CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;41 of 41 results for author: <span class="mathjax">Winter, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Winter%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Winter, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Winter%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Winter, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07885">arXiv:2301.07885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07885">pdf</a>, <a href="https://arxiv.org/format/2301.07885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon form factors and the pion-nucleon sigma term </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoferichter%2C+M">Martin Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mereghetti%2C+E">Emanuele Mereghetti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoon%2C+B">Boram Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07885v1-abstract-short" style="display: inline;"> This talk summarizes the progress made since Lattice 2021 in understanding and controlling the contributions of towers of multihadron excited states with mass gaps starting lower than of radial excitations, and in increasing our confidence in the extraction of ground state nucleon matrix elements. The most clear evidence for multihadron excited state contributions (ESC) is in axial/pseudoscalar fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07885v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07885v1-abstract-full" style="display: none;"> This talk summarizes the progress made since Lattice 2021 in understanding and controlling the contributions of towers of multihadron excited states with mass gaps starting lower than of radial excitations, and in increasing our confidence in the extraction of ground state nucleon matrix elements. The most clear evidence for multihadron excited state contributions (ESC) is in axial/pseudoscalar form factors that are required to satisfy the PCAC relation between them. The talk examines the broader question--which and how many of the theoretically allowed positive parity states $N(\textbf p)蟺(-\textbf p)$, $N(\textbf 0)蟺(\textbf 0)蟺(\textbf 0)$, $N(\textbf p)蟺(\textbf 0)$, $N(\textbf 0)蟺(\textbf p),\ \ldots$ make significant contributions to a given nucleon matrix element? New data for the axial, electric and magnetic form factors are presented. They continue to show trends observed in Ref[1]. The N${}^2$LO $蠂$PT analysis of the ESC to the pion-nucleon sigma term, $蟽_{蟺N}$, has been extended to include the $螖$ as an explicit degree of freedom [2]. The conclusion reached in Ref [3] that $N 蟺$ and $N 蟺蟺$ states each contribute about 10 MeV to $蟽_{蟺N}$, and the consistency between the lattice result with $N 蟺$ state included and the phenomenological estimate is not changed by this improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07885v1-abstract-full').style.display = 'none'; document.getElementById('2301.07885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures. Talk presented at the 39th International Symposium on Lattice Field Theory (LATTICE2022) 8-3 August, 2022 Bonn, Germany. arXiv admin note: text overlap with arXiv:2203.05647</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-22-33201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05647">arXiv:2203.05647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05647">pdf</a>, <a href="https://arxiv.org/format/2203.05647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Excited states and precision results for nucleon charges and form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoferichter%2C+M">Martin Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mereghetti%2C+E">Emanuele Mereghetti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoon%2C+B">Boram Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05647v1-abstract-short" style="display: inline;"> The exponentially falling signal-to-noise ratio in all nucleon correlation functions, and the presence of towers of multihadron excited states with relatively small mass gaps makes extraction of matrix elements of various operators within the ground state nucleon challenging. Theoretically, the allowed positive parity states with the smallest mass gaps are the $N(\bm p)蟺(-\bm p)$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05647v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05647v1-abstract-full" style="display: none;"> The exponentially falling signal-to-noise ratio in all nucleon correlation functions, and the presence of towers of multihadron excited states with relatively small mass gaps makes extraction of matrix elements of various operators within the ground state nucleon challenging. Theoretically, the allowed positive parity states with the smallest mass gaps are the $N(\bm p)蟺(-\bm p)$, $N(\bm 0)蟺(\bm 0)蟺(\bm 0)$, $N(\bm p)蟺(\bm 0)$, $N(\bm 0)蟺(\bm p),\ \ldots$, states. A priori, the contribution of these states arises at one loop in chiral perturbation theory ($蠂$PT), however, in many cases the contributions are enhanced. In this talk, I will review four such cases: the correlation functions from which the axial form factors, electric and magnetic form factors, the $螛$-term contribution to neutron electric dipole moment (nEDM), and the pion-nucleon sigma term are extracted. Including appropriate multihadron states in the analysis can lead to significantly different results compared to standard analyses with the mass gaps taken from fits to 2-point functions. The $蠂$PT case for $N 蟺$ states is the most clear in the axial/pseudoscalar form factors which need to satisfy the PCAC relation between them. Our analyses, supported by $蠂$PT, suggests similarly large effects in the calculations of the $螛$-term and the pion-nucleon sigma term that have significant phenomenological implications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05647v1-abstract-full').style.display = 'none'; document.getElementById('2203.05647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages 6 figures. Contribution to the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-21-32449 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)478 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00067">arXiv:2201.00067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.00067">pdf</a>, <a href="https://arxiv.org/format/2201.00067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon isovector momentum fraction, helicity and transversity moment using Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoon%2C+B">Boram Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00067v1-abstract-short" style="display: inline;"> We present our recent high precision calculations (Phys. Rev. D102 (2020) no.5, 054512 and JHEP 04 (2021) 044, JHEP 21 (2020) 004) of the first moment of nucleon isovector polarized, unpolarized and transversity distributions, i.e., momentum fraction, helicity and transversity moment, respectively. We use the standard method for the calculation of these moments (via matrix elements of twist two op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00067v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00067v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00067v1-abstract-full" style="display: none;"> We present our recent high precision calculations (Phys. Rev. D102 (2020) no.5, 054512 and JHEP 04 (2021) 044, JHEP 21 (2020) 004) of the first moment of nucleon isovector polarized, unpolarized and transversity distributions, i.e., momentum fraction, helicity and transversity moment, respectively. We use the standard method for the calculation of these moments (via matrix elements of twist two operators), and carry out a detailed analysis of the sources of systematic uncertainty, in particular of excited state contributions. Our calculations have been performed using two different lattice setups (Clover-on-HISQ and Clover-on-Clover), each with several ensembles. They give consistent results that are in agreement with global fit analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00067v1-abstract-full').style.display = 'none'; document.getElementById('2201.00067v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, Proceedings of the 38th International Symposium on Lattice Field Theory, LATTICE2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-21-32143, MSUHEP-21-036 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)513 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05599">arXiv:2103.05599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05599">pdf</a>, <a href="https://arxiv.org/format/2103.05599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.054505">10.1103/PhysRevD.105.054505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Nucleon Charges and Form Factors Using 2+1-flavor Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoon%2C+B">Boram Yoon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05599v3-abstract-short" style="display: inline;"> We present high statistics results for the isovector nucleon charges and form factors using seven ensembles of 2+1-flavor Wilson-clover fermions. The axial and pseudoscalar form factors obtained on each ensemble satisfy the PCAC relation once the lowest energy $N蟺$ excited state is included in the spectral decomposition of the correlation functions used for extracting the ground state matrix eleme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05599v3-abstract-full').style.display = 'inline'; document.getElementById('2103.05599v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05599v3-abstract-full" style="display: none;"> We present high statistics results for the isovector nucleon charges and form factors using seven ensembles of 2+1-flavor Wilson-clover fermions. The axial and pseudoscalar form factors obtained on each ensemble satisfy the PCAC relation once the lowest energy $N蟺$ excited state is included in the spectral decomposition of the correlation functions used for extracting the ground state matrix elements. Similarly, we find evidence that the $N蟺蟺$ excited state contributes to the correlation functions with the vector current, consistent with the vector meson dominance model. The resulting form factors are consistent with the Kelly parameterization of the experimental electric and magnetic data. Our final estimates for the isovector charges are $g_{A}^{u-d} = 1.31(06)(05)_{sys}$, $g_{S}^{u-d} = 1.06(10)(06)_{sys}$, and $g_{T}^{u-d} = 0.95(05)(02)_{sys}$, where the first error is the overall analysis uncertainty and the second is an additional combined systematic uncertainty. The form factors yield: (i) the axial charge radius squared, ${\langle r_A^2 \rangle}^{u-d}=0.428(53)(30)_{sys}\ {\rm fm}^2$, (ii) the induced pseudoscalar charge, $g_P^\ast=7.9(7)(9)_{sys}$, (iii) the pion-nucleon coupling $g_{蟺{\rm NN}} = 12.4(1.2)$, (iv) the electric charge radius squared, ${\langle r_E^2 \rangle}^{u-d} = 0.85(12)(19)_{sys} \ {\rm fm}^2$, (v) the magnetic charge radius squared, ${\langle r_M^2 \rangle}^{u-d} = 0.71(19)(23)_{\rm sys} \ {\rm fm}^2$, and (vi) the magnetic moment $渭^{u-d} = 4.15(22)(10)_{\rm sys}$. All our results are consistent with phenomenological/experimental values but with larger errors. Lastly, we present a Pad茅 parameterization of the axial, electric and magnetic form factors over the range $0.04&lt; Q^2 &lt;1$ GeV${}^2$ for phenomenological studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05599v3-abstract-full').style.display = 'none'; document.getElementById('2103.05599v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">84 pages, 39 figures, 24 tables. This is the version published by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-21-20526 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03805">arXiv:2102.03805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03805">pdf</a>, <a href="https://arxiv.org/format/2102.03805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.074511">10.1103/PhysRevD.103.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The axial charge of the triton from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03805v1-abstract-short" style="display: inline;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03805v1-abstract-full" style="display: none;"> The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from analysis of correlation functions computed on these ensembles, and the corresponding energies are extrapolated to infinite volume using finite-volume pionless effective field theory (FVEFT). It is found with high likelihood that there is a compact bound state with the quantum numbers of the triton at these quark masses. The axial current matrix elements are computed using background field techniques on one of the ensembles and FVEFT is again used to determine the axial charge of the proton and triton. A simple quark mass extrapolation of these results and earlier calculations at heavier quark masses leads to a value of the ratio of the triton to proton axial charges at the physical quark masses of $g_A^{^{3}{\rm H}}/g_A^p=0.91\substack{+0.07 \\ -0.09}$. This result is consistent with the ratio determined from experiment and prefers values less than unity (in which case the triton axial charge would be unmodified from that of the proton), thereby demonstrating that QCD can explain the modification of the axial charge of the triton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03805v1-abstract-full').style.display = 'none'; document.getElementById('2102.03805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5274, ICCUB-21-001, FERMILAB-PUB-21-026-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 074511 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12787">arXiv:2011.12787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.12787">pdf</a>, <a href="https://arxiv.org/format/2011.12787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2021)044">10.1007/JHEP04(2021)044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon Momentum Fraction, Helicity and Transversity from 2+1-flavor Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mondal%2C+S">Santanu Mondal</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yoon%2C+B">Boram Yoon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12787v1-abstract-short" style="display: inline;"> High statistics results for the isovector momentum fraction, $\langle x \rangle_{u-d}$, helicity moment, $\langle x \rangle_{螖u-螖d}$, and the transversity moment, $\langle x\rangle_{未u-未d}$, of the nucleon are presented using seven ensembles of gauge configurations generated by the JLab/W&amp;M/LANL/MIT collaborations using $2+1$-flavors of dynamical Wilson-clover quarks. Attention is given to underst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12787v1-abstract-full').style.display = 'inline'; document.getElementById('2011.12787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12787v1-abstract-full" style="display: none;"> High statistics results for the isovector momentum fraction, $\langle x \rangle_{u-d}$, helicity moment, $\langle x \rangle_{螖u-螖d}$, and the transversity moment, $\langle x\rangle_{未u-未d}$, of the nucleon are presented using seven ensembles of gauge configurations generated by the JLab/W&amp;M/LANL/MIT collaborations using $2+1$-flavors of dynamical Wilson-clover quarks. Attention is given to understanding and controlling the contributions of excited states. The final results are obtained using a simultaneous fit in the lattice spacing $a$, pion mass $M_蟺$ and the finite volume parameter $M_蟺L$ keeping leading order corrections. The data show no significant dependence on the lattice spacing and some evidence for finite-volume corrections. The main variation is with $M_蟺$, whose magnitude depends on the mass gap of the first excited state used in the analysis. Our final results, in the $\overline{\rm MS}$ scheme at 2 GeV, are $\langle x \rangle_{u-d} = 0.160(16)(20)$, $\langle x \rangle_{螖u-螖d} = 0.192(13)(20)$ and $\langle x \rangle_{未u-未d} = 0.215(17)(20)$, where the first error is the overall analysis uncertainty assuming excited-state contributions have been removed, and the second is an additional systematic uncertainty due to possible residual excited-state contributions. These results are consistent with other recent lattice calculations and phenomenological global fit values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12787v1-abstract-full').style.display = 'none'; document.getElementById('2011.12787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures, 12 tables. arXiv admin note: text overlap with arXiv:2005.13779</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-20-28586 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of High Energy Physics 2021:04 (2021) 44 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03052">arXiv:2010.03052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.03052">pdf</a>, <a href="https://arxiv.org/format/2010.03052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.034503">10.1103/PhysRevD.104.034503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Positive-Parity Baryon Spectrum and the Role of Hybrid Baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Khan%2C+T">Tanjib Khan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03052v2-abstract-short" style="display: inline;"> We calculate the low-lying spectra for the positive-parity $螖$ and $N$ at two pion masses of 358 and 278 MeV using an isotropic clover action with two degenerate light-quaark and one strange-quark flavors through the application of the generalized variational method within the distillation framework. The spectrum exhibits the general features observed in previous calculations using an anisotropic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03052v2-abstract-full').style.display = 'inline'; document.getElementById('2010.03052v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03052v2-abstract-full" style="display: none;"> We calculate the low-lying spectra for the positive-parity $螖$ and $N$ at two pion masses of 358 and 278 MeV using an isotropic clover action with two degenerate light-quaark and one strange-quark flavors through the application of the generalized variational method within the distillation framework. The spectrum exhibits the general features observed in previous calculations using an anisotropic clover lattice, with a counting of states at least as rich as the quark model. Furthermore, we identify states that are hybrid in nature, where gluonic degrees of freedom play a structural role, indicatinng that such states appear a feature of the excited baryon spectrum, irrespective of the lattice action, or the precise details of the smearing of the lattice interpolating operators used to identify such states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03052v2-abstract-full').style.display = 'none'; document.getElementById('2010.03052v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 034503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12357">arXiv:2009.12357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12357">pdf</a>, <a href="https://arxiv.org/format/2009.12357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054508">10.1103/PhysRevD.103.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Scattering and Effective Interactions of Two Baryons at $m_蟺\sim 450$ MeV from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12357v3-abstract-short" style="display: inline;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'inline'; document.getElementById('2009.12357v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12357v3-abstract-full" style="display: none;"> The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_蟺\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $危N$ ($I=3/2$), and $螢螢$ states, the spin-singlet $危危$ ($I=2$) and $螢危$ ($I=3/2$) states, and the spin-triplet $螢N$ ($I=0$) state. The $s$-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable, are extracted using L眉scher&#39;s formalism. While the results are consistent with most of the systems being bound at this pion mass, the interactions in the spin-triplet $危N$ and $螢螢$ channels are found to be repulsive and do not support bound states. Using results from previous studies at a larger pion mass, an extrapolation of the binding energies to the physical point is performed and is compared with experimental values and phenomenological predictions. The low-energy coefficients in pionless EFT relevant for two-baryon interactions, including those responsible for $SU(3)$ flavor-symmetry breaking, are constrained. The $SU(3)$ symmetry is observed to hold approximately at the chosen values of the quark masses, as well as the $SU(6)$ spin-flavor symmetry, predicted at large $N_c$. A remnant of an accidental $SU(16)$ symmetry found previously at a larger pion mass is further observed. The $SU(6)$-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon systems for which the low-energy scattering parameters could not be determined with LQCD directly in this study, and to constrain the coefficients of all leading $SU(3)$ flavor-symmetric interactions, demonstrating the predictive power of two-baryon EFTs matched to LQCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12357v3-abstract-full').style.display = 'none'; document.getElementById('2009.12357v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">69 pages, 31 figures and 25 tables; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICCUB-20-020, UMD-PP-020-7, MIT-CTP/5238, INT-PUB-20-038, FERMILAB-PUB-20-498-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05522">arXiv:2009.05522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05522">pdf</a>, <a href="https://arxiv.org/format/2009.05522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.202001">10.1103/PhysRevLett.126.202001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD constraints on the parton distribution functions of ${}^3\text{He}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">Marc Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Oare%2C+P">Patrick Oare</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05522v1-abstract-short" style="display: inline;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'inline'; document.getElementById('2009.05522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05522v1-abstract-full" style="display: none;"> The fraction of the longitudinal momentum of ${}^3\text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_蟺\sim 800$ MeV, extrapolated to the physical quark masses. This constraint is consistent with, and significantly more precise than, determinations from global nuclear parton distribution function fits. Including the lattice QCD determination of the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more precise extraction of the $u$ and $d$ parton distributions in ${}^3\text{He}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05522v1-abstract-full').style.display = 'none'; document.getElementById('2009.05522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5234, ICCUB-20-019, FERMILAB-PUB-20-466-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 202001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12130">arXiv:2003.12130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.12130">pdf</a>, <a href="https://arxiv.org/format/2003.12130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054504">10.1103/PhysRevD.103.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged multi-hadron systems in lattice QCD+QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">S. R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">W. Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Illa%2C+M">M. Illa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jafry%2C+M">M. Jafry</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">P. E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">M. L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12130v3-abstract-short" style="display: inline;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'inline'; document.getElementById('2003.12130v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12130v3-abstract-full" style="display: none;"> Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the quark masses to remove strong isospin breaking effects. A non-relativistic effective field theory, which perturbatively includes finite-volume Coulomb effects, is analyzed for systems of multiple charged hadrons and found to accurately reproduce the lattice QCD+QED results. QED effects on charged multi-hadron systems beyond Coulomb photon exchange are determined by comparing the two- and three-body interaction parameters extracted from the lattice QCD+QED results for charged and neutral multi-hadron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12130v3-abstract-full').style.display = 'none'; document.getElementById('2003.12130v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 29 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 20-28, FERMILAB-PUB-20-123-T, ICCUB-20-007, MIT-CTP/5183, NT@UW-20-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09991">arXiv:1810.09991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.09991">pdf</a>, <a href="https://arxiv.org/format/1810.09991">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.034506">10.1103/PhysRevD.99.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling Excited-State Contributions with Distillation in Lattice QCD Calculations of Nucleon Isovector Charges $g_S^{u-d}$, $g_A^{u-d}$, $g_T^{u-d}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Egerer%2C+C">Colin Egerer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09991v1-abstract-short" style="display: inline;"> We investigate the application of the distillation smearing approach, and the use of the variational method with an extended basis of operators facilitated by this approach, on the calculation of the nucleon isovector charges $g_S^{u-d}$, $g_A^{u-d}$, and $g_T^{u-d}$. We find that the better sampling of the lattice enabled through the use of distillation yields a substantial reduction in the stati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09991v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09991v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09991v1-abstract-full" style="display: none;"> We investigate the application of the distillation smearing approach, and the use of the variational method with an extended basis of operators facilitated by this approach, on the calculation of the nucleon isovector charges $g_S^{u-d}$, $g_A^{u-d}$, and $g_T^{u-d}$. We find that the better sampling of the lattice enabled through the use of distillation yields a substantial reduction in the statistical uncertainty in comparison with the use of alternative smearing methods, and furthermore, appears to offer better control over the contribution of excited-states compared to use of a single, local interpolating operator. The additional benefit arising through the use of the variational method in the distillation approach is less dramatic, but nevertheless significant given that it requires no additional Dirac inversions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09991v1-abstract-full').style.display = 'none'; document.getElementById('1810.09991v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-THY-18-2857 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 034506 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03221">arXiv:1712.03221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03221">pdf</a>, <a href="https://arxiv.org/format/1712.03221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.152002">10.1103/PhysRevLett.120.152002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear modification of scalar, axial and tensor charges from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A+S">Arjun S. Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03221v2-abstract-short" style="display: inline;"> Complete flavour decompositions of the scalar, axial and tensor charges of the proton, deuteron, diproton and $^3$He at SU(3)-symmetric values of the quark masses corresponding to a pion mass $m_蟺\sim806$ MeV are determined using lattice QCD. At the physical quark masses, the scalar charges constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03221v2-abstract-full').style.display = 'inline'; document.getElementById('1712.03221v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03221v2-abstract-full" style="display: none;"> Complete flavour decompositions of the scalar, axial and tensor charges of the proton, deuteron, diproton and $^3$He at SU(3)-symmetric values of the quark masses corresponding to a pion mass $m_蟺\sim806$ MeV are determined using lattice QCD. At the physical quark masses, the scalar charges constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor charges of nuclei constrain their spin content, integrated transversity and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. Significant nuclear modifications are found, with particularly large, O(10%), effects in the scalar charges. Typically, these nuclear effects reduce the effective charge of the nucleon (quenching), although in some cases an enhancement is not excluded. Given the size of the nuclear modifications of the scalar charges resolved here, contributions from correlated multi-nucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03221v2-abstract-full').style.display = 'none'; document.getElementById('1712.03221v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-054, MIT-CTP/4967, JLAB-THY-17-2607, UMD-PP-017-35 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 152002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00395">arXiv:1709.00395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.00395">pdf</a>, <a href="https://arxiv.org/format/1709.00395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.094512">10.1103/PhysRevD.96.094512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First lattice QCD study of the gluonic structure of light nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gambhir%2C+A+S">Arjun S. Gambhir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00395v2-abstract-short" style="display: inline;"> The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic number $A=3$ at quark masses corresponding to pion masses of $m_蟺\sim 450$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00395v2-abstract-full').style.display = 'inline'; document.getElementById('1709.00395v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00395v2-abstract-full" style="display: none;"> The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic number $A=3$ at quark masses corresponding to pion masses of $m_蟺\sim 450$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $\sim 10$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $b_1$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $m_蟺\sim 806$ MeV. This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00395v2-abstract-full').style.display = 'none'; document.getElementById('1709.00395v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-035, MIT-CTP/4932, JLAB-THY-17-2540 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 094512 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.06550">arXiv:1706.06550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.06550">pdf</a>, <a href="https://arxiv.org/format/1706.06550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.114510">10.1103/PhysRevD.96.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baryon-Baryon Interactions and Spin-Flavor Symmetry from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.06550v2-abstract-short" style="display: inline;"> Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of $\approx 806~\tt{MeV}$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06550v2-abstract-full').style.display = 'inline'; document.getElementById('1706.06550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.06550v2-abstract-full" style="display: none;"> Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of $\approx 806~\tt{MeV}$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L眉scher&#39;s formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$N_c$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $NN~({^1}S_0)$, $NN~({^3}S_1)$ and $\frac{1}{\sqrt{2}}(螢^0n+螢^-p)~({^3}S_1)$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $危^+ p~({^3}S_1)$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.06550v2-abstract-full').style.display = 'none'; document.getElementById('1706.06550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 21 figures, 14 tables. v2: Minor wording improvements and updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-017, MIT-CTP-4912, NSF-ITP-17-076 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 114510 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.09239">arXiv:1705.09239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.09239">pdf</a>, <a href="https://arxiv.org/format/1705.09239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;Are two nucleons bound in lattice QCD for heavy quark masses? - Sanity check with L眉scher&#39;s finite volume formula -&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Parre%C3%B1o%2C+A">Assumpta Parre帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.09239v3-abstract-short" style="display: inline;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'inline'; document.getElementById('1705.09239v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.09239v3-abstract-full" style="display: none;"> In this comment, we address a number of erroneous discussions and conclusions presented in a recent preprint by the HALQCD collaboration, arXiv:1703.07210. In particular, we demonstrate that lattice QCD determinations of bound states at quark masses corresponding to a pion mass of $m_蟺= 806$ MeV are robust, and that the phases shifts extracted by the NPLQCD collaboration for these systems pass all of the &#39;sanity checks&#39; introduced in arXiv:1703.07210. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09239v3-abstract-full').style.display = 'none'; document.getElementById('1705.09239v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Clarifications added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-016, NT@UW-17-10, MIT-CTP-4909 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02929">arXiv:1702.02929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.02929">pdf</a>, <a href="https://arxiv.org/format/1702.02929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.054505">10.1103/PhysRevD.96.054505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-$尾$ Decay Matrix Elements from Lattice Quantum Chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02929v1-abstract-short" style="display: inline;"> A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element relevant to the $nn\to ppee\overline谓_e\overline谓_e$ transition is described in detail, expanding on the results presented in Ref. [1]. This matrix element, which involves two insertions of the weak axial current, is an important input for phenomenological determinations of double-$尾$ decay rates of nuclei. From this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02929v1-abstract-full').style.display = 'inline'; document.getElementById('1702.02929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02929v1-abstract-full" style="display: none;"> A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element relevant to the $nn\to ppee\overline谓_e\overline谓_e$ transition is described in detail, expanding on the results presented in Ref. [1]. This matrix element, which involves two insertions of the weak axial current, is an important input for phenomenological determinations of double-$尾$ decay rates of nuclei. From this exploratory study, performed using unphysical values of the quark masses, the long-distance deuteron-pole contribution to the matrix element is separated from shorter-distance hadronic contributions. This polarizability, which is only accessible in double-weak processes, cannot be constrained from single-$尾$ decay of nuclei, and is found to be smaller than the long-distance contributions in this calculation, but non-negligible. In this work, technical aspects of the LQCD calculations, and of the relevant formalism in the pionless effective field theory, are described. Further calculations of the isotensor axial polarizability, in particular near and at the physical values of the light-quark masses, are required for precise determinations of both two-neutrino and neutrinoless double-$尾$ decay rates in heavy nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02929v1-abstract-full').style.display = 'none'; document.getElementById('1702.02929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-17-002, MIT-CTP-4871 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 054505 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.03456">arXiv:1701.03456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.03456">pdf</a>, <a href="https://arxiv.org/format/1701.03456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.062003">10.1103/PhysRevLett.119.062003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The isotensor axial polarisability and lattice QCD input for nuclear double-$尾$ decay phenomenology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.03456v2-abstract-short" style="display: inline;"> The potential importance of short-distance nuclear effects in double-$尾$ decay is assessed using a lattice QCD calculation of the $nn\rightarrow pp$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the sing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.03456v2-abstract-full').style.display = 'inline'; document.getElementById('1701.03456v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.03456v2-abstract-full" style="display: none;"> The potential importance of short-distance nuclear effects in double-$尾$ decay is assessed using a lattice QCD calculation of the $nn\rightarrow pp$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-$尾$ decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-$尾$ decay searches. The prospects of constraining the isotensor axial polarisabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.03456v2-abstract-full').style.display = 'none'; document.getElementById('1701.03456v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-16-056, MIT-CTP-4867 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 062003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.07452">arXiv:1611.07452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.07452">pdf</a>, <a href="https://arxiv.org/format/1611.07452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.074508">10.1103/PhysRevD.95.074508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isovector charges of the nucleon from 2+1-flavor QCD with clover fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Yoon%2C+B">Boram Yoon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.07452v3-abstract-short" style="display: inline;"> We present high-statistics estimates of the isovector charges of the nucleon from four 2+1-flavor ensembles generated using Wilson-clover fermions with stout smearing and tree-level tadpole improved Symanzik gauge action at lattice spacings $a=0.114$ and $0.080$ fm and with $M_蟺\approx 315$ and 200 MeV. The truncated solver method with bias correction and the coherent source sequential propagator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07452v3-abstract-full').style.display = 'inline'; document.getElementById('1611.07452v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.07452v3-abstract-full" style="display: none;"> We present high-statistics estimates of the isovector charges of the nucleon from four 2+1-flavor ensembles generated using Wilson-clover fermions with stout smearing and tree-level tadpole improved Symanzik gauge action at lattice spacings $a=0.114$ and $0.080$ fm and with $M_蟺\approx 315$ and 200 MeV. The truncated solver method with bias correction and the coherent source sequential propagator construction are used to cost-effectively achieve $O(10^5)$ measurements on each ensemble. Using these data, the analysis of two-point correlation functions is extended to include four states in the fits and of three-point functions to three states. Control over excited-state contamination in the calculation of the nucleon mass, the mass gaps between excited states, and in the matrix elements is demonstrated by the consistency of estimates using this multistate analysis of the spectral decomposition of the correlation functions and from simulations of the three-point functions at multiple values of the source-sink separation. The results for all three charges, $g_A$, $g_S$ and $g_T$, are in good agreement with calculations done using the clover-on-HISQ lattice formulation with similar values of the lattice parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07452v3-abstract-full').style.display = 'none'; document.getElementById('1611.07452v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages 12 figures. Revised the calculation of the lattice spacing and updated all the results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-16-20523 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 074508 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00344">arXiv:1611.00344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00344">pdf</a>, <a href="https://arxiv.org/format/1611.00344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Axial-Current Matrix Elements in Light Nuclei from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00344v1-abstract-short" style="display: inline;"> I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00344v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00344v1-abstract-full" style="display: none;"> I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $尾尾$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00344v1-abstract-full').style.display = 'none'; document.getElementById('1611.00344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference Proceedings from the 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-16-039 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04545">arXiv:1610.04545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04545">pdf</a>, <a href="https://arxiv.org/format/1610.04545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.062002">10.1103/PhysRevLett.119.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton-proton fusion and tritium $尾$-decay from lattice quantum chromodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Savage%2C+M+J">Martin J. Savage</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shanahan%2C+P+E">Phiala E. Shanahan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tiburzi%2C+B+C">Brian C. Tiburzi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Beane%2C+S+R">Silas R. Beane</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+E">Emmanuel Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04545v2-abstract-short" style="display: inline;"> The nuclear matrix element determining the $pp\to d e^+ 谓$ fusion cross section and the Gamow-Teller matrix element contributing to tritium $尾$-decay are calculated with lattice Quantum Chromodynamics (QCD) for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3)-flavor-symmetric value of the quark masses, corresponding to a pion m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04545v2-abstract-full').style.display = 'inline'; document.getElementById('1610.04545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04545v2-abstract-full" style="display: none;"> The nuclear matrix element determining the $pp\to d e^+ 谓$ fusion cross section and the Gamow-Teller matrix element contributing to tritium $尾$-decay are calculated with lattice Quantum Chromodynamics (QCD) for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3)-flavor-symmetric value of the quark masses, corresponding to a pion mass of $m_蟺$ ~ 806 MeV. The Gamow-Teller matrix element in tritium is found to be 0.979(03)(10) at these quark masses, which is within $2蟽$ of the experimental value. Assuming that the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange currents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the calculated $pp\to d e^+ 谓$ transition matrix element leads to a fusion cross section at the physical quark masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial counterterm of pionless effective field theory is determined to be $L_{1,A}=3.9(0.1)(1.0)(0.3)(0.9)\ {\rm fm}^3$ at a renormalization scale set by the physical pion mass, also in agreement with the accepted phenomenological range. This work concretely demonstrates that weak transition amplitudes in few-nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom and opens the way for subsequent investigations of many important quantities in nuclear physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04545v2-abstract-full').style.display = 'none'; document.getElementById('1610.04545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version with supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-16-033, JLAB-THY-16-2362, MIT-CTP-4844, NT@UW-16-12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 062002 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.07737">arXiv:1602.07737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.07737">pdf</a>, <a href="https://arxiv.org/format/1602.07737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.114506">10.1103/PhysRevD.93.114506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling Excited-State Contamination in Nucleon Matrix Elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Yoon%2C+B">Boram Yoon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B谩lint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Negele%2C+J">John Negele</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinsky%2C+A">Andrew Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D">David Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.07737v2-abstract-short" style="display: inline;"> We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_蟺=312$ MeV. The statistical pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.07737v2-abstract-full').style.display = 'inline'; document.getElementById('1602.07737v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.07737v2-abstract-full" style="display: none;"> We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_蟺=312$ MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\rm sep} \to \infty $ estimates is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.07737v2-abstract-full').style.display = 'none'; document.getElementById('1602.07737v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-16-20524 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 114506 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.5925">arXiv:1408.5925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.5925">pdf</a>, <a href="https://arxiv.org/format/1408.5925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/IPDPS.2014.112">10.1109/IPDPS.2014.112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Framework for Lattice QCD Calculations on GPUs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F+T">F. T. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jo%C3%B3%2C+B">B. Jo贸</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.5925v1-abstract-short" style="display: inline;"> Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5925v1-abstract-full').style.display = 'inline'; document.getElementById('1408.5925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.5925v1-abstract-full" style="display: none;"> Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl&#39;s law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5925v1-abstract-full').style.display = 'none'; document.getElementById('1408.5925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, as published in the proceedings of IPDPS &#39;14</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.0785">arXiv:1212.0785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.0785">pdf</a>, <a href="https://arxiv.org/format/1212.0785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Gauge Field Generation on Large-Scale GPU-Enabled Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.0785v2-abstract-short" style="display: inline;"> Over the past years GPUs have been successfully applied to the task of inverting the fermion matrix in lattice QCD calculations. Even strong scaling to capability-level supercomputers, corresponding to O(100) GPUs or more has been achieved. However strong scaling a whole gauge field generation algorithm to this regim requires significantly more functionality than just having the matrix inverter ut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0785v2-abstract-full').style.display = 'inline'; document.getElementById('1212.0785v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.0785v2-abstract-full" style="display: none;"> Over the past years GPUs have been successfully applied to the task of inverting the fermion matrix in lattice QCD calculations. Even strong scaling to capability-level supercomputers, corresponding to O(100) GPUs or more has been achieved. However strong scaling a whole gauge field generation algorithm to this regim requires significantly more functionality than just having the matrix inverter utilizing the GPUs and has not yet been accomplished. This contribution extends QDP-JIT, the migration of SciDAC QDP++ to GPU-enabled parallel systems, to help to strong scale the whole Hybrid Monte-Carlo to this regime. Initial results are shown for gauge field generation with Chroma simulating pure Wilson fermions on OLCF TitanDev. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0785v2-abstract-full').style.display = 'none'; document.getElementById('1212.0785v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The 30th International Symposium on Lattice Field Theory, June 24-29, 2012, Cairns, Australia (Acknowledgment and Citation added)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(Lattice 2012)185 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.6410">arXiv:1205.6410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.6410">pdf</a>, <a href="https://arxiv.org/ps/1205.6410">ps</a>, <a href="https://arxiv.org/format/1205.6410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2012.07.004">10.1016/j.physletb.2012.07.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lattice Study of the Glue in the Nucleon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Millo%2C+R">R. Millo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.6410v2-abstract-short" style="display: inline;"> By introducing an additional operator into the action and using the Feynman-Hellmann theorem we describe a method to determine both the quark line connected and disconnected terms of matrix elements. As an illustration of the method we calculate the gluon contribution (chromo-electric and chromo-magnetic components) to the nucleon mass. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.6410v2-abstract-full" style="display: none;"> By introducing an additional operator into the action and using the Feynman-Hellmann theorem we describe a method to determine both the quark line connected and disconnected terms of matrix elements. As an illustration of the method we calculate the gluon contribution (chromo-electric and chromo-magnetic components) to the nucleon mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.6410v2-abstract-full').style.display = 'none'; document.getElementById('1205.6410v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures, typos corrected, published version (Phys. Lett. B)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-12-24/T791; DESY 12-079; Edinburgh 2012/06; Liverpool LTH 945 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.3492">arXiv:1204.3492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1204.3492">pdf</a>, <a href="https://arxiv.org/format/1204.3492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2012.06.041">10.1016/j.physletb.2012.06.041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Symmetry Breaking in Spin Dependent Parton Distributions and the Bjorken Sum Rule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Clo%C3%ABt%2C+I+C">I. C. Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Londergan%2C+J+T">J. T. Londergan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Thomas%2C+A+W">A. W. Thomas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.3492v1-abstract-short" style="display: inline;"> We present the first determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the first two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N_f = 2 + 1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3492v1-abstract-full').style.display = 'inline'; document.getElementById('1204.3492v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.3492v1-abstract-full" style="display: none;"> We present the first determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the first two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N_f = 2 + 1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.3492v1-abstract-full').style.display = 'none'; document.getElementById('1204.3492v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, 3 tables. arXiv admin note: text overlap with arXiv:1012.0215</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-12-11/T778; DESY 12-052; Edinburgh 2012/02; LTH 942 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.1883">arXiv:1112.1883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.1883">pdf</a>, <a href="https://arxiv.org/ps/1112.1883">ps</a>, <a href="https://arxiv.org/format/1112.1883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon sigma terms for 2+1 quark flavours </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.1883v1-abstract-short" style="display: inline;"> QCD lattice simulations yield hadron masses as functions of the quark masses. From the gradients of the hadron masses the sigma terms can then be determined. We consider here dynamical 2+1 flavour simulations, in which we start from a point of the flavour symmetric line and then keep the singlet or average quark mass fixed as we approach the physical point. This leads to highly constrained fits fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1883v1-abstract-full').style.display = 'inline'; document.getElementById('1112.1883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.1883v1-abstract-full" style="display: none;"> QCD lattice simulations yield hadron masses as functions of the quark masses. From the gradients of the hadron masses the sigma terms can then be determined. We consider here dynamical 2+1 flavour simulations, in which we start from a point of the flavour symmetric line and then keep the singlet or average quark mass fixed as we approach the physical point. This leads to highly constrained fits for hadron masses in a multiplet. The gradient of this path for a hadron mass then gives a relation between the light and strange sigma terms. A further relation can be found from the change in the singlet quark mass along the flavour symmetric line. This enables light and strange sigma terms to be estimated for the baryon octet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.1883v1-abstract-full').style.display = 'none'; document.getElementById('1112.1883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Talk presented at the XXIX International Symposium on Lattice Field Theory (Lattice 2011), July 10-16, 2011, Squaw Valley, Lake Tahoe, California, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 11-169; Edinburgh 2011/34; Liverpool LTH 931 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.5596">arXiv:1111.5596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.5596">pdf</a>, <a href="https://arxiv.org/format/1111.5596">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Accelerating QDP++/Chroma on GPUs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.5596v1-abstract-short" style="display: inline;"> Extensions to the C++ implementation of the QCD Data Parallel Interface are provided enabling acceleration of expression evaluation on NVIDIA GPUs. Single expressions are off-loaded to the device memory and execution domain leveraging the Portable Expression Template Engine and using Just-in-Time compilation techniques. Memory management is automated by a software implementation of a cache control&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.5596v1-abstract-full').style.display = 'inline'; document.getElementById('1111.5596v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.5596v1-abstract-full" style="display: none;"> Extensions to the C++ implementation of the QCD Data Parallel Interface are provided enabling acceleration of expression evaluation on NVIDIA GPUs. Single expressions are off-loaded to the device memory and execution domain leveraging the Portable Expression Template Engine and using Just-in-Time compilation techniques. Memory management is automated by a software implementation of a cache controlling the GPU&#39;s memory. Interoperability with existing Krylov space solvers is demonstrated and special attention is paid on &#39;Chroma readiness&#39;. Non-kernel routines in lattice QCD calculations typically not subject of hand-tuned optimisations are accelerated which can reduce the effects otherwise suffered from Amdahl&#39;s Law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.5596v1-abstract-full').style.display = 'none'; document.getElementById('1111.5596v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; Talk given at the XXIX International Symposium on Lattice Field Theory - Lattice 2011, Lake Tahoe, California, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Edinburgh 2011/35 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.4053">arXiv:1111.4053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.4053">pdf</a>, <a href="https://arxiv.org/ps/1111.4053">ps</a>, <a href="https://arxiv.org/format/1111.4053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Disconnected contributions to D-meson semi-leptonic decay form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G+S">G. S. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">I. Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=P%C3%A9rez-Rubio%2C+P">P. P茅rez-Rubio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.4053v1-abstract-short" style="display: inline;"> We calculate the disconnected contribution to the form factor for the semileptonic decay of a D-meson into a final state, containing a flavor singlet eta meson. We use QCDSF n_f=2+1 configurations at the flavor symmetric point m_u=m_d=m_s and the partially quenched approximation for the relativistic charm quark. Several acceleration and noise reduction techniques for the stochastic estimation of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4053v1-abstract-full').style.display = 'inline'; document.getElementById('1111.4053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.4053v1-abstract-full" style="display: none;"> We calculate the disconnected contribution to the form factor for the semileptonic decay of a D-meson into a final state, containing a flavor singlet eta meson. We use QCDSF n_f=2+1 configurations at the flavor symmetric point m_u=m_d=m_s and the partially quenched approximation for the relativistic charm quark. Several acceleration and noise reduction techniques for the stochastic estimation of the disconnected loop are tested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4053v1-abstract-full').style.display = 'none'; document.getElementById('1111.4053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, talk presented at the XXIX International Symposium on Lattice Field Theory (Lattice 2011), July 10-16, 2011, Squaw Valley, Lake Tahoe, California, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.4971">arXiv:1110.4971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.4971">pdf</a>, <a href="https://arxiv.org/ps/1110.4971">ps</a>, <a href="https://arxiv.org/format/1110.4971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.034506">10.1103/PhysRevD.85.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperon sigma terms for 2+1 quark flavours </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.4971v2-abstract-short" style="display: inline;"> QCD lattice simulations determine hadron masses as functions of the quark masses. From the gradients of these masses and using the Feynman-Hellmann theorem the hadron sigma terms can then be determined. We use here a novel approach of keeping the singlet quark mass constant in our simulations which upon using an SU(3) flavour symmetry breaking expansion gives highly constrained (i.e. few parameter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4971v2-abstract-full').style.display = 'inline'; document.getElementById('1110.4971v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.4971v2-abstract-full" style="display: none;"> QCD lattice simulations determine hadron masses as functions of the quark masses. From the gradients of these masses and using the Feynman-Hellmann theorem the hadron sigma terms can then be determined. We use here a novel approach of keeping the singlet quark mass constant in our simulations which upon using an SU(3) flavour symmetry breaking expansion gives highly constrained (i.e. few parameter) fits for hadron masses in a multiplet. This is a highly advantageous procedure for determining the hadron mass gradient as it avoids the use of delicate chiral perturbation theory. We illustrate the procedure here by estimating the light and strange sigma terms for the baryon octet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4971v2-abstract-full').style.display = 'none'; document.getElementById('1110.4971v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 11-168, Edinburgh 2011/27, Liverpool LTH 922 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D85:034506,2012 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.6147">arXiv:1108.6147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.6147">pdf</a>, <a href="https://arxiv.org/format/1108.6147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Spectra of heavy-light and heavy-heavy mesons containing charm quarks, including higher spin states for $N_f=2+ 1$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bali%2C+G">G. Bali</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Durr%2C+S">S. Durr</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoelbling%2C+C">C. Hoelbling</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Katz%2C+S+D">S. D. Katz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kanamori%2C+I">I. Kanamori</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kurth%2C+T">T. Kurth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McNeile%2C+C">C. McNeile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perez-Rubio%2C+P">P. Perez-Rubio</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P">P. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schafer%2C+A">A. Schafer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szabo%2C+G+S+K+K">G. Schierholz K. K. Szabo</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J">J. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.6147v1-abstract-short" style="display: inline;"> We study the spectra of heavy-light and heavy-heavy mesons containing charm quarks, including higher spin states. We use two sets of $N_f = 2 + 1$ gauge configurations, one set from QCDSF using the SLiNC action, and the other configurations from the Budapest-Marseille-Wuppertal collaboration, using the HEX smeared clover action. To extract information about the excited states, we choose a suitable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.6147v1-abstract-full').style.display = 'inline'; document.getElementById('1108.6147v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.6147v1-abstract-full" style="display: none;"> We study the spectra of heavy-light and heavy-heavy mesons containing charm quarks, including higher spin states. We use two sets of $N_f = 2 + 1$ gauge configurations, one set from QCDSF using the SLiNC action, and the other configurations from the Budapest-Marseille-Wuppertal collaboration, using the HEX smeared clover action. To extract information about the excited states, we choose a suitable basis of operators to implement the variational method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.6147v1-abstract-full').style.display = 'none'; document.getElementById('1108.6147v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, Talk presented at the XXIX International Symposium on Lattice Field Theory, Lattice2011, July 11-16, 2011, The Village at Squaw Valley, California, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.3580">arXiv:1106.3580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.3580">pdf</a>, <a href="https://arxiv.org/format/1106.3580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.074507">10.1103/PhysRevD.84.074507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dirac and Pauli form factors from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%B6ckeler%2C+M">M. G枚ckeler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%A4gler%2C+P">Ph. H盲gler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nobile%2C+A">A. Nobile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schroers%2C+W">W. Schroers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.3580v1-abstract-short" style="display: inline;"> We present a comprehensive analysis of the electromagnetic form factors of the nucleon from a lattice simulation with two flavors of dynamical O(a)-improved Wilson fermions. A key feature of our calculation is that we make use of an extensive ensemble of lattice gauge field configurations with four different lattice spacings, multiple volumes, and pion masses down to m_蟺~ 180 MeV. We find that by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.3580v1-abstract-full').style.display = 'inline'; document.getElementById('1106.3580v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.3580v1-abstract-full" style="display: none;"> We present a comprehensive analysis of the electromagnetic form factors of the nucleon from a lattice simulation with two flavors of dynamical O(a)-improved Wilson fermions. A key feature of our calculation is that we make use of an extensive ensemble of lattice gauge field configurations with four different lattice spacings, multiple volumes, and pion masses down to m_蟺~ 180 MeV. We find that by employing Kelly-inspired parametrizations for the Q^2-dependence of the form factors, we are able to obtain stable fits over our complete ensemble. Dirac and Pauli radii and the anomalous magnetic moments of the nucleon are extracted and results at light quark masses provide evidence for chiral non-analytic behavior in these fundamental observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.3580v1-abstract-full').style.display = 'none'; document.getElementById('1106.3580v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 62 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 11-102, Edinburgh 2011/18, MKPH-T-11-13 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.2279">arXiv:1105.2279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.2279">pdf</a>, <a href="https://arxiv.org/format/1105.2279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerating QDP++ using GPUs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">Frank Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.2279v1-abstract-short" style="display: inline;"> Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2279v1-abstract-full').style.display = 'inline'; document.getElementById('1105.2279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.2279v1-abstract-full" style="display: none;"> Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2279v1-abstract-full').style.display = 'none'; document.getElementById('1105.2279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Edinburgh 2011/17 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.1363">arXiv:1103.1363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.1363">pdf</a>, <a href="https://arxiv.org/format/1103.1363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD Applications on QPACE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nobile%2C+A">A. Nobile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simma%2C+H">H. Simma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">T. Streuer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wettig%2C+T">T. Wettig</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.1363v1-abstract-short" style="display: inline;"> QPACE is a novel massively parallel architecture optimized for lattice QCD simulations. A single QPACE node is based on the IBM PowerXCell 8i processor. The nodes are interconnected by a custom 3-dimensional torus network implemented on an FPGA. The compute power of the processor is provided by 8 Synergistic Processing Units. Making efficient use of these accelerator cores in scientific applicatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.1363v1-abstract-full').style.display = 'inline'; document.getElementById('1103.1363v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.1363v1-abstract-full" style="display: none;"> QPACE is a novel massively parallel architecture optimized for lattice QCD simulations. A single QPACE node is based on the IBM PowerXCell 8i processor. The nodes are interconnected by a custom 3-dimensional torus network implemented on an FPGA. The compute power of the processor is provided by 8 Synergistic Processing Units. Making efficient use of these accelerator cores in scientific applications is challenging. In this paper we describe our strategies for porting applications to the QPACE architecture and report on performance numbers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.1363v1-abstract-full').style.display = 'none'; document.getElementById('1103.1363v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, accepted for presentation at ICCS 2011 (Tsukuba)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.5300">arXiv:1102.5300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.5300">pdf</a>, <a href="https://arxiv.org/ps/1102.5300">ps</a>, <a href="https://arxiv.org/format/1102.5300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.054509">10.1103/PhysRevD.84.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flavour blindness and patterns of flavour symmetry breaking in lattice simulations of up, down and strange quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bietenholz%2C+W">W. Bietenholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bornyakov%2C+V">V. Bornyakov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%B6ckeler%2C+M">M. G枚ckeler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lockhart%2C+W+G">W. G. Lockhart</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">T. Streuer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.5300v2-abstract-short" style="display: inline;"> QCD lattice simulations with 2+1 flavours (when two quark flavours are mass degenerate) typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass and then the up-down quark mass to its respective physical value. Here we discuss an alternative method of tuning the quark masses, in which the singlet quark mass is kept fixed. Using group theory the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.5300v2-abstract-full').style.display = 'inline'; document.getElementById('1102.5300v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.5300v2-abstract-full" style="display: none;"> QCD lattice simulations with 2+1 flavours (when two quark flavours are mass degenerate) typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass and then the up-down quark mass to its respective physical value. Here we discuss an alternative method of tuning the quark masses, in which the singlet quark mass is kept fixed. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, first for the general 1+1+1 flavour case and then for the 2+1 flavour case. This ensures that the kaon always has mass less than the physical kaon mass. This method of tuning quark masses then enables highly constrained polynomial fits to be used in the extrapolation of hadron masses to their physical values. Numerical results for the 2+1 flavour case confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. Singlet quantities remain constant which allows the lattice spacing to be determined from hadron masses (without necessarily being at the physical point). Furthermore an extension of this programme to include partially quenched results is given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.5300v2-abstract-full').style.display = 'none'; document.getElementById('1102.5300v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">89 pages, 25 figures, 30 tables, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 11-030, Edinburgh 2011/09, LTH 909 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.3407">arXiv:1102.3407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.3407">pdf</a>, <a href="https://arxiv.org/format/1102.3407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Baryon Axial Charges and Momentum Fractions with N_f=2+1 Dynamical Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%B6ckeler%2C+M">M. G枚ckeler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%A4gler%2C+P">Ph. H盲gler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.3407v1-abstract-short" style="display: inline;"> We report on recent results of the QCDSF/UKQCD Collaboration on investigations of baryon structure using configurations generated with N_f=2+1 dynamical flavours of O(a) improved Wilson fermions. With the strange quark mass as an additional dynamical degree of freedom in our simulations we avoid the need for a partially quenched approximation when investigating the properties of particles containi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.3407v1-abstract-full').style.display = 'inline'; document.getElementById('1102.3407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.3407v1-abstract-full" style="display: none;"> We report on recent results of the QCDSF/UKQCD Collaboration on investigations of baryon structure using configurations generated with N_f=2+1 dynamical flavours of O(a) improved Wilson fermions. With the strange quark mass as an additional dynamical degree of freedom in our simulations we avoid the need for a partially quenched approximation when investigating the properties of particles containing a strange quark, e.g. the hyperons. In particular, we will focus on the nucleon and hyperon axial charges and quark momentum fractions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.3407v1-abstract-full').style.display = 'none'; document.getElementById('1102.3407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, Talk presented at the XXVIII International Symposium on Lattice Filed Theory, Lattice2010, June 14-19,2010, Villasimius, Sardinia Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 11-024, Edinburgh 2010/32, LTH 908 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:163,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.2806">arXiv:1101.2806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.2806">pdf</a>, <a href="https://arxiv.org/format/1101.2806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hyperon Form Factors from N_f=2+1 QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%B6ckeler%2C+M">M. G枚ckeler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%A4gler%2C+P">Ph. H盲gler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.2806v1-abstract-short" style="display: inline;"> We present results from the QCDSF/UKQCD collaboration for the electromagnetic and semi-leptonic form factors for the hyperons. The simulations are performed on our new ensembles generated with 2+1 flavours of dynamical O(a)-improved Wilson fermions. A unique feature of these configurations is that the quark masses are tuned so that the singlet quark mass is held fixed at its physical value. We use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.2806v1-abstract-full').style.display = 'inline'; document.getElementById('1101.2806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.2806v1-abstract-full" style="display: none;"> We present results from the QCDSF/UKQCD collaboration for the electromagnetic and semi-leptonic form factors for the hyperons. The simulations are performed on our new ensembles generated with 2+1 flavours of dynamical O(a)-improved Wilson fermions. A unique feature of these configurations is that the quark masses are tuned so that the singlet quark mass is held fixed at its physical value. We use 5 such choices of the individual quark masses on 24^3x48 lattices with a lattice spacing of about 0.078 fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.2806v1-abstract-full').style.display = 'none'; document.getElementById('1101.2806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, 1 table. Talk presented at The XXVIII International Symposium on Lattice Field Theory, Villasimius, Italy, 14-19 June 2010</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 10-203, Edinburgh 2010/31, LTH 890 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS Lattice2010:165,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.2326">arXiv:1101.2326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.2326">pdf</a>, <a href="https://arxiv.org/ps/1101.2326">ps</a>, <a href="https://arxiv.org/format/1101.2326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon form factors and structure functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Collins%2C+S">S. Collins</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%B6ckeler%2C+M">M. G枚ckeler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%A4gler%2C+P">Ph. H盲gler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hemmert%2C+T">T. Hemmert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nobile%2C+A">A. Nobile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sternbeck%2C+A">A. Sternbeck</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.2326v1-abstract-short" style="display: inline;"> We give an update on our ongoing efforts to compute the nucleon&#39;s form factors and moments of structure functions using Nf=2 flavours of non-perturbatively improved Clover fermions. We focus on new results obtained on gauge configurations where the pseudo-scalar meson mass is in the range of 170-270 MeV. We will compare our results with various estimates obtained from chiral effective theories sin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.2326v1-abstract-full').style.display = 'inline'; document.getElementById('1101.2326v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.2326v1-abstract-full" style="display: none;"> We give an update on our ongoing efforts to compute the nucleon&#39;s form factors and moments of structure functions using Nf=2 flavours of non-perturbatively improved Clover fermions. We focus on new results obtained on gauge configurations where the pseudo-scalar meson mass is in the range of 170-270 MeV. We will compare our results with various estimates obtained from chiral effective theories since we have some overlap with the quark mass region where results from such theories are believed to be applicable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.2326v1-abstract-full').style.display = 'none'; document.getElementById('1101.2326v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Lattice2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 10-204, Edinburgh 2010/30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.4371">arXiv:1012.4371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.4371">pdf</a>, <a href="https://arxiv.org/ps/1012.4371">ps</a>, <a href="https://arxiv.org/format/1012.4371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bietenholz%2C+W">W. Bietenholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bornyakov%2C+V">V. Bornyakov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%B6ckeler%2C+M">M. G枚ckeler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hemmert%2C+T">T. Hemmert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lockhart%2C+W+G">W. G. Lockhart</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Perlt%2C+H">H. Perlt</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schiller%2C+A">A. Schiller</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Streuer%2C+T">T. Streuer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.4371v1-abstract-short" style="display: inline;"> QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the up-down quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. U&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.4371v1-abstract-full').style.display = 'inline'; document.getElementById('1012.4371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.4371v1-abstract-full" style="display: none;"> QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the up-down quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, which enables highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.4371v1-abstract-full').style.display = 'none'; document.getElementById('1012.4371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures. Contribution to Lattice2010, Villasimius, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 10-222, Edinburgh 2010/30, Liverpool LTH 889 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.0215">arXiv:1012.0215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.0215">pdf</a>, <a href="https://arxiv.org/format/1012.0215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.83.051501">10.1103/PhysRevD.83.051501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Symmetry Breaking in Parton Distribution Functions from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Horsley%2C+R">R. Horsley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rakow%2C+P+E+L">P. E. L. Rakow</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schierholz%2C+G">G. Schierholz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=St%C3%BCben%2C+H">H. St眉ben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Thomas%2C+A+W">A. W. Thomas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Winter%2C+F">F. Winter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Young%2C+R+D">R. D. Young</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.0215v2-abstract-short" style="display: inline;"> By determining the quark momentum fractions of the octet baryons from N_f=2+1 lattice simulations, we are able to predict the degree of charge symmetry violation in the parton distribution functions of the nucleon. This is of importance, not only as a probe of our understanding of the non-perturbative structure of the proton but also because such a violation constrains the accuracy of global fits&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0215v2-abstract-full').style.display = 'inline'; document.getElementById('1012.0215v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.0215v2-abstract-full" style="display: none;"> By determining the quark momentum fractions of the octet baryons from N_f=2+1 lattice simulations, we are able to predict the degree of charge symmetry violation in the parton distribution functions of the nucleon. This is of importance, not only as a probe of our understanding of the non-perturbative structure of the proton but also because such a violation constrains the accuracy of global fits to parton distribution functions and hence the accuracy with which, for example, cross sections at the LHC can be predicted. A violation of charge symmetry may also be critical in cases where symmetries are used to guide the search for physics beyond the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0215v2-abstract-full').style.display = 'none'; document.getElementById('1012.0215v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, 1 table. Minor changes. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ADP-10-23/T719, DESY 10-219, Edinburgh 2010/39, LTH 893 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D83:051501,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.2174">arXiv:0911.2174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.2174">pdf</a>, <a href="https://arxiv.org/format/0911.2174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> QPACE -- a QCD parallel computer based on Cell processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Baier%2C+H">H. Baier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boettiger%2C+H">H. Boettiger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Drochner%2C+M">M. Drochner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Eicker%2C+N">N. Eicker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fischer%2C+U">U. Fischer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Frommer%2C+A">A. Frommer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gomez%2C+C">C. Gomez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goldrian%2C+G">G. Goldrian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heybrock%2C+S">S. Heybrock</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hierl%2C+D">D. Hierl</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%BCsken%2C+M">M. H眉sken</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huth%2C+T">T. Huth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krill%2C+B">B. Krill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauritsen%2C+J">J. Lauritsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maurer%2C+T">T. Maurer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mendl%2C+B">B. Mendl</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+N">N. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nobile%2C+A">A. Nobile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ouda%2C+I">I. Ouda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pivanti%2C+M">M. Pivanti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ries%2C+M">M. Ries</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.2174v3-abstract-short" style="display: inline;"> QPACE is a novel parallel computer which has been developed to be primarily used for lattice QCD simulations. The compute power is provided by the IBM PowerXCell 8i processor, an enhanced version of the Cell processor that is used in the Playstation 3. The QPACE nodes are interconnected by a custom, application optimized 3-dimensional torus network implemented on an FPGA. To achieve the very hig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.2174v3-abstract-full').style.display = 'inline'; document.getElementById('0911.2174v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.2174v3-abstract-full" style="display: none;"> QPACE is a novel parallel computer which has been developed to be primarily used for lattice QCD simulations. The compute power is provided by the IBM PowerXCell 8i processor, an enhanced version of the Cell processor that is used in the Playstation 3. The QPACE nodes are interconnected by a custom, application optimized 3-dimensional torus network implemented on an FPGA. To achieve the very high packaging density of 26 TFlops per rack a new water cooling concept has been developed and successfully realized. In this paper we give an overview of the architecture and highlight some important technical details of the system. Furthermore, we provide initial performance results and report on the installation of 8 QPACE racks providing an aggregate peak performance of 200 TFlops. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.2174v3-abstract-full').style.display = 'none'; document.getElementById('0911.2174v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages. Poster by T. Maurer and plenary talk by D. Pleiter presented at the &#34;XXVII International Symposium on Lattice Field Theory&#34;, July 26-31 2009, Peking University, Beijing, China. Information on recent Green500 ranking added and list of authors extended</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:001,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.1559">arXiv:0810.1559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0810.1559">pdf</a>, <a href="https://arxiv.org/format/0810.1559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Status of the QPACE Project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Baier%2C+H">H. Baier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boettiger%2C+H">H. Boettiger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Drochner%2C+M">M. Drochner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Eicker%2C+N">N. Eicker</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fischer%2C+U">U. Fischer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fodor%2C+Z">Z. Fodor</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goldrian%2C+G">G. Goldrian</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heybrock%2C+S">S. Heybrock</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hierl%2C+D">D. Hierl</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Huth%2C+T">T. Huth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Krill%2C+B">B. Krill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lauritsen%2C+J">J. Lauritsen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lippert%2C+T">T. Lippert</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Maurer%2C+T">T. Maurer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McFadden%2C+J">J. McFadden</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+N">N. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nobile%2C+A">A. Nobile</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ouda%2C+I">I. Ouda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pivanti%2C+M">M. Pivanti</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pleiter%2C+D">D. Pleiter</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sch%C3%A4fer%2C+A">A. Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schick%2C+H">H. Schick</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Schifano%2C+F">F. Schifano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simma%2C+H">H. Simma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Solbrig%2C+S">S. Solbrig</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.1559v1-abstract-short" style="display: inline;"> We give an overview of the QPACE project, which is pursuing the development of a massively parallel, scalable supercomputer for LQCD. The machine is a three-dimensional torus of identical processing nodes, based on the PowerXCell 8i processor. The nodes are connected by an FPGA-based, application-optimized network processor attached to the PowerXCell 8i processor. We present a performance analys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1559v1-abstract-full').style.display = 'inline'; document.getElementById('0810.1559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.1559v1-abstract-full" style="display: none;"> We give an overview of the QPACE project, which is pursuing the development of a massively parallel, scalable supercomputer for LQCD. The machine is a three-dimensional torus of identical processing nodes, based on the PowerXCell 8i processor. The nodes are connected by an FPGA-based, application-optimized network processor attached to the PowerXCell 8i processor. We present a performance analysis of lattice QCD codes on QPACE and corresponding hardware benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1559v1-abstract-full').style.display = 'none'; document.getElementById('0810.1559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, poster presented at the XXVI International Symposium on Lattice Field Theory, July 14-19, 2008, Williamsburg, Virginia, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2008:039,2008 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10