CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–44 of 44 results for author: <span class="mathjax">Yue, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Yue%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yue, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yue%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yue, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16174">arXiv:2410.16174</a> <span> [<a href="https://arxiv.org/pdf/2410.16174">pdf</a>, <a href="https://arxiv.org/format/2410.16174">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of anomalous information scrambling in a Rydberg atom array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liang%2C+X">Xinhui Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zongpei Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Chao%2C+Y">Yu-Xin Chao</a>, <a href="/search/cond-mat?searchtype=author&query=Hua%2C+Z">Zhen-Xing Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yige Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Tey%2C+M+K">Meng Khoon Tey</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+L">Li You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16174v1-abstract-short" style="display: inline;"> Quantum information scrambling, which describes the propagation and effective loss of local information, is crucial for understanding the dynamics of quantum many-body systems. In general, a typical interacting system would thermalize under time evolution, leading to the emergence of ergodicity and linear lightcones of information scrambling. Whereas, for a many-body localized system, strong disor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16174v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16174v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16174v1-abstract-full" style="display: none;"> Quantum information scrambling, which describes the propagation and effective loss of local information, is crucial for understanding the dynamics of quantum many-body systems. In general, a typical interacting system would thermalize under time evolution, leading to the emergence of ergodicity and linear lightcones of information scrambling. Whereas, for a many-body localized system, strong disorders give rise to an extensive number of conserved quantities that prevent the system from thermalization, resulting in full ergodicity breaking and a logarithmic lightcone for information spreading. Here, we report the experimental observation of anomalous information scrambling in an atomic tweezer array. Working in the Rydberg blockade regime, where van der Waals interaction dominates, we observe a suppressed linear lightcone of information spreading characterized by out-of-time-order correlators for the initial N茅el state, accompanied by persistent oscillations within the lightcone. Such an anomalous dynamics differs from both generic thermal and many-body localized scenarios. It originates from weak ergodicity breaking and is the characteristic feature for quantum many-body scars. The high-quality single-atom manipulations and coherent constraint dynamics, augmented by the effective protocol for time-reversed evolution we demonstrate, establish a versatile hybrid analog-digital simulation approach to explore diverse exotic non-equilibrium dynamics with atomic tweezer arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16174v1-abstract-full').style.display = 'none'; document.getElementById('2410.16174v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06147">arXiv:2410.06147</a> <span> [<a href="https://arxiv.org/pdf/2410.06147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53722-3">10.1038/s41467-024-53722-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zheng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Biswas%2C+A">Ananya Biswas</a>, <a href="/search/cond-mat?searchtype=author&query=Pulkkinen%2C+A">Aki Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yaofeng Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+F">Fang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Allen%2C+K">Kevin Allen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Q">Qirui Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A">Asish Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06147v1-abstract-short" style="display: inline;"> Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X=Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06147v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06147v1-abstract-full" style="display: none;"> Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X=Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question. Here, we probe the electronic structure with angle-resolved photoemission spectroscopy in a kagome magnet thin film FeSn synthesized using molecular beam epitaxy. We identify the exchange-split kagome flat bands, whose splitting persists above the magnetic ordering temperature, indicative of a local moment picture. Such local moments in the presence of the topological flat band are consistent with the compact molecular orbitals predicted in theory. We further observe a large spin-orbital selective band renormalization in the Fe d_xy+d_(x^2-y^2 ) spin majority channel reminiscent of the orbital selective correlation effects in the iron-based superconductors. Our discovery of the coexistence of local moments with topological flat bands in a kagome system echoes similar findings in magic-angle twisted bilayer graphene, and provides a basis for theoretical effort towards modeling correlation effects in magnetic flat band systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06147v1-abstract-full').style.display = 'none'; document.getElementById('2410.06147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 9376 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12423">arXiv:2409.12423</a> <span> [<a href="https://arxiv.org/pdf/2409.12423">pdf</a>, <a href="https://arxiv.org/format/2409.12423">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Surface State Evolution in Bi$_2$Se$_3$ via Surface Etching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Ruohan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jia-Wan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yusheng Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12423v1-abstract-short" style="display: inline;"> Topological insulators are materials with an insulating bulk interior while maintaining gapless boundary states against back scattering. Bi$_2$Se$_3$ is a prototypical topological insulator with a Dirac-cone surface state around $螕$. Here, we present a controlled methodology to gradually remove Se atoms from the surface Se-Bi-Se-Bi-Se quintuple layers, eventually forming bilayer-Bi on top of the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12423v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12423v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12423v1-abstract-full" style="display: none;"> Topological insulators are materials with an insulating bulk interior while maintaining gapless boundary states against back scattering. Bi$_2$Se$_3$ is a prototypical topological insulator with a Dirac-cone surface state around $螕$. Here, we present a controlled methodology to gradually remove Se atoms from the surface Se-Bi-Se-Bi-Se quintuple layers, eventually forming bilayer-Bi on top of the quintuple bulk. Our method allows us to track the topological surface state and confirm its robustness throughout the surface modification. Importantly, we report a relocation of the topological Dirac cone in both real space and momentum space, as the top surface layer transitions from quintuple Se-Bi-Se-Bi-Se to bilayer-Bi. Additionally, charge transfer among different surface layers is identified. Our study provides a precise method to manipulate surface configurations, allowing for the fine-tuning of the topological surface states in Bi$_2$Se$_3$, which represents a significant advancement towards nano-engineering of topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12423v1-abstract-full').style.display = 'none'; document.getElementById('2409.12423v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, accepted for publication in Nano Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09628">arXiv:2406.09628</a> <span> [<a href="https://arxiv.org/pdf/2406.09628">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.085153">10.1103/PhysRevB.104.085153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive Dirac Fermions and Strong Shubnikov-de Haas Oscillations in Topological Insulator Sm,Fe:Bi2Se3 Single Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Trang%2C+C+X">Chi Xuan Trang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qile Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Bake%2C+A">Abdulhakim Bake</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+C">Cheng Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Nancarrow%2C+M">Mitchell Nancarrow</a>, <a href="/search/cond-mat?searchtype=author&query=Edmonds%2C+M">Mark Edmonds</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09628v1-abstract-short" style="display: inline;"> Topological insulators (TIs) are emergent materials with unique band structure, which allow the study of quantum effect in solids, as well as contribute to high performance quantum devices. To achieve the better performance of TI, here we present a co-doping strategy using synergistic rare-earth Sm and transition-metal Fe dopants in Bi2Se3 single crystals, which combine the advantages of both tran… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09628v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09628v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09628v1-abstract-full" style="display: none;"> Topological insulators (TIs) are emergent materials with unique band structure, which allow the study of quantum effect in solids, as well as contribute to high performance quantum devices. To achieve the better performance of TI, here we present a co-doping strategy using synergistic rare-earth Sm and transition-metal Fe dopants in Bi2Se3 single crystals, which combine the advantages of both transition metal doped TI (high ferromagnetic ordering temperature and observed QAHE), and rare-earth doped TI (large magnetic moments and significant spin orbit coupling). In the as-grown single crystals, clear evidences of ferromagnetic ordering were observed. The angle resolve photoemission spectroscopy indicate the ferromagnetism opens a 44 meV band gap at surface Dirac point. Moreover, the carrier mobility at 3 K is ~ 7400 cm2/Vs, and we thus observed an ultra-strong Shubnikov-de Haas oscillation in the longitudinal resistivity, as well as the Hall steps in transverse resistivity below 14 T. Our transport and angular resolved photoemission spectroscopy results suggest that the rare-earth and transition metal co-doping in Bi2Se3 system is a promising avenue implement the quantum anomalous Hall effect, as well as harnessing the massive Dirac fermion in electrical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09628v1-abstract-full').style.display = 'none'; document.getElementById('2406.09628v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 085153 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05293">arXiv:2406.05293</a> <span> [<a href="https://arxiv.org/pdf/2406.05293">pdf</a>, <a href="https://arxiv.org/format/2406.05293">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ubiquitous Flat Bands in a Cr-based Kagome Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zehao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+F">Fang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuefei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+B">Bin Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zheng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+Y">Yuan Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Biswas%2C+A">Ananya Biswas</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Cheng Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Yakobson%2C+B+I">Boris I Yakobson</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05293v2-abstract-short" style="display: inline;"> In the quest for novel quantum states driven by topology and correlation, kagome lattice materials have garnered significant interest due to their distinctive electronic band structures, featuring flat bands (FBs) arising from the quantum destructive interference of the electronic wave function. The tuning of the FBs to the chemical potential would lead to the possibility of liberating electronic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05293v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05293v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05293v2-abstract-full" style="display: none;"> In the quest for novel quantum states driven by topology and correlation, kagome lattice materials have garnered significant interest due to their distinctive electronic band structures, featuring flat bands (FBs) arising from the quantum destructive interference of the electronic wave function. The tuning of the FBs to the chemical potential would lead to the possibility of liberating electronic instabilities that lead to emergent electronic orders. Despite extensive studies, direct evidence of FBs tuned to the chemical potential and their participation in emergent electronic orders have been lacking in bulk quantum materials. Here using a combination of Angle-Resolved Photoemission Spectroscopy (ARPES) and Density Functional Theory (DFT), we reveal that the low-energy electronic structure of the recently discovered Cr-based kagome metal superconductor CsCr3Sb5 is dominated by a pervasive FB in close proximity to, and below the Fermi level. A comparative analysis with orbital-projected DFT and polarization dependence measurement uncovers that an orbital-selective renormalization mechanism is needed to reconcile the discrepancy with the DFT calculations, which predict the FB to appear 200 meV above the Fermi level. Furthermore, we observe the FB to shift away from the Fermi level by 20 meV in the low-temperature density wave-ordered phase, highlighting the role of the FB in the emergent electronic order. Our results reveal CsCr3Sb5 to stand out as a promising platform for further exploration into the effects of FBs near the Fermi level on kagome lattices, and their role in emergent orders in bulk quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05293v2-abstract-full').style.display = 'none'; document.getElementById('2406.05293v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19566">arXiv:2405.19566</a> <span> [<a href="https://arxiv.org/pdf/2405.19566">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b01123">10.1021/acs.nanolett.9b01123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible Excitonic Insulating Phase in Quantum-Confined Sb Nanoflakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Nadeem%2C+M">Muhammad Nadeem</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&query=Fuhrer%2C+M">Michael Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19566v1-abstract-short" style="display: inline;"> In the 1960s, it was proposed that in small indirect band-gap materials, excitons can spontaneously form because the density of carriers is too low to screen the attractive Coulomb interaction between electrons and holes. The result is a novel strongly interacting insulating phase known as an excitonic insulator. Here we employ scanning tunnelling microscopy (STM) and spectroscopy (STS) to show th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19566v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19566v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19566v1-abstract-full" style="display: none;"> In the 1960s, it was proposed that in small indirect band-gap materials, excitons can spontaneously form because the density of carriers is too low to screen the attractive Coulomb interaction between electrons and holes. The result is a novel strongly interacting insulating phase known as an excitonic insulator. Here we employ scanning tunnelling microscopy (STM) and spectroscopy (STS) to show that the enhanced Coulomb interaction in quantum-confined elemental Sb nanoflakes drives the system to the excitonic insulator state. The unique feature of the excitonic insulator, a charge density wave (CDW) without periodic lattice distortion, is directly observed. Furthermore, STS shows a gap induced by the CDW near the Fermi surface. Our observations suggest that the Sb(110) nanoflake is an excitonic insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19566v1-abstract-full').style.display = 'none'; document.getElementById('2405.19566v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16770">arXiv:2404.16770</a> <span> [<a href="https://arxiv.org/pdf/2404.16770">pdf</a>, <a href="https://arxiv.org/format/2404.16770">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pseudogap phase as fluctuating pair density wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zheng-Yuan Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zheng-Tao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shuo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Z">Zheng-Cheng Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16770v2-abstract-short" style="display: inline;"> The physical nature of pseudogap phase is one of the most important and intriguing problems towards understanding the key mechanism of high temperature superconductivity in cuprates. Theoretically, the square-lattice $t$-$J$ model is widely believed to be the simplest toy model that captures the essential physics of cuprate superconductors. We employ the Grassmann tensor product state approach to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16770v2-abstract-full').style.display = 'inline'; document.getElementById('2404.16770v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16770v2-abstract-full" style="display: none;"> The physical nature of pseudogap phase is one of the most important and intriguing problems towards understanding the key mechanism of high temperature superconductivity in cuprates. Theoretically, the square-lattice $t$-$J$ model is widely believed to be the simplest toy model that captures the essential physics of cuprate superconductors. We employ the Grassmann tensor product state approach to investigate uniform states in the underdoped ($未\lesssim 0.1$) region. In addition to the previously known uniform $d$-wave state, we discover a strongly fluctuating pair density wave (PDW) state with wave vector $Q = (蟺, 蟺)$. This fluctuating PDW state weakly breaks the $C_4$ rotational symmetry of the square lattice and has a lower or comparable energy to the $d$-wave state (depending on doping and the $t/J$ ratio), making it a promising candidate state for describing the pseudogap phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16770v2-abstract-full').style.display = 'none'; document.getElementById('2404.16770v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 13 figures, references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18887">arXiv:2402.18887</a> <span> [<a href="https://arxiv.org/pdf/2402.18887">pdf</a>, <a href="https://arxiv.org/format/2402.18887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Exchange bias induced by spin-glass-like state in Te-rich FeGeTe van der Waals ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+S">Shaojie Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+X">Xiaomin Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">Pangpang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ohnishi%2C+K">Kohei Ohnishi</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Shu-Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+S">Sheng-qun Su</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+O">Osamu Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Yamada%2C+S">Sunao Yamada</a>, <a href="/search/cond-mat?searchtype=author&query=Kimura%2C+T">Takashi Kimura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18887v1-abstract-short" style="display: inline;"> We have experimentally investigated the mechanism of the exchange bias in the 2D van der Waals (vdW) ferromagnets by means of the anomalous Hall effect (AHE) together with the dynamical magnetization property. The temperature dependence of the AC susceptibility with its frequency response indicates a glassy transition of the magnetic property for the Te-rich FeGeTe vdW ferromagnet. We also found t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18887v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18887v1-abstract-full" style="display: none;"> We have experimentally investigated the mechanism of the exchange bias in the 2D van der Waals (vdW) ferromagnets by means of the anomalous Hall effect (AHE) together with the dynamical magnetization property. The temperature dependence of the AC susceptibility with its frequency response indicates a glassy transition of the magnetic property for the Te-rich FeGeTe vdW ferromagnet. We also found that the irreversible temperature dependence in the anomalous Hall voltage follows the Almeida-Thouless line. Moreover, the freezing temperature of the spin-glass-like phase is found to correlate with the disappearance temperature of the exchange bias. These important signatures suggest that the emergence of magnetic exchange bias in the 2D van der Waals ferromagnets is induced by the presence of the spin-glass-like state in FeGeTe. The unprecedented insights gained from these findings shed light on the underlying principles governing exchange bias in vdW ferromagnets, contributing to the advancement of our understanding in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18887v1-abstract-full').style.display = 'none'; document.getElementById('2402.18887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11732">arXiv:2312.11732</a> <span> [<a href="https://arxiv.org/pdf/2312.11732">pdf</a>, <a href="https://arxiv.org/format/2312.11732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.045416">10.1103/PhysRevB.109.045416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Step Electronic Response to Magnetic Ordering in a van der Waals Ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lebing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Butcher%2C+M+W">Matthew W Butcher</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+D">Dongsheng Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Shan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Cheng Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Nevidomskyy%2C+A+H">Andriy H. Nevidomskyy</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11732v2-abstract-short" style="display: inline;"> The two-dimensional (2D) material Cr$_2$Ge$_2$Te$_6$ is a member of the class of insulating van der Waals magnets. Here, using high resolution angle-resolved photoemission spectroscopy in a detailed temperature dependence study, we identify a clear response of the electronic structure to a dimensional crossover in the form of two distinct temperature scales marking onsets of modifications in the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11732v2-abstract-full').style.display = 'inline'; document.getElementById('2312.11732v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11732v2-abstract-full" style="display: none;"> The two-dimensional (2D) material Cr$_2$Ge$_2$Te$_6$ is a member of the class of insulating van der Waals magnets. Here, using high resolution angle-resolved photoemission spectroscopy in a detailed temperature dependence study, we identify a clear response of the electronic structure to a dimensional crossover in the form of two distinct temperature scales marking onsets of modifications in the electronic structure. Specifically, we observe Te $p$-orbital-dominated bands to undergo changes at the Curie transition temperature T$_C$ while the Cr $d$-orbital-dominated bands begin evolving at a higher temperature scale. Combined with neutron scattering, density functional theory calculations, and Monte Carlo simulations, we find that the electronic system can be consistently understood to respond sequentially to the distinct temperatures at which in-plane and out-of-plane spin correlations exceed a characteristic length scale. Our findings reveal the sensitivity of the orbital-selective electronic structure for probing the dynamical evolution of local moment correlations in vdW insulating magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11732v2-abstract-full').style.display = 'none'; document.getElementById('2312.11732v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PRB, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 045416 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09759">arXiv:2309.09759</a> <span> [<a href="https://arxiv.org/pdf/2309.09759">pdf</a>, <a href="https://arxiv.org/format/2309.09759">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.516838">10.1364/OPTICA.516838 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pound-Drever-Hall Feedforward: Laser Phase Noise Suppression beyond Feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chao%2C+Y">Yu-Xin Chao</a>, <a href="/search/cond-mat?searchtype=author&query=Hua%2C+Z">Zhen-Xing Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+X">Xin-Hui Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zong-Pei Yue</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+L">Li You</a>, <a href="/search/cond-mat?searchtype=author&query=Tey%2C+M+K">Meng Khoon Tey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09759v2-abstract-short" style="display: inline;"> Pound-Drever-Hall (PDH) laser frequency stabilization is a powerful technique widely used for building narrow-linewidth lasers. This technique is however ineffective in suppressing high-frequency (>100~kHz) laser phase noise detrimental for many applications. Here, we introduce an effective method which can greatly enhance its high-frequency performance. The idea is to recycle the residual PDH sig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09759v2-abstract-full').style.display = 'inline'; document.getElementById('2309.09759v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09759v2-abstract-full" style="display: none;"> Pound-Drever-Hall (PDH) laser frequency stabilization is a powerful technique widely used for building narrow-linewidth lasers. This technique is however ineffective in suppressing high-frequency (>100~kHz) laser phase noise detrimental for many applications. Here, we introduce an effective method which can greatly enhance its high-frequency performance. The idea is to recycle the residual PDH signal of a laser locked to a cavity, by feedforwarding it directly to the laser output field after a delay fiber. Using this straightforward method, we demonstrate a phase noise suppression capability about 4 orders of magnitude better than just using usual PDH feedback for phase noise around a few MHz. We further find that this method exhibits noise suppression performance equivalent to cavity filtering. The new method holds great promise for applications demanding highly stable lasers with diminished phase noise up to tens of MHz, e.g. precise and high-speed control of atomic and molecular quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09759v2-abstract-full').style.display = 'none'; document.getElementById('2309.09759v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 11(7), 945-950 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09808">arXiv:2307.09808</a> <span> [<a href="https://arxiv.org/pdf/2307.09808">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jpcs.2021.110489">10.1016/j.jpcs.2021.110489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of large intrinsic anomalous Hall conductivity in polycrystalline Mn$_3$Sn films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=AfzaL%2C+W">W. AfzaL</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Fuhrer%2C+M">M. Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">X. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09808v1-abstract-short" style="display: inline;"> We report the observation of anomalous Hall effect in Mn$_3$Sn polycrystalline thin films deposited on Pt coated Al$_2$O$_3$ substrate with a large anomalous Hall conductivity of 65($惟$cm)$^{-1}$ at 3K. The Hall and magnetic measurements show a very small hysteresis owing to a weak ferromagnetic moment in this material. The longitudinal resistivity decreases sufficiently for the thin films as comp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09808v1-abstract-full').style.display = 'inline'; document.getElementById('2307.09808v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09808v1-abstract-full" style="display: none;"> We report the observation of anomalous Hall effect in Mn$_3$Sn polycrystalline thin films deposited on Pt coated Al$_2$O$_3$ substrate with a large anomalous Hall conductivity of 65($惟$cm)$^{-1}$ at 3K. The Hall and magnetic measurements show a very small hysteresis owing to a weak ferromagnetic moment in this material. The longitudinal resistivity decreases sufficiently for the thin films as compared to the polycrystalline bulk sample used as the target for the film deposition. The anomalous Hall resistivity and conductivity decreases almost linearly with the increase in the temperature. A negative magnetoresistance is observed for all the measured temperatures with the negative decrease in the magnitude with the increase in temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09808v1-abstract-full').style.display = 'none'; document.getElementById('2307.09808v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics and Chemistry of Solids Volume 161, 110489, February 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09802">arXiv:2307.09802</a> <span> [<a href="https://arxiv.org/pdf/2307.09802">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Magneto-transport and electronic structures in MoSi$_2$ bulks and thin films with different orientations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Afzal%2C+W">W. Afzal</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+F">F. Yun</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Z. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">W. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Sang%2C+L">L. Sang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+G">G. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Y. He</a>, <a href="/search/cond-mat?searchtype=author&query=Peleckis%2C+G">G. Peleckis</a>, <a href="/search/cond-mat?searchtype=author&query=Fuhrer%2C+M">M. Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">X. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09802v1-abstract-short" style="display: inline;"> We report a comprehensive study of magneto-transport properties in MoSi$_2$ bulk and thin films. Textured MoSi$_2$ thin films of around 70 nm were deposited on silicon substrates with different orientations. Giant magnetoresistance of 1000% was observed in sintered bulk samples while MoSi$_2$ single crystals exhibit a magnetoresistance (MR) value of 800% at low temperatures. At the low temperature… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09802v1-abstract-full').style.display = 'inline'; document.getElementById('2307.09802v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09802v1-abstract-full" style="display: none;"> We report a comprehensive study of magneto-transport properties in MoSi$_2$ bulk and thin films. Textured MoSi$_2$ thin films of around 70 nm were deposited on silicon substrates with different orientations. Giant magnetoresistance of 1000% was observed in sintered bulk samples while MoSi$_2$ single crystals exhibit a magnetoresistance (MR) value of 800% at low temperatures. At the low temperatures, the MR of the textured thin films show weak anti-localization behaviour owing to the spin orbit coupling effects. Our first principle calculation show the presence of surface states in this material. The resistivity of all the MoSi$_2$ thin films is significantly low and nearly independent of the temperature, which is important for electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09802v1-abstract-full').style.display = 'none'; document.getElementById('2307.09802v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Alloys and Compounds Volume 858, 157670, 25 March 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03154">arXiv:2307.03154</a> <span> [<a href="https://arxiv.org/pdf/2307.03154">pdf</a>, <a href="https://arxiv.org/format/2307.03154">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46862-z">10.1038/s41467-024-46862-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reversible Non-Volatile Electronic Switching in a Near Room Temperature van der Waals Ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Malinowski%2C+P">Paul Malinowski</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Q">Qinwen Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Scott%2C+K">Kirsty Scott</a>, <a href="/search/cond-mat?searchtype=author&query=Jang%2C+B+G">Bo Gyu Jang</a>, <a href="/search/cond-mat?searchtype=author&query=Ruff%2C+J+P+C">Jacob P. C. Ruff</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Teng%2C+X">Xiaokun Teng</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Klemm%2C+M">Mason Klemm</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+C">Chuqiao Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yue Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Setty%2C+C">Chandan Setty</a>, <a href="/search/cond-mat?searchtype=author&query=Werner%2C+T">Tyler Werner</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">T. Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Sung-Kwan Mo</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03154v1-abstract-short" style="display: inline;"> The ability to reversibly toggle between two distinct states in a non-volatile method is important for information storage applications. Such devices have been realized for phase-change materials, which utilizes local heating methods to toggle between a crystalline and an amorphous state with distinct electrical properties. To expand such kind of switching between two topologically distinct phases… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03154v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03154v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03154v1-abstract-full" style="display: none;"> The ability to reversibly toggle between two distinct states in a non-volatile method is important for information storage applications. Such devices have been realized for phase-change materials, which utilizes local heating methods to toggle between a crystalline and an amorphous state with distinct electrical properties. To expand such kind of switching between two topologically distinct phases requires non-volatile switching between two crystalline phases with distinct symmetries. Here we report the observation of reversible and non-volatile switching between two stable and closely-related crystal structures with remarkably distinct electronic structures in the near room temperature van der Waals ferromagnet Fe$_{5-未}$GeTe$_2$. From a combination of characterization techniques we show that the switching is enabled by the ordering and disordering of an Fe site vacancy that results in distinct crystalline symmetries of the two phases that can be controlled by a thermal annealing and quenching method. Furthermore, from symmetry analysis as well as first principle calculations, we provide understanding of the key distinction in the observed electronic structures of the two phases: topological nodal lines compatible with the preserved global inversion symmetry in the site-disordered phase, and flat bands resulting from quantum destructive interference on a bipartite crystaline lattice formed by the presence of the site order as well as the lifting of the topological degeneracy due to the broken inversion symmetry in the site-ordered phase. Our work not only reveals a rich variety of quantum phases emergent in the metallic van der Waals ferromagnets due to the presence of site ordering, but also demonstrates the potential of these highly tunable two-dimensional magnets for memory and spintronics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03154v1-abstract-full').style.display = 'none'; document.getElementById('2307.03154v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 2739 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00441">arXiv:2307.00441</a> <span> [<a href="https://arxiv.org/pdf/2307.00441">pdf</a>, <a href="https://arxiv.org/format/2307.00441">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.104410">10.1103/PhysRevB.109.104410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral Evidence for Local-Moment Ferromagnetism in van der Waals Metals Fe$_3$GaTe$_2$ and Fe$_3$GeTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yaofeng Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Jang%2C+B+G">Bo Gyu Jang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Shan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Cheng Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Yue Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zheng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">T. Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">Alexei Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Klewe%2C+C">Christoph Klewe</a>, <a href="/search/cond-mat?searchtype=author&query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaodong Xu</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00441v2-abstract-short" style="display: inline;"> Magnetism in two-dimensional (2D) materials has attracted considerable attention recently for both fundamental understanding of magnetism and their tunability towards device applications. The isostructural Fe$_3$GeTe$_2$ and Fe$_3$GaTe$_2$ are two members of the Fe-based van der Waals (vdW) ferromagnet family, but exhibit very different Curie temperatures (T$_C$) of 210 K and 360 K, respectively.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00441v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00441v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00441v2-abstract-full" style="display: none;"> Magnetism in two-dimensional (2D) materials has attracted considerable attention recently for both fundamental understanding of magnetism and their tunability towards device applications. The isostructural Fe$_3$GeTe$_2$ and Fe$_3$GaTe$_2$ are two members of the Fe-based van der Waals (vdW) ferromagnet family, but exhibit very different Curie temperatures (T$_C$) of 210 K and 360 K, respectively. Here, by using angle-resolved photoemission spectroscopy and density functional theory, we systematically compare the electronic structures of the two compounds. Qualitative similarities in the Fermi surface can be found between the two compounds, with expanded hole pockets in Fe$_3$GaTe$_2$ suggesting additional hole carriers compared to Fe$_3$GeTe$_2$. Interestingly, we observe no band shift in Fe$_3$GaTe$_2$ across its T$_C$ of 360 K, compared to a small shift in Fe$_3$GeTe$_2$ across its T$_C$ of 210 K. The weak temperature-dependent evolution strongly deviates from the expectations of an itinerant Stoner mechanism. Our results suggest that itinerant electrons have minimal contributions to the enhancement of T$_C$ in Fe$_3$GaTe$_2$ compared to Fe$_3$GeTe$_2$, and that the nature of ferromagnetism in these Fe-based vdW ferromagnets must be understood with considerations of the electron correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00441v2-abstract-full').style.display = 'none'; document.getElementById('2307.00441v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 104410 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02625">arXiv:2305.02625</a> <span> [<a href="https://arxiv.org/pdf/2305.02625">pdf</a>, <a href="https://arxiv.org/format/2305.02625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0157031">10.1063/5.0157031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angle-resolved photoemission spectroscopy with an $\textit{in situ}$ tunable magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Baydin%2C+A">Andrey Baydin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+H">Hanyu Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Nojiri%2C+H">Hiroyuki Nojiri</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02625v2-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for probing the momentum-resolved single-particle spectral function of materials. Historically, $\textit{in situ}$ magnetic fields have been carefully avoided as they are detrimental to the control of photoelectron trajectory during the photoelectron detection process. However, magnetic field is an important experimental knob for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02625v2-abstract-full').style.display = 'inline'; document.getElementById('2305.02625v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02625v2-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for probing the momentum-resolved single-particle spectral function of materials. Historically, $\textit{in situ}$ magnetic fields have been carefully avoided as they are detrimental to the control of photoelectron trajectory during the photoelectron detection process. However, magnetic field is an important experimental knob for both probing and tuning symmetry-breaking phases and electronic topology in quantum materials. In this paper, we introduce an easily implementable method for realizing an $\textit{in situ}$ tunable magnetic field at the sample position in an ARPES experiment and analyze magnetic field induced artifacts in ARPES data. Specifically, we identified and quantified three distinct extrinsic effects of a magnetic field: Fermi surface rotation, momentum shrinking, and momentum broadening. We examined these effects in three prototypical quantum materials, i.e., a topological insulator (Bi$_2$Se$_3$), an iron-based superconductor (LiFeAs), and a cuprate superconductor (Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$), and demonstrate the feasibility of ARPES measurements in the presence of a controllable magnetic field. Our studies lay the foundation for the future development of the technique and interpretation of ARPES measurements of field-tunable quantum phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02625v2-abstract-full').style.display = 'none'; document.getElementById('2305.02625v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 94, 093902 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09066">arXiv:2304.09066</a> <span> [<a href="https://arxiv.org/pdf/2304.09066">pdf</a>, <a href="https://arxiv.org/format/2304.09066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00683-x">10.1038/s41535-024-00683-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Flat Bands and Dirac Cones in a Pyrochlore Lattice Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Setty%2C+C">Chandan Setty</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+L">Liangzi Deng</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+J">Jing-Yang You</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yuan-Ping Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+C">Ching-Wu Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09066v2-abstract-short" style="display: inline;"> Emergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09066v2-abstract-full').style.display = 'inline'; document.getElementById('2304.09066v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09066v2-abstract-full" style="display: none;"> Emergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases in the two-dimensional kagome lattice, including magnetic order, time-reversal symmetry breaking charge order, nematicity, and superconductivity. However, the interlayer coupling of the kagome layers disrupts the destructive interference needed to completely quench the kinetic energy. Here we demonstrate that an interwoven kagome network-a pyrochlore lattice-can host a three dimensional (3D) localization of electron wavefunctions. Meanwhile, the nonsymmorphic symmetry of the pyrochlore lattice guarantees all band crossings at the Brillouin zone X point to be 3D gapless Dirac points, which was predicted theoretically but never yet observed experimentally. Through a combination of angle-resolved photoemission spectroscopy, fundamental lattice model and density functional theory calculations, we investigate the novel electronic structure of a Laves phase superconductor with a pyrochlore sublattice, CeRu$_2$. We observe flat bands originating from both the Ce 4$f$ orbitals as well as from the 3D destructive interference of the Ru 4$d$ orbitals. We further observe the nonsymmorphic symmetry-protected 3D gapless Dirac cones at the X point. Our work establishes the pyrochlore structure as a promising lattice platform to realize and tune novel emergent phases intertwining topology and many-body interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09066v2-abstract-full').style.display = 'none'; document.getElementById('2304.09066v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 9, 71 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12227">arXiv:2302.12227</a> <span> [<a href="https://arxiv.org/pdf/2302.12227">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00623-9">10.1038/s41535-024-00623-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale visualization and spectral fingerprints of the charge order in ScV6Sn6 distinct from other kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+S">Siyu Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zheng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J">Jiseop Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Pokharel%2C+G">Ganesh Pokharel</a>, <a href="/search/cond-mat?searchtype=author&query=DeStefano%2C+J+M">Jonathan M. DeStefano</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Elliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Yongbin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Ke%2C+L">Liqin Ke</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">R. J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+S+D">Stephen D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12227v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) have been tied to a number of unusual phenomena in kagome metals, including rotation symmetry breaking, time-reversal symmetry breaking and superconductivity. The majority of the experiments thus far have focused on the CDW states in AV3Sb5 and FeGe, characterized by the 2a0 by 2a0 period. Recently, a bulk CDW phase (T* ~ 92 K) with a different wave length and orientati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12227v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12227v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12227v1-abstract-full" style="display: none;"> Charge density waves (CDWs) have been tied to a number of unusual phenomena in kagome metals, including rotation symmetry breaking, time-reversal symmetry breaking and superconductivity. The majority of the experiments thus far have focused on the CDW states in AV3Sb5 and FeGe, characterized by the 2a0 by 2a0 period. Recently, a bulk CDW phase (T* ~ 92 K) with a different wave length and orientation has been reported in ScV6Sn6, as the first realization of a CDW state in the broad RM6X6 structure. Here, using a combination of scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal the microscopic structure and the spectroscopic signatures of this charge ordering phase in ScV6Sn6. Differential conductance dI/dV spectra show a partial gap opening in the density-of-states of about 20 meV at the Fermi level. This is much smaller than the spectral gaps observed in AV3Sb5 and FeGe despite the comparable T* temperatures in these systems, suggesting substantially weaker coupling strength in ScV6Sn6. Surprisingly, despite the three-dimensional bulk nature of the charge order, we find that the charge modulation is only observed on the kagome termination. Temperature-dependent band structure evolution suggests a modulation of the surface states as a consequence of the emergent charge order, with an abrupt spectral weight shift below T* consistent with the first-order phase transition. The similarity of the electronic band structures of ScV6Sn6 and TbV6Sn6 (where charge ordering is absent), together with the first-principle calculations, suggests that charge ordering in ScV6Sn6 may not be primarily electronically driven. Interestingly, in contrast to the CDW state of cousin AV3Sb5, we find no evidence supporting rotation symmetry breaking. Our results reveal a distinctive nature of the charge ordering phase in ScV6Sn6 in comparison to other kagome metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12227v1-abstract-full').style.display = 'none'; document.getElementById('2302.12227v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 14 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02274">arXiv:2301.02274</a> <span> [<a href="https://arxiv.org/pdf/2301.02274">pdf</a>, <a href="https://arxiv.org/format/2301.02274">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin-charge separation and unconventional superconductivity in \textit{t}-\textit{J} model on honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Miao%2C+J">Jian-Jian Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zheng-Yuan Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Wei-Qiang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Z">Zheng-Cheng Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02274v1-abstract-short" style="display: inline;"> The physical nature of doped Mott-insulator has been intensively studied for more than three decades. It is well known that the single band Hubbard model or $t$-$J$ model on the bipartite lattice is the simplest model to describe a doped Mott insulator. Unfortunately, the key mechanism of superconductivity in these toy models is still under debate. In this paper, we propose a new mechanism for the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02274v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02274v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02274v1-abstract-full" style="display: none;"> The physical nature of doped Mott-insulator has been intensively studied for more than three decades. It is well known that the single band Hubbard model or $t$-$J$ model on the bipartite lattice is the simplest model to describe a doped Mott insulator. Unfortunately, the key mechanism of superconductivity in these toy models is still under debate. In this paper, we propose a new mechanism for the $d+id$-wave superconductivity (SC) that occurs in the small-doping region of the honeycomb lattice $t$-$J$ model based on the Grassmann tensor product state numerical simulation and spin-charge separation formulation. Moreover, in the presence of anti-ferromagnetic order, a continuum effective field theory for holons is developed near half-filling. It reveals the competition between repulsive and attractive holon interactions induced by spinon fluctuations and gauge fluctuations, respectively. At a large value of $t/J$, the repulsive interaction dominates, leading to the non-Fermi liquid like behavior; while in a moderate range of $t/J$, the attractive interaction dominates, leading to the SC order. Possible experimental detection of spin-charge separation phenomena is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02274v1-abstract-full').style.display = 'none'; document.getElementById('2301.02274v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13538">arXiv:2210.13538</a> <span> [<a href="https://arxiv.org/pdf/2210.13538">pdf</a>, <a href="https://arxiv.org/format/2210.13538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01257-2">10.1038/s42005-023-01257-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kramers nodal lines and Weyl fermions in SmAlSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yuxiang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+X">Xue-Jian Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+S">Shiming Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+Z">Zhuoliang Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Zonno%2C+M">Marta Zonno</a>, <a href="/search/cond-mat?searchtype=author&query=Gorovikov%2C+S">Sergey Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+L">Liang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Law%2C+K+T">Kam Tuen Law</a>, <a href="/search/cond-mat?searchtype=author&query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13538v3-abstract-short" style="display: inline;"> Kramers nodal lines (KNLs) have recently been proposed theoretically as a special type of Weyl line degeneracy connecting time-reversal invariant momenta. KNLs are robust to spin orbit coupling and are inherent to all non-centrosymmetric achiral crystal structures, leading to unusual spin, magneto-electric, and optical properties. However, their existence in in real quantum materials has not been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13538v3-abstract-full').style.display = 'inline'; document.getElementById('2210.13538v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13538v3-abstract-full" style="display: none;"> Kramers nodal lines (KNLs) have recently been proposed theoretically as a special type of Weyl line degeneracy connecting time-reversal invariant momenta. KNLs are robust to spin orbit coupling and are inherent to all non-centrosymmetric achiral crystal structures, leading to unusual spin, magneto-electric, and optical properties. However, their existence in in real quantum materials has not been experimentally established. Here we gather the experimental evidence pointing at the presence of KNLs in SmAlSi, a non-centrosymmetric metal that develops incommensurate spin density wave order at low temperature. Using angle-resolved photoemission spectroscopy, density functional theory calculations, and magneto-transport methods, we provide evidence suggesting the presence of KNLs, together with observing Weyl fermions under the broken inversion symmetry in the paramagnetic phase of SmAlSi. We discuss the nesting possibilities regarding the emergent magnetic orders in SmAlSi. Our results provide a solid basis of experimental observations for exploring correlated topology in SmAlSi. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13538v3-abstract-full').style.display = 'none'; document.getElementById('2210.13538v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 5 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 6, 134 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02405">arXiv:2205.02405</a> <span> [<a href="https://arxiv.org/pdf/2205.02405">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0080334">10.1063/5.0080334 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced optoelectronic performance and photogating effect in quasi-one-dimensional BiSeI wires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+H+J">H. J. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhen%2C+W+L">W. L. Zhen</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+S+R">S. R. Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+R">R. Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z+L">Z. L. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+F">F. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+L">L. Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C+J">C. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W+K">W. K. Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02405v1-abstract-short" style="display: inline;"> Quasi-one-dimensional (quasi-1D) materials are a newly arising topic in low-dimensional researches. As a result of reduced dimensionality and enhanced anisotropy, the quasi-1D structure gives rise to novel properties and promising applications such as photodetectors. However, it remains an open question whether performance crossover will occur when the channel material is downsized. Here we report… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02405v1-abstract-full').style.display = 'inline'; document.getElementById('2205.02405v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02405v1-abstract-full" style="display: none;"> Quasi-one-dimensional (quasi-1D) materials are a newly arising topic in low-dimensional researches. As a result of reduced dimensionality and enhanced anisotropy, the quasi-1D structure gives rise to novel properties and promising applications such as photodetectors. However, it remains an open question whether performance crossover will occur when the channel material is downsized. Here we report on the fabrication and testing of photodetectors based on exfoliated quasi-1D BiSeI thin wires. Compared with the device on bulk crystal, a significantly enhanced photoresponse is observed, which is manifested by a series of performance parameters, including ultrahigh responsivity (7 x 10$^4$ A W$^{-1}$), specific detectivity (2.5 x 10$^{14}$ Jones) and external quantum efficiency (1.8 x 10$^7$%) when $V_{\textrm {ds}}$ = 3 V, $位$ = 515 nm and $P$ = 0.01 mW cm$^{-2}$. The conventional photoconductive effect is unlikely to account for such a superior photoresponse, which is ultimately understood in terms of the increased specific surface area and the photogating effect caused by trapping states. This work provides a perspective for the modulation of optoelectronic properties and performance in quasi-1D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02405v1-abstract-full').style.display = 'none'; document.getElementById('2205.02405v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures and SI</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 120, 201101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11914">arXiv:2201.11914</a> <span> [<a href="https://arxiv.org/pdf/2201.11914">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.2c00297">10.1021/acs.jpclett.2c00297 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Confirmation of the Universal Law for the Vibrational Density of States of Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stamper%2C+C">Caleb Stamper</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+D">Dehong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11914v1-abstract-short" style="display: inline;"> An analytical model describing the vibrational phonon density of states (VDOS) of liquids has long been elusive, mainly due to the difficulty in dealing with the imaginary modes dominant in the low-energy region, as described by the instantaneous normal mode (INM) approach. Nevertheless, Zaccone and Baggioli have recently developed such a model based on overdamped Langevin liquid dynamics. The mod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11914v1-abstract-full').style.display = 'inline'; document.getElementById('2201.11914v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11914v1-abstract-full" style="display: none;"> An analytical model describing the vibrational phonon density of states (VDOS) of liquids has long been elusive, mainly due to the difficulty in dealing with the imaginary modes dominant in the low-energy region, as described by the instantaneous normal mode (INM) approach. Nevertheless, Zaccone and Baggioli have recently developed such a model based on overdamped Langevin liquid dynamics. The model was proposed to be the universal law for the vibrational density of states of liquids. Distinct from the Debye law, g(蠅) ~ 蠅2, for solids, the universal law for liquids reveals a linear relationship, g(蠅) ~ 蠅, in the low-energy region. The universal law has been successfully verified with computer simulated VDOS for Lennard-Jones liquids. We further confirm this universal law with experimental VDOS measured by inelastic neutron scattering on real liquid systems including water, liquid metal, and polymer liquids. We have applied this model and extracted the effective relaxation rate for the short time dynamics for each liquid. The model has been further evaluated in the predication of the specific heat. The results have been compared with the existing experimental data as well as with values obtained by different approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11914v1-abstract-full').style.display = 'none'; document.getElementById('2201.11914v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures, 20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. Lett. 2022, 13, 3105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03919">arXiv:2008.03919</a> <span> [<a href="https://arxiv.org/pdf/2008.03919">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Weak localization and anti-localization in rare earth doped topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Rule%2C+K">Kirrily Rule</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Sang%2C+L">Lina Sang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+G">Guangsai Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+C">Cheng Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Bake%2C+A">Abuduliken Bake</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03919v1-abstract-short" style="display: inline;"> We study magneto-transport phenomena in two rare-earth doped topological insulators, SmxFexSb2-2xTe3 and SmxBi2-xTe2Se single crystals. The magneto-transport behaviours in both compounds exhibit a systematic crossover between weak anti-localization (positive magnetoresistance) and weak localization (negative magnetoresistance) with changes in temperatures and magnetic fields. The weak localization… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03919v1-abstract-full').style.display = 'inline'; document.getElementById('2008.03919v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03919v1-abstract-full" style="display: none;"> We study magneto-transport phenomena in two rare-earth doped topological insulators, SmxFexSb2-2xTe3 and SmxBi2-xTe2Se single crystals. The magneto-transport behaviours in both compounds exhibit a systematic crossover between weak anti-localization (positive magnetoresistance) and weak localization (negative magnetoresistance) with changes in temperatures and magnetic fields. The weak localization is caused by rare-earth-doping induced magnetization, and the weak anti-localization originates from topologically protected surface states. The transition between weak localization and weak anti-localization demonstrates a gap opening at the Dirac point of surface states in the quantum diffusive regime. This work demonstrates an effective way to manipulate the magneto-transport properties of the topological insulators by rare-earth element doping. Magnetometry measurements indicate that the Sm-dopant alone is paramagnetic, whereas the co-doped Fe-Sm state has short-range antiferromagnetic order. Our results hold potential for the realization of exotic topological effects in gapped topological insulator surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03919v1-abstract-full').style.display = 'none'; document.getElementById('2008.03919v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06883">arXiv:2006.06883</a> <span> [<a href="https://arxiv.org/pdf/2006.06883">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/smll.201905155">10.1002/smll.201905155 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin gapless semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sang%2C+L">Lina Sang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06883v1-abstract-short" style="display: inline;"> Spin gapless semiconductors (SGSs) are a new class of zero gap materials which have a fully spin polarised electrons and holes. They bridge zero gap materials and half-metals. The band structures of the SGSs can have two types of energy dispersions: Dirac linear dispersion and parabolic dispersion. The Dirac type SGSs exhibit fully spin polarized Dirac cones, and offer a platform for massless and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06883v1-abstract-full').style.display = 'inline'; document.getElementById('2006.06883v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06883v1-abstract-full" style="display: none;"> Spin gapless semiconductors (SGSs) are a new class of zero gap materials which have a fully spin polarised electrons and holes. They bridge zero gap materials and half-metals. The band structures of the SGSs can have two types of energy dispersions: Dirac linear dispersion and parabolic dispersion. The Dirac type SGSs exhibit fully spin polarized Dirac cones, and offer a platform for massless and fully spin polarized spintronics as well as dissipationless edge state via quantum anomalous Hall effect. Due to its fascinating spin and charge states, they hold great potential application in spintronics. There have been tremendous efforts worldwide on searching for suitable candidates of SGSs. In particularly, there is an increasing interest in searching for Dirac type SGSs. In the past decade, a large number of Dirac or parabolic type SGSs have been predicted by density functional theory and some of parabolic SGSs have been experimentally demonstrated. The SGSs hold great potential for high speed and low-energy consumption spintronics, electronics and optoelectronics. Here, we review both Dirac and parabolic types of SGSs in different materials systems and outline the concepts of SGSs, novel spin and charge states, and potential applications of SGSs in next generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06883v1-abstract-full').style.display = 'none'; document.getElementById('2006.06883v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Small in press. Submitted on September 10, 2019, Accepted on May 6, 2020</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Small 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03930">arXiv:1907.03930</a> <span> [<a href="https://arxiv.org/pdf/1907.03930">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Modulation of crystal and electronic structures in topological insulators by rare-earth doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+G">Guangsai Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03930v2-abstract-short" style="display: inline;"> We study magnetotransport in a rare earth doped topological insulator, Sm0.1Sb1.9Te3 single crystals, under magnetic fields up to 14 T. It is found that that the crystals exhibit Shubnikov de Haas oscillations in their magneto-transport behaviour at low temperatures and high magnetic fields. The SdH oscillations result from the mixed contributions of bulk and surface states. We also investigate th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03930v2-abstract-full').style.display = 'inline'; document.getElementById('1907.03930v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03930v2-abstract-full" style="display: none;"> We study magnetotransport in a rare earth doped topological insulator, Sm0.1Sb1.9Te3 single crystals, under magnetic fields up to 14 T. It is found that that the crystals exhibit Shubnikov de Haas oscillations in their magneto-transport behaviour at low temperatures and high magnetic fields. The SdH oscillations result from the mixed contributions of bulk and surface states. We also investigate the SdH oscillations in different orientations of the magnetic field, which reveals a three dimensional Fermi surface topology. By fitting the oscillatory resistance with the Lifshitz Kosevich theory, we draw a Landau-level fan diagram that displays the expected nontrivial phase. In addition, the density functional theory calculations shows that Sm doping changes the crystal structure and electronic structure compared with pure Sb2Te3. This work demonstrates that rare earth doping is an effective way to manipulate the Fermi surface of topological insulators. Our results hold potential for the realization of exotic topological effects in magnetic topological insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03930v2-abstract-full').style.display = 'none'; document.getElementById('1907.03930v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01462">arXiv:1907.01462</a> <span> [<a href="https://arxiv.org/pdf/1907.01462">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Giant and Linear Magnetoresistance in Liquid Metals at Ambient Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+F">Feixiang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhidong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sang%2C+L">Lina Sang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01462v1-abstract-short" style="display: inline;"> Disorder-induced magnetoresistance has been reported in a range of solid metals and semiconductors, however, the underlying physical mechanism is still under debate because it is difficult to experimentally control. Liquid metals, due to lack of long-range order, offers an ideal model system where many forms of disorder can be deactivated by freezing the liquid. Here we report non-saturating magne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01462v1-abstract-full').style.display = 'inline'; document.getElementById('1907.01462v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01462v1-abstract-full" style="display: none;"> Disorder-induced magnetoresistance has been reported in a range of solid metals and semiconductors, however, the underlying physical mechanism is still under debate because it is difficult to experimentally control. Liquid metals, due to lack of long-range order, offers an ideal model system where many forms of disorder can be deactivated by freezing the liquid. Here we report non-saturating magnetoresistance discovered in the liquid state of three metals: Ga, Ga-In-Sn and Bi-Pb-Sn-In alloys. The giant magnetoresistance appears above the respective melting points and has a maximum of 2500% at 14 Tesla. The reduced diamagnetism in the liquid state implies that a short-mean free path of the electron, induced by the spatial distribution of the liquid structure, is a key factor. A potential technological merit of this liquidtronic magnetoresistance is that it naturally operates at higher temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01462v1-abstract-full').style.display = 'none'; document.getElementById('1907.01462v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figure, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09953">arXiv:1906.09953</a> <span> [<a href="https://arxiv.org/pdf/1906.09953">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum Oscillations of Robust Topological Surface States up to 50 K in Thick Bulk-insulating Topological Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&query=Fuhrer%2C+M">Michael Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09953v1-abstract-short" style="display: inline;"> As personal electronic devices increasingly rely on cloud computing for energy-intensive calculations, the power consumption associated with the information revolution is rapidly becoming an important environmental issue. Several approaches have been proposed to construct electronic devices with low energy consumption. Among these, the low-dissipation surface states of topological insulators (TIs)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09953v1-abstract-full').style.display = 'inline'; document.getElementById('1906.09953v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09953v1-abstract-full" style="display: none;"> As personal electronic devices increasingly rely on cloud computing for energy-intensive calculations, the power consumption associated with the information revolution is rapidly becoming an important environmental issue. Several approaches have been proposed to construct electronic devices with low energy consumption. Among these, the low-dissipation surface states of topological insulators (TIs) are widely employed. To develop TI-based devices, a key factor is the maximum temperature at which the Dirac surface states dominate the transport behavior. Here, we employ Shubnikov-de Haas oscillations (SdH) as a means to study the surface state survival temperature in a high quality vanadium doped Bi1.08Sn0.02Sb0.9Te2S single crystal system. The temperature and angle dependence of the SdH show that: 1) crystals with different vanadium (V) doping levels are insulating in the 3-300 K region, 2) the SdH oscillations show two-dimensional behavior, indicating that the oscillations arise from the pure surface states; and 3) at 50 K, the V0.04 single crystals (Vx:Bi1.08-xSn0.02Sb0.9Te2S, where x = 0.04) still show clear sign of SdH oscillations, which demonstrate that the surface dominant transport behavior can survive above 50 K. The robust surface states in our V doped single crystal systems provide an ideal platform to study the Dirac fermions and their interaction with other materials above 50 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09953v1-abstract-full').style.display = 'none'; document.getElementById('1906.09953v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, 1 table, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.09445">arXiv:1811.09445</a> <span> [<a href="https://arxiv.org/pdf/1811.09445">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.165133">10.1103/PhysRevB.99.165133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Oscillations in iron-doped topological insulator Sb2Te3 crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.09445v1-abstract-short" style="display: inline;"> We investigated the magnetotransport properties of Fe-doped topological insulator Sb1.96 Fe0.04Te3 single crystals. With doping, the band structure changes significantly and multiple Fermi pockets become evident in the Shubnikov-de Haas oscillations, in contrast to the single frequency detected for pure Sb2Te3. Using complementary density functional theory calculations, we identify an additional b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09445v1-abstract-full').style.display = 'inline'; document.getElementById('1811.09445v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.09445v1-abstract-full" style="display: none;"> We investigated the magnetotransport properties of Fe-doped topological insulator Sb1.96 Fe0.04Te3 single crystals. With doping, the band structure changes significantly and multiple Fermi pockets become evident in the Shubnikov-de Haas oscillations, in contrast to the single frequency detected for pure Sb2Te3. Using complementary density functional theory calculations, we identify an additional bulk hole pocket introduced at the 螕 point which originates from the chemical distortion associated with the Fe-dopant. Experimentally, both doped and undoped samples are hole-carrier dominated, however, Fe doping also reduces the carrier density and mobility. The angle dependent quantum oscillations were analyzed to characterize the complex Fermi surface and isolate the dimensionality of each SdH feature. Among the components, at least two pockets possess 2D-like behavior according to their rotational dependence. These results indicate a complex interplay of hybridized dopant bands with the bulk and surface topological electronic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09445v1-abstract-full').style.display = 'none'; document.getElementById('1811.09445v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 165133 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07841">arXiv:1802.07841</a> <span> [<a href="https://arxiv.org/pdf/1802.07841">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological insulator materials for advanced optoelectronic devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+M">Min Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07841v3-abstract-short" style="display: inline;"> Topological insulators are quantum materials that have an insulating bulk state and a topologically protected metallic surface state with spin and momentum helical locking and a Dirac-like band structure. Unique and fascinating electronic properties, such as the quantum spin Hall effect, quantum anomalous Hall effect, and topological magnetoelectric effect, as well as magnetic monopole images and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07841v3-abstract-full').style.display = 'inline'; document.getElementById('1802.07841v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07841v3-abstract-full" style="display: none;"> Topological insulators are quantum materials that have an insulating bulk state and a topologically protected metallic surface state with spin and momentum helical locking and a Dirac-like band structure. Unique and fascinating electronic properties, such as the quantum spin Hall effect, quantum anomalous Hall effect, and topological magnetoelectric effect, as well as magnetic monopole images and Majorana fermions, have been observed in the topological insulator materials. With these unique properties, topological insulator materials have great potential applications in spintronics and quantum information processing, as well as magnetoelectric devices with higher efficiency and lower energy consumption. On the other hand, topological insulator materials also exhibit a number of excellent optical properties, including Kerr and Faraday rotation, ultrahigh bulk refractive index, near-infrared frequency transparency, unusual electromagnetic scattering, and ultra-broadband surface plasmon resonances. Specifically, Dirac plasmon excitations have been observed in Bi2Se3 micro-ribbon arrays at THz frequencies. Ultraviolet and visible frequency plasmonics have been observed in nanoslit and nanocone arrays of Bi1.5Sb0.5Te1.8Se1.2 crystals. High transparency has been observed in Bi2Se3 nanoplates. An ultrahigh refractive index has been observed in bulk Bi1.5Sb0.5Te1.8Se1.2 crystals as well as in Sb2Te3 thin films. These excellent optical properties mean that topological insulator materials are suitable for various optoelectronic devices, including plasmonic solar cells, ultrathin holograms, plasmonic and Fresnel lens, broadband photodetectors, and nanoscale waveguides. In this chapter, we focus on the excellent electronic and optical properties of topological insulator materials and their wide applications in advanced optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07841v3-abstract-full').style.display = 'none'; document.getElementById('1802.07841v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures. arXiv admin note: text overlap with arXiv:1101.3583, arXiv:0802.3537, arXiv:1111.3694 by other authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.08786">arXiv:1709.08786</a> <span> [<a href="https://arxiv.org/pdf/1709.08786">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1591/aa9c94">10.1088/2053-1591/aa9c94 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photo-induced change of refractive index and transparency in Bi2Te3 films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qinjun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Sahu%2C+A">Amit Sahu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+M">Min Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.08786v1-abstract-short" style="display: inline;"> We report on an 800 nm femtosecond laser beam induced giant refractive index modulation and enhancement of near-infrared transparency in topological insulator material Bi2Te3 thin films. An ultrahigh refractive index of up to 5.9 was observed in the Bi2Te3 thin film in near-infrared frequency. The refractive index dramatically decreases by a factor of ~ 3 by an exposure to the 800 nm femtosecond l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08786v1-abstract-full').style.display = 'inline'; document.getElementById('1709.08786v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.08786v1-abstract-full" style="display: none;"> We report on an 800 nm femtosecond laser beam induced giant refractive index modulation and enhancement of near-infrared transparency in topological insulator material Bi2Te3 thin films. An ultrahigh refractive index of up to 5.9 was observed in the Bi2Te3 thin film in near-infrared frequency. The refractive index dramatically decreases by a factor of ~ 3 by an exposure to the 800 nm femtosecond laser beam. Simultaneously, the transmittance of the Bi2Te3 thin films markedly increases to ~ 96% in the near-infrared frequency. The Raman spectra provides strong evidences that the observed both refractive index modulation and transparency enhancement result from laser beam induced photooxidation effects in the Bi2Te3 thin films. The Bi2Te3 compound transfers into Bi2O3 and TeO2 under the laser beam illumination. These experimental results pave the way towards the design of various optical devices, such as near-infrared flat lenses, waveguide and holograms, based on topological insulator materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08786v1-abstract-full').style.display = 'none'; document.getElementById('1709.08786v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00059">arXiv:1611.00059</a> <span> [<a href="https://arxiv.org/pdf/1611.00059">pdf</a>, <a href="https://arxiv.org/format/1611.00059">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.174428">10.1103/PhysRevB.95.174428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of Hanle Precession in Trilayer MoS2: Theory and Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tian%2C+K">K. Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Magginetti%2C+D">D. Magginetti</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a>, <a href="/search/cond-mat?searchtype=author&query=Tiwari%2C+A">A. Tiwari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00059v1-abstract-short" style="display: inline;"> Valley-spin coupling in transition-metal dichalcogenides (TMDs) can result in unusual spin transport behaviors under an external magnetic field. Nonlocal resistance measured from 2D materials such as TMDs via electrical Hanle experiments are predicted to exhibit nontrivial features, compared with results from conventional materials due to the presence of intervalley scattering as well as a strong… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00059v1-abstract-full').style.display = 'inline'; document.getElementById('1611.00059v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00059v1-abstract-full" style="display: none;"> Valley-spin coupling in transition-metal dichalcogenides (TMDs) can result in unusual spin transport behaviors under an external magnetic field. Nonlocal resistance measured from 2D materials such as TMDs via electrical Hanle experiments are predicted to exhibit nontrivial features, compared with results from conventional materials due to the presence of intervalley scattering as well as a strong internal spin-orbit field. Here, for the first time, we report the all-electrical injection and non-local detection of spin polarized carriers in trilayer MoS_2 films. We calculate the Hanle curves theoretically when the separation between spin injector and detector is much larger than spin diffusion length, \lamda_s. The experimentally observed curve matches the theoretically-predicted Hanle shape under the regime of slow intervalley scattering. The estimated spin life-time was found to be around 110 ps at 30 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00059v1-abstract-full').style.display = 'none'; document.getElementById('1611.00059v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 174428 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.05821">arXiv:1606.05821</a> <span> [<a href="https://arxiv.org/pdf/1606.05821">pdf</a>, <a href="https://arxiv.org/format/1606.05821">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.155313">10.1103/PhysRevB.94.155313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Smearing of the quantum anomalous Hall effect due to statistical fluctuations of magnetic dopants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.05821v1-abstract-short" style="display: inline;"> Quantum anomalous Hall effect (QAH) is induced by substitution of a certain portion, x, of Bi atoms in a BiTe-based insulating parent compound by magnetic ions (Cr or V). We find the density of in-gap states, N(E), emerging as a result of statistic fluctuations of the composition, x, in the vicinity of the transition point, where the average gap, E_g, passes through zero. Local gap follows the flu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05821v1-abstract-full').style.display = 'inline'; document.getElementById('1606.05821v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.05821v1-abstract-full" style="display: none;"> Quantum anomalous Hall effect (QAH) is induced by substitution of a certain portion, x, of Bi atoms in a BiTe-based insulating parent compound by magnetic ions (Cr or V). We find the density of in-gap states, N(E), emerging as a result of statistic fluctuations of the composition, x, in the vicinity of the transition point, where the average gap, E_g, passes through zero. Local gap follows the fluctuations of x. Using the instanton approach, we show that, near the gap edges, the tails are exponential, ln N(E) \propto -(E_g-|E|), and the tail states are due to small gap reduction. Our main finding is that, even when the smearing magnitude exceeds the gap-width, there exists are semi-hard gap around zero energy, where ln N(E) \propto -E_g/|E| (ln E_g/|E|). The states responsible for N(E) originate from local gap reversals within narrow rings. The consequence of semi-hard gap is the Arrhenius, rather than variable-range hopping, temperature dependence of the diagonal conductivity at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05821v1-abstract-full').style.display = 'none'; document.getElementById('1606.05821v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 155313 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06858">arXiv:1605.06858</a> <span> [<a href="https://arxiv.org/pdf/1605.06858">pdf</a>, <a href="https://arxiv.org/format/1605.06858">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.115306">10.1103/PhysRevB.94.115306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of extended confinement on the structure of edge channels in the quantum anomalous Hall effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06858v1-abstract-short" style="display: inline;"> Quantum anomalous Hall (QAH) effect in the films with nontrivial band structure accompanies the ferromagnetic transition in the system of magnetic dopants. Experimentally, the QAH transition manifests itself as a jump in the dependence of longitudinal resistivity on a weak external magnetic field. Microscopically, this jump originates from the emergence of a chiral edge mode on one side of the fer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06858v1-abstract-full').style.display = 'inline'; document.getElementById('1605.06858v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06858v1-abstract-full" style="display: none;"> Quantum anomalous Hall (QAH) effect in the films with nontrivial band structure accompanies the ferromagnetic transition in the system of magnetic dopants. Experimentally, the QAH transition manifests itself as a jump in the dependence of longitudinal resistivity on a weak external magnetic field. Microscopically, this jump originates from the emergence of a chiral edge mode on one side of the ferromagnetic transition. We study analytically the effect of an extended confinement on the structure of the edge modes. We employ the simplest model of the extended confinement in the form of potential step next to the hard wall. It is shown that, unlike the conventional quantum Hall effect, where all edge channels are chiral, in QAH effect, a complex structure of the boundary leads to nonchiral edge modes which are present on both sides of the ferromagnetic transition. Wave functions of nonchiral modes are different above and below the transition: on the "topological" side, where the chiral edge mode is supported, nonchiral modes are "repelled" from the boundary, i.e. they are much less localized than on the "trivial" side. Thus, the disorder-induced scattering into these modes will boost the extension of the chiral edge mode. The prime experimental manifestation of nonchiral modes is that, by contributing to longitudinal resistance, they smear the QAH transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06858v1-abstract-full').style.display = 'none'; document.getElementById('1605.06858v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 115306 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.09003">arXiv:1603.09003</a> <span> [<a href="https://arxiv.org/pdf/1603.09003">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/28/35/355801">10.1088/0953-8984/28/35/355801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermoelectric signals of state transition in polycrystalline SmB6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qinjun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.09003v2-abstract-short" style="display: inline;"> Topological Kondo insulator SmB6 has attracted quite a lot of attentions from condensed matter physics community. A number of unique electronic properties, including low- temperature resistivity anomaly, 1D electronic transport and 2D Fermi surfaces have been observed in SmB6. Here, we report on thermoelectric transport properties of polycrystalline SmB6 over a broad temperature from 300 K to 2 K.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09003v2-abstract-full').style.display = 'inline'; document.getElementById('1603.09003v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.09003v2-abstract-full" style="display: none;"> Topological Kondo insulator SmB6 has attracted quite a lot of attentions from condensed matter physics community. A number of unique electronic properties, including low- temperature resistivity anomaly, 1D electronic transport and 2D Fermi surfaces have been observed in SmB6. Here, we report on thermoelectric transport properties of polycrystalline SmB6 over a broad temperature from 300 K to 2 K. An anomalous transition in the temperature-dependent Seebeck coefficient S from S(T) ~ T-1 to S(T) ~ T was observed around 12 K. Such a transition demonstrates a transition of conductivity from 3D metallic bulk states to 2D metallic surface states with insulating bulk states. Our results suggest that the thermotransport measurements could be used for the characterization of state transition in topological insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.09003v2-abstract-full').style.display = 'none'; document.getElementById('1603.09003v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, Journal of Physics: Condensed Matter 2016</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 28 (35), 355801, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.04276">arXiv:1602.04276</a> <span> [<a href="https://arxiv.org/pdf/1602.04276">pdf</a>, <a href="https://arxiv.org/format/1602.04276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.195301">10.1103/PhysRevB.93.195301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin transport in n-type single-layer transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+K">Kun Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.04276v1-abstract-short" style="display: inline;"> Valley asymmetry of the electron spectrum in transition metal dichalcogenides (TMDs) originates from the spin-orbit coupling. Presence of spin-orbit fields of opposite signs for electrons in K and K' valleys in combination with possibility of intervalley scattering result in a nontrivial spin dynamics. This dynamics is reflected in the dependence of nonlocal resistance on external magnetic field (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04276v1-abstract-full').style.display = 'inline'; document.getElementById('1602.04276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.04276v1-abstract-full" style="display: none;"> Valley asymmetry of the electron spectrum in transition metal dichalcogenides (TMDs) originates from the spin-orbit coupling. Presence of spin-orbit fields of opposite signs for electrons in K and K' valleys in combination with possibility of intervalley scattering result in a nontrivial spin dynamics. This dynamics is reflected in the dependence of nonlocal resistance on external magnetic field (the Hanle curve). We calculate theoretically the Hanle shape in TMDs. It appears that, unlike conventional materials without valley asymmetry, the Hanle shape in TMDs is different for normal and parallel orientations of the external field. For normal orientation, it has two peaks for slow intervalley scattering, while, for fast intervalley scattering the shape is usual. For parallel orientation, the Hanle curve exhibits a cusp at zero field. This cusp is a signature of a slow-decaying valley-asymmetric mode of the spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04276v1-abstract-full').style.display = 'none'; document.getElementById('1602.04276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 195301 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.00785">arXiv:1602.00785</a> <span> [<a href="https://arxiv.org/pdf/1602.00785">pdf</a>, <a href="https://arxiv.org/format/1602.00785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.195319">10.1103/PhysRevB.93.195319 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral narrowing and spin echo for localized carriers with heavy-tailed Levy distribution of hopping times </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Mkhitaryan%2C+V+V">V. V. Mkhitaryan</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.00785v1-abstract-short" style="display: inline;"> We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, 蟿, are widely spread according to the Levy distribution. The power-law tail \propto 蟿^{-1-伪} in the distribution of waiting times does not affect th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.00785v1-abstract-full').style.display = 'inline'; document.getElementById('1602.00785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.00785v1-abstract-full" style="display: none;"> We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, 蟿, are widely spread according to the Levy distribution. The power-law tail \propto 蟿^{-1-伪} in the distribution of waiting times does not affect the conventional spectral narrowing for 伪>2, but leads to a dramatic acceleration of the free induction decay in the domain 2>伪>1. The next abrupt acceleration of the decay takes place as the tail parameter, 伪, becomes smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.00785v1-abstract-full').style.display = 'none'; document.getElementById('1602.00785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 195319 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.03373">arXiv:1509.03373</a> <span> [<a href="https://arxiv.org/pdf/1509.03373">pdf</a>, <a href="https://arxiv.org/format/1509.03373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.045307">10.1103/PhysRevB.93.045307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective spin Hall properties of a mixture of materials with and without spin-orbit coupling: Tailoring the effective spin-diffusion length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Prestgard%2C+M+C">M. C. Prestgard</a>, <a href="/search/cond-mat?searchtype=author&query=Tiwari%2C+A">A. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.03373v1-abstract-short" style="display: inline;"> We study theoretically the effective spin Hall properties of a composite consisting of two materials with and without spin-orbit (SO) coupling. In particular, we assume that SO material represents a system of grains in a matrix with no SO. We calculate the effective spin Hall angle and the effective spin diffusion length of the mixture. Our main qualitative finding is that, when the bare spin diff… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.03373v1-abstract-full').style.display = 'inline'; document.getElementById('1509.03373v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.03373v1-abstract-full" style="display: none;"> We study theoretically the effective spin Hall properties of a composite consisting of two materials with and without spin-orbit (SO) coupling. In particular, we assume that SO material represents a system of grains in a matrix with no SO. We calculate the effective spin Hall angle and the effective spin diffusion length of the mixture. Our main qualitative finding is that, when the bare spin diffusion length is much smaller than the radius of the grain, the effective spin diffusion length is strongly enhanced, well beyond the "geometrical" factor. The physical origin of this additional enhancement is that, with small diffusion length, the spin current mostly flows around the grain without suffering much loss. We also demonstrate that the voltage, created by a spin current, is sensitive to a very weak magnetic field directed along the spin current, and even reverses sign in a certain domain of fields. The origin of this sensitivity is that the spin precession, caused by magnetic field, takes place outside the grains where SO is absent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.03373v1-abstract-full').style.display = 'none'; document.getElementById('1509.03373v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 045307 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.02244">arXiv:1509.02244</a> <span> [<a href="https://arxiv.org/pdf/1509.02244">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4930882">10.1063/1.4930882 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semimetal-semiconductor transition and giant linear magnetoresistances in three-dimensional Dirac semimetal Bi0.96Sb0.04 single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z+J">Z. J. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X+L">X. L. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S+S">S. S. Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.02244v1-abstract-short" style="display: inline;"> Three-dimensional (3D) Dirac semimetals are new quantum materials and can be viewed as 3D analogues of graphene. Many fascinating electronic properties have been proposed and realized in 3D Dirac semimetals, which demonstrates their potential applications in next generation quantum devices. Bismuth-antimony Bi1-xSbx can be tuned from a topological insulator to a band insulator through a quantum cr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02244v1-abstract-full').style.display = 'inline'; document.getElementById('1509.02244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.02244v1-abstract-full" style="display: none;"> Three-dimensional (3D) Dirac semimetals are new quantum materials and can be viewed as 3D analogues of graphene. Many fascinating electronic properties have been proposed and realized in 3D Dirac semimetals, which demonstrates their potential applications in next generation quantum devices. Bismuth-antimony Bi1-xSbx can be tuned from a topological insulator to a band insulator through a quantum critical point at x ~ 4%, where 3D Dirac fermions appear. Here, we report on a magnetotransport study of Bi1-xSbx at such a quantum critical point. An unusual magnetic-field induced semimetal-semiconductor phase transition was observed in the Bi0.96Sb0.04 single crystals. In a magnetic field of 8 T, Bi0.96Sb0.04 single crystals show giant magnetoresistances of up to 6000% at low-temperature, 5 K, and 300% at room-temperature, 300 K. The observed magnetoresistances keep linear down to approximate zero-field when the temperature is below 200 K. Our experimental results are not only interesting for the fundamental physics of 3D Dirac semimetals, but also for potential applications of 3D Dirac semimetals in magnetoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02244v1-abstract-full').style.display = 'none'; document.getElementById('1509.02244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 107 (11), 112101 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.01211">arXiv:1505.01211</a> <span> [<a href="https://arxiv.org/pdf/1505.01211">pdf</a>, <a href="https://arxiv.org/format/1505.01211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Spin pumping from a ferromagnet into a hopping insulator: the role of resonant absorption of magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Pesin%2C+D+A">D. A. Pesin</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.01211v1-abstract-short" style="display: inline;"> Motivated by recent experiments on spin pumping from a ferromagnet into organic materials in which the charge transport is due to hopping, we study theoretically the generation and propagation of spin current in a hopping insulator. Unlike metals, the spin polarization at the boundary with ferromagnet is created as a result of magnon absorption within pairs of localized states and it spreads follo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01211v1-abstract-full').style.display = 'inline'; document.getElementById('1505.01211v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.01211v1-abstract-full" style="display: none;"> Motivated by recent experiments on spin pumping from a ferromagnet into organic materials in which the charge transport is due to hopping, we study theoretically the generation and propagation of spin current in a hopping insulator. Unlike metals, the spin polarization at the boundary with ferromagnet is created as a result of magnon absorption within pairs of localized states and it spreads following the current-currying resistor network (although the charge current is absent). We consider a classic resonant mechanism of the ac absorption in insulators and adapt it to the absorption of magnons. A strong enhancement of pumping efficiency is predicted when the Zeeman splitting of the localized states in external magnetic field is equal to the frequency of ferromagnetic resonance. Under this condition the absorption of a magnon takes place within individual sites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01211v1-abstract-full').style.display = 'none'; document.getElementById('1505.01211v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 045405 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.05192">arXiv:1502.05192</a> <span> [<a href="https://arxiv.org/pdf/1502.05192">pdf</a>, <a href="https://arxiv.org/format/1502.05192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.140405">10.1103/PhysRevB.91.140405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-induced magnetic phase transition in SrCoO$_{3-未}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Callori%2C+S+J">S. J. Callori</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+S">S. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Bertinshaw%2C+J">J. Bertinshaw</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Danilkin%2C+S">S. Danilkin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X+L">X. L. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Nagarajan%2C+V">V. Nagarajan</a>, <a href="/search/cond-mat?searchtype=author&query=Klose%2C+F">F. Klose</a>, <a href="/search/cond-mat?searchtype=author&query=Seidel%2C+J">J. Seidel</a>, <a href="/search/cond-mat?searchtype=author&query=Ulrich%2C+C">C. Ulrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.05192v1-abstract-short" style="display: inline;"> It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO$_{3-未}$ ($未< 0.2$) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic to an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.05192v1-abstract-full').style.display = 'inline'; document.getElementById('1502.05192v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.05192v1-abstract-full" style="display: none;"> It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO$_{3-未}$ ($未< 0.2$) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic to antiferromagnetic phase transition in SrCoO$_{3-未}$ films grown on DyScO$_3$ substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO$_3$ substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Ne茅l temperatures between $T_N \sim 135\,\pm\,10\,K$ and $\sim 325\,\pm\,10\,K$ depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO$_{3-未}$ thin films under large epitaxial strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.05192v1-abstract-full').style.display = 'none'; document.getElementById('1502.05192v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00350">arXiv:1502.00350</a> <span> [<a href="https://arxiv.org/pdf/1502.00350">pdf</a>, <a href="https://arxiv.org/format/1502.00350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.195316">10.1103/PhysRevB.91.195316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant magneto-tunneling between normal and ferromagnetic electrodes in relation to the three-terminal spin transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00350v1-abstract-short" style="display: inline;"> The recently suggested mechanism [Y. Song and H. Dery, Phys. Rev. Lett. 113, 047205 (2014)] of the three-terminal spin transport is based on the resonant tunneling of electrons between ferromagnetic and normal electrodes via an impurity. The sensitivity of current to a weak external magnetic field stems from a spin blockade, which, in turn, is enabled by strong on-site repulsion. We demonstrate th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00350v1-abstract-full').style.display = 'inline'; document.getElementById('1502.00350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00350v1-abstract-full" style="display: none;"> The recently suggested mechanism [Y. Song and H. Dery, Phys. Rev. Lett. 113, 047205 (2014)] of the three-terminal spin transport is based on the resonant tunneling of electrons between ferromagnetic and normal electrodes via an impurity. The sensitivity of current to a weak external magnetic field stems from a spin blockade, which, in turn, is enabled by strong on-site repulsion. We demonstrate that this sensitivity exists even in the absence of repulsion when a single-particle description applies. Within this description, we calculate exactly the resonant-tunneling current between the electrodes. The mechanism of magnetoresistance, completely different from the spin blocking, has its origin in the interference of virtual tunneling amplitudes. Spin imbalance in ferromagnetic electrode is responsible for this interference and the resulting coupling of the Zeeman levels. This coupling also affects the current in the correlated regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00350v1-abstract-full').style.display = 'none'; document.getElementById('1502.00350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 195316 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.03560">arXiv:1501.03560</a> <span> [<a href="https://arxiv.org/pdf/1501.03560">pdf</a>, <a href="https://arxiv.org/format/1501.03560">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.155301">10.1103/PhysRevB.91.155301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the inhomogeneously-broadened spin noise spectrum with ac drive </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Raikh%2C+M+E">M. E. Raikh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.03560v1-abstract-short" style="display: inline;"> In the presence of random hyperfine fields, the noise spectrum, 未s_蠅^2, of a spin ensemble represents a narrow peak centered at 蠅=0 and a broad "wing" reflecting the distribution of the hyperfine fields. In the presence of an ac drive, the dynamics of a single spin acquires additional harmonics at frequencies determined by both, the drive frequency and the local field. These harmonics are reflecte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03560v1-abstract-full').style.display = 'inline'; document.getElementById('1501.03560v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.03560v1-abstract-full" style="display: none;"> In the presence of random hyperfine fields, the noise spectrum, 未s_蠅^2, of a spin ensemble represents a narrow peak centered at 蠅=0 and a broad "wing" reflecting the distribution of the hyperfine fields. In the presence of an ac drive, the dynamics of a single spin acquires additional harmonics at frequencies determined by both, the drive frequency and the local field. These harmonics are reflected as additional peaks in the noise spectrum. We study how the ensemble-averaged 未s_蠅^2 evolves with the drive amplitude, 蠅_dr (in the frequency units). Our main finding is that additional peaks in the spectrum, caused by the drive, remain sharp even when 蠅_dr is much smaller than the typical hyperfine field. The reason is that the drive affects only the spins for which the local Larmour frequency is close to the drive frequency. The shape of the low-frequency "Rabi"-peak in 未s_蠅^2 is universal with both, the position and the width, being of the order of 蠅_dr. When the drive amplitude exceeds the width of the hyperfine field distribution, the noise spectrum transforms into a set of sharp peaks centered at harmonics of the drive frequency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.03560v1-abstract-full').style.display = 'none'; document.getElementById('1501.03560v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 155301 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.3980">arXiv:1409.3980</a> <span> [<a href="https://arxiv.org/pdf/1409.3980">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms9079">10.1038/ncomms9079 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perfect and Stable Hybrid Glasses from Strong and Fragile Metal-Organic Framework Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bennett%2C+T+D">T. D. Bennett</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+J">Jin-Chong Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Y+Z">Y. Z. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Ducati%2C+C">C. Ducati</a>, <a href="/search/cond-mat?searchtype=author&query=Terril%2C+N">N. Terril</a>, <a href="/search/cond-mat?searchtype=author&query=Yeung%2C+H+H+M">H. H. M. Yeung</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Z">Z. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">W. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Henke%2C+S">S. Henke</a>, <a href="/search/cond-mat?searchtype=author&query=Cheetham%2C+A+K">A. K. Cheetham</a>, <a href="/search/cond-mat?searchtype=author&query=Greaves%2C+G+N">G. N. Greaves</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.3980v1-abstract-short" style="display: inline;"> Hybrid glasses connect emerging fields of metal-organic frameworks (MOFs) with the glass-formation, amorphization, and melting processes of these structurally diverse and chemically versatile systems. Most zeolites, including MOFs, amorphize around the glass transition, devitrifying and then melting at much higher temperatures. The relationship between the two processes has so far not been investi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3980v1-abstract-full').style.display = 'inline'; document.getElementById('1409.3980v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.3980v1-abstract-full" style="display: none;"> Hybrid glasses connect emerging fields of metal-organic frameworks (MOFs) with the glass-formation, amorphization, and melting processes of these structurally diverse and chemically versatile systems. Most zeolites, including MOFs, amorphize around the glass transition, devitrifying and then melting at much higher temperatures. The relationship between the two processes has so far not been investigated. Herein we show how heating first results in a low density perfect glass, following an order-order transition, leading to a super-strong liquid of low fragility that dynamically controls MOF collapse. A subsequent order-disorder transition creates a high density liquid of greater fragility. After crystallization and melting, subsequent cooling results in a stable glass virtually identical to the high density phase. Furthermore, the wide-ranging melting temperatures of different MOFs suggest these can be differentiated by topology. Our research provides new insight into the stability and functionality of these novel ductile crystalline materials, including the possibility of melt-casting MOFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3980v1-abstract-full').style.display = 'none'; document.getElementById('1409.3980v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3060">arXiv:1401.3060</a> <span> [<a href="https://arxiv.org/pdf/1401.3060">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4867891">10.1063/1.4867891 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Defects induced ferromagnetism in plasma-enabled graphene nanopetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z+J">Z. J. Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+D+H">D. H. Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Ostrikov%2C+K">K. Ostrikov</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X+L">X. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3060v1-abstract-short" style="display: inline;"> Ferromagnetism in graphene is fascinating, but it is still a big challenge for practical applications due to the weak magnetization. In order to enhance the magnetization, here, we design plasma-enabled graphene nanopetals with ultra-long defective edges of up to 105 m/g, ultra-dense lattice vacancies and hydrogen chemisorptions. The designed graphene nanopetals display robust ferromagnetism with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3060v1-abstract-full').style.display = 'inline'; document.getElementById('1401.3060v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3060v1-abstract-full" style="display: none;"> Ferromagnetism in graphene is fascinating, but it is still a big challenge for practical applications due to the weak magnetization. In order to enhance the magnetization, here, we design plasma-enabled graphene nanopetals with ultra-long defective edges of up to 105 m/g, ultra-dense lattice vacancies and hydrogen chemisorptions. The designed graphene nanopetals display robust ferromagnetism with large saturation magnetization of up to 2 emu/g at 5 K and 1.2 emu/g at room temperatures. This work identifies the plasma-enabled graphene nanopetals as a promising candidate for graphene-based magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3060v1-abstract-full').style.display = 'none'; document.getElementById('1401.3060v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters 104, 092417 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.3005">arXiv:1309.3005</a> <span> [<a href="https://arxiv.org/pdf/1309.3005">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.84.044717">10.7566/JPSJ.84.044717 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crossover of Magnetoresistance from Fourfold to Twofold Symmetry in SmB6 Single Crystal, a topological Kondo insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+D">Duanliang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiyang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Culcer%2C+D">Dimi Culcer</a>, <a href="/search/cond-mat?searchtype=author&query=Dou%2C+S">Shixue Dou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.3005v7-abstract-short" style="display: inline;"> Topological Kondo insulators have been attracting great attention from the condensed-matter physics community due to their fascinating topological and strongly correlated properties. Here, we report angle-dependent c-axis magnetoresistance (MR) oscillations in a Kondo insulator, SmB6 single crystal, in a magnetic field of up to 13 T rotated in the ab-plane. Four-fold symmetric MR oscillations are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.3005v7-abstract-full').style.display = 'inline'; document.getElementById('1309.3005v7-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.3005v7-abstract-full" style="display: none;"> Topological Kondo insulators have been attracting great attention from the condensed-matter physics community due to their fascinating topological and strongly correlated properties. Here, we report angle-dependent c-axis magnetoresistance (MR) oscillations in a Kondo insulator, SmB6 single crystal, in a magnetic field of up to 13 T rotated in the ab-plane. Four-fold symmetric MR oscillations are first observed above 8 K, which result from the four-fold (C4) degeneracy of the bulk Fermi surface of SmB6. With decreasing temperature down to 2.3 K, the C4 symmetry of the MR oscillations gradually weakens and C2 symmetry appears. This demonstrates a crossover from three-dimensional bulk states to two-dimensional surface states and implies the possible emergence of topological nematic states. Our experimental observations shed new light on the metallic surface states and nematic states in the Kondo insulator SmB6. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.3005v7-abstract-full').style.display = 'none'; document.getElementById('1309.3005v7-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Soc. Jpn. 84, 044717 (2015) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>