6o7644h5DV5-UgoYnHSB4dMvffKvkrTLVp48Yit54ACbaVJvtEjspIS1hTcDVMJoWqpJ2ZVTcJleqDuAgPEbM0iJM7EH8UyJxFbNl1~VT0YoW2AdISz7nf0sv0HvzQKbcVIn3q4eDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496792/thumbnails/1.jpg","file_name":"Identification_of_putative_TAL_effector_20160614-12965-13s61fo.pdf","download_url":"https://www.academia.edu/attachments/46496792/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_putative_TAL_effector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496792/Identification_of_putative_TAL_effector_20160614-12965-13s61fo-libre.pdf?1465968588=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_putative_TAL_effector.pdf\u0026Expires=1732419092\u0026Signature=ebYbKd59WRg5RXgyfdO9nuzuPS~Q3soJAvz0c486uY1cIG4hoCSy9HhUyjpjlU5Lq1yX~j~DRv2Bx~5VRHTgVBChydl-X9c6VssEBxRGOdGyy02hFQGKPLwsDNtSMjgGAwZ50Up7cZcKW0JQDO8dI1jz4XQ7zjV0GOfbtnIWXhMFL3uB8SUQQHGI5USVmLM0oTObMeVmBaiA6o7644h5DV5-UgoYnHSB4dMvffKvkrTLVp48Yit54ACbaVJvtEjspIS1hTcDVMJoWqpJ2ZVTcJleqDuAgPEbM0iJM7EH8UyJxFbNl1~VT0YoW2AdISz7nf0sv0HvzQKbcVIn3q4eDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57178,"name":"Plant Genome Project","url":"https://www.academia.edu/Documents/in/Plant_Genome_Project"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":676491,"name":"Xanthomonas","url":"https://www.academia.edu/Documents/in/Xanthomonas"},{"id":743643,"name":"Host Pathogen Interactions","url":"https://www.academia.edu/Documents/in/Host_Pathogen_Interactions"},{"id":1186610,"name":"DNA binding proteins","url":"https://www.academia.edu/Documents/in/DNA_binding_proteins"},{"id":1810445,"name":"Gene expression profiling","url":"https://www.academia.edu/Documents/in/Gene_expression_profiling"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833317"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833317/NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri"><img alt="Research paper thumbnail of NMR assignment of the outer membrane lipoprotein (OmlA) from Xanthomonas axonopodis pv citri" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833317/NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri">NMR assignment of the outer membrane lipoprotein (OmlA) from Xanthomonas axonopodis pv citri</a></div><div class="wp-workCard_item"><span>Journal of Biomolecular …</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was identified in Xanthomonas citri (Da Silva et al., 2002). Although many functions have been assigned to bacterial lipoproteins, the role of OmlA/SmpA remains unknown. To gain ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833317"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833317"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833317; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833317]").text(description); $(".js-view-count[data-work-id=11833317]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833317; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833317']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833317, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=11833317]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833317,"title":"NMR assignment of the outer membrane lipoprotein (OmlA) from Xanthomonas axonopodis pv citri","translated_title":"","metadata":{"abstract":"An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was identified in Xanthomonas citri (Da Silva et al., 2002). Although many functions have been assigned to bacterial lipoproteins, the role of OmlA/SmpA remains unknown. To gain ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Biomolecular …"},"translated_abstract":"An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was identified in Xanthomonas citri (Da Silva et al., 2002). Although many functions have been assigned to bacterial lipoproteins, the role of OmlA/SmpA remains unknown. To gain ...","internal_url":"https://www.academia.edu/11833317/NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri","translated_internal_url":"","created_at":"2015-04-07T12:07:49.250-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[],"research_interests":[{"id":2374,"name":"Biomolecular NMR","url":"https://www.academia.edu/Documents/in/Biomolecular_NMR"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":227285,"name":"Lipoprotein(a)","url":"https://www.academia.edu/Documents/in/Lipoprotein_a_-1"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":458879,"name":"Lipoproteins","url":"https://www.academia.edu/Documents/in/Lipoproteins"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":670610,"name":"Biomolecular","url":"https://www.academia.edu/Documents/in/Biomolecular"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1371154,"name":"Lipoprotein a","url":"https://www.academia.edu/Documents/in/Lipoprotein_a"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833316"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833316/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair"><img alt="Research paper thumbnail of The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair" class="work-thumbnail" src="https://attachments.academia-assets.com/46496741/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833316/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair">The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b457401a8a45aaea540d45218027722" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496741,"asset_id":11833316,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496741/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833316"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833316"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833316; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833316]").text(description); $(".js-view-count[data-work-id=11833316]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833316; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833316']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833316, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b457401a8a45aaea540d45218027722" } } $('.js-work-strip[data-work-id=11833316]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833316,"title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair","translated_title":"","metadata":{"grobid_abstract":"Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo-and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with a-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitinconjugating enzyme complex formed by Ubc13 and ubiquitinconjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Dubc13 and Dmms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":46496741},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833316/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_internal_url":"","created_at":"2015-04-07T12:07:49.096-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46496741,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496741/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis.pdf","download_url":"https://www.academia.edu/attachments/46496741/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496741/The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419092\u0026Signature=DyOx64exeGPM8ELkPPtZxJ9Gco0yQ4UQhHyjDlHwaI9ugG1COskUiID1SgoEpvaQkzQJ179yS8eS4HDelQNlny~MKG8NUqhqJ9UvMjTiyek~0imvThBJWUE9maTH9t7rsd3F6WYPFze0eYNxn6dJkJp7x0PD3CwGBjgkzCmQdLYU4hWaRDHCcHw~HegIr3mk1RM4BNrBdLuJ493s5Kiq5~g0Zej2F75R2NIMxDpcZUdn~-eDT6fwLKh5-3AW5chphd-ahRe04dhOPf-FAx-XmTSIodXStU21p8AW1xdNUwUBk3AP2kqf6WdxOtAbCvN4vOdgY6j6y6sGImoqK11yjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496741,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496741/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis.pdf","download_url":"https://www.academia.edu/attachments/46496741/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496741/The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419092\u0026Signature=DyOx64exeGPM8ELkPPtZxJ9Gco0yQ4UQhHyjDlHwaI9ugG1COskUiID1SgoEpvaQkzQJ179yS8eS4HDelQNlny~MKG8NUqhqJ9UvMjTiyek~0imvThBJWUE9maTH9t7rsd3F6WYPFze0eYNxn6dJkJp7x0PD3CwGBjgkzCmQdLYU4hWaRDHCcHw~HegIr3mk1RM4BNrBdLuJ493s5Kiq5~g0Zej2F75R2NIMxDpcZUdn~-eDT6fwLKh5-3AW5chphd-ahRe04dhOPf-FAx-XmTSIodXStU21p8AW1xdNUwUBk3AP2kqf6WdxOtAbCvN4vOdgY6j6y6sGImoqK11yjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":3971,"name":"Protein Folding","url":"https://www.academia.edu/Documents/in/Protein_Folding"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":9109,"name":"Tobacco","url":"https://www.academia.edu/Documents/in/Tobacco"},{"id":23067,"name":"DNA repair","url":"https://www.academia.edu/Documents/in/DNA_repair"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":55266,"name":"Ubiquitin","url":"https://www.academia.edu/Documents/in/Ubiquitin"},{"id":71260,"name":"Molecular plant pathology","url":"https://www.academia.edu/Documents/in/Molecular_plant_pathology"},{"id":113903,"name":"Bacteria","url":"https://www.academia.edu/Documents/in/Bacteria"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":317801,"name":"Cell nucleus","url":"https://www.academia.edu/Documents/in/Cell_nucleus"},{"id":373650,"name":"Lysine","url":"https://www.academia.edu/Documents/in/Lysine"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1969247,"name":"Ubiquitination","url":"https://www.academia.edu/Documents/in/Ubiquitination"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833315"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833315/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis"><img alt="Research paper thumbnail of COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis" class="work-thumbnail" src="https://attachments.academia-assets.com/46496733/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833315/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis">COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3dd14aff835de67955fff95b82aca66a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496733,"asset_id":11833315,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496733/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833315"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833315"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833315; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833315]").text(description); $(".js-view-count[data-work-id=11833315]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833315; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833315']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833315, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3dd14aff835de67955fff95b82aca66a" } } $('.js-work-strip[data-work-id=11833315]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833315,"title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis","translated_title":"","metadata":{"grobid_abstract":"Two cDNA clones homologous to myrosinasebinding proteins (MBPs) were identi®ed by dierential display in Arabidopsis thaliana (L.) Heynh. The cDNAs (MBP1 and MBP2) correspond to two open-reading frames found in a gene cluster of seven putative MBP genes located on chromosome 1. The predicted proteins MBP1 and MBP2 are similar to lectins and plant aggregating factors. In addition, MBP2 contains a region of high content of proline and alanine residues, commonly found in arabinogalactan proteins and hydroxyprolinerich glycoproteins. Transcripts corresponding to MBP1 and MBP2 genes are exclusively and abundantly expressed in¯owers but are not detected in male-sterilē owers of coi1 plants, insensitive to jasmonic acid. Northern analysis and in situ hybridization revealed that MBP mRNAs are present in higher levels in immaturē owers and are localized in several¯oral organs, including the ovary, ovules, style, anthers and ®lament. Transcripts of the Arabidopsis myrosinase gene TGG1 show a pattern of expression similar to that observed for the MBP genes during¯ower development; however, they are also abundant in green tissues and are only partially aected by COI1. Crude preparations of soluble proteins from leaf and¯ower extracts of wild-type Arabidopsis showed myrosinase activity when sinigrin was used as substrate. In contrast, coi1 plants showed signi®cantly reduced myrosinase activities in both leaves and¯owers. The results show that COI1 controls MBP expression in¯owers and signi®cantly aects the expression and activity of myrosinase in Arabidopsis.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"grobid_abstract_attachment_id":46496733},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833315/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_internal_url":"","created_at":"2015-04-07T12:07:48.942-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383163,"work_id":11833315,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153590,"email":"p***a@unicamp.br","display_order":null,"name":"Paulo Arruda","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"},{"id":383156,"work_id":11833315,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153588,"email":"c***p@oxfordeventos.com.br","display_order":null,"name":"Adriana Capella","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"},{"id":383158,"work_id":11833315,"tagging_user_id":29198179,"tagged_user_id":28827821,"co_author_invite_id":null,"email":"m***i@lgf.ib.unicamp.br","display_order":null,"name":"Marcelo Menossi","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"}],"downloadable_attachments":[{"id":46496733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496733/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr.pdf","download_url":"https://www.academia.edu/attachments/46496733/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496733/COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419092\u0026Signature=L5f9ZErAzc9b-YDCqtWm9Y-14YJtJh1LF0G9NEqQSv2LVOg5hRlnoAr~T-UhzWmm7Td4j2EPtwJbiKBXIxmW0n2fgQ9QylIlPSyAKBFDxWEOR2LLUlVmpsN1amhYfHIiFRLiT1O3N29738dHp4n5d-qd9QuA75s9rmc38UdqfmrV0AzaEShqvsRmCQ7COYIoUfOi9eg7IMl~I6tUG68KZP5jBZ6ZnS7uRvBD-3CpC9L0HS08mkdtmBzifVXMpvQFZKpGpkvYHh2yyv9fw5G2gIn4D9Y2QBtow1eKjESh-wxSpMxLIknGjnTNFEr7vWkyrj-jxB6X14p3ZwtOBPyAEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496733/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr.pdf","download_url":"https://www.academia.edu/attachments/46496733/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496733/COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419092\u0026Signature=L5f9ZErAzc9b-YDCqtWm9Y-14YJtJh1LF0G9NEqQSv2LVOg5hRlnoAr~T-UhzWmm7Td4j2EPtwJbiKBXIxmW0n2fgQ9QylIlPSyAKBFDxWEOR2LLUlVmpsN1amhYfHIiFRLiT1O3N29738dHp4n5d-qd9QuA75s9rmc38UdqfmrV0AzaEShqvsRmCQ7COYIoUfOi9eg7IMl~I6tUG68KZP5jBZ6ZnS7uRvBD-3CpC9L0HS08mkdtmBzifVXMpvQFZKpGpkvYHh2yyv9fw5G2gIn4D9Y2QBtow1eKjESh-wxSpMxLIknGjnTNFEr7vWkyrj-jxB6X14p3ZwtOBPyAEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":13365,"name":"Flower Development","url":"https://www.academia.edu/Documents/in/Flower_Development"},{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":41553,"name":"Arabidopsis thaliana","url":"https://www.academia.edu/Documents/in/Arabidopsis_thaliana"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":573466,"name":"Male Sterility","url":"https://www.academia.edu/Documents/in/Male_Sterility"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":844925,"name":"Open Reading Frame","url":"https://www.academia.edu/Documents/in/Open_Reading_Frame"},{"id":964769,"name":"Differential Display","url":"https://www.academia.edu/Documents/in/Differential_Display"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1322750,"name":"Planta","url":"https://www.academia.edu/Documents/in/Planta"},{"id":1891270,"name":"Jasmonic Acid","url":"https://www.academia.edu/Documents/in/Jasmonic_Acid"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833314"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833314/Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_"><img alt="Research paper thumbnail of Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. …" class="work-thumbnail" src="https://attachments.academia-assets.com/46496740/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833314/Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_">Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. …</a></div><div class="wp-workCard_item"><span>Molecular plant …</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c9217e15ebf733661a2d4e00d2776f00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496740,"asset_id":11833314,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496740/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833314"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833314"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833314; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833314]").text(description); $(".js-view-count[data-work-id=11833314]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833314; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833314']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833314, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c9217e15ebf733661a2d4e00d2776f00" } } $('.js-work-strip[data-work-id=11833314]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833314,"title":"Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. …","translated_title":"","metadata":{"publisher":"Wiley Online Library","grobid_abstract":"Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii pathotype C (Xaa) are responsible for citrus canker disease; however, while Xac causes canker on all citrus varieties, Xaa is restricted to Mexican lime, and in sweet oranges it triggers a defence response. To gain insights into the differential pathogenicity exhibited by Xac and Xaa and to survey the early molecular events leading to canker development, a detailed transcriptional analysis of sweet orange plants infected with the pathogens was performed. Using differential display, suppressed subtractive hybridization and microarrays, we identified changes in transcript levels in approximately 2.0% of thẽ 32 000 citrus genes examined. Genes with altered expression in response to Xac/Xaa surveyed at 6 and 48 h post-infection (hpi) were associated with cell-wall modifications, cell division and expansion, vesicle trafficking, disease resistance, carbon and nitrogen metabolism, and responses to hormones auxin, gibberellin and ethylene. Most of the genes that were commonly modulated by Xac and Xaa were associated with basal defences triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, we detected clear changes in the transcriptional profiles of defence, cell-wall, vesicle trafficking and cell growth-related genes in Xac-infected leaves between 6 and 48 hpi. This is consistent with the notion that Xac suppresses host defences early during infection and simultaneously changes the physiological status of the host cells, reprogramming them for division and growth. Notably, brefeldin A, an inhibitor of vesicle trafficking, retarded canker development. In contrast, Xaa triggered a mitogen-activated protein kinase signalling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defence genes.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Molecular plant …","grobid_abstract_attachment_id":46496740},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833314/Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_","translated_internal_url":"","created_at":"2015-04-07T12:07:47.987-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46496740,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496740/thumbnails/1.jpg","file_name":"Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr.pdf","download_url":"https://www.academia.edu/attachments/46496740/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transcriptional_analysis_of_the_sweet_or.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496740/Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DTranscriptional_analysis_of_the_sweet_or.pdf\u0026Expires=1732419092\u0026Signature=LR4RUK6plAXSZkk0GHN1jE3XnzVpUHPZDPUQeFifMIOWkgq5RoGDM--~B5BABf4uQmbIK9k-KcocM39sPjT9ErUHrBvdu~SI4ex~T~v7A1-sfmbhz8dIHyxKI8sQcvG5civumG5u0GMyvpfIuf~0I0GvkG0NdGHg3VDmd7VxPCABiGe9KlWqYwybb4HtXSdB8e1lhgyJzIZjP5l0zgyiWP8A9KX6DY0Rdnc~eEb0jXDakuM7WFK2Vw~M9ODoyIz8eXNrM2kGRgeC2y5NhAU90RSQgG~MhjIPFwSPYVQfuZ4t03pFswEdaG3aPY7xbobuJxDNn2LYvB0Evv70efqbKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496740,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496740/thumbnails/1.jpg","file_name":"Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr.pdf","download_url":"https://www.academia.edu/attachments/46496740/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transcriptional_analysis_of_the_sweet_or.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496740/Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DTranscriptional_analysis_of_the_sweet_or.pdf\u0026Expires=1732419092\u0026Signature=LR4RUK6plAXSZkk0GHN1jE3XnzVpUHPZDPUQeFifMIOWkgq5RoGDM--~B5BABf4uQmbIK9k-KcocM39sPjT9ErUHrBvdu~SI4ex~T~v7A1-sfmbhz8dIHyxKI8sQcvG5civumG5u0GMyvpfIuf~0I0GvkG0NdGHg3VDmd7VxPCABiGe9KlWqYwybb4HtXSdB8e1lhgyJzIZjP5l0zgyiWP8A9KX6DY0Rdnc~eEb0jXDakuM7WFK2Vw~M9ODoyIz8eXNrM2kGRgeC2y5NhAU90RSQgG~MhjIPFwSPYVQfuZ4t03pFswEdaG3aPY7xbobuJxDNn2LYvB0Evv70efqbKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":71260,"name":"Molecular plant pathology","url":"https://www.academia.edu/Documents/in/Molecular_plant_pathology"},{"id":103360,"name":"Nucleic acid hybridization","url":"https://www.academia.edu/Documents/in/Nucleic_acid_hybridization"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":1810445,"name":"Gene expression profiling","url":"https://www.academia.edu/Documents/in/Gene_expression_profiling"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833313"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833313/Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio"><img alt="Research paper thumbnail of Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio" class="work-thumbnail" src="https://attachments.academia-assets.com/46496735/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833313/Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio">Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio</a></div><div class="wp-workCard_item"><span>Plant physiology</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8c4169c20e1b543a1b481cdc0b78b492" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496735,"asset_id":11833313,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496735/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833313"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833313"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833313; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833313]").text(description); $(".js-view-count[data-work-id=11833313]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833313; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833313']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833313, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8c4169c20e1b543a1b481cdc0b78b492" } } $('.js-work-strip[data-work-id=11833313]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833313,"title":"Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio","translated_title":"","metadata":{"publisher":"Am Soc Plant Biol","grobid_abstract":"The Arabidopsis gene ATHCOR1, which encodes the CORI1 (coronatine-induced) protein, was expressed in bacterial cells. Soluble recombinant CORI1 was purified and shown to possess chlorophyllase (Chlase) activity in vitro. To determine its activity in vivo, wild-type Arabidopsis and coi1 mutant, which lacks ATHCOR1 transcripts, were transformed with sense and antisense forms of the gene. Wild-type and coi1 plants overexpressing ATHCOR1 showed increased contents of chlorophyllide (Chlide) without a substantial change in the total amount of the extractable chlorophyll (Chl). These plants presented high Chlide to Chl ratios in leaves, whereas antisense plants and nontransformed coi1 mutant showed undetectable ATHCOR1 mRNA and significantly lower Chlide to Chl ratios, relative to wild-type control. Overexpression of ATHCOR1 caused an increased breakdown of Chl a, as revealed by the Chlide a to b ratio, which was significantly higher in sense than wild-type, coi1 mutant, and antisense plants. This preferential activity of CORI1 toward Chl a was further supported by in vitro analyses using the purified protein. Increased Chlase activity was detected in developing flowers, which correlated to the constitutive expression of ATHCOR1 in this organ. Flowers of the antisense plant showed reduced Chlide to Chl ratio, suggesting a role of CORI1 in Chl breakdown during flower senescence. The results show that ATHCOR1 has Chlase activity in vivo, however, because coi1 flowers have no detectable ATHCOR1 mRNA and present Chlide to Chl ratios comparable with the wild type, an additional Chlase is likely to be active in Arabidopsis. In accordance, transcripts of a second Arabidopsis Chlase gene, AtCLH2, were detected in both normal and mutant flowers. * Corresponding author; e-mail celso@lnls.br; fax 5519 -32877110.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Plant physiology","grobid_abstract_attachment_id":46496735},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833313/Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio","translated_internal_url":"","created_at":"2015-04-07T12:07:47.742-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383162,"work_id":11833313,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153590,"email":"p***a@unicamp.br","display_order":null,"name":"Paulo Arruda","title":"Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio"}],"downloadable_attachments":[{"id":46496735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496735/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/46496735/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Altering_the_Expression_of_the_Chlorophy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496735/1255-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DAltering_the_Expression_of_the_Chlorophy.pdf\u0026Expires=1732419092\u0026Signature=MYzDXmn8fYgeSzmbvhuQklERqNYKWBrUrumpZHjyCJNHNcIoi-VT6eaI9Nn~6gu~lyJ51FJIAayNUuJgBp1PT~wNuw9nnSvsHKodynxFfAdsIoDzp-U8qM1fUK7e61TlShPqXQYs1dEOS4YPSc43aiJFhe2eZjGUvmOwJmFicmZj8gNuEY--g6G1v9yXlI0C079F9hSo-r643k5E-9hUpQW5Fk8wePehMrEnNbTuvXZS-hoPm1Bd52WpSmgOkAORR014IhcBXuKdqQmMpz0RH10fVMM-Lc71WLzMRvSFHPXqURSzOg8S1U~2Wtd75831aTsZFgY6ErzLfOnvq~6IuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496735/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/46496735/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Altering_the_Expression_of_the_Chlorophy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496735/1255-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DAltering_the_Expression_of_the_Chlorophy.pdf\u0026Expires=1732419092\u0026Signature=MYzDXmn8fYgeSzmbvhuQklERqNYKWBrUrumpZHjyCJNHNcIoi-VT6eaI9Nn~6gu~lyJ51FJIAayNUuJgBp1PT~wNuw9nnSvsHKodynxFfAdsIoDzp-U8qM1fUK7e61TlShPqXQYs1dEOS4YPSc43aiJFhe2eZjGUvmOwJmFicmZj8gNuEY--g6G1v9yXlI0C079F9hSo-r643k5E-9hUpQW5Fk8wePehMrEnNbTuvXZS-hoPm1Bd52WpSmgOkAORR014IhcBXuKdqQmMpz0RH10fVMM-Lc71WLzMRvSFHPXqURSzOg8S1U~2Wtd75831aTsZFgY6ErzLfOnvq~6IuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11035,"name":"Regulation","url":"https://www.academia.edu/Documents/in/Regulation"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57461,"name":"Plant Physiology","url":"https://www.academia.edu/Documents/in/Plant_Physiology"},{"id":74780,"name":"Mutation","url":"https://www.academia.edu/Documents/in/Mutation"},{"id":85564,"name":"Chlorophyll","url":"https://www.academia.edu/Documents/in/Chlorophyll"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":588751,"name":"Heat Shock Proteins","url":"https://www.academia.edu/Documents/in/Heat_Shock_Proteins"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"}],"urls":[{"id":4655143,"url":"http://direct.bl.uk/research/37/49/RN112145291.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11812542"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11812542/The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction"><img alt="Research paper thumbnail of The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/46512172/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11812542/The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction">The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://cnpem.academia.edu/MarioMurakami">Mario Murakami</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a></span></div><div class="wp-workCard_item"><span>Proteins: Structure, Function, and Bioinformatics</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07fe05318f5944d94f5382a2c01bf357" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46512172,"asset_id":11812542,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46512172/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11812542"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11812542"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11812542; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11812542]").text(description); $(".js-view-count[data-work-id=11812542]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11812542; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11812542']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11812542, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07fe05318f5944d94f5382a2c01bf357" } } $('.js-work-strip[data-work-id=11812542]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11812542,"title":"The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Proteins: Structure, Function, and Bioinformatics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/11812542/The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction","translated_internal_url":"","created_at":"2015-04-06T07:17:40.760-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29117218,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":376940,"work_id":11812542,"tagging_user_id":29117218,"tagged_user_id":29198179,"co_author_invite_id":151340,"email":"c***i@lnbio.cnpem.br","display_order":null,"name":"Celso Benedetti","title":"The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction"}],"downloadable_attachments":[{"id":46512172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46512172/thumbnails/1.jpg","file_name":"The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a.pdf","download_url":"https://www.academia.edu/attachments/46512172/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_repeat_domain_of_the_type_III_effect.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46512172/The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a-libre.pdf?1466006381=\u0026response-content-disposition=attachment%3B+filename%3DThe_repeat_domain_of_the_type_III_effect.pdf\u0026Expires=1732419092\u0026Signature=TUddJ~7uoClEUPdziBaC8G~GB9xxsIv8s3UMkkS4Pkw1NzIPhsUG9h1P7vd8JQzl4PmEznujc-iK6WxLkmB78O4YZ33I~2HW2fI3PKwm0s1OQVGQKlw8nyVqbW9MY5kIHsFMRuJ9CLK8kUgBIsuunqUJCuVwByI3uQW96IU~NSoBXJx3R~YyzDaIr4aGXSABEeqfu2pJegTXm5AddpSaJVlrUYpNl6RvZjGDhKNVoOKW~9N5Sf5-FhQxU57nkDyFSvT1FMSXa8wJn1TRSrXkiLCeoJ6LmQwvW8E9CTgYfqgQDiISkJ9TaZNtd3Ig0C1YWuP3YWnWWlYFCL4ZrLkkvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":29117218,"first_name":"Mario","middle_initials":null,"last_name":"Murakami","page_name":"MarioMurakami","domain_name":"cnpem","created_at":"2015-04-06T07:16:04.313-07:00","display_name":"Mario Murakami","url":"https://cnpem.academia.edu/MarioMurakami"},"attachments":[{"id":46512172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46512172/thumbnails/1.jpg","file_name":"The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a.pdf","download_url":"https://www.academia.edu/attachments/46512172/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_repeat_domain_of_the_type_III_effect.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46512172/The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a-libre.pdf?1466006381=\u0026response-content-disposition=attachment%3B+filename%3DThe_repeat_domain_of_the_type_III_effect.pdf\u0026Expires=1732419092\u0026Signature=TUddJ~7uoClEUPdziBaC8G~GB9xxsIv8s3UMkkS4Pkw1NzIPhsUG9h1P7vd8JQzl4PmEznujc-iK6WxLkmB78O4YZ33I~2HW2fI3PKwm0s1OQVGQKlw8nyVqbW9MY5kIHsFMRuJ9CLK8kUgBIsuunqUJCuVwByI3uQW96IU~NSoBXJx3R~YyzDaIr4aGXSABEeqfu2pJegTXm5AddpSaJVlrUYpNl6RvZjGDhKNVoOKW~9N5Sf5-FhQxU57nkDyFSvT1FMSXa8wJn1TRSrXkiLCeoJ6LmQwvW8E9CTgYfqgQDiISkJ9TaZNtd3Ig0C1YWuP3YWnWWlYFCL4ZrLkkvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8914,"name":"Protein Science","url":"https://www.academia.edu/Documents/in/Protein_Science"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":76407,"name":"Circular Dichroism","url":"https://www.academia.edu/Documents/in/Circular_Dichroism"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":151086,"name":"Peptides","url":"https://www.academia.edu/Documents/in/Peptides"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1137254,"name":"Hydrogen-Ion Concentration","url":"https://www.academia.edu/Documents/in/Hydrogen-Ion_Concentration"},{"id":1274450,"name":"Conformational Change","url":"https://www.academia.edu/Documents/in/Conformational_Change"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2824725" id="papers"><div class="js-work-strip profile--work_container" data-work-id="11833325"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833325/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair"><img alt="Research paper thumbnail of The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair" class="work-thumbnail" src="https://attachments.academia-assets.com/46496739/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833325/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair">The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/TSouza1">T. Souza</a></span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6e9edd39755b839083e1cf4ffc47ebbb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496739,"asset_id":11833325,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496739/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833325"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833325"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833325; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833325]").text(description); $(".js-view-count[data-work-id=11833325]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833325; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833325']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833325, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6e9edd39755b839083e1cf4ffc47ebbb" } } $('.js-work-strip[data-work-id=11833325]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833325,"title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair","translated_title":"","metadata":{"grobid_abstract":"Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo-and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with a-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitinconjugating enzyme complex formed by Ubc13 and ubiquitinconjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Dubc13 and Dmms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":46496739},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833325/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_internal_url":"","created_at":"2015-04-07T12:07:50.681-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383155,"work_id":11833325,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153587,"email":"t***a@lnls.br","display_order":null,"name":"Tiago Antonio De Souza","title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair"},{"id":383161,"work_id":11833325,"tagging_user_id":29198179,"tagged_user_id":29332632,"co_author_invite_id":153589,"email":"t***a@tecpar.br","display_order":null,"name":"T. Souza","title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair"}],"downloadable_attachments":[{"id":46496739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496739/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68.pdf","download_url":"https://www.academia.edu/attachments/46496739/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496739/The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419091\u0026Signature=MIn~UiUilaoa2~dPDmixMEkw0cIk~0FsQHAs7chKaVNTOyiFy2wZViLLgRqS8bcu7-ivfbSK4yHoske7uBG~sOSsxmDykAZ7jd9CEYl93AdqfoQwJO9X2GhTe6Gy32mQHoXa5laF4FcXi6az~Nfax9XfY6Stp51vzLSTIAqKosMrf5g4z-xS-KHzVxk2gAqFxMTaCh9j-u~KefXeFPD3UbbZvX~vojeCKW4~w-cP4alw~KdVn7jRykmVpEcyB1lkry330tclXXicDEvw94cbsZXO00Zr73zz6nq1e3ZM1CC9g0wFNEzo8kP4bdz3O6DdB0uLB7AiIgaI070SKYmE4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496739/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68.pdf","download_url":"https://www.academia.edu/attachments/46496739/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496739/The_Xanthomonas_citri_effector_protein_P20160614-32112-e7cb68-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419091\u0026Signature=MIn~UiUilaoa2~dPDmixMEkw0cIk~0FsQHAs7chKaVNTOyiFy2wZViLLgRqS8bcu7-ivfbSK4yHoske7uBG~sOSsxmDykAZ7jd9CEYl93AdqfoQwJO9X2GhTe6Gy32mQHoXa5laF4FcXi6az~Nfax9XfY6Stp51vzLSTIAqKosMrf5g4z-xS-KHzVxk2gAqFxMTaCh9j-u~KefXeFPD3UbbZvX~vojeCKW4~w-cP4alw~KdVn7jRykmVpEcyB1lkry330tclXXicDEvw94cbsZXO00Zr73zz6nq1e3ZM1CC9g0wFNEzo8kP4bdz3O6DdB0uLB7AiIgaI070SKYmE4A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":3971,"name":"Protein Folding","url":"https://www.academia.edu/Documents/in/Protein_Folding"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":9109,"name":"Tobacco","url":"https://www.academia.edu/Documents/in/Tobacco"},{"id":23067,"name":"DNA repair","url":"https://www.academia.edu/Documents/in/DNA_repair"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":55266,"name":"Ubiquitin","url":"https://www.academia.edu/Documents/in/Ubiquitin"},{"id":71260,"name":"Molecular plant pathology","url":"https://www.academia.edu/Documents/in/Molecular_plant_pathology"},{"id":113903,"name":"Bacteria","url":"https://www.academia.edu/Documents/in/Bacteria"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":317801,"name":"Cell nucleus","url":"https://www.academia.edu/Documents/in/Cell_nucleus"},{"id":373650,"name":"Lysine","url":"https://www.academia.edu/Documents/in/Lysine"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1969247,"name":"Ubiquitination","url":"https://www.academia.edu/Documents/in/Ubiquitination"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833324"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833324/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis"><img alt="Research paper thumbnail of COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis" class="work-thumbnail" src="https://attachments.academia-assets.com/46496737/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833324/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis">COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2a66e7184fe30289bf615a56c9f0442e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496737,"asset_id":11833324,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496737/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833324"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833324"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833324; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833324]").text(description); $(".js-view-count[data-work-id=11833324]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833324; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833324']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833324, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2a66e7184fe30289bf615a56c9f0442e" } } $('.js-work-strip[data-work-id=11833324]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833324,"title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis","translated_title":"","metadata":{"grobid_abstract":"Two cDNA clones homologous to myrosinasebinding proteins (MBPs) were identi®ed by dierential display in Arabidopsis thaliana (L.) Heynh. The cDNAs (MBP1 and MBP2) correspond to two open-reading frames found in a gene cluster of seven putative MBP genes located on chromosome 1. The predicted proteins MBP1 and MBP2 are similar to lectins and plant aggregating factors. In addition, MBP2 contains a region of high content of proline and alanine residues, commonly found in arabinogalactan proteins and hydroxyprolinerich glycoproteins. Transcripts corresponding to MBP1 and MBP2 genes are exclusively and abundantly expressed in¯owers but are not detected in male-sterilē owers of coi1 plants, insensitive to jasmonic acid. Northern analysis and in situ hybridization revealed that MBP mRNAs are present in higher levels in immaturē owers and are localized in several¯oral organs, including the ovary, ovules, style, anthers and ®lament. Transcripts of the Arabidopsis myrosinase gene TGG1 show a pattern of expression similar to that observed for the MBP genes during¯ower development; however, they are also abundant in green tissues and are only partially aected by COI1. Crude preparations of soluble proteins from leaf and¯ower extracts of wild-type Arabidopsis showed myrosinase activity when sinigrin was used as substrate. In contrast, coi1 plants showed signi®cantly reduced myrosinase activities in both leaves and¯owers. The results show that COI1 controls MBP expression in¯owers and signi®cantly aects the expression and activity of myrosinase in Arabidopsis.","publication_date":{"day":1,"month":9,"year":2001,"errors":{}},"grobid_abstract_attachment_id":46496737},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833324/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_internal_url":"","created_at":"2015-04-07T12:07:50.540-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383157,"work_id":11833324,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153588,"email":"c***p@oxfordeventos.com.br","display_order":null,"name":"Adriana Capella","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"},{"id":383159,"work_id":11833324,"tagging_user_id":29198179,"tagged_user_id":28827821,"co_author_invite_id":null,"email":"m***i@lgf.ib.unicamp.br","display_order":null,"name":"Marcelo Menossi","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"}],"downloadable_attachments":[{"id":46496737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496737/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx.pdf","download_url":"https://www.academia.edu/attachments/46496737/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496737/COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419091\u0026Signature=J4HAxzvK2tmfiEg8CbK9Gkc1WqdTbdHcaCtF3qRuri3el4kU6W6DvBbigcgawX~969LCZX-o4csUQEJIzklCXIUdl8eu0Hp8Y0hS0eurFf5EzDGsuoNjCrX8anOGk1WZnj7gbYgHjxd-H22YxQJSQWjTY4InJiSTEPie3xUD2LfJyvokIXu5gS68KPQUjXr8KtWCwQP~DJLpmH1SyHqekYWeM5jGLcX1dXYcIq6PCO7i9N~4BRIjIc8Vm7lwq-ol6Xl6OM8-mFSkdhK1aMwNRoUJJ60Jp3UnHjulkCPk2VkxMbMgGNc0DPMRo57xGzoK-jzGwWlKNR6Ajd6NidwTYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496737/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx.pdf","download_url":"https://www.academia.edu/attachments/46496737/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496737/COI1_affects_myrosinase_activity_and_con20160614-12965-1u7mfx-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419091\u0026Signature=J4HAxzvK2tmfiEg8CbK9Gkc1WqdTbdHcaCtF3qRuri3el4kU6W6DvBbigcgawX~969LCZX-o4csUQEJIzklCXIUdl8eu0Hp8Y0hS0eurFf5EzDGsuoNjCrX8anOGk1WZnj7gbYgHjxd-H22YxQJSQWjTY4InJiSTEPie3xUD2LfJyvokIXu5gS68KPQUjXr8KtWCwQP~DJLpmH1SyHqekYWeM5jGLcX1dXYcIq6PCO7i9N~4BRIjIc8Vm7lwq-ol6Xl6OM8-mFSkdhK1aMwNRoUJJ60Jp3UnHjulkCPk2VkxMbMgGNc0DPMRo57xGzoK-jzGwWlKNR6Ajd6NidwTYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":13365,"name":"Flower Development","url":"https://www.academia.edu/Documents/in/Flower_Development"},{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":41553,"name":"Arabidopsis thaliana","url":"https://www.academia.edu/Documents/in/Arabidopsis_thaliana"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":573466,"name":"Male Sterility","url":"https://www.academia.edu/Documents/in/Male_Sterility"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":844925,"name":"Open Reading Frame","url":"https://www.academia.edu/Documents/in/Open_Reading_Frame"},{"id":964769,"name":"Differential Display","url":"https://www.academia.edu/Documents/in/Differential_Display"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1322750,"name":"Planta","url":"https://www.academia.edu/Documents/in/Planta"},{"id":1891270,"name":"Jasmonic Acid","url":"https://www.academia.edu/Documents/in/Jasmonic_Acid"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833323/A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins"><img alt="Research paper thumbnail of A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833323/A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins">A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://cnpem.academia.edu/MauricioSfor%C3%A7a">Mauricio Sforça</a></span></div><div class="wp-workCard_item"><span>Plant physiology</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833323]").text(description); $(".js-view-count[data-work-id=11833323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=11833323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833323,"title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins","translated_title":"","metadata":{"abstract":"The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Plant physiology"},"translated_abstract":"The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.","internal_url":"https://www.academia.edu/11833323/A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins","translated_internal_url":"","created_at":"2015-04-07T12:07:50.386-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383154,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153586,"email":"c***z@lnls.br","display_order":null,"name":"Carlos Perez","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383152,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153584,"email":"a***o@lnbio.org.br","display_order":null,"name":"Andre Luis Berteli Ambrosio","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383149,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":29117218,"co_author_invite_id":null,"email":"m***i@gmail.com","affiliation":"CNPEM","display_order":null,"name":"Mario Murakami","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383151,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153583,"email":"b***s@lnbio.org.br","display_order":null,"name":"Bruna Campos","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383153,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153585,"email":"a***e@lnbio.org.br","display_order":null,"name":"Adriana Franco Paes Leme","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383150,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":29326027,"co_author_invite_id":153582,"email":"m***a@lnbio.cnpem.br","affiliation":"CNPEM","display_order":null,"name":"Mauricio Sforça","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"},{"id":383160,"work_id":11833323,"tagging_user_id":29198179,"tagged_user_id":29332632,"co_author_invite_id":153589,"email":"t***a@tecpar.br","display_order":null,"name":"T. Souza","title":"A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins"}],"downloadable_attachments":[],"slug":"A_redox_2_Cys_mechanism_regulates_the_catalytic_activity_of_divergent_cyclophilins","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[],"research_interests":[{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57461,"name":"Plant Physiology","url":"https://www.academia.edu/Documents/in/Plant_Physiology"},{"id":158165,"name":"Zinc","url":"https://www.academia.edu/Documents/in/Zinc"},{"id":168352,"name":"Cyclosporine","url":"https://www.academia.edu/Documents/in/Cyclosporine"},{"id":614749,"name":"Cysteine","url":"https://www.academia.edu/Documents/in/Cysteine"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":868172,"name":"Citrus Sinensis","url":"https://www.academia.edu/Documents/in/Citrus_Sinensis"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1292998,"name":"Glutamic Acid","url":"https://www.academia.edu/Documents/in/Glutamic_Acid"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833322/Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase"><img alt="Research paper thumbnail of Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase" class="work-thumbnail" src="https://attachments.academia-assets.com/46496744/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833322/Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase">Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MarcioGilbertoCardosoCosta">Marcio Gilberto Cardoso Costa</a></span></div><div class="wp-workCard_item"><span>Molecular plant-microbe interactions : MPMI</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ed3b8273609707b7185a8fdaf9fa287" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496744,"asset_id":11833322,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496744/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833322]").text(description); $(".js-view-count[data-work-id=11833322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ed3b8273609707b7185a8fdaf9fa287" } } $('.js-work-strip[data-work-id=11833322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833322,"title":"Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase","translated_title":"","metadata":{"grobid_abstract":"The e-Xtra logo stands for \"electronic extra\" and indicates that appears in color online.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Molecular plant-microbe interactions : MPMI","grobid_abstract_attachment_id":46496744},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833322/Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase","translated_internal_url":"","created_at":"2015-04-07T12:07:50.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383147,"work_id":11833322,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153580,"email":"l***s@guarany.unb.br","display_order":null,"name":"Caio Cesar Lima Silva","title":"Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase"},{"id":383148,"work_id":11833322,"tagging_user_id":29198179,"tagged_user_id":29336611,"co_author_invite_id":153581,"email":"m***a@gmail.com","display_order":null,"name":"Marcio Gilberto Cardoso Costa","title":"Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase"}],"downloadable_attachments":[{"id":46496744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496744/thumbnails/1.jpg","file_name":"Increased_resistance_against_citrus_cank20160614-4687-qn4gnz.pdf","download_url":"https://www.academia.edu/attachments/46496744/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Increased_resistance_against_citrus_cank.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496744/Increased_resistance_against_citrus_cank20160614-4687-qn4gnz-libre.pdf?1465968370=\u0026response-content-disposition=attachment%3B+filename%3DIncreased_resistance_against_citrus_cank.pdf\u0026Expires=1732419091\u0026Signature=GIZe-sKBDUo5ciRdtSGPHTOxIKUIClMexcCLcugvCGHVVaPaWDCxrWRkiVwM0TiBiramZGLS4~J610JE0ZUb6wjHWL6AItl4yzrGOS5iiinhfNp00sSVIGOu~IdJrKZ3w6SLOCP2N59hEvl-9ATfwWrB1mjI1GZI3Rc23ucpHeJqYkaTNCmqDE3vNPFlXM6sPaUGph7DBmUjzitdeHwWowtw30t1jvtEZ7bIVx3yWh9~jM4gbrQvf4digtPj9B6SL5lBOn~~Lk5vcXovDPEcr89RQlMIfYMEflQaOI2GGRgZ~CbBJG9yZmvE0uxn5w3MskzerTKKdf7T51b-tHa86w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Increased_resistance_against_citrus_canker_mediated_by_a_citrus_mitogen_activated_protein_kinase","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496744,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496744/thumbnails/1.jpg","file_name":"Increased_resistance_against_citrus_cank20160614-4687-qn4gnz.pdf","download_url":"https://www.academia.edu/attachments/46496744/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Increased_resistance_against_citrus_cank.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496744/Increased_resistance_against_citrus_cank20160614-4687-qn4gnz-libre.pdf?1465968370=\u0026response-content-disposition=attachment%3B+filename%3DIncreased_resistance_against_citrus_cank.pdf\u0026Expires=1732419091\u0026Signature=GIZe-sKBDUo5ciRdtSGPHTOxIKUIClMexcCLcugvCGHVVaPaWDCxrWRkiVwM0TiBiramZGLS4~J610JE0ZUb6wjHWL6AItl4yzrGOS5iiinhfNp00sSVIGOu~IdJrKZ3w6SLOCP2N59hEvl-9ATfwWrB1mjI1GZI3Rc23ucpHeJqYkaTNCmqDE3vNPFlXM6sPaUGph7DBmUjzitdeHwWowtw30t1jvtEZ7bIVx3yWh9~jM4gbrQvf4digtPj9B6SL5lBOn~~Lk5vcXovDPEcr89RQlMIfYMEflQaOI2GGRgZ~CbBJG9yZmvE0uxn5w3MskzerTKKdf7T51b-tHa86w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":82978,"name":"Reactive Oxygen Species","url":"https://www.academia.edu/Documents/in/Reactive_Oxygen_Species"},{"id":198630,"name":"Molecular Plant Microbe Interactions","url":"https://www.academia.edu/Documents/in/Molecular_Plant_Microbe_Interactions"},{"id":274826,"name":"Hydrogen Peroxide","url":"https://www.academia.edu/Documents/in/Hydrogen_Peroxide"},{"id":676491,"name":"Xanthomonas","url":"https://www.academia.edu/Documents/in/Xanthomonas"},{"id":783233,"name":"Plant immunity","url":"https://www.academia.edu/Documents/in/Plant_immunity"},{"id":868172,"name":"Citrus Sinensis","url":"https://www.academia.edu/Documents/in/Citrus_Sinensis"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1824374,"name":"Plant Epidermis","url":"https://www.academia.edu/Documents/in/Plant_Epidermis"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833321"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833321/Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development"><img alt="Research paper thumbnail of Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development" class="work-thumbnail" src="https://attachments.academia-assets.com/46496734/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833321/Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development">Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JulianaHelenaCostaSmetana">Juliana Helena Costa Smetana</a></span></div><div class="wp-workCard_item"><span>PLANT PHYSIOLOGY</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8deb24c9a4cdab7cc6109c3061e05b46" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496734,"asset_id":11833321,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496734/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833321"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833321"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833321; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833321]").text(description); $(".js-view-count[data-work-id=11833321]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833321; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833321']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833321, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8deb24c9a4cdab7cc6109c3061e05b46" } } $('.js-work-strip[data-work-id=11833321]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833321,"title":"Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development","translated_title":"","metadata":{"grobid_abstract":"Transcription activator-like (TAL) effectors from Xanthomonas species pathogens act as transcription factors in plant cells; however, how TAL effectors activate host transcription is unknown. We found previously that TAL effectors of the citrus canker pathogen Xanthomonas citri, known as PthAs, bind the carboxyl-terminal domain of the sweet orange (Citrus sinensis) RNA polymerase II (Pol II) and inhibit the activity of CsCYP, a cyclophilin associated with the carboxyl-terminal domain of the citrus RNA Pol II that functions as a negative regulator of cell growth. Here, we show that PthA4 specifically interacted with the sweet orange MAF1 (CsMAF1) protein, an RNA polymerase III (Pol III) repressor that controls ribosome biogenesis and cell growth in yeast (Saccharomyces cerevisiae) and human. CsMAF1 bound the human RNA Pol III and rescued the yeast maf1 mutant by repressing tRNA His transcription. The expression of PthA4 in the maf1 mutant slightly restored tRNA His synthesis, indicating that PthA4 counteracts CsMAF1 activity. In addition, we show that sweet orange RNA interference plants with reduced CsMAF1 levels displayed a dramatic increase in tRNA transcription and a marked phenotype of cell proliferation during canker formation. Conversely, CsMAF1 overexpression was detrimental to seedling growth, inhibited tRNA synthesis, and attenuated canker development. Furthermore, we found that PthA4 is required to elicit cankers in sweet orange leaves and that depletion of CsMAF1 in X. citri-infected tissues correlates with the development of hyperplastic lesions and the presence of PthA4. Considering that CsMAF1 and CsCYP function as canker suppressors in sweet orange, our data indicate that TAL effectors from X. citri target negative regulators of RNA Pol II and Pol III to coordinately increase the transcription of host genes involved in ribosome biogenesis and cell proliferation.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"PLANT PHYSIOLOGY","grobid_abstract_attachment_id":46496734},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833321/Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development","translated_internal_url":"","created_at":"2015-04-07T12:07:50.080-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383145,"work_id":11833321,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153578,"email":"a***o@hotmail.com","display_order":null,"name":"Adriana Soprano","title":"Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development"},{"id":383146,"work_id":11833321,"tagging_user_id":29198179,"tagged_user_id":29325940,"co_author_invite_id":153579,"email":"j***a@lnbio.org.br","display_order":null,"name":"Juliana Helena Costa Smetana","title":"Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development"}],"downloadable_attachments":[{"id":46496734,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496734/thumbnails/1.jpg","file_name":"232.full.pdf","download_url":"https://www.academia.edu/attachments/46496734/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Citrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496734/232.full-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DCitrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf\u0026Expires=1732419091\u0026Signature=KMxdws5JuqKiBgrgRafoCNiPEY41l5af4~9BnSm2ueNYV5JGBbEKupRnGer36WPpwzsU1ld7xNbSuNsSxz0ZMZv8WaWHHisX8tX5O7qAC~2YgB8OgII0vtP6oJrg4UErcOellMVsdLclMFYX8L3xHBNETbx-MLQfSn7yuyWQpjrRyE7b2cVJMv0c-vrlEomVe2jvCGbF74dJUCWCWTDzFfQ2NNs9gZizuWDeSIhpcVA8gQqrooHR69QZ-G~dRvgqTwLSnieR~n7JUyiqsNmhYhg~4Yi1DVc9RQzXmasHULZmEBVPEFkjbfkd9ajsCYJHiOKT3rblfdwTzxARejgqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Citrus_MAF1_a_Repressor_of_RNA_Polymerase_III_Binds_the_Xanthomonas_citri_Canker_Elicitor_PthA4_and_Suppresses_Citrus_Canker_Development","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496734,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496734/thumbnails/1.jpg","file_name":"232.full.pdf","download_url":"https://www.academia.edu/attachments/46496734/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Citrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496734/232.full-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DCitrus_MAF1_a_Repressor_of_RNA_Polymeras.pdf\u0026Expires=1732419091\u0026Signature=KMxdws5JuqKiBgrgRafoCNiPEY41l5af4~9BnSm2ueNYV5JGBbEKupRnGer36WPpwzsU1ld7xNbSuNsSxz0ZMZv8WaWHHisX8tX5O7qAC~2YgB8OgII0vtP6oJrg4UErcOellMVsdLclMFYX8L3xHBNETbx-MLQfSn7yuyWQpjrRyE7b2cVJMv0c-vrlEomVe2jvCGbF74dJUCWCWTDzFfQ2NNs9gZizuWDeSIhpcVA8gQqrooHR69QZ-G~dRvgqTwLSnieR~n7JUyiqsNmhYhg~4Yi1DVc9RQzXmasHULZmEBVPEFkjbfkd9ajsCYJHiOKT3rblfdwTzxARejgqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":49123,"name":"Saccharomyces cerevisiae","url":"https://www.academia.edu/Documents/in/Saccharomyces_cerevisiae"},{"id":54433,"name":"Phylogeny","url":"https://www.academia.edu/Documents/in/Phylogeny"},{"id":57461,"name":"Plant Physiology","url":"https://www.academia.edu/Documents/in/Plant_Physiology"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":676491,"name":"Xanthomonas","url":"https://www.academia.edu/Documents/in/Xanthomonas"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833320"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833320/An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases"><img alt="Research paper thumbnail of An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases" class="work-thumbnail" src="https://attachments.academia-assets.com/46496732/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833320/An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases">An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases</a></div><div class="wp-workCard_item"><span>Plant Molecular Biology</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-p...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e2c1c7468ebdb8983cead089aa37f04" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496732,"asset_id":11833320,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496732/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833320"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833320"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833320; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833320]").text(description); $(".js-view-count[data-work-id=11833320]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833320; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833320']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833320, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e2c1c7468ebdb8983cead089aa37f04" } } $('.js-work-strip[data-work-id=11833320]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833320,"title":"An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases","translated_title":"","metadata":{"abstract":"The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Plant Molecular Biology"},"translated_abstract":"The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of β-NADPH when OPDA or 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. β-NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed β-NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.","internal_url":"https://www.academia.edu/11833320/An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases","translated_internal_url":"","created_at":"2015-04-07T12:07:49.806-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383164,"work_id":11833320,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153590,"email":"p***a@unicamp.br","display_order":null,"name":"Paulo Arruda","title":"An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases"}],"downloadable_attachments":[{"id":46496732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496732/thumbnails/1.jpg","file_name":"An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o.pdf","download_url":"https://www.academia.edu/attachments/46496732/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Arabidopsis_gene_induced_by_wounding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496732/An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o-libre.pdf?1465968369=\u0026response-content-disposition=attachment%3B+filename%3DAn_Arabidopsis_gene_induced_by_wounding.pdf\u0026Expires=1732419091\u0026Signature=VddBShdtwAAclJ2fqmoeI7Ex1Z0UhcwJ0FxsEDam7abhykFVK3ucsP45HMouOipu5~fgF4FhgrIvUFhfkPjY1CWOa6L3yjpU4DUnFrNILCzjiDVtf~6GznLrZX04HsBcVP09qaACLAKcDMSyW0uapOjNW1ujgRhBHHqvM9IbEabOpkUVKcsBe27mN-dKXJ-3dl-0cKr9iVAehD2~0YPOCmog2lEfG8BD9HLjx3Dxy7SFLAY7WAFgJCEbmqW1gT6Xm-AsO5ujFeuIVTy9PV1xqKWYH6s0H~5zcg8haGqgCYWeLzHmfEN4dOWefmZM9T1xD9F9Ja-P2HQjVRXpb5r5pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Arabidopsis_gene_induced_by_wounding_functionally_homologous_to_flavoprotein_oxidoreductases","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496732/thumbnails/1.jpg","file_name":"An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o.pdf","download_url":"https://www.academia.edu/attachments/46496732/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_Arabidopsis_gene_induced_by_wounding.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496732/An_Arabidopsis_gene_induced_by_wounding_20160614-4687-1kdst6o-libre.pdf?1465968369=\u0026response-content-disposition=attachment%3B+filename%3DAn_Arabidopsis_gene_induced_by_wounding.pdf\u0026Expires=1732419091\u0026Signature=VddBShdtwAAclJ2fqmoeI7Ex1Z0UhcwJ0FxsEDam7abhykFVK3ucsP45HMouOipu5~fgF4FhgrIvUFhfkPjY1CWOa6L3yjpU4DUnFrNILCzjiDVtf~6GznLrZX04HsBcVP09qaACLAKcDMSyW0uapOjNW1ujgRhBHHqvM9IbEabOpkUVKcsBe27mN-dKXJ-3dl-0cKr9iVAehD2~0YPOCmog2lEfG8BD9HLjx3Dxy7SFLAY7WAFgJCEbmqW1gT6Xm-AsO5ujFeuIVTy9PV1xqKWYH6s0H~5zcg8haGqgCYWeLzHmfEN4dOWefmZM9T1xD9F9Ja-P2HQjVRXpb5r5pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":112338,"name":"Oxidoreductases","url":"https://www.academia.edu/Documents/in/Oxidoreductases"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":350931,"name":"Mechanical Stress","url":"https://www.academia.edu/Documents/in/Mechanical_Stress"},{"id":432129,"name":"Substrate Specificity","url":"https://www.academia.edu/Documents/in/Substrate_Specificity"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":911001,"name":"Methyl Jasmonate","url":"https://www.academia.edu/Documents/in/Methyl_Jasmonate"},{"id":959510,"name":"Recombinant Protein","url":"https://www.academia.edu/Documents/in/Recombinant_Protein"},{"id":964769,"name":"Differential Display","url":"https://www.academia.edu/Documents/in/Differential_Display"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1256747,"name":"Oxidation-Reduction","url":"https://www.academia.edu/Documents/in/Oxidation-Reduction"},{"id":1358142,"name":"Methyl Ester","url":"https://www.academia.edu/Documents/in/Methyl_Ester"},{"id":1626168,"name":"Prostaglandin E2","url":"https://www.academia.edu/Documents/in/Prostaglandin_E2"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1891270,"name":"Jasmonic Acid","url":"https://www.academia.edu/Documents/in/Jasmonic_Acid"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[{"id":4655145,"url":"http://dx.doi.org/10.1023/A:1006464822434"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833319"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833319/On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein"><img alt="Research paper thumbnail of On the biosynthesis of Rhodnius prolixus heme-binding protein" class="work-thumbnail" src="https://attachments.academia-assets.com/46496738/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833319/On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein">On the biosynthesis of Rhodnius prolixus heme-binding protein</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://ufrj.academia.edu/GPaivaSilva">G Paiva-Silva</a></span></div><div class="wp-workCard_item"><span>Insect Biochemistry and Molecular Biology</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemoly...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemolymph and oocytes of Rhodnius prolixus, was investigated. Fat bodies of female insects incubated in vitro with 14C-leucine were able to synthesize and secrete 14C-RHBP to the culture medium. Titration of synthesized RHBP with hemin showed that the protein secreted by the fat bodies is bound to heme, despite the presence of apo-RHBP in the hemolymph. The sequence of the RHBP cDNA encodes a pre-protein of 128 amino acids with no significant homology to any known protein. Northern-blot assays revealed that RHBP expression was limited to fat bodies. The levels of both RHBP mRNA and secreted protein increased in response to blood meal. In addition, the time-course of RHBP secretion in vitro paralleled mRNA accumulation observed in vivo. The inhibition of the de novo heme biosynthesis by treatment of fat bodies with succinyl acetone (SA), an irreversible inhibitor of delta-aminolevulinic acid-dehydratase, led to a significant decrease of heme-RHBP secretion. Nevertheless, the levels of RHBP mRNA were not modified by SA treatment, suggesting that the heme availability is involved in a post-transcriptional control of the RHBP synthesis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fa059f704460ad84d140844c489d3e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496738,"asset_id":11833319,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496738/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833319"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833319"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833319; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833319]").text(description); $(".js-view-count[data-work-id=11833319]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833319; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833319']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833319, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fa059f704460ad84d140844c489d3e8" } } $('.js-work-strip[data-work-id=11833319]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833319,"title":"On the biosynthesis of Rhodnius prolixus heme-binding protein","translated_title":"","metadata":{"abstract":"The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemolymph and oocytes of Rhodnius prolixus, was investigated. Fat bodies of female insects incubated in vitro with 14C-leucine were able to synthesize and secrete 14C-RHBP to the culture medium. Titration of synthesized RHBP with hemin showed that the protein secreted by the fat bodies is bound to heme, despite the presence of apo-RHBP in the hemolymph. The sequence of the RHBP cDNA encodes a pre-protein of 128 amino acids with no significant homology to any known protein. Northern-blot assays revealed that RHBP expression was limited to fat bodies. The levels of both RHBP mRNA and secreted protein increased in response to blood meal. In addition, the time-course of RHBP secretion in vitro paralleled mRNA accumulation observed in vivo. The inhibition of the de novo heme biosynthesis by treatment of fat bodies with succinyl acetone (SA), an irreversible inhibitor of delta-aminolevulinic acid-dehydratase, led to a significant decrease of heme-RHBP secretion. Nevertheless, the levels of RHBP mRNA were not modified by SA treatment, suggesting that the heme availability is involved in a post-transcriptional control of the RHBP synthesis.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Insect Biochemistry and Molecular Biology"},"translated_abstract":"The biosynthesis of Rhodnius prolixus heme-binding protein (RHBP), which is present in the hemolymph and oocytes of Rhodnius prolixus, was investigated. Fat bodies of female insects incubated in vitro with 14C-leucine were able to synthesize and secrete 14C-RHBP to the culture medium. Titration of synthesized RHBP with hemin showed that the protein secreted by the fat bodies is bound to heme, despite the presence of apo-RHBP in the hemolymph. The sequence of the RHBP cDNA encodes a pre-protein of 128 amino acids with no significant homology to any known protein. Northern-blot assays revealed that RHBP expression was limited to fat bodies. The levels of both RHBP mRNA and secreted protein increased in response to blood meal. In addition, the time-course of RHBP secretion in vitro paralleled mRNA accumulation observed in vivo. The inhibition of the de novo heme biosynthesis by treatment of fat bodies with succinyl acetone (SA), an irreversible inhibitor of delta-aminolevulinic acid-dehydratase, led to a significant decrease of heme-RHBP secretion. Nevertheless, the levels of RHBP mRNA were not modified by SA treatment, suggesting that the heme availability is involved in a post-transcriptional control of the RHBP synthesis.","internal_url":"https://www.academia.edu/11833319/On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein","translated_internal_url":"","created_at":"2015-04-07T12:07:49.569-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383142,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153576,"email":"g***a@granbio.com.br","display_order":null,"name":"G. Paiva-silva","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"},{"id":383144,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":29198955,"co_author_invite_id":151353,"email":"p***a@lnbio.cnpem.br","display_order":null,"name":"Paulo Oliveira","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"},{"id":383143,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153577,"email":"r***i@bireme.org","display_order":null,"name":"R. Meneghini","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"},{"id":383141,"work_id":11833319,"tagging_user_id":29198179,"tagged_user_id":29528676,"co_author_invite_id":153575,"email":"g***a@bioqmed.ufrj.br","affiliation":"Universidade Federal do Rio de Janeiro (UFRJ)","display_order":null,"name":"G Paiva-Silva","title":"On the biosynthesis of Rhodnius prolixus heme-binding protein"}],"downloadable_attachments":[{"id":46496738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496738/thumbnails/1.jpg","file_name":"On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima.pdf","download_url":"https://www.academia.edu/attachments/46496738/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_biosynthesis_of_Rhodnius_prolixus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496738/On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_biosynthesis_of_Rhodnius_prolixus.pdf\u0026Expires=1732419091\u0026Signature=WnykDAmAF4TwWm8vZqxFEx6KdxgkjQ5hQLcGF4h-YJoVnYG5oflhJLlqgdIlICBGCYgRHjAqen~YwjdaJAU-Rc7isjL8U~kWnX-PB7S~ORFENoEcoiFR~QWkGad4yIEFwRZK5nYu1yC1Ruuvvxg2j3RJtycwAEVmIgPTFz1XEaMDS4p6u97VAJChf7~uIpi4lpA2OK8-jX7lSHVI5YSp0w5xxzWmqGdxeS89aRjjci8GKd6EU6jYo36HevLgaZAoZOi0wWckxcv1P-mjprGPyl0VWk-ym9MINxvUlWsChoRFFdceUXGKDVEFrcJ0o552BT6sEAbOActJHmyMOKOGcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_biosynthesis_of_Rhodnius_prolixus_heme_binding_protein","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496738/thumbnails/1.jpg","file_name":"On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima.pdf","download_url":"https://www.academia.edu/attachments/46496738/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_biosynthesis_of_Rhodnius_prolixus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496738/On_the_biosynthesis_of_Rhodnius_prolixus20160614-4682-1kbbima-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_biosynthesis_of_Rhodnius_prolixus.pdf\u0026Expires=1732419091\u0026Signature=WnykDAmAF4TwWm8vZqxFEx6KdxgkjQ5hQLcGF4h-YJoVnYG5oflhJLlqgdIlICBGCYgRHjAqen~YwjdaJAU-Rc7isjL8U~kWnX-PB7S~ORFENoEcoiFR~QWkGad4yIEFwRZK5nYu1yC1Ruuvvxg2j3RJtycwAEVmIgPTFz1XEaMDS4p6u97VAJChf7~uIpi4lpA2OK8-jX7lSHVI5YSp0w5xxzWmqGdxeS89aRjjci8GKd6EU6jYo36HevLgaZAoZOi0wWckxcv1P-mjprGPyl0VWk-ym9MINxvUlWsChoRFFdceUXGKDVEFrcJ0o552BT6sEAbOActJHmyMOKOGcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":173,"name":"Zoology","url":"https://www.academia.edu/Documents/in/Zoology"},{"id":29290,"name":"Oogenesis","url":"https://www.academia.edu/Documents/in/Oogenesis"},{"id":98925,"name":"Female","url":"https://www.academia.edu/Documents/in/Female"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":204375,"name":"Heme","url":"https://www.academia.edu/Documents/in/Heme"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":544188,"name":"Hemolymph","url":"https://www.academia.edu/Documents/in/Hemolymph"},{"id":585573,"name":"Amino Acid Profile","url":"https://www.academia.edu/Documents/in/Amino_Acid_Profile"},{"id":608156,"name":"Insect Biochemistry and Molecular Biology","url":"https://www.academia.edu/Documents/in/Insect_Biochemistry_and_Molecular_Biology"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":809882,"name":"Base Sequence","url":"https://www.academia.edu/Documents/in/Base_Sequence"},{"id":956315,"name":"Oocytes","url":"https://www.academia.edu/Documents/in/Oocytes"},{"id":975992,"name":"Polyacrylamide Gel Electrophoresis","url":"https://www.academia.edu/Documents/in/Polyacrylamide_Gel_Electrophoresis"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1315979,"name":"Time Course","url":"https://www.academia.edu/Documents/in/Time_Course"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1763968,"name":"Gene Expression Regulation","url":"https://www.academia.edu/Documents/in/Gene_Expression_Regulation"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[{"id":4655144,"url":"http://www.sciencedirect.com/science/article/pii/S0965174802000747"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833318"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833318/Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response"><img alt="Research paper thumbnail of Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response" class="work-thumbnail" src="https://attachments.academia-assets.com/46496792/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833318/Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response">Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/OliveiraMariaDe">Maria De Oliveira</a></span></div><div class="wp-workCard_item"><span>BMC Genomics</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="61bda995b02fed19838fe8295d47ba50" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496792,"asset_id":11833318,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496792/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833318"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833318"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833318; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833318]").text(description); $(".js-view-count[data-work-id=11833318]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833318; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833318']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833318, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "61bda995b02fed19838fe8295d47ba50" } } $('.js-work-strip[data-work-id=11833318]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833318,"title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response","translated_title":"","metadata":{"grobid_abstract":"Background: Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA\"s\" and PthC\"s\" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"BMC Genomics","grobid_abstract_attachment_id":46496792},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833318/Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response","translated_internal_url":"","created_at":"2015-04-07T12:07:49.409-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383140,"work_id":11833318,"tagging_user_id":29198179,"tagged_user_id":1096955,"co_author_invite_id":null,"email":"o***a@cpqrr.fiocruz.br","display_order":null,"name":"Guilherme Oliveira","title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response"},{"id":383139,"work_id":11833318,"tagging_user_id":29198179,"tagged_user_id":29527428,"co_author_invite_id":153574,"email":"m***a@ars.usda.gov","display_order":null,"name":"Maria De Oliveira","title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response"},{"id":383138,"work_id":11833318,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153573,"email":"m***o@lge.ibi.unicamp.br","display_order":null,"name":"Marcelo Carazzolle","title":"Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response"}],"downloadable_attachments":[{"id":46496792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496792/thumbnails/1.jpg","file_name":"Identification_of_putative_TAL_effector_20160614-12965-13s61fo.pdf","download_url":"https://www.academia.edu/attachments/46496792/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_putative_TAL_effector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496792/Identification_of_putative_TAL_effector_20160614-12965-13s61fo-libre.pdf?1465968588=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_putative_TAL_effector.pdf\u0026Expires=1732419092\u0026Signature=ebYbKd59WRg5RXgyfdO9nuzuPS~Q3soJAvz0c486uY1cIG4hoCSy9HhUyjpjlU5Lq1yX~j~DRv2Bx~5VRHTgVBChydl-X9c6VssEBxRGOdGyy02hFQGKPLwsDNtSMjgGAwZ50Up7cZcKW0JQDO8dI1jz4XQ7zjV0GOfbtnIWXhMFL3uB8SUQQHGI5USVmLM0oTObMeVmBaiA6o7644h5DV5-UgoYnHSB4dMvffKvkrTLVp48Yit54ACbaVJvtEjspIS1hTcDVMJoWqpJ2ZVTcJleqDuAgPEbM0iJM7EH8UyJxFbNl1~VT0YoW2AdISz7nf0sv0HvzQKbcVIn3q4eDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identification_of_putative_TAL_effector_targets_of_the_citrus_canker_pathogens_shows_functional_convergence_underlying_disease_development_and_defense_response","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496792/thumbnails/1.jpg","file_name":"Identification_of_putative_TAL_effector_20160614-12965-13s61fo.pdf","download_url":"https://www.academia.edu/attachments/46496792/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identification_of_putative_TAL_effector.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496792/Identification_of_putative_TAL_effector_20160614-12965-13s61fo-libre.pdf?1465968588=\u0026response-content-disposition=attachment%3B+filename%3DIdentification_of_putative_TAL_effector.pdf\u0026Expires=1732419092\u0026Signature=ebYbKd59WRg5RXgyfdO9nuzuPS~Q3soJAvz0c486uY1cIG4hoCSy9HhUyjpjlU5Lq1yX~j~DRv2Bx~5VRHTgVBChydl-X9c6VssEBxRGOdGyy02hFQGKPLwsDNtSMjgGAwZ50Up7cZcKW0JQDO8dI1jz4XQ7zjV0GOfbtnIWXhMFL3uB8SUQQHGI5USVmLM0oTObMeVmBaiA6o7644h5DV5-UgoYnHSB4dMvffKvkrTLVp48Yit54ACbaVJvtEjspIS1hTcDVMJoWqpJ2ZVTcJleqDuAgPEbM0iJM7EH8UyJxFbNl1~VT0YoW2AdISz7nf0sv0HvzQKbcVIn3q4eDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57178,"name":"Plant Genome Project","url":"https://www.academia.edu/Documents/in/Plant_Genome_Project"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":549280,"name":"Reproducibility of Results","url":"https://www.academia.edu/Documents/in/Reproducibility_of_Results"},{"id":676491,"name":"Xanthomonas","url":"https://www.academia.edu/Documents/in/Xanthomonas"},{"id":743643,"name":"Host Pathogen Interactions","url":"https://www.academia.edu/Documents/in/Host_Pathogen_Interactions"},{"id":1186610,"name":"DNA binding proteins","url":"https://www.academia.edu/Documents/in/DNA_binding_proteins"},{"id":1810445,"name":"Gene expression profiling","url":"https://www.academia.edu/Documents/in/Gene_expression_profiling"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833317"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833317/NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri"><img alt="Research paper thumbnail of NMR assignment of the outer membrane lipoprotein (OmlA) from Xanthomonas axonopodis pv citri" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833317/NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri">NMR assignment of the outer membrane lipoprotein (OmlA) from Xanthomonas axonopodis pv citri</a></div><div class="wp-workCard_item"><span>Journal of Biomolecular …</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was identified in Xanthomonas citri (Da Silva et al., 2002). Although many functions have been assigned to bacterial lipoproteins, the role of OmlA/SmpA remains unknown. To gain ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833317"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833317"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833317; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833317]").text(description); $(".js-view-count[data-work-id=11833317]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833317; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833317']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833317, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=11833317]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833317,"title":"NMR assignment of the outer membrane lipoprotein (OmlA) from Xanthomonas axonopodis pv citri","translated_title":"","metadata":{"abstract":"An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was identified in Xanthomonas citri (Da Silva et al., 2002). Although many functions have been assigned to bacterial lipoproteins, the role of OmlA/SmpA remains unknown. To gain ...","publisher":"Springer","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Journal of Biomolecular …"},"translated_abstract":"An outer membrane lipoprotein (OmlA) belonging to the small membrane protein A (SmpA) family was identified in Xanthomonas citri (Da Silva et al., 2002). Although many functions have been assigned to bacterial lipoproteins, the role of OmlA/SmpA remains unknown. To gain ...","internal_url":"https://www.academia.edu/11833317/NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri","translated_internal_url":"","created_at":"2015-04-07T12:07:49.250-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"NMR_assignment_of_the_outer_membrane_lipoprotein_OmlA_from_Xanthomonas_axonopodis_pv_citri","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[],"research_interests":[{"id":2374,"name":"Biomolecular NMR","url":"https://www.academia.edu/Documents/in/Biomolecular_NMR"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":227285,"name":"Lipoprotein(a)","url":"https://www.academia.edu/Documents/in/Lipoprotein_a_-1"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":458879,"name":"Lipoproteins","url":"https://www.academia.edu/Documents/in/Lipoproteins"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":670610,"name":"Biomolecular","url":"https://www.academia.edu/Documents/in/Biomolecular"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1371154,"name":"Lipoprotein a","url":"https://www.academia.edu/Documents/in/Lipoprotein_a"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833316"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833316/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair"><img alt="Research paper thumbnail of The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair" class="work-thumbnail" src="https://attachments.academia-assets.com/46496741/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833316/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair">The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b457401a8a45aaea540d45218027722" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496741,"asset_id":11833316,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496741/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833316"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833316"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833316; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833316]").text(description); $(".js-view-count[data-work-id=11833316]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833316; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833316']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833316, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b457401a8a45aaea540d45218027722" } } $('.js-work-strip[data-work-id=11833316]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833316,"title":"The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair","translated_title":"","metadata":{"grobid_abstract":"Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo-and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with a-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitinconjugating enzyme complex formed by Ubc13 and ubiquitinconjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Dubc13 and Dmms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":46496741},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833316/The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_internal_url":"","created_at":"2015-04-07T12:07:49.096-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46496741,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496741/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis.pdf","download_url":"https://www.academia.edu/attachments/46496741/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496741/The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419092\u0026Signature=DyOx64exeGPM8ELkPPtZxJ9Gco0yQ4UQhHyjDlHwaI9ugG1COskUiID1SgoEpvaQkzQJ179yS8eS4HDelQNlny~MKG8NUqhqJ9UvMjTiyek~0imvThBJWUE9maTH9t7rsd3F6WYPFze0eYNxn6dJkJp7x0PD3CwGBjgkzCmQdLYU4hWaRDHCcHw~HegIr3mk1RM4BNrBdLuJ493s5Kiq5~g0Zej2F75R2NIMxDpcZUdn~-eDT6fwLKh5-3AW5chphd-ahRe04dhOPf-FAx-XmTSIodXStU21p8AW1xdNUwUBk3AP2kqf6WdxOtAbCvN4vOdgY6j6y6sGImoqK11yjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Xanthomonas_citri_effector_protein_PthA_interacts_with_citrus_proteins_involved_in_nuclear_transport_protein_folding_and_ubiquitination_associated_with_DNA_repair","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496741,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496741/thumbnails/1.jpg","file_name":"The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis.pdf","download_url":"https://www.academia.edu/attachments/46496741/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Xanthomonas_citri_effector_protein_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496741/The_Xanthomonas_citri_effector_protein_P20160614-4682-rxzeis-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DThe_Xanthomonas_citri_effector_protein_P.pdf\u0026Expires=1732419092\u0026Signature=DyOx64exeGPM8ELkPPtZxJ9Gco0yQ4UQhHyjDlHwaI9ugG1COskUiID1SgoEpvaQkzQJ179yS8eS4HDelQNlny~MKG8NUqhqJ9UvMjTiyek~0imvThBJWUE9maTH9t7rsd3F6WYPFze0eYNxn6dJkJp7x0PD3CwGBjgkzCmQdLYU4hWaRDHCcHw~HegIr3mk1RM4BNrBdLuJ493s5Kiq5~g0Zej2F75R2NIMxDpcZUdn~-eDT6fwLKh5-3AW5chphd-ahRe04dhOPf-FAx-XmTSIodXStU21p8AW1xdNUwUBk3AP2kqf6WdxOtAbCvN4vOdgY6j6y6sGImoqK11yjg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":3971,"name":"Protein Folding","url":"https://www.academia.edu/Documents/in/Protein_Folding"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":9109,"name":"Tobacco","url":"https://www.academia.edu/Documents/in/Tobacco"},{"id":23067,"name":"DNA repair","url":"https://www.academia.edu/Documents/in/DNA_repair"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":55266,"name":"Ubiquitin","url":"https://www.academia.edu/Documents/in/Ubiquitin"},{"id":71260,"name":"Molecular plant pathology","url":"https://www.academia.edu/Documents/in/Molecular_plant_pathology"},{"id":113903,"name":"Bacteria","url":"https://www.academia.edu/Documents/in/Bacteria"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":317801,"name":"Cell nucleus","url":"https://www.academia.edu/Documents/in/Cell_nucleus"},{"id":373650,"name":"Lysine","url":"https://www.academia.edu/Documents/in/Lysine"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1969247,"name":"Ubiquitination","url":"https://www.academia.edu/Documents/in/Ubiquitination"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833315"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833315/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis"><img alt="Research paper thumbnail of COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis" class="work-thumbnail" src="https://attachments.academia-assets.com/46496733/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833315/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis">COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3dd14aff835de67955fff95b82aca66a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496733,"asset_id":11833315,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496733/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833315"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833315"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833315; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833315]").text(description); $(".js-view-count[data-work-id=11833315]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833315; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833315']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833315, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3dd14aff835de67955fff95b82aca66a" } } $('.js-work-strip[data-work-id=11833315]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833315,"title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis","translated_title":"","metadata":{"grobid_abstract":"Two cDNA clones homologous to myrosinasebinding proteins (MBPs) were identi®ed by dierential display in Arabidopsis thaliana (L.) Heynh. The cDNAs (MBP1 and MBP2) correspond to two open-reading frames found in a gene cluster of seven putative MBP genes located on chromosome 1. The predicted proteins MBP1 and MBP2 are similar to lectins and plant aggregating factors. In addition, MBP2 contains a region of high content of proline and alanine residues, commonly found in arabinogalactan proteins and hydroxyprolinerich glycoproteins. Transcripts corresponding to MBP1 and MBP2 genes are exclusively and abundantly expressed in¯owers but are not detected in male-sterilē owers of coi1 plants, insensitive to jasmonic acid. Northern analysis and in situ hybridization revealed that MBP mRNAs are present in higher levels in immaturē owers and are localized in several¯oral organs, including the ovary, ovules, style, anthers and ®lament. Transcripts of the Arabidopsis myrosinase gene TGG1 show a pattern of expression similar to that observed for the MBP genes during¯ower development; however, they are also abundant in green tissues and are only partially aected by COI1. Crude preparations of soluble proteins from leaf and¯ower extracts of wild-type Arabidopsis showed myrosinase activity when sinigrin was used as substrate. In contrast, coi1 plants showed signi®cantly reduced myrosinase activities in both leaves and¯owers. The results show that COI1 controls MBP expression in¯owers and signi®cantly aects the expression and activity of myrosinase in Arabidopsis.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"grobid_abstract_attachment_id":46496733},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833315/COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_internal_url":"","created_at":"2015-04-07T12:07:48.942-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383163,"work_id":11833315,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153590,"email":"p***a@unicamp.br","display_order":null,"name":"Paulo Arruda","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"},{"id":383156,"work_id":11833315,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153588,"email":"c***p@oxfordeventos.com.br","display_order":null,"name":"Adriana Capella","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"},{"id":383158,"work_id":11833315,"tagging_user_id":29198179,"tagged_user_id":28827821,"co_author_invite_id":null,"email":"m***i@lgf.ib.unicamp.br","display_order":null,"name":"Marcelo Menossi","title":"COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis"}],"downloadable_attachments":[{"id":46496733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496733/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr.pdf","download_url":"https://www.academia.edu/attachments/46496733/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496733/COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419092\u0026Signature=L5f9ZErAzc9b-YDCqtWm9Y-14YJtJh1LF0G9NEqQSv2LVOg5hRlnoAr~T-UhzWmm7Td4j2EPtwJbiKBXIxmW0n2fgQ9QylIlPSyAKBFDxWEOR2LLUlVmpsN1amhYfHIiFRLiT1O3N29738dHp4n5d-qd9QuA75s9rmc38UdqfmrV0AzaEShqvsRmCQ7COYIoUfOi9eg7IMl~I6tUG68KZP5jBZ6ZnS7uRvBD-3CpC9L0HS08mkdtmBzifVXMpvQFZKpGpkvYHh2yyv9fw5G2gIn4D9Y2QBtow1eKjESh-wxSpMxLIknGjnTNFEr7vWkyrj-jxB6X14p3ZwtOBPyAEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"COI1_affects_myrosinase_activity_and_controls_the_expression_of_two_flower_specific_myrosinase_binding_protein_homologues_in_Arabidopsis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496733/thumbnails/1.jpg","file_name":"COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr.pdf","download_url":"https://www.academia.edu/attachments/46496733/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"COI1_affects_myrosinase_activity_and_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496733/COI1_affects_myrosinase_activity_and_con20160614-31638-pjwxhr-libre.pdf?1465968367=\u0026response-content-disposition=attachment%3B+filename%3DCOI1_affects_myrosinase_activity_and_con.pdf\u0026Expires=1732419092\u0026Signature=L5f9ZErAzc9b-YDCqtWm9Y-14YJtJh1LF0G9NEqQSv2LVOg5hRlnoAr~T-UhzWmm7Td4j2EPtwJbiKBXIxmW0n2fgQ9QylIlPSyAKBFDxWEOR2LLUlVmpsN1amhYfHIiFRLiT1O3N29738dHp4n5d-qd9QuA75s9rmc38UdqfmrV0AzaEShqvsRmCQ7COYIoUfOi9eg7IMl~I6tUG68KZP5jBZ6ZnS7uRvBD-3CpC9L0HS08mkdtmBzifVXMpvQFZKpGpkvYHh2yyv9fw5G2gIn4D9Y2QBtow1eKjESh-wxSpMxLIknGjnTNFEr7vWkyrj-jxB6X14p3ZwtOBPyAEQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":13365,"name":"Flower Development","url":"https://www.academia.edu/Documents/in/Flower_Development"},{"id":37836,"name":"In Situ Hybridization","url":"https://www.academia.edu/Documents/in/In_Situ_Hybridization"},{"id":41553,"name":"Arabidopsis thaliana","url":"https://www.academia.edu/Documents/in/Arabidopsis_thaliana"},{"id":67484,"name":"Sequence alignment","url":"https://www.academia.edu/Documents/in/Sequence_alignment"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":573466,"name":"Male Sterility","url":"https://www.academia.edu/Documents/in/Male_Sterility"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":844925,"name":"Open Reading Frame","url":"https://www.academia.edu/Documents/in/Open_Reading_Frame"},{"id":964769,"name":"Differential Display","url":"https://www.academia.edu/Documents/in/Differential_Display"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1322750,"name":"Planta","url":"https://www.academia.edu/Documents/in/Planta"},{"id":1891270,"name":"Jasmonic Acid","url":"https://www.academia.edu/Documents/in/Jasmonic_Acid"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833314"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833314/Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_"><img alt="Research paper thumbnail of Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. …" class="work-thumbnail" src="https://attachments.academia-assets.com/46496740/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833314/Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_">Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. …</a></div><div class="wp-workCard_item"><span>Molecular plant …</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c9217e15ebf733661a2d4e00d2776f00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496740,"asset_id":11833314,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496740/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833314"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833314"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833314; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833314]").text(description); $(".js-view-count[data-work-id=11833314]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833314; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833314']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833314, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c9217e15ebf733661a2d4e00d2776f00" } } $('.js-work-strip[data-work-id=11833314]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833314,"title":"Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. …","translated_title":"","metadata":{"publisher":"Wiley Online Library","grobid_abstract":"Xanthomonas axonopodis pv. citri (Xac) and Xanthomonas axonopodis pv. aurantifolii pathotype C (Xaa) are responsible for citrus canker disease; however, while Xac causes canker on all citrus varieties, Xaa is restricted to Mexican lime, and in sweet oranges it triggers a defence response. To gain insights into the differential pathogenicity exhibited by Xac and Xaa and to survey the early molecular events leading to canker development, a detailed transcriptional analysis of sweet orange plants infected with the pathogens was performed. Using differential display, suppressed subtractive hybridization and microarrays, we identified changes in transcript levels in approximately 2.0% of thẽ 32 000 citrus genes examined. Genes with altered expression in response to Xac/Xaa surveyed at 6 and 48 h post-infection (hpi) were associated with cell-wall modifications, cell division and expansion, vesicle trafficking, disease resistance, carbon and nitrogen metabolism, and responses to hormones auxin, gibberellin and ethylene. Most of the genes that were commonly modulated by Xac and Xaa were associated with basal defences triggered by pathogen-associated molecular patterns, including those involved in reactive oxygen species production and lignification. Significantly, we detected clear changes in the transcriptional profiles of defence, cell-wall, vesicle trafficking and cell growth-related genes in Xac-infected leaves between 6 and 48 hpi. This is consistent with the notion that Xac suppresses host defences early during infection and simultaneously changes the physiological status of the host cells, reprogramming them for division and growth. Notably, brefeldin A, an inhibitor of vesicle trafficking, retarded canker development. In contrast, Xaa triggered a mitogen-activated protein kinase signalling pathway involving WRKY and ethylene-responsive transcriptional factors known to activate downstream defence genes.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Molecular plant …","grobid_abstract_attachment_id":46496740},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833314/Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_","translated_internal_url":"","created_at":"2015-04-07T12:07:47.987-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46496740,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496740/thumbnails/1.jpg","file_name":"Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr.pdf","download_url":"https://www.academia.edu/attachments/46496740/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transcriptional_analysis_of_the_sweet_or.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496740/Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DTranscriptional_analysis_of_the_sweet_or.pdf\u0026Expires=1732419092\u0026Signature=LR4RUK6plAXSZkk0GHN1jE3XnzVpUHPZDPUQeFifMIOWkgq5RoGDM--~B5BABf4uQmbIK9k-KcocM39sPjT9ErUHrBvdu~SI4ex~T~v7A1-sfmbhz8dIHyxKI8sQcvG5civumG5u0GMyvpfIuf~0I0GvkG0NdGHg3VDmd7VxPCABiGe9KlWqYwybb4HtXSdB8e1lhgyJzIZjP5l0zgyiWP8A9KX6DY0Rdnc~eEb0jXDakuM7WFK2Vw~M9ODoyIz8eXNrM2kGRgeC2y5NhAU90RSQgG~MhjIPFwSPYVQfuZ4t03pFswEdaG3aPY7xbobuJxDNn2LYvB0Evv70efqbKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Transcriptional_analysis_of_the_sweet_orange_interaction_with_the_citrus_canker_pathogens_Xanthomonas_axonopodis_pv_citri_and_Xanthomonas_axonopodis_pv_","translated_slug":"","page_count":23,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496740,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496740/thumbnails/1.jpg","file_name":"Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr.pdf","download_url":"https://www.academia.edu/attachments/46496740/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Transcriptional_analysis_of_the_sweet_or.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496740/Transcriptional_analysis_of_the_sweet_or20160614-4687-rji3wr-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DTranscriptional_analysis_of_the_sweet_or.pdf\u0026Expires=1732419092\u0026Signature=LR4RUK6plAXSZkk0GHN1jE3XnzVpUHPZDPUQeFifMIOWkgq5RoGDM--~B5BABf4uQmbIK9k-KcocM39sPjT9ErUHrBvdu~SI4ex~T~v7A1-sfmbhz8dIHyxKI8sQcvG5civumG5u0GMyvpfIuf~0I0GvkG0NdGHg3VDmd7VxPCABiGe9KlWqYwybb4HtXSdB8e1lhgyJzIZjP5l0zgyiWP8A9KX6DY0Rdnc~eEb0jXDakuM7WFK2Vw~M9ODoyIz8eXNrM2kGRgeC2y5NhAU90RSQgG~MhjIPFwSPYVQfuZ4t03pFswEdaG3aPY7xbobuJxDNn2LYvB0Evv70efqbKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":159,"name":"Microbiology","url":"https://www.academia.edu/Documents/in/Microbiology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":25657,"name":"Plant Molecular Biology","url":"https://www.academia.edu/Documents/in/Plant_Molecular_Biology"},{"id":66973,"name":"Plant diseases","url":"https://www.academia.edu/Documents/in/Plant_diseases"},{"id":71260,"name":"Molecular plant pathology","url":"https://www.academia.edu/Documents/in/Molecular_plant_pathology"},{"id":103360,"name":"Nucleic acid hybridization","url":"https://www.academia.edu/Documents/in/Nucleic_acid_hybridization"},{"id":142138,"name":"Host-parasite interactions","url":"https://www.academia.edu/Documents/in/Host-parasite_interactions"},{"id":220614,"name":"Citrus","url":"https://www.academia.edu/Documents/in/Citrus"},{"id":1810445,"name":"Gene expression profiling","url":"https://www.academia.edu/Documents/in/Gene_expression_profiling"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11833313"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11833313/Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio"><img alt="Research paper thumbnail of Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio" class="work-thumbnail" src="https://attachments.academia-assets.com/46496735/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11833313/Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio">Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio</a></div><div class="wp-workCard_item"><span>Plant physiology</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8c4169c20e1b543a1b481cdc0b78b492" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46496735,"asset_id":11833313,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46496735/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11833313"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11833313"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11833313; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11833313]").text(description); $(".js-view-count[data-work-id=11833313]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11833313; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11833313']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11833313, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8c4169c20e1b543a1b481cdc0b78b492" } } $('.js-work-strip[data-work-id=11833313]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11833313,"title":"Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio","translated_title":"","metadata":{"publisher":"Am Soc Plant Biol","grobid_abstract":"The Arabidopsis gene ATHCOR1, which encodes the CORI1 (coronatine-induced) protein, was expressed in bacterial cells. Soluble recombinant CORI1 was purified and shown to possess chlorophyllase (Chlase) activity in vitro. To determine its activity in vivo, wild-type Arabidopsis and coi1 mutant, which lacks ATHCOR1 transcripts, were transformed with sense and antisense forms of the gene. Wild-type and coi1 plants overexpressing ATHCOR1 showed increased contents of chlorophyllide (Chlide) without a substantial change in the total amount of the extractable chlorophyll (Chl). These plants presented high Chlide to Chl ratios in leaves, whereas antisense plants and nontransformed coi1 mutant showed undetectable ATHCOR1 mRNA and significantly lower Chlide to Chl ratios, relative to wild-type control. Overexpression of ATHCOR1 caused an increased breakdown of Chl a, as revealed by the Chlide a to b ratio, which was significantly higher in sense than wild-type, coi1 mutant, and antisense plants. This preferential activity of CORI1 toward Chl a was further supported by in vitro analyses using the purified protein. Increased Chlase activity was detected in developing flowers, which correlated to the constitutive expression of ATHCOR1 in this organ. Flowers of the antisense plant showed reduced Chlide to Chl ratio, suggesting a role of CORI1 in Chl breakdown during flower senescence. The results show that ATHCOR1 has Chlase activity in vivo, however, because coi1 flowers have no detectable ATHCOR1 mRNA and present Chlide to Chl ratios comparable with the wild type, an additional Chlase is likely to be active in Arabidopsis. In accordance, transcripts of a second Arabidopsis Chlase gene, AtCLH2, were detected in both normal and mutant flowers. * Corresponding author; e-mail celso@lnls.br; fax 5519 -32877110.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Plant physiology","grobid_abstract_attachment_id":46496735},"translated_abstract":null,"internal_url":"https://www.academia.edu/11833313/Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio","translated_internal_url":"","created_at":"2015-04-07T12:07:47.742-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29198179,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":383162,"work_id":11833313,"tagging_user_id":29198179,"tagged_user_id":null,"co_author_invite_id":153590,"email":"p***a@unicamp.br","display_order":null,"name":"Paulo Arruda","title":"Altering the Expression of the Chlorophyllase GeneATHCOR1 in Transgenic Arabidopsis Caused Changes in the Chlorophyll-to-Chlorophyllide Ratio"}],"downloadable_attachments":[{"id":46496735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496735/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/46496735/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Altering_the_Expression_of_the_Chlorophy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496735/1255-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DAltering_the_Expression_of_the_Chlorophy.pdf\u0026Expires=1732419092\u0026Signature=MYzDXmn8fYgeSzmbvhuQklERqNYKWBrUrumpZHjyCJNHNcIoi-VT6eaI9Nn~6gu~lyJ51FJIAayNUuJgBp1PT~wNuw9nnSvsHKodynxFfAdsIoDzp-U8qM1fUK7e61TlShPqXQYs1dEOS4YPSc43aiJFhe2eZjGUvmOwJmFicmZj8gNuEY--g6G1v9yXlI0C079F9hSo-r643k5E-9hUpQW5Fk8wePehMrEnNbTuvXZS-hoPm1Bd52WpSmgOkAORR014IhcBXuKdqQmMpz0RH10fVMM-Lc71WLzMRvSFHPXqURSzOg8S1U~2Wtd75831aTsZFgY6ErzLfOnvq~6IuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Altering_the_Expression_of_the_Chlorophyllase_GeneATHCOR1_in_Transgenic_Arabidopsis_Caused_Changes_in_the_Chlorophyll_to_Chlorophyllide_Ratio","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":29198179,"first_name":"Celso","middle_initials":null,"last_name":"Benedetti","page_name":"CelsoBenedetti","domain_name":"independent","created_at":"2015-04-07T12:07:08.135-07:00","display_name":"Celso Benedetti","url":"https://independent.academia.edu/CelsoBenedetti"},"attachments":[{"id":46496735,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46496735/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/46496735/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Altering_the_Expression_of_the_Chlorophy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46496735/1255-libre.pdf?1465968368=\u0026response-content-disposition=attachment%3B+filename%3DAltering_the_Expression_of_the_Chlorophy.pdf\u0026Expires=1732419092\u0026Signature=MYzDXmn8fYgeSzmbvhuQklERqNYKWBrUrumpZHjyCJNHNcIoi-VT6eaI9Nn~6gu~lyJ51FJIAayNUuJgBp1PT~wNuw9nnSvsHKodynxFfAdsIoDzp-U8qM1fUK7e61TlShPqXQYs1dEOS4YPSc43aiJFhe2eZjGUvmOwJmFicmZj8gNuEY--g6G1v9yXlI0C079F9hSo-r643k5E-9hUpQW5Fk8wePehMrEnNbTuvXZS-hoPm1Bd52WpSmgOkAORR014IhcBXuKdqQmMpz0RH10fVMM-Lc71WLzMRvSFHPXqURSzOg8S1U~2Wtd75831aTsZFgY6ErzLfOnvq~6IuA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":11035,"name":"Regulation","url":"https://www.academia.edu/Documents/in/Regulation"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57461,"name":"Plant Physiology","url":"https://www.academia.edu/Documents/in/Plant_Physiology"},{"id":74780,"name":"Mutation","url":"https://www.academia.edu/Documents/in/Mutation"},{"id":85564,"name":"Chlorophyll","url":"https://www.academia.edu/Documents/in/Chlorophyll"},{"id":202413,"name":"Arabidopsis","url":"https://www.academia.edu/Documents/in/Arabidopsis"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":588751,"name":"Heat Shock Proteins","url":"https://www.academia.edu/Documents/in/Heat_Shock_Proteins"},{"id":1181939,"name":"PLANT PROTEINS","url":"https://www.academia.edu/Documents/in/PLANT_PROTEINS"},{"id":1905343,"name":"Plant Leaves","url":"https://www.academia.edu/Documents/in/Plant_Leaves"}],"urls":[{"id":4655143,"url":"http://direct.bl.uk/research/37/49/RN112145291.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="11812542"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/11812542/The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction"><img alt="Research paper thumbnail of The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/46512172/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/11812542/The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction">The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://cnpem.academia.edu/MarioMurakami">Mario Murakami</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/CelsoBenedetti">Celso Benedetti</a></span></div><div class="wp-workCard_item"><span>Proteins: Structure, Function, and Bioinformatics</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07fe05318f5944d94f5382a2c01bf357" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46512172,"asset_id":11812542,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46512172/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="11812542"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="11812542"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 11812542; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=11812542]").text(description); $(".js-view-count[data-work-id=11812542]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 11812542; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='11812542']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 11812542, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07fe05318f5944d94f5382a2c01bf357" } } $('.js-work-strip[data-work-id=11812542]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":11812542,"title":"The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Proteins: Structure, Function, and Bioinformatics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/11812542/The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction","translated_internal_url":"","created_at":"2015-04-06T07:17:40.760-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":29117218,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":376940,"work_id":11812542,"tagging_user_id":29117218,"tagged_user_id":29198179,"co_author_invite_id":151340,"email":"c***i@lnbio.cnpem.br","display_order":null,"name":"Celso Benedetti","title":"The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction"}],"downloadable_attachments":[{"id":46512172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46512172/thumbnails/1.jpg","file_name":"The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a.pdf","download_url":"https://www.academia.edu/attachments/46512172/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_repeat_domain_of_the_type_III_effect.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46512172/The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a-libre.pdf?1466006381=\u0026response-content-disposition=attachment%3B+filename%3DThe_repeat_domain_of_the_type_III_effect.pdf\u0026Expires=1732419092\u0026Signature=TUddJ~7uoClEUPdziBaC8G~GB9xxsIv8s3UMkkS4Pkw1NzIPhsUG9h1P7vd8JQzl4PmEznujc-iK6WxLkmB78O4YZ33I~2HW2fI3PKwm0s1OQVGQKlw8nyVqbW9MY5kIHsFMRuJ9CLK8kUgBIsuunqUJCuVwByI3uQW96IU~NSoBXJx3R~YyzDaIr4aGXSABEeqfu2pJegTXm5AddpSaJVlrUYpNl6RvZjGDhKNVoOKW~9N5Sf5-FhQxU57nkDyFSvT1FMSXa8wJn1TRSrXkiLCeoJ6LmQwvW8E9CTgYfqgQDiISkJ9TaZNtd3Ig0C1YWuP3YWnWWlYFCL4ZrLkkvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_repeat_domain_of_the_type_III_effector_protein_PthA_shows_a_TPR_like_structure_and_undergoes_conformational_changes_upon_DNA_interaction","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":29117218,"first_name":"Mario","middle_initials":null,"last_name":"Murakami","page_name":"MarioMurakami","domain_name":"cnpem","created_at":"2015-04-06T07:16:04.313-07:00","display_name":"Mario Murakami","url":"https://cnpem.academia.edu/MarioMurakami"},"attachments":[{"id":46512172,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46512172/thumbnails/1.jpg","file_name":"The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a.pdf","download_url":"https://www.academia.edu/attachments/46512172/download_file?st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMjQxNTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_repeat_domain_of_the_type_III_effect.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46512172/The_repeat_domain_of_the_type_III_effect20160615-4798-1kmm95a-libre.pdf?1466006381=\u0026response-content-disposition=attachment%3B+filename%3DThe_repeat_domain_of_the_type_III_effect.pdf\u0026Expires=1732419092\u0026Signature=TUddJ~7uoClEUPdziBaC8G~GB9xxsIv8s3UMkkS4Pkw1NzIPhsUG9h1P7vd8JQzl4PmEznujc-iK6WxLkmB78O4YZ33I~2HW2fI3PKwm0s1OQVGQKlw8nyVqbW9MY5kIHsFMRuJ9CLK8kUgBIsuunqUJCuVwByI3uQW96IU~NSoBXJx3R~YyzDaIr4aGXSABEeqfu2pJegTXm5AddpSaJVlrUYpNl6RvZjGDhKNVoOKW~9N5Sf5-FhQxU57nkDyFSvT1FMSXa8wJn1TRSrXkiLCeoJ6LmQwvW8E9CTgYfqgQDiISkJ9TaZNtd3Ig0C1YWuP3YWnWWlYFCL4ZrLkkvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8914,"name":"Protein Science","url":"https://www.academia.edu/Documents/in/Protein_Science"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":76407,"name":"Circular Dichroism","url":"https://www.academia.edu/Documents/in/Circular_Dichroism"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":151086,"name":"Peptides","url":"https://www.academia.edu/Documents/in/Peptides"},{"id":181569,"name":"Proteins","url":"https://www.academia.edu/Documents/in/Proteins"},{"id":809881,"name":"Amino Acid Sequence","url":"https://www.academia.edu/Documents/in/Amino_Acid_Sequence"},{"id":1137254,"name":"Hydrogen-Ion Concentration","url":"https://www.academia.edu/Documents/in/Hydrogen-Ion_Concentration"},{"id":1274450,"name":"Conformational Change","url":"https://www.academia.edu/Documents/in/Conformational_Change"},{"id":2467566,"name":"Molecular Sequence Data","url":"https://www.academia.edu/Documents/in/Molecular_Sequence_Data"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "8392fb82603132c9ec1252aa7e2a73750e9865a189c3dbec4b449f2d865bad2d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ex4mmtWVVUInoI/7DlQvrJhLOW3XPp0dn21VsNHBOfeFSAl1+hz5Aw1dQpbS2dEqTNNqdVcksMgcLrpdDJ5PCg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/CelsoBenedetti" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="8MNY6Z2Xkt7ic86ysgr9uJUXtiqFQgXObRbmx5Bxx3IOlXcGsh4+n8iOA99uhwM+QY/lMgVYKBvuVQkqTS6xjw==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>