CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 2,240 results for author: <span class="mathjax">Li, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07913">arXiv:2412.07913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.07913">pdf</a>, <a href="https://arxiv.org/format/2412.07913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin-Orbital-Lattice Coupling and the Phonon Zeeman Effect in the Dirac Honeycomb Magnet CoTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mai%2C+T+T">Thuc T. Mai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yufei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garrity%2C+K+F">K. F. Garrity</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+D">D. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeLazzer%2C+T">T. DeLazzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dally%2C+R+L">R. L. Dally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adel%2C+T">T. Adel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%C3%B1oz%2C+M+F">M. F. Mu帽oz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giovannone%2C+1+A">1 A. Giovannone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyon%2C+C">C. Lyon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pawbake%2C+A">A. Pawbake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">C. Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardele%2C+F+L">F. Le Mardele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simpson%2C+J+R">J. R. Simpson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+K">K. Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aguilar%2C+R+V">R. Vald茅s Aguilar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+A+R+H">A. R. Hight Walker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07913v1-abstract-short" style="display: inline;"> The entanglement of electronic spin and orbital degrees of freedom is often the precursor to emergent behaviors in condensed matter systems. With considerable spin-orbit coupling strength, the cobalt atom on a honeycomb lattice offers a platform that can make accessible the study of novel magnetic ground states. Using temperature-dependent Raman spectroscopy and high-magnetic field Raman and infra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07913v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07913v1-abstract-full" style="display: none;"> The entanglement of electronic spin and orbital degrees of freedom is often the precursor to emergent behaviors in condensed matter systems. With considerable spin-orbit coupling strength, the cobalt atom on a honeycomb lattice offers a platform that can make accessible the study of novel magnetic ground states. Using temperature-dependent Raman spectroscopy and high-magnetic field Raman and infrared (IR) spectroscopy, we studied the lattice and spin-orbital excitations in CoTiO$_3$, an antiferromagnetic material that exhibits topologically protected magnon Dirac crossings in the Brillouin zone. Under the application of an external magnetic field up to 22 T along the crystal&#39;s $c$-axis, we observed the splitting of both the spin-orbital excitations and a phonon nearby in energy. Using density functional theory (DFT), we identify a number of new modes that below the antiferromagnetic (AFM) transition become Raman-active due to the zone-folding of the Brillouin zone caused by the doubling of the magnetic unit cell. We use a model that includes both the spin and orbital degrees of freedom of the Co$^{2+}$ ions to explain the spin-orbital excitation energies and their behavior in an applied field. Our experimental observations along with several deviations from the model behavior point to significant coupling between the spin-orbital and the lattice excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07913v1-abstract-full').style.display = 'none'; document.getElementById('2412.07913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06476">arXiv:2412.06476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06476">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-space study of zero-field correlation in tetralayer rhombohedral graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Shudan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guorui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Can Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06476v1-abstract-short" style="display: inline;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06476v1-abstract-full" style="display: none;"> Rhombohedral graphene (RG) has emerged as a promising platform for exploring exotic quantum phenomena, such as quantum magnetism, unconventional superconductivity, and fractional quantum anomalous Hall effects. Despite its potential, atomic-scale investigations of RG remain limited, hindering a detailed microscopic understanding of the origins of these correlated states. In this study, we employ scanning probe microscopy and spectroscopy to probe the intrinsic electronic states in trilayer and tetralayer RG. We identify a correlated insulating state with a 17 meV gap at the charge neutrality point in tetralayer RG, which is absent in the trilayer configuration. This gap is suppressed by applying a perpendicular magnetic field or doping the charge carrier density and does not exhibit inter-valley coherence patterns. We attribute this phenomenon to a symmetry-broken layer antiferromagnetic state, characterized by ferrimagnetic ordering in the outermost layers and antiferromagnetic coupling between them. To further investigate this magnetic correlated state, we conduct local scattering experiments. Within the correlated regime, a bound state emerges around a non-magnetic impurity but is absent near magnetic impurities, suggesting that non-magnetic doping induces a spin texture in the ferrimagnetic surface layers. Outside the correlated regime, Friedel oscillations are observed, allowing precise determination of the band dispersion in tetralayer RG. These findings provide atomic-scale evidences of zero-field correlations in RG and may be extended to study other exotic phases in RG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06476v1-abstract-full').style.display = 'none'; document.getElementById('2412.06476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06169">arXiv:2412.06169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06169">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Study the quantum resolution sizes and atomic bonding states of two-dimensional tin monoxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yunhu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yixin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bo%2C+M">Maolin Bo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06169v1-abstract-short" style="display: inline;"> Understanding the interatomic bonding and electronic properties of two-dimensional (2D) materials is crucial for preparing high-performance 2D semiconductor materials. We have calculated the band structure, electronic properties, and bonding characteristics of SnO in 2D materials by using density functional theory (DFT) and combining bond energy and bond charge models. Atomic bonding analysis enab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06169v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06169v1-abstract-full" style="display: none;"> Understanding the interatomic bonding and electronic properties of two-dimensional (2D) materials is crucial for preparing high-performance 2D semiconductor materials. We have calculated the band structure, electronic properties, and bonding characteristics of SnO in 2D materials by using density functional theory (DFT) and combining bond energy and bond charge models. Atomic bonding analysis enables us to deeply and meticulously analyze the interatomic bonding and charge transfer in the layered structure of SnO. This study greatly enhances our understanding of the local bonding state on the surface of 2D structural materials. In addition, we use the renormalization method to operate energy to determine the wave function at different quantum resolutions. This is of great significance for describing the size and phase transition of nanomaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06169v1-abstract-full').style.display = 'none'; document.getElementById('2412.06169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05303">arXiv:2412.05303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05303">pdf</a>, <a href="https://arxiv.org/ps/2412.05303">ps</a>, <a href="https://arxiv.org/format/2412.05303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Large enhancement of nonlinear optical response of graphene nanoribbon heterojunctions with multiple topological interface states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Hanying Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=qu%2C+Z">Zhihao qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jing Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yingji He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Fangwe Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05303v1-abstract-short" style="display: inline;"> We investigate the nonlinear optical response of graphene nanoribbon (GNR) heterojunctions both without and with one or multiple topological interface states. By implementing a distant-neighbor quantum-mechanical (DNQM) method, we demonstrate a pronounced enhancement of the nonlinear optical response of GNR heterojunctions as the number of topological states at their interfaces increases. Specific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05303v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05303v1-abstract-full" style="display: none;"> We investigate the nonlinear optical response of graphene nanoribbon (GNR) heterojunctions both without and with one or multiple topological interface states. By implementing a distant-neighbor quantum-mechanical (DNQM) method, we demonstrate a pronounced enhancement of the nonlinear optical response of GNR heterojunctions as the number of topological states at their interfaces increases. Specifically, we find that GNR heterojunctions with multiple topological interface states exhibit a notably stronger third-order nonlinear optical response in comparison with the similarly sized counterparts with a single topological interface state or without such states. Furthermore, we observe that the presence of topological interface states in GNR heterojunctions can induce a significant red-shift in their quantum plasmon frequency. Our results reveal the potential to enhance the nonlinear optical response at the nanoscale by increasing the number of topological interface states in graphene nanostructures or other topological systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05303v1-abstract-full').style.display = 'none'; document.getElementById('2412.05303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04872">arXiv:2412.04872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04872">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching of room temperature two-dimensional van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Heshuang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+J">Jinyu Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+D">Dongdong Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gou%2C+J">Jinlong Gou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Junxin Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kun Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Z">Zhiyan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04872v1-abstract-short" style="display: inline;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switchi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04872v1-abstract-full" style="display: none;"> Efficiently manipulating the magnetization of van der Waals ferromagnets has attracted considerable interest in developing room-temperature two-dimensional material-based memory and logic devices. Here, taking advantage of the unique properties of the van der Waals ferromagnet as well as promising characteristics of the orbital Hall effect, we demonstrate the room-temperature magnetization switching of van der Waals ferromagnet Fe3GaTe2 through the orbital torque generated by the orbital Hall material, Titanium (Ti). The switching current density is estimated to be around 1.6 x 10^6 A/cm^2, comparable to that achieved in Fe3GaTe2 using spin-orbit torque from spin Hall materials. The efficient magnetization switching arises from the combined effects of the large orbital Hall conductivity of Ti and the strong spin-orbit correlation of the Fe3GaTe2, as confirmed through theoretical calculations. Our findings advance the understanding of orbital torque switching and pave the way for exploring material-based orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04872v1-abstract-full').style.display = 'none'; document.getElementById('2412.04872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages,4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04035">arXiv:2412.04035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04035">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional \b{eta}-phase copper iodide: a promising candidate for low-temperature thermoelectric applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+B">Bingquan Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yinshuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04035v1-abstract-short" style="display: inline;"> Bismuth telluride-based materials is the only commercially viable room-temperature thermoelectric material, despite its limited tellurium and poor mechanical properties. The search for materials with a high figure of merit (zT &gt; 1.00) near room temperature remains a major challenge. In this work, we systematically investigate the structural stability and the thermoelectric capabilities of monolaye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04035v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04035v1-abstract-full" style="display: none;"> Bismuth telluride-based materials is the only commercially viable room-temperature thermoelectric material, despite its limited tellurium and poor mechanical properties. The search for materials with a high figure of merit (zT &gt; 1.00) near room temperature remains a major challenge. In this work, we systematically investigate the structural stability and the thermoelectric capabilities of monolayer \b{eta}-CuI and 纬-CuI through the density functional theory (DFT) combined with Boltzmann transport theory. Based on the thermoelectric transport coefficients of monolayer \b{eta}-CuI and 纬-CuI, we predict their zT values will vary with carrier concentration and increase with temperature. Comparing the zT values, monolayer \b{eta}-CuI demonstrates superior thermoelectric properties compared to 纬-CuI. At room temperature, the optimal zT values of monolayer \b{eta}-CuI exceed 1.50, with particularly high values of 2.98 (p-type) and 4.10 (n-type) along the Zigzag direction, demonstrating significant anisotropy. These results suggest the great potential of the monolayer \b{eta}-CuI is promising candidate materials for low temperature thermoelectric applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04035v1-abstract-full').style.display = 'none'; document.getElementById('2412.04035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02558">arXiv:2412.02558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02558">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10338-024-00526-z">10.1007/s10338-024-00526-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frictional Adhesive Contact of Multiferroic Coatings Based on the Hybrid Element Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+B">Bo Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yun Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Lili Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menga%2C+N">Nicola Menga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02558v1-abstract-short" style="display: inline;"> We study the frictional adhesive contact of a rigid insulating sphere sliding past a multiferroic coating deposed onto a rigid substrate, based on the hybrid element method (HEM). The adhesion behavior is described based on the Maugis-Dugdale (MD) model. The adhesion-driven conjugate gradient method (AD-CGM) is employed to calculate the distribution of unknown pressures, while the discrete convolu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02558v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02558v1-abstract-full" style="display: none;"> We study the frictional adhesive contact of a rigid insulating sphere sliding past a multiferroic coating deposed onto a rigid substrate, based on the hybrid element method (HEM). The adhesion behavior is described based on the Maugis-Dugdale (MD) model. The adhesion-driven conjugate gradient method (AD-CGM) is employed to calculate the distribution of unknown pressures, while the discrete convolution-fast Fourier transform (DC-FFT) is utilized to compute the deformations, surface electric and magnetic potentials as well as the subsurface stresses, electric displacements, and magnetic inductions. We found that the coating thickness affect the contact stiffness and the interplay between friction and adhesion. More importantly, friction and gap-dependent MD adhesion affects elastic, electric, and magnetic behavior of the interface, breaking the symmetry between leading and trailing edges behaviors in all the investigated fields. Indeed, increasing the friction coefficient, the contact shape is no longer circular, the pressure distribution shifts towards the leading edge, the electric/magnetic surface potentials distributions sharpen at the leading edge, and the subsurface stress fields concentrates at the trailing edges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02558v1-abstract-full').style.display = 'none'; document.getElementById('2412.02558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02096">arXiv:2412.02096</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02096">pdf</a>, <a href="https://arxiv.org/ps/2412.02096">ps</a>, <a href="https://arxiv.org/format/2412.02096">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Migration of active particle in mixtures of rigid and flexible rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Meng-Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+N">Ning Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yan-Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02096v1-abstract-short" style="display: inline;"> The migration of active particles in slowly moving, crowded, and heterogeneous media is fundamental to various biological processes and technological applications, such as cargo transport. In this study, we numerically investigate the dynamics of a single active particle in a medium composed of mixtures of rigid and flexible rings. We observe a non-monotonic dependence of diffusivity on the relati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02096v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02096v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02096v1-abstract-full" style="display: none;"> The migration of active particles in slowly moving, crowded, and heterogeneous media is fundamental to various biological processes and technological applications, such as cargo transport. In this study, we numerically investigate the dynamics of a single active particle in a medium composed of mixtures of rigid and flexible rings. We observe a non-monotonic dependence of diffusivity on the relative fraction of rigid to flexible rings, leading to the identification of an optimal composition for enhanced diffusion. This long-time non-monotonic diffusion, likely resulting from the different responses of the active particle to rigid and flexible rings, is coupled with transient short-time trapping. The probability distribution of trapping durations is well described by the extended entropic trap model. We further establish a universal relationship between particle activity and the optimal rigid-to-flexible ring ratio for diffusion, which aligns closely with our numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02096v1-abstract-full').style.display = 'none'; document.getElementById('2412.02096v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01886">arXiv:2412.01886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01886">pdf</a>, <a href="https://arxiv.org/format/2412.01886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> Universal microscopic descriptions for statistics of particles and extended excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kobayashi%2C+R">Ryohei Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+H">Hanyu Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsin%2C+P">Po-Shen Hsin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu-An Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01886v2-abstract-short" style="display: inline;"> Statistics of excitations play an essential role in understanding phases of matter. In this paper, we introduce a universal method for studying the generalized statistics of Abelian particles and extended excitations in lattices of any dimension. We compute the statistics using the Berry phase of a sequence of unitary operators that transports the excitations while canceling local ambiguities at e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01886v2-abstract-full').style.display = 'inline'; document.getElementById('2412.01886v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01886v2-abstract-full" style="display: none;"> Statistics of excitations play an essential role in understanding phases of matter. In this paper, we introduce a universal method for studying the generalized statistics of Abelian particles and extended excitations in lattices of any dimension. We compute the statistics using the Berry phase of a sequence of unitary operators that transports the excitations while canceling local ambiguities at each step. The sequence is derived from locality, using the Smith normal form. We show that the statistics are quantized invariants. Our method unifies the statistics for the braiding and fusion of particles and loops, and leads to the discovery of novel statistics for membrane excitations. The statistics can be interpreted as the quantum anomaly of a generalized global symmetry, which manifests as an obstruction to gauging the symmetry on lattices. Furthermore, we show that non-trivial statistics forbid short-range entangled states, establishing the dynamical consequence of anomalies in microscopic lattice models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01886v2-abstract-full').style.display = 'none'; document.getElementById('2412.01886v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 11 figures. added refs, minor edits</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00611">arXiv:2412.00611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00611">pdf</a>, <a href="https://arxiv.org/format/2412.00611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Phase-resolving spin-wave microscopy using infrared strobe light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christy%2C+A">Andrew Christy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahdi%2C+M">Muntasir Mahdi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+R">Rui Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geil%2C+R+D">Robert D. Geil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cahoon%2C+J+F">James F. Cahoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsui%2C+F">Frank Tsui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+B">Binbin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+H">Tae Hee Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jia-Mian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+D">Dali Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamilton%2C+M+C">Michael C. Hamilton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novosad%2C+V">Valentine Novosad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00611v1-abstract-short" style="display: inline;"> The needs for sensitively and reliably probing magnetization dynamics have been increasing in various contexts such as studying novel hybrid magnonic systems, in which the spin dynamics strongly and coherently couple to other excitations, including microwave photons, light photons, or phonons. Recent advances in quantum magnonics also highlight the need for employing magnon phase as quantum state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00611v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00611v1-abstract-full" style="display: none;"> The needs for sensitively and reliably probing magnetization dynamics have been increasing in various contexts such as studying novel hybrid magnonic systems, in which the spin dynamics strongly and coherently couple to other excitations, including microwave photons, light photons, or phonons. Recent advances in quantum magnonics also highlight the need for employing magnon phase as quantum state variables, which is to be detected and mapped out with high precision in on-chip micro- and nano-scale magnonic devices. Here, we demonstrate a facile optical technique that can directly perform concurrent spectroscopic and imaging functionalities with spatial- and phase-resolutions, using infrared strobe light operating at 1550-nm wavelength. To showcase the methodology, we spectroscopically studied the phase-resolved spin dynamics in a bilayer of Permalloy and Y3Fe5O12 (YIG), and spatially imaged the backward volume spin wave modes of YIG in the dipolar spin wave regime. Using the strobe light probe, the detected precessional phase contrast can be directly used to construct the map of the spin wave wavefront, in the continuous-wave regime of spin-wave propagation and in the stationary state, without needing any optical reference path. By selecting the applied field, frequency, and detection phase, the spin wave images can be made sensitive to the precession amplitude and phase. Our results demonstrate that infrared optical strobe light can serve as a versatile platform for magneto-optical probing of magnetization dynamics, with potential implications in investigating hybrid magnonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00611v1-abstract-full').style.display = 'none'; document.getElementById('2412.00611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00220">arXiv:2412.00220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00220">pdf</a>, <a href="https://arxiv.org/format/2412.00220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Origin of the insulating state in the Kitaev candidate Cu$_2$IrO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">Roger D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+Y">Yogesh Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+R">Radu Coldea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00220v1-abstract-short" style="display: inline;"> Through a combination of crystal symmetry analysis and density functional theory calculations we unveil a possible microscopic origin of the unexpected insulating behavior reported in the honeycomb Kitaev material Cu$_2$IrO$_3$. Our study suggests that this material hosts an instability towards charge ordering of the Ir ions, with alternating magnetic Ir$^{4+}$ and non-magnetic Ir$^{3+}$ ions arra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00220v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00220v1-abstract-full" style="display: none;"> Through a combination of crystal symmetry analysis and density functional theory calculations we unveil a possible microscopic origin of the unexpected insulating behavior reported in the honeycomb Kitaev material Cu$_2$IrO$_3$. Our study suggests that this material hosts an instability towards charge ordering of the Ir ions, with alternating magnetic Ir$^{4+}$ and non-magnetic Ir$^{3+}$ ions arranged on the honeycomb lattice. In this case, the next-nearest-neighbor interactions that couple magnetic Ir$^{4+}$ ions form an enlarged triangular lattice, instead of the expected honeycomb lattice. The magnetic Cu$^{2+}$ ions located at the centre of the iridium honeycomb voids also form a triangular lattice, and additionally contribute to the magnetization of the system. Together, the interpenetrated Ir$^{4+}$ and Cu$^{2+}$ triangular lattices present a novel type of honeycomb Kitaev lattice composed of two types of magnetic ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00220v1-abstract-full').style.display = 'none'; document.getElementById('2412.00220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19764">arXiv:2411.19764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19764">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Chirality-Dependent Kinetics of Single-Walled Carbon Nanotubes from Machine-Learning Force Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Sida Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruyama%2C+S">Shigeo Maruyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19764v1-abstract-short" style="display: inline;"> The origin of the chirality of single-walled carbon nanotubes (SWCNTs) has been a long-standing dispute. Molecular dynamics (MD) simulations driven by machine-learning force fields (MLFF), which can study the interface dynamics under near ab-initio accuracy, provides a powerful technique to reveal the formation mechanism of SWCNTs. Here, we develop a cobalt-carbon MLFF and perform growth simulatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19764v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19764v1-abstract-full" style="display: none;"> The origin of the chirality of single-walled carbon nanotubes (SWCNTs) has been a long-standing dispute. Molecular dynamics (MD) simulations driven by machine-learning force fields (MLFF), which can study the interface dynamics under near ab-initio accuracy, provides a powerful technique to reveal the formation mechanism of SWCNTs. Here, we develop a cobalt-carbon MLFF and perform growth simulations on a cobalt catalyst to investigate the chirality preference of the growth of SWCNTs under the vapor-liquid-solid (VLS) regime. Through microkinetic modeling, we reproduce the observed growth and defect kinetics, demonstrating their dependence on the chirality. It is observed that while the initial chirality assignment is likely related to the configurational degeneracy of the nanotube caps, pentagon defects immediately form and resolve after nucleation. Such processes, which we name as diameter control mechanisms, not only control the diameter toward an optimum but also shift the chirality distribution drastically. Our work therefore offers a microkinetic modeling workflow for the chirality-dependent kinetics of the SWCNTs, highlighting the important contribution of the defect kinetics to the chirality origination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19764v1-abstract-full').style.display = 'none'; document.getElementById('2411.19764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19720">arXiv:2411.19720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19720">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.174445">10.1103/PhysRevB.110.174445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice dynamics of the frustrated kagome compound Y-kapellasite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dole%C5%BEal%2C+P">P. Dole啪al</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biesner%2C+T">T. Biesner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+R+M">R. Mathew Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roh%2C+S">S. Roh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">R. Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dressel%2C+M">M. Dressel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">P. Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pustogow%2C+A">A. Pustogow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19720v1-abstract-short" style="display: inline;"> Studying the magnetic ground states of frustrated antiferromagnets provides unique insight into the stability of quantum spin liquids, even if the anticipated state is not realized towards T = 0. Particularly relevant are structural modifications setting in at temperatures where the magnetic correlations come into play. Here we explore the lattice dynamics of Y-kapellasite (Y3Cu9(OH)19Cl8) single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19720v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19720v1-abstract-full" style="display: none;"> Studying the magnetic ground states of frustrated antiferromagnets provides unique insight into the stability of quantum spin liquids, even if the anticipated state is not realized towards T = 0. Particularly relevant are structural modifications setting in at temperatures where the magnetic correlations come into play. Here we explore the lattice dynamics of Y-kapellasite (Y3Cu9(OH)19Cl8) single crystals by infrared spectroscopy in combination with ab initio calculations. We observe significant changes in the phonon spectra at Ts = 32 K, that gradually evolve down to low temperatures. The increase in the number of phonon modes provides evidence for a lowering of symmetry and we discuss several possibilities of crystal structure modifications. Our analysis also reveals that the structural variation involves exclusively H and O atoms, while the other atoms remain rather unaffected. An 8% red shift of the lowest-lying phonon mode upon cooling indicates strong magneto-elastic effects upon decoupling Cu-6f hexagons through the lattice vibrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19720v1-abstract-full').style.display = 'none'; document.getElementById('2411.19720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 174445 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19280">arXiv:2411.19280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19280">pdf</a>, <a href="https://arxiv.org/format/2411.19280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum Cellular Automata on Symmetric Subalgebras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+R">Ruochen Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yabo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M">Meng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19280v1-abstract-short" style="display: inline;"> We investigate quantum cellular automata (QCA) on one-dimensional spin systems defined over a subalgebra of the full local operator algebra - the symmetric subalgebra under a finite Abelian group symmetry $G$. For systems where each site carries a regular representation of $G$, we establish a complete classification of such subalgebra QCAs based on two topological invariants: (1) a surjective homo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19280v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19280v1-abstract-full" style="display: none;"> We investigate quantum cellular automata (QCA) on one-dimensional spin systems defined over a subalgebra of the full local operator algebra - the symmetric subalgebra under a finite Abelian group symmetry $G$. For systems where each site carries a regular representation of $G$, we establish a complete classification of such subalgebra QCAs based on two topological invariants: (1) a surjective homomorphism from the group of subalgebra QCAs to the group of anyon permutation symmetries in a $(2+1)d$ $G$ gauge theory; and (2) a generalization of the Gross-Nesme-Vogts-Werner (GNVW) index that characterizes the flow of the symmetric subalgebra. Specifically, two subalgebra QCAs correspond to the same anyon permutation and share the same index if and only if they differ by a finite-depth unitary circuit composed of $G$-symmetric local gates. We also identify a set of operations that generate all subalgebra QCAs through finite compositions. As an example, we examine the Kramers-Wannier duality on a $\mathbb{Z}_2$ symmetric subalgebra, demonstrating that it maps to the $e$-$m$ permutation in the two-dimensional toric code and has an irrational index of $\sqrt{2}$. Therefore, it cannot be extended to a QCA over the full local operator algebra and mixes nontrivially with lattice translations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19280v1-abstract-full').style.display = 'none'; document.getElementById('2411.19280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46+9 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19028">arXiv:2411.19028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19028">pdf</a>, <a href="https://arxiv.org/format/2411.19028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.014501">10.1103/PhysRevB.109.014501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of high-Tc superconductivity in ternary actinium beryllium hydrides at low pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+K">Kun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+W">Wenwen Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jingming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Durajski%2C+A+P">Artur P. Durajski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+J">Jian Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botti%2C+S">Silvana Botti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marques%2C+M+A+L">Miguel A. L. Marques</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yinwei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19028v1-abstract-short" style="display: inline;"> Hydrogen-rich superconductors are promising candidates to achieve room-temperature superconductivity. However, the extreme pressures needed to stabilize these structures significantly limit their practical applications. An effective strategy to reduce the external pressure is to add a light element M that binds with H to form MHx units, acting as a chemical precompressor. We exemplify this idea by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19028v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19028v1-abstract-full" style="display: none;"> Hydrogen-rich superconductors are promising candidates to achieve room-temperature superconductivity. However, the extreme pressures needed to stabilize these structures significantly limit their practical applications. An effective strategy to reduce the external pressure is to add a light element M that binds with H to form MHx units, acting as a chemical precompressor. We exemplify this idea by performing ab initio calculations of the Ac-Be-H phase diagram, proving that the metallization pressure of Ac-H binaries, for which critical temperatures as high as 200 K were predicted at 200 GPa, can be significantly reduced via beryllium incorporation. We identify three thermodynamically stable (AcBe2H10, AcBeH8, and AcBe2H14) and four metastable compounds (fcc AcBeH8, AcBeH10, AcBeH12 and AcBe2H16). All of them are superconductors. In particular, fcc AcBeH8 remains dynamically stable down to 10 GPa, where it exhibits a superconducting transition temperature Tc of 181 K. The Be-H bonds are responsible for the exceptional properties of these ternary compounds and allow them to remain dynamically stable close to ambient pressure. Our results suggest that high-Tc superconductivity in hydrides is achievable at low pressure and may stimulate experimental synthesis of ternary hydrides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19028v1-abstract-full').style.display = 'none'; document.getElementById('2411.19028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109,014501(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19014">arXiv:2411.19014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19014">pdf</a>, <a href="https://arxiv.org/format/2411.19014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.064105">10.1103/PhysRevB.110.064105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of high-Tc superconductivity under submegabar pressure in ternary actinium borohydrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+T">Tingting Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+W">Wenwen Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+J">Jian Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jingming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Durajski%2C+A+P">Artur P. Durajski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hanyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yinwei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19014v1-abstract-short" style="display: inline;"> Ternary hydrides are considered as the ideal candidates with high critical temperature (Tc) stabilized at submegabar pressure, evidenced by the recent discoveries in LaBeH8 (110 K at 80 GPa) and LaB2H8 (106 K at 90 GPa). Here, we investigate the crystal structures and superconductivity of an Ac-B-H system under pressures of 100 and 200 GPa by using an advanced structure method combined with first-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19014v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19014v1-abstract-full" style="display: none;"> Ternary hydrides are considered as the ideal candidates with high critical temperature (Tc) stabilized at submegabar pressure, evidenced by the recent discoveries in LaBeH8 (110 K at 80 GPa) and LaB2H8 (106 K at 90 GPa). Here, we investigate the crystal structures and superconductivity of an Ac-B-H system under pressures of 100 and 200 GPa by using an advanced structure method combined with first-principles calculations. As a result, nine stable compounds were identified, where B atoms are bonded with H atoms in the formation with diverse BHx motifs, e.g., methanelike (BH4), polythenelike, (BH2)n,andBH6 octahedron. Among them, seven Ac-B-H compounds were found to become superconductive. In particular, AcBH7 was estimated to have a Tc of 122 K at 70 GPa. Our in-depth analysis reveals that the B-H interactions in the BH6 units play a key role in its high superconductivity and stability at submegabar pressure. Our current results provide a guidance for future experiments to synthesize ternary hydride superconductors with high-Tc at moderate pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19014v1-abstract-full').style.display = 'none'; document.getElementById('2411.19014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110,064105(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18744">arXiv:2411.18744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18744">pdf</a>, <a href="https://arxiv.org/format/2411.18744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure induced transition from chiral charge order to time-reversal symmetry-breaking superconducting state in Nb-doped CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Graham%2C+J+N">J. N. Graham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+S+S">S. S. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sazgari%2C+V">V. Sazgari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">H. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janka%2C+G">G. Janka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Y. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerguri%2C+O">O. Gerguri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kral%2C+P">P. Kral</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doll%2C+A">A. Doll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bialo%2C+I">I. Bialo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Z. Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">A. Suter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">T. Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okazaki%2C+K">K. Okazaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18744v1-abstract-short" style="display: inline;"> The experimental realisation of unconventional superconductivity and charge order in kagome systems \textit{A}V$_3$Sb$_5$ is of critical importance. We conducted a highly systematic study of Cs(V$_{1-x}$Nb$_x$)$_3$Sb$_5$ with $x$=0.07 (Nb$_{0.07}$-CVS) by employing a unique combination of tuning parameters such as doping, hydrostatic pressure, magnetic fields, and depth, using muon spin rotation,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18744v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18744v1-abstract-full" style="display: none;"> The experimental realisation of unconventional superconductivity and charge order in kagome systems \textit{A}V$_3$Sb$_5$ is of critical importance. We conducted a highly systematic study of Cs(V$_{1-x}$Nb$_x$)$_3$Sb$_5$ with $x$=0.07 (Nb$_{0.07}$-CVS) by employing a unique combination of tuning parameters such as doping, hydrostatic pressure, magnetic fields, and depth, using muon spin rotation, AC susceptibility, and STM. We uncovered tunable magnetism in the normal state of Nb$_{0.07}$-CVS, which transitions to a time-reversal symmetry (TRS) breaking superconducting state under pressure. Specifically, our findings reveal that the bulk of Nb$_{0.07}$-CVS (at depths greater than 20 nm from the surface) experiences TRS breaking below $T^*=40~$K, lower than the charge order onset temperature, $T_\mathrm{CO}$ = 58 K. However, near the surface (within 20 nm from the surface), the TRS breaking signal doubles and onsets at $T_\mathrm{CO}$, indicating that Nb-doping decouples TRS breaking from charge order in the bulk but synchronises them near the surface. Additionally, Nb-doping raises the superconducting critical temperature $T_\mathrm{C}$ from 2.5 K to 4.4 K. Applying hydrostatic pressure enhances both $T_\mathrm{C}$ and the superfluid density by a factor of two, with a critical pressure $p_\mathrm{cr}$ ${\simeq}$ 0.85 GPa, suggesting competition with charge order. Notably, above $p_\mathrm{cr}$, we observe nodeless electron pairing and weak internal fields below $T_\mathrm{C}$, indicating broken TRS in the superconducting state. Overall, these results demonstrate a highly unconventional normal state with a depth-tunable onset of TRS breaking at ambient pressure, a transition to TRS-breaking superconductivity under low hydrostatic pressure, and an unconventional scaling between $T_\mathrm{C}$ and the superfluid density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18744v1-abstract-full').style.display = 'none'; document.getElementById('2411.18744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18227">arXiv:2411.18227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18227">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54525-2">10.1038/s41467-024-54525-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Yu-Shiba-Rusinov-like states at the edge of CrBr3/NbSe2 heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuanji Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+R">Ruotong Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mingzhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+J">Jiashuo Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Ziyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiakang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Ya-Jun Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Dong-Lai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18227v1-abstract-short" style="display: inline;"> The hybrid ferromagnet-superconductor heterostructures have attracted extensive attention as they potentially host topological superconductivity. Relevant experimental signatures have recently been reported in CrBr3/NbSe2 ferromagnet-superconductor heterostructure, but controversies remain. Here, we reinvestigate CrBr3/NbSe2 by an ultralow temperature scanning tunneling microscope with higher spat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18227v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18227v1-abstract-full" style="display: none;"> The hybrid ferromagnet-superconductor heterostructures have attracted extensive attention as they potentially host topological superconductivity. Relevant experimental signatures have recently been reported in CrBr3/NbSe2 ferromagnet-superconductor heterostructure, but controversies remain. Here, we reinvestigate CrBr3/NbSe2 by an ultralow temperature scanning tunneling microscope with higher spatial and energy resolutions. We find that the single-layer CrBr3 film is insulating and acts likely as a vacuum barrier, the measured superconducting gap and vortex state on it are nearly the same as those of NbSe2 substrate. Meanwhile, in-gap features are observed at the edges of CrBr3 island, which display either a zero-energy conductance peak or a pair of particle-hole symmetric bound states. They are discretely distributed at the edges of CrBr3 film, and their appearance is found closely related to the atomic lattice reconstruction near the edges. By increasing tunneling transmissivity, the zero-energy conductance peak quickly splits, while the pair of nonzero in-gap bound states first approach each other, merge, and then split again. These behaviors are unexpected for Majorana edge modes, but in consistent with the conventional Yu-Shiba-Rusinov states. Our results provide critical information for further understanding the interfacial coupling in CrBr3/NbSe2 heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18227v1-abstract-full').style.display = 'none'; document.getElementById('2411.18227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 10121 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18167">arXiv:2411.18167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18167">pdf</a>, <a href="https://arxiv.org/format/2411.18167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47819-y">10.1038/s41467-024-47819-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum annealing of a frustrated magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yuqian Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhaohua Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Zhangzhen He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+H">Haijun Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junfeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuesheng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18167v1-abstract-short" style="display: inline;"> Quantum annealing, which involves quantum tunnelling among possible solutions, has state-of-the-art applications not only in quickly finding the lowest-energy configuration of a complex system, but also in quantum computing. Here we report a single-crystal study of the frustrated magnet $伪$-CoV$_2$O$_6$, consisting of a triangular arrangement of ferromagnetic Ising spin chains without evident stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18167v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18167v1-abstract-full" style="display: none;"> Quantum annealing, which involves quantum tunnelling among possible solutions, has state-of-the-art applications not only in quickly finding the lowest-energy configuration of a complex system, but also in quantum computing. Here we report a single-crystal study of the frustrated magnet $伪$-CoV$_2$O$_6$, consisting of a triangular arrangement of ferromagnetic Ising spin chains without evident structural disorder. We observe quantum annealing phenomena resulting from time-reversal symmetry breaking in a tiny transverse field. Below $\sim$ 1 K, the system exhibits no indication of approaching the lowest-energy state for at least 15 hours in zero transverse field, but quickly converges towards that configuration with a nearly temperature-independent relaxation time of $\sim$ 10 seconds in a transverse field of $\sim$ 3.5 mK. Our many-body simulations show qualitative agreement with the experimental results, and suggest that a tiny transverse field can profoundly enhance quantum spin fluctuations, triggering rapid quantum annealing process from topological metastable Kosterlitz-Thouless phases, at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18167v1-abstract-full').style.display = 'none'; document.getElementById('2411.18167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Information in https://doi.org/10.1038/s41467-024-47819-y</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Nat. Commun. 15, 3495 (2024) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 3495 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16463">arXiv:2411.16463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16463">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Lattice dynamics and phonon dispersion of van der Waals layered ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xia Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wenjie He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiating Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dinghua Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Deren Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+L">Li Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yong Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+G">Gang Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16463v1-abstract-short" style="display: inline;"> Van der Waals (vdW) layered ferromagnet Fe3GaTe2 shows great potential in two-dimensional spintronic application due to its robust room-temperature ferromagnetism and large perpendicular magnetic anisotropy. Despite the tremendous progress in the spintronic and electronic studies of Fe3GaTe2, much less effort has been spent on the understanding of lattice dynamics and its possible interaction with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16463v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16463v1-abstract-full" style="display: none;"> Van der Waals (vdW) layered ferromagnet Fe3GaTe2 shows great potential in two-dimensional spintronic application due to its robust room-temperature ferromagnetism and large perpendicular magnetic anisotropy. Despite the tremendous progress in the spintronic and electronic studies of Fe3GaTe2, much less effort has been spent on the understanding of lattice dynamics and its possible interaction with spintronic and electronic degrees of freedom in Fe3GaTe2. In this work, by combining Raman spectroscopic data in a wide range of pressure (atmospheric pressure~19.5 GPa) and temperature (80 K~690 K) with first-principles calculation results, we systematically studied the lattice dynamics and phonon dispersion of Fe3GaTe2. Our results show that the phonon energies of Fe3GaTe2 located at 126.0 cm-1 and 143.5 cm-1 originate from the E_2g^2 and A_1g^1 vibration modes, respectively, and the nature of the E_2g^2 mode is anharmonic while that of the A_1g^1 mode is quasi-harmonic. Furthermore, the spin-phonon coupling in Fe3GaTe2 is discovered by identifying the anomalies in the Raman data right below the Curie temperature of 360 K, in which the phonon energies and the full widths at half maximum of the E_2g^2 mode clearly deviate from the classical anharmonic model. Our findings are valuable for fundamental studies and potential applications of vdW Fe3GaTe2-based materials and devices under variable temperature and pressure conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16463v1-abstract-full').style.display = 'none'; document.getElementById('2411.16463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16287">arXiv:2411.16287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16287">pdf</a>, <a href="https://arxiv.org/format/2411.16287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantized vortex in an atomic Bose-Einstein condensate at Dirac point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yunda Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+W">Wei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z">Zengming Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chin%2C+C">Cheng Chin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16287v1-abstract-short" style="display: inline;"> When two or more energy bands become degenerate at a singular point in the momentum space, such singularity, or ``Dirac points&#34;, gives rise to intriguing quantum phenomena as well as unusual material properties. Systems at the Dirac points can possess topological charges and their unique properties can be probed by various methods, such as transport measurement, interferometry and momentum spectro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16287v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16287v1-abstract-full" style="display: none;"> When two or more energy bands become degenerate at a singular point in the momentum space, such singularity, or ``Dirac points&#34;, gives rise to intriguing quantum phenomena as well as unusual material properties. Systems at the Dirac points can possess topological charges and their unique properties can be probed by various methods, such as transport measurement, interferometry and momentum spectroscopy. While the topology of Dirac point in the momentum space is well studied theoretically, observation of topological defects in a many-body quantum systems at Dirac point remain an elusive goal. Based on atomic Bose-Einstein condensate in a graphene-like optical honeycomb lattice, we directly observe emergence of quantized vortices at the Dirac point. The phase diagram of lattice bosons at the Dirac point is revealed. Our work provides a new way of generating vortices in a quantum gas, and the method is generic and can be applied to different types of optical lattices with topological singularity, especially twisted bilayer optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16287v1-abstract-full').style.display = 'none'; document.getElementById('2411.16287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15517">arXiv:2411.15517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15517">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Manipulating the Optical Response of TaIrTe4 Heterostructures through Band Alignment Strategy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+L">Longfei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shaowen Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Q">Qilong Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Qingmin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruixue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+F">Fanhao Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15517v1-abstract-short" style="display: inline;"> Weyl semimetals, such as $TaIrTe_{4}$, characterized by their unique band structures and exotic transport phenomena, have become a central focus in modern electronics. Despite extensive research, a systematic understanding of the impact of heterogeneous integration on the electronic and optical properties of TaIrTe4 device remains elusive. We have carried out density functional theory combined wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15517v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15517v1-abstract-full" style="display: none;"> Weyl semimetals, such as $TaIrTe_{4}$, characterized by their unique band structures and exotic transport phenomena, have become a central focus in modern electronics. Despite extensive research, a systematic understanding of the impact of heterogeneous integration on the electronic and optical properties of TaIrTe4 device remains elusive. We have carried out density functional theory combined with nonequilibrium Green&#39;s function formalism calculations for $TaIrTe_{4}/WTe_{2}$, $TaIrTe_{4}/MoTe_{2}$ and $TaIrTe_{4}/h-BN$ heterostructures, aiming to understand the manipulation of photoresponse through various band alignment strategies. The underlying impacts of interlayer interactions, charge transfer and build-in electric field on the electronic properties are carefully investigated. We design a dual-probe photodetector device to understand the overall photoresponse enhancement of the heterogeneous integration by decomposing into the specific strain, interlayer transition, band overlap and symmetry lowering mechanics. These van der Waals integrations provide an ideal platform for studying band alignment physics in self-powered optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15517v1-abstract-full').style.display = 'none'; document.getElementById('2411.15517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15333">arXiv:2411.15333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15333">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unconventional gapping behavior in a kagome superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratkovski%2C+D">Danilo Ratkovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCscher%2C+B">Bernhard L眉scher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bangura%2C+A">Ali Bangura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15333v1-abstract-short" style="display: inline;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15333v1-abstract-full" style="display: none;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charge order that substantially reduces the compound&#39;s space group symmetries. Through a combination of thermodynamic as well as electrical and thermal transport measurements, we uncover two superconducting regimes with distinct transport and thermodynamic characteristics, while finding no evidence for a phase transition separating them. Thermodynamic measurements reveal substantial quasiparticle weight in a high-temperature regime. At lower temperatures, this weight is removed via the formation of a second gap. The two regimes are sharply distinguished by a pronounced enhancement of the upper critical field at low temperatures and by a switch in the anisotropy of the longitudinal thermal conductivity as a function of in-plane magnetic field orientation. We argue that the band with a gap opening at lower temperatures continues to host low-energy quasiparticles, possibly due to a nodal structure of the gap. Taken together, our results present evidence for band-selective superconductivity with remarkable decoupling of the (two) superconducting gaps. The commonly employed multiband scenario, whereby superconductivity emerges in a primary band and is then induced in other bands appears to fail in this unconventional kagome superconductor. Instead, band-selective superconducting pairing is a paradigm that seems to unify seemingly contradicting results in this intensely studied family of materials and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'none'; document.getElementById('2411.15333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14712">arXiv:2411.14712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14712">pdf</a>, <a href="https://arxiv.org/format/2411.14712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Diffusiophoretic transport of colloids in porous media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Alipour%2C+M">Mobin Alipour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiran Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pahlavan%2C+A+A">Amir A. Pahlavan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14712v1-abstract-short" style="display: inline;"> Understanding how colloids move in crowded environments is key for gaining control over their transport in applications such as drug delivery, filtration, contaminant/microplastic remediation and agriculture. The classical models of colloid transport in porous media rely on geometric characteristics of the medium, and hydrodynamic/non-hydrodynamic equilibrium interactions to predict their behavior&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14712v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14712v1-abstract-full" style="display: none;"> Understanding how colloids move in crowded environments is key for gaining control over their transport in applications such as drug delivery, filtration, contaminant/microplastic remediation and agriculture. The classical models of colloid transport in porous media rely on geometric characteristics of the medium, and hydrodynamic/non-hydrodynamic equilibrium interactions to predict their behavior. However, chemical gradients are ubiquitous in these environments and can lead to the non-equilibrium diffusiophoretic migration of colloids. Here, combining microfluidic experiments, numerical simulations, and theoretical modeling we demonstrate that diffusiophoresis leads to significant macroscopic changes in the dispersion of colloids in porous media. We displace a suspension of colloids dispersed in a background salt solution with a higher/lower salinity solution and monitor the removal of the colloids from the medium. While mixing weakens the solute gradients, leading to the diffusiophoretic velocities that are orders of magnitude weaker than the background fluid flow, we show that the cross-streamline migration of colloids changes their macroscopic transit time and dispersion through the medium by an order of magnitude compared to the control case with no salinity gradients. Our observations demonstrate that solute gradients modulate the influence of geometric disorder on the transport, pointing to the need for revisiting the classical models of colloid transport in porous media to obtain predictive models for technological, medical, and environmental applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14712v1-abstract-full').style.display = 'none'; document.getElementById('2411.14712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14610">arXiv:2411.14610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14610">pdf</a>, <a href="https://arxiv.org/format/2411.14610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The origin of strings and rings in the atomic dynamics of disordered systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hussein%2C+O">Omar Hussein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishin%2C+Y">Y. Mishin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14610v2-abstract-short" style="display: inline;"> It has long been believed that the atomic dynamics in disordered structures, such as undercooled liquids and pre-melted interfaces, are characterized by collective atomic rearrangements in the form of quasi-one-dimensional chains of atomic displacements (strings) and their closed forms (rings). Here, we show by molecular dynamics (MD) simulations that strings do not form by a single collective eve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14610v2-abstract-full').style.display = 'inline'; document.getElementById('2411.14610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14610v2-abstract-full" style="display: none;"> It has long been believed that the atomic dynamics in disordered structures, such as undercooled liquids and pre-melted interfaces, are characterized by collective atomic rearrangements in the form of quasi-one-dimensional chains of atomic displacements (strings) and their closed forms (rings). Here, we show by molecular dynamics (MD) simulations that strings do not form by a single collective event. Instead, they are simply MD trajectories of propagating local density perturbations, which we call densitons. The atoms on this trajectory are physically indistinguishable from their environments except for the moving head of the string (densiton). A densiton migrates by either single-atom jumps or a concerted rearrangement of 2-3 atoms. The simulations reveal a remarkable similarity between the strings in disordered and crystalline structures, in which the densitons localize into point defects. This work calls for a significant reinterpretation of the string concept and instead proposes a densiton model of the atomic dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14610v2-abstract-full').style.display = 'none'; document.getElementById('2411.14610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13938">arXiv:2411.13938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13938">pdf</a>, <a href="https://arxiv.org/format/2411.13938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Ground-state phase transitions in spin-1 Bose-Einstein condensates with spin-orbit coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin-Feng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuan-Fen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huan-Bo Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+F">Fu-Quan Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13938v1-abstract-short" style="display: inline;"> We investigate phase transitions of the ground state (GS) of spin-1 Bose-Einstein condensates under the combined action of the spin-orbit coupling (SOC) and gradient magnetic field. Introducing appropariate raising and lowering operators, we exactly solve the linear system. Analyzing the obtained energy spectrum, we conclude that simultaneous variation of the magnetic-field gradient and SOC streng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13938v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13938v1-abstract-full" style="display: none;"> We investigate phase transitions of the ground state (GS) of spin-1 Bose-Einstein condensates under the combined action of the spin-orbit coupling (SOC) and gradient magnetic field. Introducing appropariate raising and lowering operators, we exactly solve the linear system. Analyzing the obtained energy spectrum, we conclude that simultaneous variation of the magnetic-field gradient and SOC strength leads to the transition of excited states into the GS. As a result, any excited state can transition to the GS, at appropriate values of the system&#39;s parameters. The nonlinear system is solved numerically, showing that the GS phase transition, similar to the one in the linear system, still exists under the action of the repulsive nonlinearity. In the case of weak attraction, a mixed state appears near the GS transition point, while the GS transitions into an edge state under the action of strong attractive interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13938v1-abstract-full').style.display = 'none'; document.getElementById('2411.13938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in Physical Review A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13488">arXiv:2411.13488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13488">pdf</a>, <a href="https://arxiv.org/format/2411.13488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Evidence of anisotropic three-dimensional weak-localization in TiSe$_{2}$ nanoflakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaocui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+J">Junxi Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13488v1-abstract-short" style="display: inline;"> TiSe$_2$ is a typical transition-metal dichalcogenide known for its charge-density wave order. In this study, we report the observation of an unusual anisotropic negative magnetoresistance in exfoliated TiSe$_2$ nanoflakes at low temperatures. Unlike the negative magnetoresistance reported in most other transition-metal dichalcogenides, our results cannot be explained by either the conventional tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13488v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13488v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13488v1-abstract-full" style="display: none;"> TiSe$_2$ is a typical transition-metal dichalcogenide known for its charge-density wave order. In this study, we report the observation of an unusual anisotropic negative magnetoresistance in exfoliated TiSe$_2$ nanoflakes at low temperatures. Unlike the negative magnetoresistance reported in most other transition-metal dichalcogenides, our results cannot be explained by either the conventional two-dimensional weak localization effect or the Kondo effect. A comprehensive analysis of the data suggests that the observed anisotropic negative magnetoresistance in TiSe$_2$ flakes is most likely caused by the three-dimensional weak localization effect. Our findings contribute to a deeper understanding of the phase-coherent transport processes in TiSe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13488v1-abstract-full').style.display = 'none'; document.getElementById('2411.13488v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11967">arXiv:2411.11967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11967">pdf</a>, <a href="https://arxiv.org/format/2411.11967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Domain walls from SPT-sewing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yabo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zijian Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubica%2C+A">Aleksander Kubica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+I+H">Isaac H. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11967v1-abstract-short" style="display: inline;"> We introduce a systematic method for constructing gapped domain walls of topologically ordered systems by gauging a lower-dimensional symmetry-protected topological (SPT) order. Based on our construction, we propose a correspondence between 1d SPT phases with a non-invertible $G\times \text{Rep}(G)\times G$ symmetry and invertible domain walls in the quantum double associated with the group $G$. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11967v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11967v1-abstract-full" style="display: none;"> We introduce a systematic method for constructing gapped domain walls of topologically ordered systems by gauging a lower-dimensional symmetry-protected topological (SPT) order. Based on our construction, we propose a correspondence between 1d SPT phases with a non-invertible $G\times \text{Rep}(G)\times G$ symmetry and invertible domain walls in the quantum double associated with the group $G$. We prove this correspondence when $G$ is Abelian and provide evidence for the general case by studying the quantum double model for $G=S_3$. We also use our method to construct \emph{anchoring domain walls}, which are novel exotic domain walls in the 3d toric code that transform point-like excitations to semi-loop-like excitations anchored on these domain walls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11967v1-abstract-full').style.display = 'none'; document.getElementById('2411.11967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23+35 pages, 11+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09907">arXiv:2411.09907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09907">pdf</a>, <a href="https://arxiv.org/format/2411.09907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Density-wave like behavior in a new Kagome material Ce$_{2}$Ru$_{3}$Si </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinhua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shengtai Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiwen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiyu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">Hai-hu Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09907v1-abstract-short" style="display: inline;"> Kagome materials with inherent geometric frustration can produce many interesting physical properties, such as flat bands, quantum spin liquid, chiral magnetism, superconductivity and density-wave orders. Sometimes, the localized 4$f$ electrons from Ce atoms coupled with other conduction electrons would also give rise to the flat bands near the Fermi level, and results in the formation of heavy fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09907v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09907v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09907v1-abstract-full" style="display: none;"> Kagome materials with inherent geometric frustration can produce many interesting physical properties, such as flat bands, quantum spin liquid, chiral magnetism, superconductivity and density-wave orders. Sometimes, the localized 4$f$ electrons from Ce atoms coupled with other conduction electrons would also give rise to the flat bands near the Fermi level, and results in the formation of heavy fermion. Thus, it is highly probable that kagome material incorporating Ce element will display nontrivial physical properties. In this study, we present a new Kagome material belonging to the trinary Laves phase, Ce$_{2}$Ru$_{3}$Si, in which kagome plane is formed by Ru atoms. Electrical transport and specific heat measurements reveal a density-wave like transition. A Curie-Weiss behavior is observed in low-temperature region. Meanwhile we also find a relatively large specific coefficient $纬_{n}(0)$. The calculated Wilson ratio $R_\mathrm{W}\propto{蠂(0)/纬_{n}}$ is approximately 3.1, indicating a moderate electron correlation effect. Chemical doping of Ir at the Ru site rapidly suppresses this density-wave like transition, while Mo doping leads to a gradual decrease in transition temperature. Theoretical calculation indicates both the Ce-4$f$ and Ru-4$d$ electronic bands cross the Fermi level, forming a Mexican-hat-shape Fermi surface close to the Fermi energy, potentially accounting for the observed density-wave like transition. Our findings provide an useful platform for investigating how hybridization between 4$f$ and 4$d$ electrons influences the electronic transport, and the relationship between the density-wave transition and kagome structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09907v1-abstract-full').style.display = 'none'; document.getElementById('2411.09907v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15pages, 4 figures,2 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09713">arXiv:2411.09713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Semiconductor Grafting: Enabling High-Performance, Lattice-Mismatched Heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+H">Haining Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jisoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiran Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">Hokyung Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09713v1-abstract-short" style="display: inline;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. Howeve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09713v1-abstract-full" style="display: none;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. However, its scalability and uniformity at the wafer level have yet to be demonstrated. This work demonstrates the achievement of highly uniform, reproducible results across silicon, sapphire, and gallium nitride (GaN) substrates using wafer-scale semiconductor grafting. To illustrate this scalability, we conducted an in-depth study of a grafted Si/GaN heterojunction, examining band alignment through X-ray photoelectron spectroscopy and confirming crystallinity and interfacial integrity with scanning transmission electron microscopy. The resulting p-n diodes exhibit significantly enhanced electrical performance and wafer-scale uniformity compared to conventional approaches. This work establishes wafer-scale semiconductor grafting as a versatile and scalable technology, bridging the gap between laboratory-scale research and industrial manufacturing for heterogeneous semiconductor integration, and paving the way for novel, high-performance electronic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'none'; document.getElementById('2411.09713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09421">arXiv:2411.09421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09421">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A 2D van der Waals Material for Terahertz Emission with Giant Optical Rectification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Handa%2C+T">Taketo Handa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chun-Ying Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiliu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olsen%2C+N">Nicholas Olsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chica%2C+D+G">Daniel G. Chica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D+D">David D. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sturm%2C+F">Felix Sturm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McIver%2C+J+W">James W. McIver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+X">Xavier Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiaoyang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09421v1-abstract-short" style="display: inline;"> Exfoliation and stacking of two-dimensional (2D) van der Waals (vdW) crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in sample sizes (1 - 10 micrometer) and wavelengths (0.1 - 1 millimeter) of electromagnetic radiation relevant to their low-energy excitation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09421v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09421v1-abstract-full" style="display: none;"> Exfoliation and stacking of two-dimensional (2D) van der Waals (vdW) crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in sample sizes (1 - 10 micrometer) and wavelengths (0.1 - 1 millimeter) of electromagnetic radiation relevant to their low-energy excitations. Here, we introduce a new member of the 2D vdW material family: a terahertz (THz) emitter. We show intense and broadband THz generation from the vdW ferroelectric semiconductor NbOI2 with optical rectification efficiency over one-order-of-magnitude higher than that of the current standard THz emitter, ZnTe. The NbOI2 THz emitter can be easily integrated into vdW heterostructures for on-chip near-field THz spectroscopy of a target vdW material/device. Our approach provides a general spectroscopic tool for the rapidly expanding field of 2D vdW materials and quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09421v1-abstract-full').style.display = 'none'; document.getElementById('2411.09421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures, 15 pages of Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08980">arXiv:2411.08980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08980">pdf</a>, <a href="https://arxiv.org/format/2411.08980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital Fulde-Ferrell-Larkin-Ovchinnikov state in 2H-NbS2 flakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xinming Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guoliang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+C">Chengyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+N+F+Q">Noah F. Q. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chuanwen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+H">Huai Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+C">Changshuai Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yihang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08980v1-abstract-short" style="display: inline;"> Symmetry breaking in a layered superconductor with Ising spin-orbit coupling has offered an opportunity to realize unconventional superconductivity. To be more specific, orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, exhibiting layer-dependent finite-momentum pairing, may emerge in transition metal dichalcogenides materials (TMDC) in the presence of an in-plane magnetic field. Orbital FFLO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08980v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08980v1-abstract-full" style="display: none;"> Symmetry breaking in a layered superconductor with Ising spin-orbit coupling has offered an opportunity to realize unconventional superconductivity. To be more specific, orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, exhibiting layer-dependent finite-momentum pairing, may emerge in transition metal dichalcogenides materials (TMDC) in the presence of an in-plane magnetic field. Orbital FFLO state can be more robust against the magnetic field than the conventional superconducting state with zero-momentum pairing. This feature renders its potential in field resilient superconducting functionality. Although, orbital FFLO state has been reported in NbSe2 and MoS2, it is not yet clear if orbital FFLO state can be a general feature of TMDC superconductor. Here, we report the observation of orbital FFLO state in 2H-NbS2 flakes and its dependence on the thickness of flake. We conclude that the relatively weak interlayer coupling is instrumental in stabilizing orbital FFLO state at higher temperature with respect to the critical temperature and lower magnetic field with respect to paramagnetic limit in NbS2 in comparison to its NbSe2 counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08980v1-abstract-full').style.display = 'none'; document.getElementById('2411.08980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08654">arXiv:2411.08654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08654">pdf</a>, <a href="https://arxiv.org/format/2411.08654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin-valley-polarized Weiss oscillations in monolayer 1{\it T}$^{\prime}$-\ce{MoS2} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+W">W. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+R">R. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08654v1-abstract-short" style="display: inline;"> Monolayer 1{\it T}$^{\prime}$-\ce{MoS2} exhibits spin- and valley-dependent massive tilted Dirac cones with two velocity correction terms in low-energy effective Hamiltonian. We theoretically investigate the longitudinal diffusive magnetoconductivity of monolayer 1{\it T}$^{\prime}$-\ce{MoS2} by using the linear response theory. It is shown that, when the Fermi level is close to the spin-orbit cou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08654v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08654v1-abstract-full" style="display: none;"> Monolayer 1{\it T}$^{\prime}$-\ce{MoS2} exhibits spin- and valley-dependent massive tilted Dirac cones with two velocity correction terms in low-energy effective Hamiltonian. We theoretically investigate the longitudinal diffusive magnetoconductivity of monolayer 1{\it T}$^{\prime}$-\ce{MoS2} by using the linear response theory. It is shown that, when the Fermi level is close to the spin-orbit coupling gap, the Weiss oscillation splits into two branches and exhibits spin-valley polarization in the presence of both a spatial periodic electric potential modulation in the lateral direction and a nonzero perpendicular electric field. The spin-valley polarization stems from the interplay between the tilted Dirac cones, the spin-orbit coupling gap, and the external electric potential modulation, and can be treated as a signature of monolayer 1{\it T}$^{\prime}$-\ce{MoS2}. When the Fermi level is far from the spin-orbit coupling gap, the spin-polarization appears in the Weiss oscillation under a magnetic field modulation in the lateral direction. This polarization behavior arises from the interplay between the tilted Dirac cones, the spin-orbit coupling, and the external magnetic field modulation, indicating that a finite spin-orbit coupling gap is not indispensable for polarization in the Weiss oscillation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08654v1-abstract-full').style.display = 'none'; document.getElementById('2411.08654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08496">arXiv:2411.08496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08496">pdf</a>, <a href="https://arxiv.org/format/2411.08496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> </div> <p class="title is-5 mathjax"> Chaotic-Integrable Transition for Disordered Orbital Hatsugai-Kohmoto Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying-Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chen-Te Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+P">Po-Yao Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08496v1-abstract-short" style="display: inline;"> We have drawn connections between the Sachdev-Ye-Kitaev model and the multi-orbit Hatsugei-Kohmoto model, emphasizing their similarities and differences regarding chaotic behaviors. The features of the spectral form factor, such as the dip-ramp-plateau structure and the adjacent gap ratio, indicate chaos in the disordered orbital Hatsugei-Kohmoto model. One significant conclusion is that the plate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08496v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08496v1-abstract-full" style="display: none;"> We have drawn connections between the Sachdev-Ye-Kitaev model and the multi-orbit Hatsugei-Kohmoto model, emphasizing their similarities and differences regarding chaotic behaviors. The features of the spectral form factor, such as the dip-ramp-plateau structure and the adjacent gap ratio, indicate chaos in the disordered orbital Hatsugei-Kohmoto model. One significant conclusion is that the plateau value of the out-of-time-order correlator, whether in the Hatsugei-Kohmoto model, Sachdev-Ye-Kitaev model with two- or four-body interactions, or a disorder-free Sachdev-Ye-Kitaev model, does not effectively differentiate between integrable and chaotic phases in many-body systems. This observation suggests a limitation in using out-of-time-order correlator plateau values as a diagnostic tool for chaos. Our exploration of these ideas provides a deeper understanding of how chaos arises in non-Fermi liquid systems and the tools we use to study it. It opens the door to further questions, particularly about whether there are more effective ways to distinguish between chaotic and integrable phases in these complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08496v1-abstract-full').style.display = 'none'; document.getElementById('2411.08496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08063">arXiv:2411.08063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08063">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+Z">Ziqi Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yahao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+K">Kaijia Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+K">Kunyuan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Ming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xingyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fengqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yicong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+S">Shuxin Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08063v1-abstract-short" style="display: inline;"> The rapid evolution of artificial intelligence, particularly large language models, presents unprecedented opportunities for materials science research. We proposed and developed an AI materials scientist named MatPilot, which has shown encouraging abilities in the discovery of new materials. The core strength of MatPilot is its natural language interactive human-machine collaboration, which augme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08063v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08063v1-abstract-full" style="display: none;"> The rapid evolution of artificial intelligence, particularly large language models, presents unprecedented opportunities for materials science research. We proposed and developed an AI materials scientist named MatPilot, which has shown encouraging abilities in the discovery of new materials. The core strength of MatPilot is its natural language interactive human-machine collaboration, which augments the research capabilities of human scientist teams through a multi-agent system. MatPilot integrates unique cognitive abilities, extensive accumulated experience, and ongoing curiosity of human-beings with the AI agents&#39; capabilities of advanced abstraction, complex knowledge storage and high-dimensional information processing. It could generate scientific hypotheses and experimental schemes, and employ predictive models and optimization algorithms to drive an automated experimental platform for experiments. It turns out that our system demonstrates capabilities for efficient validation, continuous learning, and iterative optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08063v1-abstract-full').style.display = 'none'; document.getElementById('2411.08063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06778">arXiv:2411.06778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06778">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Charge Density Wave Coexisting with Amplified Nematicity in the Correlated Kagome Metal CsCr3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Ying Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+Y">Yuxin Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guang-Ming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06778v1-abstract-short" style="display: inline;"> The correlated phenomena of flat bands have been extensively studied in twisted systems. However, the emergent ordered states arising from interactions in intrinsic multi-orbital flat bands in kagome lattice materials remain largely unexplored. In contrast to the vanadium-based AV3Sb5 (A = K, Rb, Cs), the newly discovered kagome metal CsCr3Sb5, featuring pressurized superconductivity, antiferromag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06778v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06778v1-abstract-full" style="display: none;"> The correlated phenomena of flat bands have been extensively studied in twisted systems. However, the emergent ordered states arising from interactions in intrinsic multi-orbital flat bands in kagome lattice materials remain largely unexplored. In contrast to the vanadium-based AV3Sb5 (A = K, Rb, Cs), the newly discovered kagome metal CsCr3Sb5, featuring pressurized superconductivity, antiferromagnetism, structural phase transition, and density wave orders, provides a rich platform for investigating strong electron correlations in multi-orbital flat bands at the Fermi surface. Here, using ultrafast optical techniques, we reveal the gap opening and the emergence of a distinct 1x4 charge density wave (CDW) at low temperatures in CsCr3Sb5. We also find that this CDW reduces the rotational symmetry to three inequivalent nematic domains, and the exotic nematicity is further amplified by the degeneracy lifting of the multi-orbital flat bands, similar to some iron-based superconductors. Surprisingly, both CDW and orbital nematicity appear concurrently with spin and structural orders at the same temperature, indicating that a single characteristic energy scale governs the low-energy flat band physics. Our study thus pioneers the investigation of ultrafast dynamics in flat band systems at the Fermi surface, offering new insights into the interactions between multiple elementary excitations in strongly correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06778v1-abstract-full').style.display = 'none'; document.getElementById('2411.06778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06162">arXiv:2411.06162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06162">pdf</a>, <a href="https://arxiv.org/format/2411.06162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.074410">10.1103/PhysRevMaterials.8.074410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proximate Tomonaga-Luttinger liquid in a spin-1/2 ferromagnetic XXZ chain compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Boqiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yuqian Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhaohua Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Z">Zongtang Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuesheng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06162v1-abstract-short" style="display: inline;"> The spin-1/2 ferromagnetic XXZ chain is a prototypical many-body quantum model, exactly solvable via the integrable Bethe ansatz method, hosting a Tomonaga-Luttinger spin liquid. However, its clear experimental realizations remain absent. Here, we present a thorough investigation of the magnetism of the structurally disorder-free compound LuCu(OH)$_3$SO$_4$. By conducting magnetization and electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06162v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06162v1-abstract-full" style="display: none;"> The spin-1/2 ferromagnetic XXZ chain is a prototypical many-body quantum model, exactly solvable via the integrable Bethe ansatz method, hosting a Tomonaga-Luttinger spin liquid. However, its clear experimental realizations remain absent. Here, we present a thorough investigation of the magnetism of the structurally disorder-free compound LuCu(OH)$_3$SO$_4$. By conducting magnetization and electron-spin-resonance measurements on the single-crystal sample, we establish that the title compound approximates the spin-1/2 ferromagnetic XXZ chain model with a nearest-neighbor exchange strength of $J_1$ $\sim$ 65 K and an easy-plane anisotropy of $\sim$ 0.994. The specific heat demonstrates a distinctive power-law behavior at low magnetic fields (with energy scales $\leq$ 0.02$J_1$) and low temperatures ($T$ $\leq$ 0.03$J_1$). This behavior is consistent with the expectations of the ideal spin-1/2 ferromagnetic XXZ chain model, thereby supporting the formation of a gapless Tomonaga-Luttinger spin liquid in LuCu(OH)$_3$SO$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06162v1-abstract-full').style.display = 'none'; document.getElementById('2411.06162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. Materials 8, 074410 (2024) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 8, 074410 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05004">arXiv:2411.05004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05004">pdf</a>, <a href="https://arxiv.org/format/2411.05004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Long-range entanglement from spontaneous non-onsite symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhehao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yabo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Tsung-Cheng Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05004v1-abstract-short" style="display: inline;"> We explore the states of matter arising from the spontaneous symmetry breaking (SSB) of $\mathbb{Z}_2$ non-onsite symmetries. In one spatial dimension, we construct a frustration-free lattice model exhibiting SSB of a non-onsite symmetry, which features the coexistence of two ground states with distinct symmetry-protected topological (SPT) orders. We analytically prove the two-fold ground-state de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05004v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05004v1-abstract-full" style="display: none;"> We explore the states of matter arising from the spontaneous symmetry breaking (SSB) of $\mathbb{Z}_2$ non-onsite symmetries. In one spatial dimension, we construct a frustration-free lattice model exhibiting SSB of a non-onsite symmetry, which features the coexistence of two ground states with distinct symmetry-protected topological (SPT) orders. We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap. Fixing the symmetry sector yields a long-range entangled ground state that features long-range correlations among non-invertible charged operators. We also present a constant-depth measurement-feedback protocol to prepare such a state with a constant success probability in the thermodynamic limit, which may be of independent interest. Under a symmetric deformation, the SSB persists up to a critical point, beyond which a gapless phase characterized by a conformal field theory emerges. In two spatial dimensions, the SSB of 1-form non-onsite symmetries leads to a long-range entangled state (SPT soup) - a condensate of 1d SPT along any closed loops. On a torus, there are four such locally indistinguishable states that exhibit algebraic correlations between local operators, which we derived via a mapping to the critical $O(2)$ loop model. This provides an intriguing example of `topological quantum criticality&#39;. Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography (SymTFT). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05004v1-abstract-full').style.display = 'none'; document.getElementById('2411.05004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04375">arXiv:2411.04375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04375">pdf</a>, <a href="https://arxiv.org/format/2411.04375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245145">10.1103/PhysRevB.108.245145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak antilocalization in the transition metal telluride Ta$_2$Pd$_3$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+W">Wen-He Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+H">Hang-Qiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wuzhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+J">Jin-Ke Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+S">Shaozhu Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuke Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04375v1-abstract-short" style="display: inline;"> We report transport studies on the layered van der Waals topological crystalline insulator Ta$_2$Pd$_3$Te$_5$. The temperature-dependent resistance at high temperature is dominated by a bulk insulating gap and tend to saturate at low temperatures. Low temperature magnetotransport shows that Ta$_2$Pd$_3$Te$_5$ exhibits weak antilocatization (WAL) effect in both perpendicular orientation and paralle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04375v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04375v1-abstract-full" style="display: none;"> We report transport studies on the layered van der Waals topological crystalline insulator Ta$_2$Pd$_3$Te$_5$. The temperature-dependent resistance at high temperature is dominated by a bulk insulating gap and tend to saturate at low temperatures. Low temperature magnetotransport shows that Ta$_2$Pd$_3$Te$_5$ exhibits weak antilocatization (WAL) effect in both perpendicular orientation and parallel orientation, suggesting an contribution of the WAL effect from both topological edge states and bulk states. By measuring the anisotropic magnetoconductance and then subtracting the contribution of bulk states, the WAL effect associated with topological edge states can be revealed and analyzed quantitatively based on the two-dimensional Hikami-Larkin-Nagaoka model. Our results have important implications in understanding the WAL phenomena in Ta$_2$Pd$_3$Te$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04375v1-abstract-full').style.display = 'none'; document.getElementById('2411.04375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB 108 (2023) 8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03664">arXiv:2411.03664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03664">pdf</a>, <a href="https://arxiv.org/format/2411.03664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Predictive First-Principles Framework of Chiral Charge Density Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+W">Wei-Chi Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+T">Tao Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yilin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+J">Jinyang Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yuanjun Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Q">Qiange Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+P">Peiyuan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng-Long Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Wei-bo Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03664v1-abstract-short" style="display: inline;"> Implementing and tuning chirality is fundamental in physics, chemistry, and material science. Chiral charge density waves (CDWs), where chirality arises from correlated charge orders, are attracting intense interest due to their exotic transport and optical properties. However, a general framework for predicting chiral CDW materials is lacking, primarily because the underlying mechanisms remain el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03664v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03664v1-abstract-full" style="display: none;"> Implementing and tuning chirality is fundamental in physics, chemistry, and material science. Chiral charge density waves (CDWs), where chirality arises from correlated charge orders, are attracting intense interest due to their exotic transport and optical properties. However, a general framework for predicting chiral CDW materials is lacking, primarily because the underlying mechanisms remain elusive. Here, we address this challenge by developing the first comprehensive predictive framework, systematically identifying chiral CDW materials via first-principles calculations. The key lies in the previously overlooked phase difference of the CDW Q-vectors between layers, which is linked to opposite collective atomic displacements across different layers. This phase difference induces a spiral arrangement of the Q-vectors, ultimately giving rise to a chiral structure in real space. We validate our framework by applying it to the kagome lattice AV$_{3}$Sb$_{5}$ (A = K, Rb, Cs), successfully predicting emergent structural chirality. To demonstrate the generality of our approach, we extend it to predict chiral CDWs in the triangular-lattice NbSe$_{2}$. Beyond material predictions, our theory uncovers a universal and unprecedented Hall effect in chiral CDW materials, occurring without external magnetic fields or intrinsic magnetization. Our experiments on CsV$_{3}$Sb$_{5}$ confirm this prediction, observing a unique signature where the Hall conductivity&#39;s sign reverses when the input current is reversed, a phenomenon distinct from known Hall effects. Our findings elucidate the mechanisms behind chiral CDWs and open new avenues for discovering materials with unconventional quantum properties, with potential applications in next-generation electronic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03664v1-abstract-full').style.display = 'none'; document.getElementById('2411.03664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02384">arXiv:2411.02384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02384">pdf</a>, <a href="https://arxiv.org/ps/2411.02384">ps</a>, <a href="https://arxiv.org/format/2411.02384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> LDPC stabilizer codes as gapped quantum phases: stability under graph-local perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Roeck%2C+W">Wojciech De Roeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khemani%2C+V">Vedika Khemani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Dea%2C+N">Nicholas O&#39;Dea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rakovszky%2C+T">Tibor Rakovszky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02384v1-abstract-short" style="display: inline;"> We generalize the proof of stability of topological order, due to Bravyi, Hastings and Michalakis, to stabilizer Hamiltonians corresponding to low-density parity check (LDPC) codes without the restriction of geometric locality in Euclidean space. We consider Hamiltonians $H_0$ defined by $[[N,K,d]]$ LDPC codes which obey certain topological quantum order conditions: (i) code distance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02384v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02384v1-abstract-full" style="display: none;"> We generalize the proof of stability of topological order, due to Bravyi, Hastings and Michalakis, to stabilizer Hamiltonians corresponding to low-density parity check (LDPC) codes without the restriction of geometric locality in Euclidean space. We consider Hamiltonians $H_0$ defined by $[[N,K,d]]$ LDPC codes which obey certain topological quantum order conditions: (i) code distance $d \geq c \log(N)$, implying local indistinguishability of ground states, and (ii) a mild condition on local and global compatibility of ground states; these include good quantum LDPC codes, and the toric code on a hyperbolic lattice, among others. We consider stability under weak perturbations that are quasi-local on the interaction graph defined by $H_0$, and which can be represented as sums of bounded-norm terms. As long as the local perturbation strength is smaller than a finite constant, we show that the perturbed Hamiltonian has well-defined spectral bands originating from the $O(1)$ smallest eigenvalues of $H_0$. The band originating from the smallest eigenvalue has $2^K$ states, is separated from the rest of the spectrum by a finite energy gap, and has exponentially narrow bandwidth $未= C N e^{-螛(d)}$, which is tighter than the best known bounds even in the Euclidean case. We also obtain that the new ground state subspace is related to the initial code subspace by a quasi-local unitary, allowing one to relate their physical properties. Our proof uses an iterative procedure that performs successive rotations to eliminate non-frustration-free terms in the Hamiltonian. Our results extend to quantum Hamiltonians built from classical LDPC codes, which give rise to stable symmetry-breaking phases. These results show that LDPC codes very generally define stable gapped quantum phases, even in the non-Euclidean setting, initiating a systematic study of such phases of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02384v1-abstract-full').style.display = 'none'; document.getElementById('2411.02384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01672">arXiv:2411.01672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01672">pdf</a>, <a href="https://arxiv.org/format/2411.01672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Atomistic modeling of diffusion processes at Al(Si)/Si(111) interphase boundaries obtained by vapor deposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koju%2C+R+K">Raj K. Koju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishin%2C+Y">Yuri Mishin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01672v1-abstract-short" style="display: inline;"> Molecular dynamics and parallel-replica dynamics simulations are applied to investigate the atomic structures and diffusion processes at {\text{Al}\{111\}}\parallel{\text{Si}}\{111\} interphase boundaries constructed by simulated vapor deposition of Al(Si) alloy on Si(111) substrates. Different orientation relationships and interface structures are obtained for different pre-deposition Si (111) su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01672v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01672v1-abstract-full" style="display: none;"> Molecular dynamics and parallel-replica dynamics simulations are applied to investigate the atomic structures and diffusion processes at {\text{Al}\{111\}}\parallel{\text{Si}}\{111\} interphase boundaries constructed by simulated vapor deposition of Al(Si) alloy on Si(111) substrates. Different orientation relationships and interface structures are obtained for different pre-deposition Si (111) surface reconstructions. Diffusion of both Al and Si atoms at the interfaces is calculated and compared with diffusion along grain boundaries, triple junctions, contact lines, and threading dislocations in the Al-Si system. It is found that {\text{Al}\{111\}}\parallel{\text{Si}}\{111\} interphase boundaries exhibit the lowest diffusivity among these structures and are closest to the lattice diffusivity. In most cases (except for the Si substrate), Si atoms are more mobile than Al atoms. The diffusion processes are typically mediated by Al vacancies and Si interstitial atoms migrating by either direct or indirect interstitial mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01672v1-abstract-full').style.display = 'none'; document.getElementById('2411.01672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01554">arXiv:2411.01554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01554">pdf</a>, <a href="https://arxiv.org/ps/2411.01554">ps</a>, <a href="https://arxiv.org/format/2411.01554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Tightly bound solitons and vortices in three-dimensional bosonic condensates with the electromagnetically-induced gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zibin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guilong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huanbo Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guihua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongyao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01554v1-abstract-short" style="display: inline;"> The $1/r$ long-range interaction introduced by the laser beams offers a mechanism for the implementation of stable self-trapping in Bose-Einstein condensates (BECs) in the three-dimensional free space. Using the variational approximation and numerical solution, we find that self-trapped states in this setting closely resemble tightly-bound compactons. This feature of the self-trapped states is exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01554v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01554v1-abstract-full" style="display: none;"> The $1/r$ long-range interaction introduced by the laser beams offers a mechanism for the implementation of stable self-trapping in Bose-Einstein condensates (BECs) in the three-dimensional free space. Using the variational approximation and numerical solution, we find that self-trapped states in this setting closely resemble tightly-bound compactons. This feature of the self-trapped states is explained by an analytical solution for their asymptotic tails. Further, we demonstrate that stable vortex quasi-compactons (QCs), with topological charges up to $6$ (at least), exist in the same setting. Addressing two-body dynamics, we find that pairs of ground states, as well as vortex-vortex and vortex-antivortex pairs, form stably rotating bound states. Head-on collisions between vortex QCs under small kicks are inelastic, resulting in their merger into a ground state soliton that may either remain at the collision position or move aside, or alternatively, lead to the formation of a vortex that also moves aside. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01554v1-abstract-full').style.display = 'none'; document.getElementById('2411.01554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figure, 11 pages, and 116 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01395">arXiv:2411.01395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01395">pdf</a>, <a href="https://arxiv.org/format/2411.01395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adpr.202400010">10.1002/adpr.202400010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation mechanisms and fluorescence properties of carbon dots in coal burning dust from coal fired power plants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhexian Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Weizuo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuzhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Han Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+F">Fangming Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Z">Zhongcai Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Ju Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yiming Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Wen Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BC%2C+Y">Yanfei L眉</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01395v1-abstract-short" style="display: inline;"> Carbon dots (CDs) shows great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It has been shown in our results that there have two main possible mechani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01395v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01395v1-abstract-full" style="display: none;"> Carbon dots (CDs) shows great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It has been shown in our results that there have two main possible mechanisms for the formation of CDs in coal burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal are breaking which would form CDs with different functional groups when the coals are burning at high temperature. Under violet light excitation at 310-340 nm or red light at 610-640 nm, CDs extracted from coal burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal burning dust from coal-fired power plants are not only good to protect environment but also would be helpful for mass production of CDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01395v1-abstract-full').style.display = 'none'; document.getElementById('2411.01395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Photonics Research 5(10), 2400010 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01162">arXiv:2411.01162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01162">pdf</a>, <a href="https://arxiv.org/ps/2411.01162">ps</a>, <a href="https://arxiv.org/format/2411.01162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.165441">10.1103/PhysRevB.109.165441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-optical conductivity of monolayer transition metal dichalcogenides in the presence of proximity-induced exchange interaction and external electrical field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y+M">Y. M. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">W. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+L">L. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Milo%C5%A1evi%C4%87%2C+M+V">M. V. Milo拧evi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">F. M. Peeters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01162v1-abstract-short" style="display: inline;"> We theoretically investigate the magneto-optical (MO) properties of monolayer (ML) transition metal dichalcogenides (TMDs) in the presence of external electrical and quantizing magnetic fields and of the proximity-induced exchange interaction. The corresponding Landau Level (LL) structure is studied by solving the Schr枚dinger equation and the spin polarization in ML-TMDs under the action of the ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01162v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01162v1-abstract-full" style="display: none;"> We theoretically investigate the magneto-optical (MO) properties of monolayer (ML) transition metal dichalcogenides (TMDs) in the presence of external electrical and quantizing magnetic fields and of the proximity-induced exchange interaction. The corresponding Landau Level (LL) structure is studied by solving the Schr枚dinger equation and the spin polarization in ML-TMDs under the action of the magnetic field is evaluated.The impact of trigonal warping on LLs and MO absorption is examined. Furthermore, the longitudinal MO conductivity is calculated through the dynamical dielectric function under the standard random-phase approximation (RPA) with the Kubo formula. We take ML-MoS$_2$ as an example to examine the effects of proximity-induced exchange interaction, external electrical and magnetic fields on the MO conductivity induced via intra- and interband electronic transitions among the LLs. For intraband electronic transitions within the conduction or valence bands, we can observe two absorption peaks in terahertz (THz) frequency range. While the interband electronic transitions between conduction and valence LLs show a series of absorption peaks in the visible range. We find that the proximity-induced exchange interaction, the carrier density, the strengths of the external electrical and magnetic fields can effectively modulate the positions of the absorption peaks and the shapes of the MO absorption spectra. The results obtained from this study can benefit to an in-depth understanding of the MO properties of ML-TMDs which can be potentially applied for magneto-optic, spintronic and valleytronic devices working in visible to THz frequency bandwidths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01162v1-abstract-full').style.display = 'none'; document.getElementById('2411.01162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 165441 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22734">arXiv:2410.22734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22734">pdf</a>, <a href="https://arxiv.org/format/2410.22734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.195118">10.1103/PhysRevB.110.195118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of the charge density wave state in BaFe$_2$Al$_9$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mingfeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiangxu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiantao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+J">Junwen Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+D">Dongchang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+R">Ruizhi Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xing-Qiu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Peitao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22734v1-abstract-short" style="display: inline;"> Recently, a first-order phase transition associated with charge density wave (CDW) has been observed at low temperatures in intermetallic compound BaFe$_2$Al$_9$. However, this transition is absent in its isostructural sister compound BaCo$_2$Al$_9$. Consequently, an intriguing question arises as to the underlying factors that differentiate BaFe$_2$Al$_9$ from BaCo$_2$Al$_9$ and drive the CDW tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22734v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22734v1-abstract-full" style="display: none;"> Recently, a first-order phase transition associated with charge density wave (CDW) has been observed at low temperatures in intermetallic compound BaFe$_2$Al$_9$. However, this transition is absent in its isostructural sister compound BaCo$_2$Al$_9$. Consequently, an intriguing question arises as to the underlying factors that differentiate BaFe$_2$Al$_9$ from BaCo$_2$Al$_9$ and drive the CDW transition in BaFe$_2$Al$_9$. Here, we set out to address this question by conducting a comparative \emph{ab initio} study of the electronic structures, lattice dynamics, \textcolor{black}{and electron-phonon interactions} of their high-temperature phases. We find that both compounds are dynamically stable with similar phonon dispersions. The electronic structure calculations reveal that both compounds are nonmagnetic metals; however, they exhibit distinct band structures around the Fermi level. In particular, BaFe$_2$Al$_9$ exhibits a higher density of states at the Fermi level with dominant partially filled Fe-$3d$ states and a more intricate Fermi surface. This leads to an electronic instability of BaFe$_2$Al$_9$ toward the CDW transition, which is manifested by the diverged electronic susceptibility at the CDW wave vector $\mathbf{q}_{\rm CDW}$=(0.5, 0, 0.3), observable in both the real and imaginary parts. Conversely, BaCo$_2$Al$_9$ does not display such behavior, aligning well with experimental observations. Although the electron-phonon interactions in BaFe$_2$Al$_9$ surpass those in BaCo$_2$Al$_9$ by two orders of magnitude, the strength is relatively weak at the CDW wave vector, suggesting that the CDW in BaFe$_2$Al$_9$ is primarily driven by electronic factors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22734v1-abstract-full').style.display = 'none'; document.getElementById('2410.22734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 195118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22727">arXiv:2410.22727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22727">pdf</a>, <a href="https://arxiv.org/format/2410.22727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Colossal magnetoresistance from spin-polarized polarons in an Ising system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying-Fei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">Emily M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balguri%2C+S">Sudhaman Balguri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chun-Jing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahenderu%2C+M+B">Mira B. Mahenderu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22727v1-abstract-short" style="display: inline;"> Recent experiments suggest a new paradigm towards novel colossal magnetoresistance (CMR) in a family of materials EuM$_2$X$_2$(M=Cd, In, Zn; X=P, As), distinct from the traditional avenues involving Kondo-RKKY crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy (ARPES) and density functional th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22727v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22727v1-abstract-full" style="display: none;"> Recent experiments suggest a new paradigm towards novel colossal magnetoresistance (CMR) in a family of materials EuM$_2$X$_2$(M=Cd, In, Zn; X=P, As), distinct from the traditional avenues involving Kondo-RKKY crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to explore their origin, particularly focusing on EuCd$_2$P$_2$. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance (T$_{MR}$) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle. Using systematic material and temperature dependence investigation complemented by theory, we attribute this non-quasiparticle caricature to the strong presence of entangled magnetic and lattice interactions, a characteristic enabled by the $p$-$f$ mixing. Given the known presence of ferromagnetic clusters, this naturally points to the origin of CMR being the scattering of spin-polarized polarons at the boundaries of ferromagnetic clusters. These results are not only illuminating to investigate the strong correlations and topology in EuCd$_2$X$_2$ family, but, in a broader view, exemplify how multiple cooperative interactions can give rise to extraordinary behaviors in condensed matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22727v1-abstract-full').style.display = 'none'; document.getElementById('2410.22727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22156">arXiv:2410.22156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22156">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological surface state dominated nonlinear transverse response and microwave rectification at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+B">Bin Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+Y">Yaqi Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">Tieyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+X">Xianfa Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cong%2C+L">Longqing Cong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22156v1-abstract-short" style="display: inline;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22156v1-abstract-full" style="display: none;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk inversion symmetry, the coexistence of bulk and surface conducting channels often leads to a suppressed NLHE and complex thickness-dependent behavior. Here, we report the observation of room-temperature nonlinear transverse response in 3D topological insulator Bi2Te3 thin films, whose electrical transport properties are dominated by topological surface state (TSS). By varying the thickness of Bi2Te3 epitaxial films from 7 nm to 50 nm, we found that the nonlinear transverse response increases with thickness from 7 nm to 25 nm and remains almost constant above 25 nm. This is consistent with the thickness-dependent basic transport properties, including conductance, carrier density, and mobility, indicating a pure and robust TSS-dominated linear and nonlinear transport in thick (&gt;25 nm) Bi2Te3 films. The weaker nonlinear transverse response in Bi2Te3 below 25 nm was attributed to Te deficiency and poorer crystallinity. By utilizing the TSS-dominated electrical second harmonic generation, we successfully achieved the microwave rectification from 0.01 to 16.6 GHz in 30 nm and bulk Bi2Te3. Our work demonstrated the room temperature nonlinear transverse response in a paradigm topological insulator, addressing the tunability of the topological second harmonic response by thickness engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'none'; document.getElementById('2410.22156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20655">arXiv:2410.20655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20655">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> One-Dimensional Ionic-Bonded Structures in NiSe Nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaozhi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Ang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yaxian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yangyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yangfan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jinsong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+D">Dong Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20655v1-abstract-short" style="display: inline;"> One-dimensional van der Waals (1D vdW) materials, characterized by atomic chains bonded ionically or covalently in one direction and held together by van der Waals interactions in the perpendicular directions, have recently gained intensive attention due to their exceptional functions. In this work, we report the discovery of 1D ionic-bonded structures in NiSe nanowires. Utilizing aberration-corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20655v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20655v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20655v1-abstract-full" style="display: none;"> One-dimensional van der Waals (1D vdW) materials, characterized by atomic chains bonded ionically or covalently in one direction and held together by van der Waals interactions in the perpendicular directions, have recently gained intensive attention due to their exceptional functions. In this work, we report the discovery of 1D ionic-bonded structures in NiSe nanowires. Utilizing aberration-corrected scanning transmission electron microscopy, we identified four distinct structural phases composed of two fundamental 1D building blocks: a triangle-shaped unit and a parallelogram-shaped unit. These phases can transform into one another through topotactic combinations of the structural units. Density functional theory calculations reveal that these structural units are bound by ionic bonds, unlike the van der Waals forces typically found in 1D vdW materials. The diverse arrangements of these building blocks may give rise to unique electronic structures and magnetic properties, paving the way for designing advanced materials with novel functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20655v1-abstract-full').style.display = 'none'; document.getElementById('2410.20655v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19369">arXiv:2410.19369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19369">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable topological edge states in black phosphorus-like Bi(110) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+S">Shengdan Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guanyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+B">Bing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yunhao Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jin-feng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19369v1-abstract-short" style="display: inline;"> We have investigated the structures and electronic properties of ultra-thin Bi(110) films grown on an s-wave superconductor substrate using low-temperature scanning tunneling microscopy and spectroscopy. Remarkably, our experimental results validate the theoretical predictions that the manipulation of Bi(110) surface atom buckling can control the topological phase transition. Notably, we have obse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19369v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19369v1-abstract-full" style="display: none;"> We have investigated the structures and electronic properties of ultra-thin Bi(110) films grown on an s-wave superconductor substrate using low-temperature scanning tunneling microscopy and spectroscopy. Remarkably, our experimental results validate the theoretical predictions that the manipulation of Bi(110) surface atom buckling can control the topological phase transition. Notably, we have observed robust unreconstructed edge states at the edges of both 3-bilayer (BL) and 4-BL Bi(110) films, with the 4-BL film displaying stronger edge state intensity and a smaller degree of atomic buckling. First-principle calculations further substantiate these findings, demonstrating a gradual reduction in buckling as the film thickness increases, with average height differences between two Bi atoms of approximately 0.19 脜, 0.10 脜, 0.05 脜, and 0.00 脜 for the 1-BL, 2-BL, 3-BL, and 4-BL Bi(110) films, respectively. When Bi films are larger than 2 layers, the system changes from a trivial to a non-trivial phase. This research sets the stage for the controlled realization of topological superconductors through the superconducting proximity effect, providing a significant platform for investigating Majorana zero modes and fabricating quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19369v1-abstract-full').style.display = 'none'; document.getElementById('2410.19369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10