CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;37 of 37 results for author: <span class="mathjax">Parre帽o, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Parre帽o, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Parre%C3%B1o%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Parre帽o, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17887">arXiv:2409.17887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17887">pdf</a>, <a href="https://arxiv.org/format/2409.17887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> A Variational Approach to Quantum Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Rovira%2C+M">M. Rovira</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">A. Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">R. J. Perry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17887v1-abstract-short" style="display: inline;"> In strongly coupled field theories, perturbation theory cannot be employed to study the low-energy spectrum. Thus, non-perturbative techniques are required. We employ the variational method, a rigorous, non-perturbative approach which provides variational upper bounds on the energy eigenstates of the theory. An essential step in the variational method is the choice of trial wave function. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17887v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17887v1-abstract-full" style="display: none;"> In strongly coupled field theories, perturbation theory cannot be employed to study the low-energy spectrum. Thus, non-perturbative techniques are required. We employ the variational method, a rigorous, non-perturbative approach which provides variational upper bounds on the energy eigenstates of the theory. An essential step in the variational method is the choice of trial wave function. In this work, we study the viability of employing a neural network as our variational ansatz. As a first step towards phenomenologically interesting strongly coupled theories like quantum chromodynamics, we study scalar field theories with quartic couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17887v1-abstract-full').style.display = 'none'; document.getElementById('2409.17887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, contribution to the 10th International Quark and Nuclear Physics Conference (QNP2024) held in Barcelona on July 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09273">arXiv:2406.09273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09273">pdf</a>, <a href="https://arxiv.org/format/2406.09273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD constraints on isospin-dense matter and the nuclear equation of state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09273v2-abstract-short" style="display: inline;"> Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the non-perturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodyn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09273v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09273v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09273v2-abstract-full" style="display: none;"> Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the non-perturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodynamic quantities and the equation of state of QCD over a wide range of isospin chemical potentials. Agreement is seen with chiral perturbation theory predictions when the chemical potential is small. Comparison to perturbative QCD calculations at large chemical potential allows for an estimate of the gap in the superconducting phase, and this quantity is seen to agree with perturbative determinations. Since the partition function for an isospin chemical potential, $渭_I$, bounds the partition function for a baryon chemical potential $渭_B=3渭_I/2$, these calculations also provide rigorous non-perturbative QCD bounds on the symmetric nuclear matter equation of state over a wide range of baryon densities for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09273v2-abstract-full').style.display = 'none'; document.getElementById('2406.09273v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures, updated with supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5730,FERMILAB-PUB-24-0333-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12039">arXiv:2404.12039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12039">pdf</a>, <a href="https://arxiv.org/format/2404.12039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the finite volume two-nucleon spectrum at $m_蟺\approx 806$ MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12039v2-abstract-short" style="display: inline;"> The low-energy finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of $m_蟺\approx 806$ MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12039v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12039v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12039v2-abstract-full" style="display: none;"> The low-energy finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of $m_蟺\approx 806$ MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operators built from products of both positive- and negative-parity nucleon operators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both channels, noticably weaker variational bounds on the lowest few energy eigenvalues are obtained from operator sets which contain only hexaquark operators or operators constructed from the product of two negative-parity nucleons, while other operator sets produce low-energy variational bounds which are consistent within statistical uncertainties. The consequences of these studies for the LQCD understanding of the two-nucleon spectrum are investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12039v2-abstract-full').style.display = 'none'; document.getElementById('2404.12039v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected a relative normalization error in correlation matrix. Updated results, discussion, and conclusions. 46 pages, 19 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0126-T, MIT-CTP/5700 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15014">arXiv:2307.15014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15014">pdf</a>, <a href="https://arxiv.org/format/2307.15014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice quantum chromodynamics at large isospin density: 6144 pions in a box </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perry%2C+R+J">Robert J. Perry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15014v1-abstract-short" style="display: inline;"> We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15014v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15014v1-abstract-full" style="display: none;"> We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm to calculations of correlation functions with up to 6144 $蟺^+$s using two ensembles of gauge field configurations generated with quark masses corresponding to a pion mass $m_蟺= 170$ MeV and spacetime volumes of $(4.4^3\times 8.8)\ {\rm fm}^4$ and $(5.8^3\times 11.6)\ {\rm fm}^4$. We also discuss statistical techniques for the analysis of such systems, in which the correlation functions vary over many orders of magnitude. In particular, we observe that the many-pion correlation functions are well approximated by log-normal distributions, allowing the extraction of the energies of these systems. Using these energies, the large-isospin-density, zero-baryon-density region of the QCD phase diagram is explored. A peak is observed in the energy density at an isospin chemical potential $渭_I\sim 1.5 m_蟺$, signalling the transition into a Bose-Einstein condensed phase. The isentropic speed of sound in the medium is seen to exceed the ideal-gas (conformal) limit ($c_s^2\leq 1/3$) over a wide range of chemical potential before falling towards the asymptotic expectation at $渭_I\sim 15 m_蟺$. These, and other thermodynamic observables, indicate that the isospin chemical potential must be large for the system to be well described by an ideal gas or perturbative QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15014v1-abstract-full').style.display = 'none'; document.getElementById('2307.15014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5560,UMD-PP-023-03,FERMILAB-PUB-23-382-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01105">arXiv:2202.01105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.01105">pdf</a>, <a href="https://arxiv.org/format/2202.01105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00601-022-01749-x">10.1007/s00601-022-01749-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear Forces for Precision Nuclear Physics -- a collection of perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tews%2C+I">Ingo Tews</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ekstr%C3%B6m%2C+A">Andreas Ekstr枚m</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Holt%2C+J+D">Jason D. Holt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Becker%2C+K">Kevin Becker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brice%C3%B1o%2C+R">Ra煤l Brice帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dean%2C+D+J">David J. Dean</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Drischler%2C+C">Christian Drischler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Duguet%2C+T">Thomas Duguet</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Epelbaum%2C+E">Evgeny Epelbaum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gasparyan%2C+A">Ashot Gasparyan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gegelia%2C+J">Jambul Gegelia</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grie%C3%9Fhammer%2C+H+W">Harald W. Grie脽hammer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heinz%2C+M">Matthias Heinz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hergert%2C+H">Heiko Hergert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoferichter%2C+M">Martin Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kekejian%2C+D">David Kekejian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kievsky%2C+A">Alejandro Kievsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%B6nig%2C+S">Sebastian K枚nig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krebs%2C+H">Hermann Krebs</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Launey%2C+K+D">Kristina D. Launey</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01105v1-abstract-short" style="display: inline;"> This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory&#39;s Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01105v1-abstract-full').style.display = 'inline'; document.getElementById('2202.01105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01105v1-abstract-full" style="display: none;"> This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory&#39;s Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01105v1-abstract-full').style.display = 'none'; document.getElementById('2202.01105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Perspective pieces of the virtual INT program 21-1b &#34;Nuclear Forces for Precision Nuclear Physics&#34;, 107 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-002, LA-UR-22-20419, UMD-PP-022-02, FERMILAB-PUB-22-090-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Few-Body Systems 63, 67 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10835">arXiv:2108.10835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.10835">pdf</a>, <a href="https://arxiv.org/format/2108.10835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094508">10.1103/PhysRevD.107.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A variational study of two-nucleon systems with lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Amarasinghe%2C+S">Saman Amarasinghe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Baghdadi%2C+R">Riyadh Baghdadi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10835v4-abstract-short" style="display: inline;"> The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10835v4-abstract-full').style.display = 'inline'; document.getElementById('2108.10835v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10835v4-abstract-full" style="display: none;"> The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effective theories. Sparsening techniques are used to compute the timeslice-to-all quark propagators required to form correlation-function matrices using products of these operators. Projection of these matrices onto irreducible representations of the cubic group, including spin-orbit coupling, is detailed. Variational methods are applied to constrain the low-energy spectra of two-nucleon systems in a single finite volume with quark masses corresponding to a pion mass of 806 MeV. Results for S- and D-wave phase shifts in the isospin singlet and triplet channels are obtained under the assumption that partial-wave mixing is negligible. Tests of interpolating-operator dependence are used to investigate the reliability of the energy spectra obtained and highlight both the strengths and weaknesses of variational methods. These studies and comparisons to previous studies using the same gauge-field ensemble demonstrate that interpolating-operator dependence can lead to significant effects on the two-nucleon energy spectra obtained using both variational and non-variational methods, including missing energy levels and other discrepancies. While this study is inconclusive regarding the presence of two-nucleon bound states at this quark mass, it provides robust upper bounds on two-nucleon energy levels that can be improved in future calculations using additional interpolating operators and is therefore a step toward reliable nuclear spectroscopy from the underlying Standard Model of particle physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10835v4-abstract-full').style.display = 'none'; document.getElementById('2108.10835v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected a relative normalization error in correlation matrix. Updated results and discussion. 111 pages, 44 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-354-T, MIT-CTP/5320, UMD-PP-021-06 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 094508 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03805">arXiv:2102.03805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03805">pdf</a>, <a href="https://arxiv.org/format/2102.03805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074511">10.1103/PhysRevD.103.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The axial charge of the triton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03805v1-abstract-short" style="display: inline;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03805v1-abstract-full" style="display: none;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from analysis of correlation functions computed on these ensembles, and the corresponding energies are extrapolated to infinite volume using finite-volume pionless effective field theory (FVEFT). It is found with high likelihood that there is a compact bound state with the quantum numbers of the triton at these quark masses. The axial current matrix elements are computed using background field techniques on one of the ensembles and FVEFT is again used to determine the axial charge of the proton and triton. A simple quark mass extrapolation of these results and earlier calculations at heavier quark masses leads to a value of the ratio of the triton to proton axial charges at the physical quark masses of $g_A^{^{3}{\rm H}}/g_A^p=0.91\substack{+0.07 \\ -0.09}$. This result is consistent with the ratio determined from experiment and prefers values less than unity (in which case the triton axial charge would be unmodified from that of the proton), thereby demonstrating that QCD can explain the modification of the axial charge of the triton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'none'; document.getElementById('2102.03805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5274, ICCUB-21-001, FERMILAB-PUB-21-026-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074511 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12357">arXiv:2009.12357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12357">pdf</a>, <a href="https://arxiv.org/format/2009.12357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054508">10.1103/PhysRevD.103.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Scattering and Effective Interactions of Two Baryons at $m_蟺\sim 450$ MeV from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12357v3-abstract-short" style="display: inline;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'inline'; document.getElementById('2009.12357v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12357v3-abstract-full" style="display: none;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-singlet $危危$ ($I=2$) and $螢危$ ($I=3/2$) states, and the spin-triplet $螢N$ ($I=0$) state. The $s$-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable, are extracted using L眉scher&#39;s formalism. While the results are consistent with most of the systems being bound at this pion mass, the interactions in the spin-triplet $危N$ and $螢螢$ channels are found to be repulsive and do not support bound states. Using results from previous studies at a larger pion mass, an extrapolation of the binding energies to the physical point is performed and is compared with experimental values and phenomenological predictions. The low-energy coefficients in pionless EFT relevant for two-baryon interactions, including those responsible for $SU(3)$ flavor-symmetry breaking, are constrained. The $SU(3)$ symmetry is observed to hold approximately at the chosen values of the quark masses, as well as the $SU(6)$ spin-flavor symmetry, predicted at large $N_c$. A remnant of an accidental $SU(16)$ symmetry found previously at a larger pion mass is further observed. The $SU(6)$-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon systems for which the low-energy scattering parameters could not be determined with LQCD directly in this study, and to constrain the coefficients of all leading $SU(3)$ flavor-symmetric interactions, demonstrating the predictive power of two-baryon EFTs matched to LQCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'none'; document.getElementById('2009.12357v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">69 pages, 31 figures and 25 tables; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICCUB-20-020, UMD-PP-020-7, MIT-CTP/5238, INT-PUB-20-038, FERMILAB-PUB-20-498-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11160">arXiv:2008.11160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11160">pdf</a>, <a href="https://arxiv.org/format/2008.11160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.10.004">10.1016/j.physrep.2020.10.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P">Phiala Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11160v1-abstract-short" style="display: inline;"> Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11160v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11160v1-abstract-full" style="display: none;"> Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model operators is summarized, and connections with effective field theories and nuclear models are outlined. Lattice QCD calculations of nuclear matrix elements can provide guidance for low-energy nuclear reactions in astrophysics, dark matter direct detection experiments, and experimental searches for violations of the symmetries of the Standard Model, including searches for additional CP violation in the hadronic and leptonic sectors, baryon-number violation, and lepton-number or flavor violation. Similarly, important inputs to neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation parameters, as well as other electroweak and beyond-Standard-Model processes can be determined. The phenomenological implications of existing studies of electroweak and beyond-Standard-Model matrix elements in light nuclear systems are discussed, and future prospects for the field toward precision studies of these matrix elements are outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11160v1-abstract-full').style.display = 'none'; document.getElementById('2008.11160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5229, UMD-PP-020-4, ICCUB-20-018, FERMILAB-PUB-20-445-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.01564">arXiv:1709.01564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.01564">pdf</a>, <a href="https://arxiv.org/format/1709.01564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506001">10.1051/epjconf/201817506001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baryon magnetic moments: Symmetries and relations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.01564v1-abstract-short" style="display: inline;"> Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Sigma-Lambda system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01564v1-abstract-full').style.display = 'inline'; document.getElementById('1709.01564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.01564v1-abstract-full" style="display: none;"> Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Sigma-Lambda system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spin-flavor symmetry in the large Nc limit of QCD is shared by the naive constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.01564v1-abstract-full').style.display = 'none'; document.getElementById('1709.01564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, talk given at Lattice 2017, the 35th International Symposium on Lattice Field Theory, Granada, Spain, 18-24 June 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.09239">arXiv:1705.09239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.09239">pdf</a>, <a href="https://arxiv.org/format/1705.09239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;Are two nucleons bound in lattice QCD for heavy quark masses? - Sanity check with L眉scher&#39;s finite volume formula -&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.09239v3-abstract-short" style="display: inline;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'inline'; document.getElementById('1705.09239v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.09239v3-abstract-full" style="display: none;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all of the &#39;sanity checks&#39; introduced in arXiv:1703.07210. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'none'; document.getElementById('1705.09239v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Clarifications added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-016, NT@UW-17-10, MIT-CTP-4909 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.03985">arXiv:1609.03985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.03985">pdf</a>, <a href="https://arxiv.org/format/1609.03985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.114513">10.1103/PhysRevD.95.114513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Octet Baryon Magnetic Moments from Lattice QCD: Approaching Experiment from a Three-Flavor Symmetric Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wilhelm%2C+J">Jonas Wilhelm</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.03985v2-abstract-short" style="display: inline;"> Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the three-flavor symmetric point, where the pion mass is 800 MeV, and the other corresponding to a pion mass of 450 MeV. The moments are foun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03985v2-abstract-full').style.display = 'inline'; document.getElementById('1609.03985v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.03985v2-abstract-full" style="display: none;"> Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the three-flavor symmetric point, where the pion mass is 800 MeV, and the other corresponding to a pion mass of 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units- the natural baryon magneton. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, a clear preference for the quark model over the large-Nc prediction is found. The magnetically coupled Lambda-Sigma system is treated in detail at the three-flavor symmetric point, with the lattice QCD results comparing favorably with predictions based on SU(3)F symmetry. This analysis enables the first extraction of the isovector transition magnetic polarizability. The possibility that large magnetic fields stabilize strange matter is explored, but such a scenario is found to be unlikely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03985v2-abstract-full').style.display = 'none'; document.getElementById('1609.03985v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 18 figures, v2 revision corresponds to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NSF-KITP-16-140, INT-PUB-16-028, MIT-CTP-4833 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 114513 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.07583">arXiv:1508.07583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.07583">pdf</a>, <a href="https://arxiv.org/format/1508.07583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114512">10.1103/PhysRevD.92.114512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Nucleon Systems at $m_蟺\sim 450~{\rm MeV}$ from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.07583v2-abstract-short" style="display: inline;"> Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of $m_蟺\sim 450~{\rm MeV}$ in three spatial volumes using $n_f=2+1$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $B_d = 14.4^{+3.2}_{-2.6} ~{\rm MeV}$, while the dineutron is bound by $B_{nn} = 12.5^{+3.0}_{-5.0}~{\rm MeV}$. Over the range of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07583v2-abstract-full').style.display = 'inline'; document.getElementById('1508.07583v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.07583v2-abstract-full" style="display: none;"> Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of $m_蟺\sim 450~{\rm MeV}$ in three spatial volumes using $n_f=2+1$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $B_d = 14.4^{+3.2}_{-2.6} ~{\rm MeV}$, while the dineutron is bound by $B_{nn} = 12.5^{+3.0}_{-5.0}~{\rm MeV}$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. The extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann--Okubo mass relation. [An Erratum to the published version is included as an appendix. It details the impact of an error discovered in 2020 and corrects typographical errors.] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07583v2-abstract-full').style.display = 'none'; document.getElementById('1508.07583v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 31 figures, Erratum from 2020 included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-042, NSF-KITP-15-120, NT@UW-15-09, MIT-CTP-4709 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114512 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.05884">arXiv:1508.05884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.05884">pdf</a>, <a href="https://arxiv.org/format/1508.05884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.112301">10.1103/PhysRevLett.116.112301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unitary Limit of Two-Nucleon Interactions in Strong Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.05884v2-abstract-short" style="display: inline;"> Two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of $m_蟺\sim 450$ and 806 MeV in uniform, time-independent magnetic fields of strength {&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05884v2-abstract-full').style.display = 'inline'; document.getElementById('1508.05884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.05884v2-abstract-full" style="display: none;"> Two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of $m_蟺\sim 450$ and 806 MeV in uniform, time-independent magnetic fields of strength {\bf B}| \sim 10^{19}$-$10^{20}$ Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavy ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.05884v2-abstract-full').style.display = 'none'; document.getElementById('1508.05884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-044, NT@UW-15-10, NSF-KITP-15-119, MIT-CTP-4704 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 112301 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.05518">arXiv:1506.05518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.05518">pdf</a>, <a href="https://arxiv.org/format/1506.05518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.114502">10.1103/PhysRevD.92.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Magnetic Structure of Light Nuclei from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.05518v1-abstract-short" style="display: inline;"> Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\le4$, along with the cross-section for the $M1$ transition $np\rightarrow d纬$, at the flavor SU(3)-symmetric point where the pion mass is $m_蟺\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05518v1-abstract-full').style.display = 'inline'; document.getElementById('1506.05518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.05518v1-abstract-full" style="display: none;"> Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\le4$, along with the cross-section for the $M1$ transition $np\rightarrow d纬$, at the flavor SU(3)-symmetric point where the pion mass is $m_蟺\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $尾_p=5.22(+0.66/-0.45)(0.23) \times 10^{-4}$ fm$^3$ and $尾_n=1.253(+0.056/-0.067)(0.055) \times 10^{-4}$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $尾_{nn}=1.872(+0.121/-0.113)(0.082) \times 10^{-4}$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $j_z=\pm 1$ deuteron states, and is found to be $尾_{d,\pm 1}=4.4(+1.6/-1.5)(0.2) \times 10^{-4}$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $尾_{^{3}\rm He}=5.4(+2.2/-2.1)(0.2) \times 10^{-4}$ fm$^3$, $尾_{^{3}\rm H}=2.6(1.7)(0.1) \times 10^{-4}$ fm$^3$, $尾_{^{4}\rm He}=3.4(+2.0/-1.9)(0.2) \times 10^{-4}$ fm$^3$. Mixing between the $j_z=0$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, ${\bar L}_1$, of the pionless effective theory for $NN$ systems (equivalent to the meson-exchange current contribution in nuclear potential models), that dictates the cross-section for the $np\to d纬$ process near threshold. Combined with previous determinations of NN scattering parameters, this enables an ab initio determination of the threshold cross-section at these unphysical masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05518v1-abstract-full').style.display = 'none'; document.getElementById('1506.05518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 24 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-011, NT@UW-15-03, ICC@UB-15-016, MIT-CTP-4667 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 114502 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02422">arXiv:1505.02422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.02422">pdf</a>, <a href="https://arxiv.org/format/1505.02422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.132001">10.1103/PhysRevLett.115.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculation of the $np \to d 纬$ radiative capture process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02422v1-abstract-short" style="display: inline;"> Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process $np \to d纬$, and the photo-disintegration processes $纬^{(\ast)} d \to np$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02422v1-abstract-full').style.display = 'inline'; document.getElementById('1505.02422v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02422v1-abstract-full" style="display: none;"> Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process $np \to d纬$, and the photo-disintegration processes $纬^{(\ast)} d \to np$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $m_蟺\sim 450$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $蟽^{lqcd}(np\to d纬)=332.4({\tiny \begin{array}{l}+5.4 \\ - 4.7\end{array}})\ mb$ is obtained at an incident neutron speed of $v=2,200\ m/s$, consistent with the experimental value of $蟽^{expt}(np \to d纬) = 334.2(0.5)\ mb$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02422v1-abstract-full').style.display = 'none'; document.getElementById('1505.02422v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-010, NT@UW-15-02, MIT-CTP-4666 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 132001 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.7069">arXiv:1410.7069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.7069">pdf</a>, <a href="https://arxiv.org/format/1410.7069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.114503">10.1103/PhysRevD.91.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quarkonium-Nucleus Bound States from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+-">H. -W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">A. Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.7069v2-abstract-short" style="display: inline;"> Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deepl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7069v2-abstract-full').style.display = 'inline'; document.getElementById('1410.7069v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.7069v2-abstract-full" style="display: none;"> Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B &lt; 40 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.7069v2-abstract-full').style.display = 'none'; document.getElementById('1410.7069v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-14-049, NT@UW-14-23, MIT-CTP-4600 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 91, 114503 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.3556">arXiv:1409.3556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.3556">pdf</a>, <a href="https://arxiv.org/format/1409.3556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.252001">10.1103/PhysRevLett.113.252001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic moments of light nuclei from lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S">S. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">B. C. Tiburzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.3556v2-abstract-short" style="display: inline;"> We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and ${}^3$He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to $m_蟺\sim 800$ MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3556v2-abstract-full').style.display = 'inline'; document.getElementById('1409.3556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.3556v2-abstract-full" style="display: none;"> We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and ${}^3$He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to $m_蟺\sim 800$ MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In particular, we find that the magnetic moment of ${}^3$He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, $渭_{{}^3{\rm H}} \sim 渭_p$. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3556v2-abstract-full').style.display = 'none'; document.getElementById('1409.3556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NT@UW-14-19, INT-14-038, MIT-CTP-4586, RBRC-1090 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 252001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.5790">arXiv:1301.5790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.5790">pdf</a>, <a href="https://arxiv.org/format/1301.5790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.88.024003">10.1103/PhysRevC.88.024003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P">P. Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.5790v1-abstract-short" style="display: inline;"> The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L \sim 3.4 fm, 4.5fm and 6.7 fm, and with a lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5790v1-abstract-full').style.display = 'inline'; document.getElementById('1301.5790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.5790v1-abstract-full" style="display: none;"> The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L \sim 3.4 fm, 4.5fm and 6.7 fm, and with a lattice spacing of b \sim 0.145 fm. With determinations of the energies of the two-nucleon systems (both of which contain bound states at these up and down quark masses) at rest and moving in the lattice volume, Luscher&#39;s method is used to determine the low-energy phase shifts in each channel, from which the scattering length and effective range are obtained. The scattering parameters, in the 1S0 channel are found to be m_pi a^(1S0) = 9.50^{+0.78}_{-0.69}^{+1.10}_{-0.80} and m_pi r^(1S0) = {4.61^{+0.29}_{-0.31}^{+0.24}_{-0.26}, and in the 3S1 channel are m_pi a^(3S1) = 7.45^{+0.57}_{-0.53}^{+0.71}_{-0.49} and m_pi r^(3S1) = 3.71^{+0.28}_{-0.31}^{+0.28}_{-0.35}. These values are consistent with the two-nucleon system exhibiting Wigner&#39;s supermultiplet symmetry, which becomes exact in the limit of large-N_c. In both spin channels, the phase shifts change sign at higher momentum, near the start of the t-channel cut, indicating that the nuclear interactions have a repulsive core even at the SU(3)-symmetric point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5790v1-abstract-full').style.display = 'none'; document.getElementById('1301.5790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-4434; ICCUB-13-040; JLAB-THY-13-1689; NT@UW-13-05; NT-LBNL-13-004; UCB-NPAT-13-004; UNH-13-2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.5219">arXiv:1206.5219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.5219">pdf</a>, <a href="https://arxiv.org/format/1206.5219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.034506">10.1103/PhysRevD.87.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.5219v2-abstract-short" style="display: inline;"> The binding energies of a range of nuclei and hypernuclei with atomic number A &lt;= 4 and strangeness |s| &lt;= 2, including the deuteron, di-neutron, H-dibaryon, 3He, Lambda 3He, Lambda 4He, and Lambda Lambda 4He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5219v2-abstract-full').style.display = 'inline'; document.getElementById('1206.5219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.5219v2-abstract-full" style="display: none;"> The binding energies of a range of nuclei and hypernuclei with atomic number A &lt;= 4 and strangeness |s| &lt;= 2, including the deuteron, di-neutron, H-dibaryon, 3He, Lambda 3He, Lambda 4He, and Lambda Lambda 4He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted from Lattice QCD calculations performed with n_f=3 dynamical light quarks using an isotropic clover discretization of the quark-action in three lattice volumes of spatial extent L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a single lattice spacing b ~ 0.145 fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5219v2-abstract-full').style.display = 'none'; document.getElementById('1206.5219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 45 figures Increased statistics, enhanced discussion, fixed typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICCUB-12-309; JLAB-THY-12-1581; NT@UW-12-09; NT-LBNL-12-012; UCB-NPAT-12-011; UNH-12-04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.3606">arXiv:1204.3606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.3606">pdf</a>, <a href="https://arxiv.org/format/1204.3606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.172001">10.1103/PhysRevLett.109.172001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+-">H. -W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.3606v1-abstract-short" style="display: inline;"> The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3606v1-abstract-full').style.display = 'inline'; document.getElementById('1204.3606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.3606v1-abstract-full" style="display: none;"> The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3606v1-abstract-full').style.display = 'none'; document.getElementById('1204.3606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-12-03; JLAB-THY-12-1509; NT@UW-12-06; NT-LBNL-12-005; UCB-NPAT-12-005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.2889">arXiv:1109.2889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.2889">pdf</a>, <a href="https://arxiv.org/format/1109.2889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.054511">10.1103/PhysRevD.85.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Deuteron and Exotic Two-Body Bound States from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">A. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.2889v1-abstract-short" style="display: inline;"> Results of a high-statistics, multi-volume Lattice QCD exploration of the deuteron, the di-neutron, the H-dibaryon, and the Xi-Xi- system at a pion mass of m ~ 390 MeV are presented. Calculations were performed with an anisotropic n_f = 2+1 Clover discretization in four lattice volumes of spatial extent L ~ 2.0, 2.5, 3.0 and 4.0 fm, with a lattice spacing of b_s ~ 0.123 fm in the spatial-direction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2889v1-abstract-full').style.display = 'inline'; document.getElementById('1109.2889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.2889v1-abstract-full" style="display: none;"> Results of a high-statistics, multi-volume Lattice QCD exploration of the deuteron, the di-neutron, the H-dibaryon, and the Xi-Xi- system at a pion mass of m ~ 390 MeV are presented. Calculations were performed with an anisotropic n_f = 2+1 Clover discretization in four lattice volumes of spatial extent L ~ 2.0, 2.5, 3.0 and 4.0 fm, with a lattice spacing of b_s ~ 0.123 fm in the spatial-direction, and b_t ~ b_s/3.5 in the time-direction. The Xi-Xi- is found to be bound by B_{Xi-Xi-} = 14.0(1.4)(6.7) MeV, consistent with expectations based upon phenomenological models and low-energy effective field theories constrained by nucleon-nucleon and hyperon-nucleon scattering data at the physical light-quark masses. We find weak evidence that both the deuteron and the di-neutron are bound at this pion mass, with binding energies of B_d = 11(05)(12) MeV and B_{nn} = 7.1(5.2)(7.3) MeV, respectively. With an increased number of measurements and a refined analysis, the binding energy of the H-dibaryon is B_H = 13.2(1.8)(4.0) MeV at this pion mass, updating our previous result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2889v1-abstract-full').style.display = 'none'; document.getElementById('1109.2889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICCUB-11-165, NT@UW-11-21, NT-LBNL-11-017, UCB-NPAT-11-012 , UNH-11-5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.1380">arXiv:1108.1380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.1380">pdf</a>, <a href="https://arxiv.org/format/1108.1380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.094509">10.1103/PhysRevD.86.094509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SU(2) Low-Energy Constants from Mixed-Action Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P+M">P. M. Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">A. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.1380v2-abstract-short" style="display: inline;"> An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1380v2-abstract-full').style.display = 'inline'; document.getElementById('1108.1380v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.1380v2-abstract-full" style="display: none;"> An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 &lt;= m_l / m_s &lt;= 0.6, while pion masses are in the range 235 &lt; m_蟺&lt; 680 MeV. A two-flavor chiral perturbation theory analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients bar{l}_3 and bar{l}_4 to be bar{l}_3 = 4.04(40)(+73-55) and bar{l}_4 = 4.30(51)(+84-60). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f_蟺/ f = 1.062(26)(+42-40) where f is the decay constant in the chiral limit. The most recent scale setting by the MILC Collaboration yields a postdiction of f_蟺= 128.2(3.6)(+4.4-6.0)(+1.2-3.3) MeV at the physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.1380v2-abstract-full').style.display = 'none'; document.getElementById('1108.1380v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 9 figures; version 2 accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-11-1380; NT-LBNL-11-013; NT@UW-11-14; UCB-NPAT-11-008; UNH-11-4 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D86:094509,2012 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.5023">arXiv:1107.5023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.5023">pdf</a>, <a href="https://arxiv.org/format/1107.5023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.034505">10.1103/PhysRevD.85.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The I=2 pipi S-wave Scattering Phase Shift from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">A. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.5023v2-abstract-short" style="display: inline;"> The pi+pi+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m_pi~390 MeV with an anisotropic n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L~2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b_s~0.123 fm in the spatial direction and b_t b_s/3.5 in the time direction.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.5023v2-abstract-full').style.display = 'inline'; document.getElementById('1107.5023v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.5023v2-abstract-full" style="display: none;"> The pi+pi+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m_pi~390 MeV with an anisotropic n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L~2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b_s~0.123 fm in the spatial direction and b_t b_s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of pi+pi+ systems with both zero and non-zero total momentum in the lattice volume using Luscher&#39;s method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m_pi^2 a r = 3+O(m_pi^2/Lambda_chi^2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.5023v2-abstract-full').style.display = 'none'; document.getElementById('1107.5023v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.4101">arXiv:1104.4101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.4101">pdf</a>, <a href="https://arxiv.org/format/1104.4101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.014507">10.1103/PhysRevD.84.014507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.039903">10.1103/PhysRevD.84.039903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Statistics Analysis using Anisotropic Clover Lattices: (IV) Volume Dependence of Light Hadron Masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">A. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.4101v1-abstract-short" style="display: inline;"> The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L ~ 2.0, 2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing of b_s ~ 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_pi ~&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4101v1-abstract-full').style.display = 'inline'; document.getElementById('1104.4101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.4101v1-abstract-full" style="display: none;"> The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L ~ 2.0, 2.5, 3.0 and 3.9 fm, with an anisotropic lattice spacing of b_s ~ 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_pi ~ 390 MeV. The typical precision of the ground-state baryon mass determination is ~0.2%, enabling a precise exploration of the volume dependence of the masses, the Gell-Mann--Okubo mass relation, and of other mass combinations. A comparison of the volume dependence with the predictions of heavy baryon chiral perturbation theory is performed in both the SU(2)_L X SU(2)_R and SU(3)_L X SU(3)_R expansions. Predictions of the three-flavor expansion for the hadron masses are found to describe the observed volume dependences reasonably well. Further, the Delta-N-pi axial coupling constant is extracted from the volume dependence of the nucleon mass in the two-flavor expansion, with only small modifications in the three-flavor expansion from the inclusion of kaons and etas. At a given value of m_pi L, the finite-volume contributions to the nucleon mass are predicted to be significantly smaller at m_pi ~ 140 MeV than at m_pi ~ 390 MeV due to a coefficient that scales as ~ m_pi^3. This is relevant for the design of future ensembles of lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4101v1-abstract-full').style.display = 'none'; document.getElementById('1104.4101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 45 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-11-2, JLAB-THY-11-1364, NT@UW-11-04, IUHET-558, NT-LBNL-11-009, UCB-NPAT-11-006 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84:014507,2011; Phys.Rev.D84:039903,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.2821">arXiv:1103.2821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.2821">pdf</a>, <a href="https://arxiv.org/format/1103.2821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217732311036978">10.1142/S0217732311036978 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Present Constraints on the H-dibaryon at the Physical Point from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">B. Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">A. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.2821v2-abstract-short" style="display: inline;"> The current constraints from lattice QCD on the existence of the H-dibaryon are discussed. With only two significant lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the forms of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed by two simp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.2821v2-abstract-full').style.display = 'inline'; document.getElementById('1103.2821v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.2821v2-abstract-full" style="display: none;"> The current constraints from lattice QCD on the existence of the H-dibaryon are discussed. With only two significant lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the forms of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state. Further lattice QCD calculations are required to clarify this situation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.2821v2-abstract-full').style.display = 'none'; document.getElementById('1103.2821v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, 1 table; revised for the journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-11-1; ICCUB-11-125; JLAB-THY-11-1326; NT@UW-11-02; IUHET-558; UCB-NPAT-11-003; NT-LBNL-11-005 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mod. Phys. Lett. A26: 2587, 2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.3812">arXiv:1012.3812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.3812">pdf</a>, <a href="https://arxiv.org/format/1012.3812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.162001">10.1103/PhysRevLett.106.162001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for a Bound H-dibaryon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">E. Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">B. Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">T. C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">A. Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">A. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.3812v2-abstract-short" style="display: inline;"> We present evidence for the existence of a bound H-dibaryon, an I=0, J=0, s=-2 state with valence quark structure uuddss, at a pion mass of m_pi ~ 389 MeV. Using the results of Lattice QCD calculations performed on four ensembles of anisotropic clover gauge-field configurations, with spatial extents of L ~ 2.0, 2.5, 3.0 and 3.9 fm at a spatial lattice spacing of b ~ 0.123 fm, we find an H-dibaryon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.3812v2-abstract-full').style.display = 'inline'; document.getElementById('1012.3812v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.3812v2-abstract-full" style="display: none;"> We present evidence for the existence of a bound H-dibaryon, an I=0, J=0, s=-2 state with valence quark structure uuddss, at a pion mass of m_pi ~ 389 MeV. Using the results of Lattice QCD calculations performed on four ensembles of anisotropic clover gauge-field configurations, with spatial extents of L ~ 2.0, 2.5, 3.0 and 3.9 fm at a spatial lattice spacing of b ~ 0.123 fm, we find an H-dibaryon bound by B = 16.6 +- 2.1 +- 4.6 MeV at a pion mass of m_pi ~ 389 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.3812v2-abstract-full').style.display = 'none'; document.getElementById('1012.3812v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages and 3 figures. v2 accepted by PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-10-04, ICCUB-10-201, JLAB-THY-10-1296,NT@UW-10-26, IUHET-554, UCB-NPAT-10-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.106:162001,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.1913">arXiv:0907.1913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0907.1913">pdf</a>, <a href="https://arxiv.org/ps/0907.1913">ps</a>, <a href="https://arxiv.org/format/0907.1913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.81.074506">10.1103/PhysRevD.81.074506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Meson-Baryon Scattering Lengths from Mixed-Action Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">Aaron Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">Thomas C Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.1913v1-abstract-short" style="display: inline;"> The $蟺^+危^+$, $蟺^+螢^0$, $K^+p$, $K^+n$, and $\overline{K}{}^0 螢^0$ scattering lengths are calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks is used to pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.1913v1-abstract-full').style.display = 'inline'; document.getElementById('0907.1913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.1913v1-abstract-full" style="display: none;"> The $蟺^+危^+$, $蟺^+螢^0$, $K^+p$, $K^+n$, and $\overline{K}{}^0 螢^0$ scattering lengths are calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks is used to perform the chiral extrapolations. To the order we work in the three-flavor chiral expansion, the kaon-baryon processes that we investigate show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be $a_{蟺^+危^+}=-0.197\pm0.017$ fm, and $a_{蟺^+螢^0}=-0.098\pm0.017$ fm, where the comprehensive error includes statistical and systematic uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.1913v1-abstract-full').style.display = 'none'; document.getElementById('0907.1913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D81:074506,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0905.0466">arXiv:0905.0466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0905.0466">pdf</a>, <a href="https://arxiv.org/format/0905.0466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.80.074501">10.1103/PhysRevD.80.074501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">Thomas C Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">Aaron Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0905.0466v1-abstract-short" style="display: inline;"> We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_蟺~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.0466v1-abstract-full').style.display = 'inline'; document.getElementById('0905.0466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0905.0466v1-abstract-full" style="display: none;"> We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_蟺~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the $螢^0螢^0 n$ system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E_{螢^0螢^0n}= 3877.9\pm 6.9\pm 9.2\pm3.3 MeV corresponding to an energy-shift due to interactions of 未E_{螢^0螢^0n}=E_{螢^0螢^0n}-2M_{螢^0} -M_n=4.6\pm 5.0\pm 7.9\pm 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.0466v1-abstract-full').style.display = 'none'; document.getElementById('0905.0466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-09-02,JLAB-THY-09-984, NT@UW-09-09,ATHENA-PUB-09-016 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D80:074501,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.2990">arXiv:0903.2990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.2990">pdf</a>, <a href="https://arxiv.org/format/0903.2990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.79.114502">10.1103/PhysRevD.79.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">Thomas C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">Aaron Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.2990v1-abstract-short" style="display: inline;"> We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292,500 sets of measurements are made using 1194 gauge co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2990v1-abstract-full').style.display = 'inline'; document.getElementById('0903.2990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.2990v1-abstract-full" style="display: none;"> We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292,500 sets of measurements are made using 1194 gauge configurations of size 20^3 x 128 with an anisotropy parameter 尉= b_s/b_t = 3.5, a spatial lattice spacing of b_s=0.1227\pm 0.0008 fm, and pion mass of m_蟺~ 390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the ~0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N蟺threshold and, therefore, the isospin-1/2 蟺N s-wave scattering phase-shift can be extracted using Luescher&#39;s method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time-slices. This is due to backward propagating states arising from the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.2990v1-abstract-full').style.display = 'none'; document.getElementById('0903.2990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-09-01, JLAB-THY-09-960, NT@UW-09-08, ICCUB-09-18, ATHENA-PUB-09-012 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D79:114502,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0803.2728">arXiv:0803.2728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0803.2728">pdf</a>, <a href="https://arxiv.org/format/0803.2728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.78.014507">10.1103/PhysRevD.78.014507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Pion States in Lattice QCD and the Charged-Pion Condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">Aaron Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">Thomas C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0803.2728v1-abstract-short" style="display: inline;"> The ground-state energies of systems containing up to twelve $蟺^+$&#39;s in a spatial volume V ~ (2.5 fm)^3 are computed in dynamical, mixed-action lattice QCD at a lattice spacing of ~ 0.125 fm for four different values of the light quark masses. Clean signals are seen for each ground state, allowing for a precise extraction of both the $蟺^+蟺^+$ scattering length and $蟺^+蟺^+蟺^+$-interaction from a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.2728v1-abstract-full').style.display = 'inline'; document.getElementById('0803.2728v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0803.2728v1-abstract-full" style="display: none;"> The ground-state energies of systems containing up to twelve $蟺^+$&#39;s in a spatial volume V ~ (2.5 fm)^3 are computed in dynamical, mixed-action lattice QCD at a lattice spacing of ~ 0.125 fm for four different values of the light quark masses. Clean signals are seen for each ground state, allowing for a precise extraction of both the $蟺^+蟺^+$ scattering length and $蟺^+蟺^+蟺^+$-interaction from a correlated analysis of systems containing different numbers of $蟺^+$&#39;s. This extraction of the $蟺^+蟺^+$ scattering length is consistent with than that from the $蟺^+蟺^+$-system alone. The large number of systems studied here significantly strengthens the arguments presented in our earlier work and unambiguously demonstrates the presence of a low energy $蟺^+蟺^+蟺^+$-interaction. The equation of state of a $蟺^+$ gas is investigated using our numerical results and the density dependence of the isospin chemical potential for these systems agrees well with the theoretical expectations of leading order chiral perturbation theory. The chemical potential is found to receive a substantial contribution from the $蟺^+蟺^+蟺^+$-interaction at the lighter pion masses. An important technical aspect of this work is the demonstration of the necessity of performing propagator contractions in greater than double precision to extract the correct results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.2728v1-abstract-full').style.display = 'none'; document.getElementById('0803.2728v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NT@UW-08-06, LLNL-JRNL-402365, UNH-08-01, JLAB-THY-08-803 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D78:014507,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0709.1169">arXiv:0709.1169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0709.1169">pdf</a>, <a href="https://arxiv.org/ps/0709.1169">ps</a>, <a href="https://arxiv.org/format/0709.1169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.77.094507">10.1103/PhysRevD.77.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The K+K+ Scattering Length from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S">Silas Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M">Martin Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">Aaron Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0709.1169v1-abstract-short" style="display: inline;"> The K+K+ scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the MILC asqtad-improved gauge configurations with rooted staggered sea quarks. Three-flavor mixed-action chiral perturbation theory at next-to-leading order, which includes the leading effects of the finite lattice spacing, is used to extrapolate the results of the lattice calculation to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0709.1169v1-abstract-full').style.display = 'inline'; document.getElementById('0709.1169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0709.1169v1-abstract-full" style="display: none;"> The K+K+ scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the MILC asqtad-improved gauge configurations with rooted staggered sea quarks. Three-flavor mixed-action chiral perturbation theory at next-to-leading order, which includes the leading effects of the finite lattice spacing, is used to extrapolate the results of the lattice calculation to the physical value of m_{K+}/f_{K+}. We find m_{K+} a_{K+K+} = -0.352 +- 0.016, where the statistical and systematic errors have been combined in quadrature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0709.1169v1-abstract-full').style.display = 'none'; document.getElementById('0709.1169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures. NPLQCD collaboration</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-07-03, UMD-40762-399, JLAB-THY-07-719, NT@UW-07-14 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D77:094507,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0706.3026">arXiv:0706.3026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0706.3026">pdf</a>, <a href="https://arxiv.org/ps/0706.3026">ps</a>, <a href="https://arxiv.org/format/0706.3026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.77.014505">10.1103/PhysRevD.77.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise Determination of the I=2 pipi Scattering Length from Mixed-Action Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">Thomas C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Torok%2C+A">Aaron Torok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0706.3026v1-abstract-short" style="display: inline;"> The I=2 pipi scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations (with fourth-rooted staggered sea quarks) at four light-quark masses. Two- and three-flavor mixed-action chiral perturbation theory at next-to-leading order is used to perform the chiral and continuum extrapolations. At the physical charged&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.3026v1-abstract-full').style.display = 'inline'; document.getElementById('0706.3026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0706.3026v1-abstract-full" style="display: none;"> The I=2 pipi scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations (with fourth-rooted staggered sea quarks) at four light-quark masses. Two- and three-flavor mixed-action chiral perturbation theory at next-to-leading order is used to perform the chiral and continuum extrapolations. At the physical charged pion mass, we find m_pi a_pipi(I=2) = -0.04330 +- 0.00042, where the error bar combines the statistical and systematic uncertainties in quadrature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.3026v1-abstract-full').style.display = 'none'; document.getElementById('0706.3026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D77:014505,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0612026">arXiv:hep-lat/0612026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0612026">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0612026">ps</a>, <a href="https://arxiv.org/format/hep-lat/0612026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2007.07.006">10.1016/j.nuclphysa.2007.07.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperon-Nucleon Scattering from Fully-Dynamical Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bedaque%2C+P+F">Paulo F. Bedaque</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">Thomas C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pallante%2C+E">Elisabetta Pallante</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0612026v1-abstract-short" style="display: inline;"> We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n Lambda scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n Sigma- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, stag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0612026v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0612026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0612026v1-abstract-full" style="display: none;"> We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n Lambda scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n Sigma- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b ~ 0.125 fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0612026v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0612026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.A794:62-72,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0607036">arXiv:hep-lat/0607036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0607036">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0607036">ps</a>, <a href="https://arxiv.org/format/hep-lat/0607036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.74.114503">10.1103/PhysRevD.74.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pi-K Scattering in Full QCD with Domain-Wall Valence Quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bedaque%2C+P+F">Paulo F. Bedaque</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T+C">Thomas C. Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pallante%2C+E">Elisabetta Pallante</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">Assumpta Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0607036v1-abstract-short" style="display: inline;"> We calculate the pi+ K+ scattering length in fully-dynamical lattice QCD with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b=0.125 fm, lattice spatial size of L =2.5 fm and at pion masses of m_pi=290, 350, 490 and 600 MeV. The lattice data, analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full pi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0607036v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0607036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0607036v1-abstract-full" style="display: none;"> We calculate the pi+ K+ scattering length in fully-dynamical lattice QCD with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b=0.125 fm, lattice spatial size of L =2.5 fm and at pion masses of m_pi=290, 350, 490 and 600 MeV. The lattice data, analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full pi K scattering amplitude at threshold. Extrapolating to the physical point gives m_pi a_3/2 = -0.0574 (+- 0.0016)(+0.0024 -0.0058) and m_pi a_1/2 = 0.1725 (+- 0.0017)(+0.0023 -0.0156) for the I=3/2 and I=1/2 scattering lengths, respectively, where the first error is statistical and the second error is an estimate of the systematic due to truncation of the chiral expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0607036v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0607036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D74:114503,2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0312004">arXiv:hep-lat/0312004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/hep-lat/0312004">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0312004">ps</a>, <a href="https://arxiv.org/format/hep-lat/0312004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2004.02.007">10.1016/j.physletb.2004.02.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Nucleons on a Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bedaque%2C+P+F">P. F. Bedaque</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0312004v1-abstract-short" style="display: inline;"> The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0312004v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0312004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0312004v1-abstract-full" style="display: none;"> The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0312004v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0312004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UNH-03-02, LBNL-54092, NT@UW-03-033 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B585:106-114,2004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/nucl-th/0311027">arXiv:nucl-th/0311027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/nucl-th/0311027">pdf</a>, <a href="https://arxiv.org/ps/nucl-th/0311027">ps</a>, <a href="https://arxiv.org/format/nucl-th/0311027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2004.09.081">10.1016/j.nuclphysa.2004.09.081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Hyperons and Hypernuclei with Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bedaque%2C+P+F">P. F. Bedaque</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parreno%2C+A">A. Parreno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">M. J. Savage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="nucl-th/0311027v1-abstract-short" style="display: inline;"> In this work we outline a program for lattice QCD that would provide a first step toward understanding the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Lambda&#39;s, and Sigma&#39;s. From a theoretical standpoint, little is known about the h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nucl-th/0311027v1-abstract-full').style.display = 'inline'; document.getElementById('nucl-th/0311027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="nucl-th/0311027v1-abstract-full" style="display: none;"> In this work we outline a program for lattice QCD that would provide a first step toward understanding the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Lambda&#39;s, and Sigma&#39;s. From a theoretical standpoint, little is known about the hyperon-nucleon interaction, which is required input for systematic calculations of hypernuclear structure. Furthermore, the long-standing discrepancies in the P-wave amplitudes for nonleptonic hyperon decays remain to be understood, and their resolution is central to a better understanding of the weak decays of hypernuclei. We present a framework that utilizes Luscher&#39;s finite-volume techniques in lattice QCD to extract the scattering length and effective range for Lambda-N scattering in both QCD and partially-quenched QCD. The effective theory describing the nonleptonic decays of hyperons using isospin symmetry alone, appropriate for lattice calculations, is constructed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('nucl-th/0311027v1-abstract-full').style.display = 'none'; document.getElementById('nucl-th/0311027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.A747:55-74,2005 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10