CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 217 results for author: <span class="mathjax">Lu, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Lu%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lu, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lu%2C+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lu, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08039">arXiv:2411.08039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08039">pdf</a>, <a href="https://arxiv.org/format/2411.08039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Uncertainty Quantification of Fluid Leakage and Fault Instability in Geologic CO2 Storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hannah Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Salo-Salgado%2C+L">Lluis Salo-Salgado</a>, <a href="/search/physics?searchtype=author&amp;query=Marzouk%2C+Y+M">Youssef M. Marzouk</a>, <a href="/search/physics?searchtype=author&amp;query=Juanes%2C+R">Ruben Juanes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08039v1-abstract-short" style="display: inline;"> Geologic CO$_2$ storage is an important strategy for reducing greenhouse gas emissions to the atmosphere and mitigating climate change. In this process, coupling between mechanical deformation and fluid flow in fault zones is a key determinant of fault instability, induced seismicity, and CO$_2$ leakage. Using a recently developed methodology, PREDICT, we obtain probability distributions of the pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08039v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08039v1-abstract-full" style="display: none;"> Geologic CO$_2$ storage is an important strategy for reducing greenhouse gas emissions to the atmosphere and mitigating climate change. In this process, coupling between mechanical deformation and fluid flow in fault zones is a key determinant of fault instability, induced seismicity, and CO$_2$ leakage. Using a recently developed methodology, PREDICT, we obtain probability distributions of the permeability tensor in faults from the stochastic placement of clay smears that accounts for geologic uncertainty. We build a comprehensive set of fault permeability scenarios from PREDICT and investigate the effects of uncertainties from the fault zone internal structure and composition on forecasts of CO$_2$ permanence and fault stability. To tackle the prohibitively expensive computational cost of the large number of simulations required to quantify uncertainty, we develop a deep-learning-based surrogate model capable of predicting flow migration, pressure buildup, and geomechanical responses in CO$_2$ storage operations. We also compare our probabilistic estimation of CO$_2$ leakage and fault instability with previous studies based on deterministic estimates of fault permeability. The results highlight the importance of including uncertainty and anisotropy in modeling of complex fault structures and improved management of geologic CO$_2$ storage projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08039v1-abstract-full').style.display = 'none'; document.getElementById('2411.08039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04373">arXiv:2411.04373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04373">pdf</a>, <a href="https://arxiv.org/format/2411.04373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Differential absorption ozone Lidar with 4H-SiC single-photon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xian-Song Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tianyi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Dou%2C+X">Xiankang Dou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04373v1-abstract-short" style="display: inline;"> Differential absorption Lidar (DIAL) in the ultraviolet (UV) region is an effective approach for monitoring tropospheric ozone. 4H-SiC single-photon detectors (SPDs) are emergent devices for UV single-photon detection. Here, we demonstrate a 4H-SiC SPD-based ozone DIAL. We design and fabricate the 4H-SiC single-photon avalanche diode with a beveled mesa structure and optimized layer thickness. An&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04373v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04373v1-abstract-full" style="display: none;"> Differential absorption Lidar (DIAL) in the ultraviolet (UV) region is an effective approach for monitoring tropospheric ozone. 4H-SiC single-photon detectors (SPDs) are emergent devices for UV single-photon detection. Here, we demonstrate a 4H-SiC SPD-based ozone DIAL. We design and fabricate the 4H-SiC single-photon avalanche diode with a beveled mesa structure and optimized layer thickness. An active quenching circuit with a quenching time of 1.03 ns is developed to significantly mitigate the afterpulsing effect while enhancing the maximum count rate. After characterization, the SPD exhibits excellent performance with a photon detection efficiency of 16.6% at 266 nm, a dark count rate of 138 kcps, a maximum count rate of 13 Mcps, and an afterpulse probability of 2.7% at room temperature. Then, we apply two 4H-SiC SPDs in an ozone DIAL. The measured ozone concentrations at altitudes of 1-3.5 km agree well with the results of a commercial ozone DIAL. Our work provides an alternative solution for general UV Lidar applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04373v1-abstract-full').style.display = 'none'; document.getElementById('2411.04373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Applied Physics Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02361">arXiv:2411.02361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02361">pdf</a>, <a href="https://arxiv.org/format/2411.02361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of nonaxisymmetric standard magnetorotational instability induced by a free-shear layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ebrahimi%2C+F">Fatima Ebrahimi</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hongke Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Goodman%2C+J">Jeremy Goodman</a>, <a href="/search/physics?searchtype=author&amp;query=Gilson%2C+E+P">Erik P. Gilson</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+H">Hantao Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02361v1-abstract-short" style="display: inline;"> The standard magnetorotational instability (SMRI) is widely believed to be responsible for the observed accretion rates in astronomical disks. It is a linear instability triggered in the differentially rotating ionized disk flow by a magnetic field component parallel to the rotation axis. Most studies focus on axisymmetric SMRI in conventional base flows with a Keplerian profile for accretion disk&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02361v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02361v1-abstract-full" style="display: none;"> The standard magnetorotational instability (SMRI) is widely believed to be responsible for the observed accretion rates in astronomical disks. It is a linear instability triggered in the differentially rotating ionized disk flow by a magnetic field component parallel to the rotation axis. Most studies focus on axisymmetric SMRI in conventional base flows with a Keplerian profile for accretion disks or an ideal Couette profile for Taylor-Couette flows, since excitation of nonaxisymmetric SMRI in such flows requires a magnetic Reynolds number Rm more than an order of magnitude larger. Here, we report that in a magnetized Taylor-Couette flow, nonaxisymmetric SMRI can be destabilized in a free-shear layer in the base flow at Rm $\gtrsim$ 1, the same threshold as for axisymmetric SMRI. Global linear analysis reveals that the free-shear layer reduces the required Rm, possibly by introducing an extremum in the vorticity of the base flow. Nonlinear simulations validate the results from linear analysis and confirm that a novel instability recently discovered experimentally (Nat. Commun. 13, 4679 (2022)) is the nonaxisymmetric SMRI. Our finding has astronomical implications since free-shear layers are ubiquitous in celestial systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02361v1-abstract-full').style.display = 'none'; document.getElementById('2411.02361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01289">arXiv:2410.01289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01289">pdf</a>, <a href="https://arxiv.org/format/2410.01289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> The Unlikely Hero: Nonideality in Analog Photonic Neural Networks as Built-in Defender Against Adversarial Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haotian Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Ziang Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Bhoumik%2C+P">Partho Bhoumik</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+S">Sanmitra Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Chakrabarty%2C+K">Krishnendu Chakrabarty</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+J">Jiaqi Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01289v1-abstract-short" style="display: inline;"> Electronic-photonic computing systems have emerged as a promising platform for accelerating deep neural network (DNN) workloads. Major efforts have been focused on countering hardware non-idealities and boosting efficiency with various hardware/algorithm co-design methods. However, the adversarial robustness of such photonic analog mixed-signal AI hardware remains unexplored. Though the hardware v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01289v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01289v1-abstract-full" style="display: none;"> Electronic-photonic computing systems have emerged as a promising platform for accelerating deep neural network (DNN) workloads. Major efforts have been focused on countering hardware non-idealities and boosting efficiency with various hardware/algorithm co-design methods. However, the adversarial robustness of such photonic analog mixed-signal AI hardware remains unexplored. Though the hardware variations can be mitigated with robustness-driven optimization methods, malicious attacks on the hardware show distinct behaviors from noises, which requires a customized protection method tailored to optical analog hardware. In this work, we rethink the role of conventionally undesired non-idealities in photonic analog accelerators and claim their surprising effects on defending against adversarial weight attacks. Inspired by the protection effects from DNN quantization and pruning, we propose a synergistic defense framework tailored for optical analog hardware that proactively protects sensitive weights via pre-attack unary weight encoding and post-attack vulnerability-aware weight locking. Efficiency-reliability trade-offs are formulated as constrained optimization problems and efficiently solved offline without model re-training costs. Extensive evaluation of various DNN benchmarks with a multi-core photonic accelerator shows that our framework maintains near-ideal on-chip inference accuracy under adversarial bit-flip attacks with merely &lt;3% memory overhead. Our codes are open-sourced at https://github.com/ScopeX-ASU/Unlikely_Hero. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01289v1-abstract-full').style.display = 'none'; document.getElementById('2410.01289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages. Accepted to ACM/IEEE ASP-DAC 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00842">arXiv:2410.00842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00842">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c07576">10.1021/acsnano.3c07576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optically-Controlled Nano-Transducers Based on Cleaved Superlattices for Monitoring Gigahertz Surface Acoustic Vibrations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Changxiu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chigarev%2C+N">Nikolay Chigarev</a>, <a href="/search/physics?searchtype=author&amp;query=Thr%C3%A9ard%2C+T">Th茅o Thr茅ard</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Kedong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Delorme%2C+N">Nicolas Delorme</a>, <a href="/search/physics?searchtype=author&amp;query=Tournat%2C+V">Vincent Tournat</a>, <a href="/search/physics?searchtype=author&amp;query=Raetz%2C+S">Samuel Raetz</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Gusev%2C+V+E">Vitalyi E. Gusev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00842v1-abstract-short" style="display: inline;"> Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. However, the utilization of cutting-edge OAOTs produced through surface nanopatterning techniques has set the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00842v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00842v1-abstract-full" style="display: none;"> Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. However, the utilization of cutting-edge OAOTs produced through surface nanopatterning techniques has set the upper limit for coherent SAW frequencies below 100 GHz, constrained by factors such as the quality and pitch of the surface nanopattern, not to mention the electronic bandwidth limitations of the IDTs. In this context, unconventional optically-controlled nano-transducers based on cleaved superlattices (SLs) are here presented as an alternative solution. To demonstrate their viability, we conducted proof-of-concept experiments using ultrafast lasers in a pump-probe configuration on SLs made of alternating AlxGa1-xAs and AlyGa1-yAs layers with approximately 70 nm periodicity and cleaved along their growth direction to produce a periodic nanostructured surface. The acoustic vibrations, generated and detected by laser beams incident on the cleaved surface, span a range from 40 GHz to 70 GHz, corresponding to the generalized surface Rayleigh mode and bulk modes within the dispersion relation. This exploration shows that, in addition to SAWs, cleaved SLs offer the potential to observe surface-skimming longitudinal and transverse acoustic waves at GHz frequencies. This proof-of-concept demonstration below 100 GHz in nanoacoustics using such an unconventional platform offers opportunities for realizing sub-THz to THz coherent surface acoustic vibrations in the future, as SLs can be epitaxially grown with atomic-scale layer width and quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00842v1-abstract-full').style.display = 'none'; document.getElementById('2410.00842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 8 figures, published at ACS Nano</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 18, 9331 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13638">arXiv:2409.13638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13638">pdf</a>, <a href="https://arxiv.org/format/2409.13638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On-chip pulse shaping of entangled photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+K">Kaiyi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cohen%2C+L+M">Lucas M. Cohen</a>, <a href="/search/physics?searchtype=author&amp;query=Myilswamy%2C+K+V">Karthik V. Myilswamy</a>, <a href="/search/physics?searchtype=author&amp;query=Lingaraju%2C+N+B">Navin B. Lingaraju</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Weiner%2C+A+M">Andrew M. Weiner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13638v1-abstract-short" style="display: inline;"> We demonstrate spectral shaping of entangled photons with a six-channel microring-resonator-based silicon photonic pulse shaper. Through precise calibration of thermal phase shifters in a microresonator-based pulse shaper, we demonstrate line-by-line phase control on a 3~GHz grid for two frequency-bin-entangled qudits, corresponding to Hilbert spaces of up to $6\times 6$ ($3\times 3$) dimensions f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13638v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13638v1-abstract-full" style="display: none;"> We demonstrate spectral shaping of entangled photons with a six-channel microring-resonator-based silicon photonic pulse shaper. Through precise calibration of thermal phase shifters in a microresonator-based pulse shaper, we demonstrate line-by-line phase control on a 3~GHz grid for two frequency-bin-entangled qudits, corresponding to Hilbert spaces of up to $6\times 6$ ($3\times 3$) dimensions for shared (independent) signal-idler filters. The pulse shaper&#39;s fine spectral resolution enables control of nanosecond-scale temporal features, which are observed by direct coincidence detection of biphoton correlation functions that show excellent agreement with theory. This work marks, to our knowledge, the first demonstration of biphoton pulse shaping using an integrated spectral shaper and holds significant promise for applications in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13638v1-abstract-full').style.display = 'none'; document.getElementById('2409.13638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13477">arXiv:2409.13477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13477">pdf</a>, <a href="https://arxiv.org/format/2409.13477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> A Plug-and-Play Method for Guided Multi-contrast MRI Reconstruction based on Content/Style Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rao%2C+C">Chinmay Rao</a>, <a href="/search/physics?searchtype=author&amp;query=van+Osch%2C+M">Matthias van Osch</a>, <a href="/search/physics?searchtype=author&amp;query=Pezzotti%2C+N">Nicola Pezzotti</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bresser%2C+J">Jeroen de Bresser</a>, <a href="/search/physics?searchtype=author&amp;query=Beljaards%2C+L">Laurens Beljaards</a>, <a href="/search/physics?searchtype=author&amp;query=Meineke%2C+J">Jakob Meineke</a>, <a href="/search/physics?searchtype=author&amp;query=de+Weerdt%2C+E">Elwin de Weerdt</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Huangling Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Doneva%2C+M">Mariya Doneva</a>, <a href="/search/physics?searchtype=author&amp;query=Staring%2C+M">Marius Staring</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13477v1-abstract-short" style="display: inline;"> Since multiple MRI contrasts of the same anatomy contain redundant information, one contrast can be used as a prior for guiding the reconstruction of an undersampled subsequent contrast. To this end, several learning-based guided reconstruction methods have been proposed. However, two key challenges remain - (a) the requirement of large paired training datasets and (b) the lack of intuitive unders&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13477v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13477v1-abstract-full" style="display: none;"> Since multiple MRI contrasts of the same anatomy contain redundant information, one contrast can be used as a prior for guiding the reconstruction of an undersampled subsequent contrast. To this end, several learning-based guided reconstruction methods have been proposed. However, two key challenges remain - (a) the requirement of large paired training datasets and (b) the lack of intuitive understanding of the model&#39;s internal representation and utilization of the shared information. We propose a modular two-stage approach for guided reconstruction, addressing these challenges. A content/style model of two-contrast image data is learned in a largely unpaired manner and is subsequently applied as a plug-and-play operator in iterative reconstruction. The disentanglement of content and style allows explicit representation of contrast-independent and contrast-specific factors. Based on this, incorporating prior information into the reconstruction reduces to simply replacing the aliased reconstruction content with clean content derived from the reference scan. We name this novel approach PnP-MUNIT. Various aspects like interpretability and convergence are explored via simulations. Furthermore, its practicality is demonstrated on the NYU fastMRI DICOM dataset and two in-house raw datasets, obtaining up to 32.6% more acceleration over learning-based non-guided reconstruction for a given SSIM. In a radiological task, PnP-MUNIT allowed 33.3% more acceleration over clinical reconstruction at diagnostic quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13477v1-abstract-full').style.display = 'none'; document.getElementById('2409.13477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submitted to the IEEE for possible publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.4.5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03457">arXiv:2408.03457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03457">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Transit Rider Heat Stress in Atlanta, GA under Current and Future Climate Scenarios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+H">Huiying Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Lyu%2C+G">Geyu Lyu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hongyu Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Guin%2C+A">Angshuman Guin</a>, <a href="/search/physics?searchtype=author&amp;query=Guensler%2C+R">Randall Guensler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03457v1-abstract-short" style="display: inline;"> Transit is a crucial mode of transportation, especially in urban areas and for urban and rural disadvantaged communities. Because extreme temperatures often pose threats to the elderly, members of the disability community, and other vulnerable populations, this study seeks to understand the level of influence that extreme temperatures may have on transit users across different demographic groups.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03457v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03457v1-abstract-full" style="display: none;"> Transit is a crucial mode of transportation, especially in urban areas and for urban and rural disadvantaged communities. Because extreme temperatures often pose threats to the elderly, members of the disability community, and other vulnerable populations, this study seeks to understand the level of influence that extreme temperatures may have on transit users across different demographic groups. In this case study for Atlanta, GA, heat stress is predicted for 2019 transit riders (using transit rider activity survey data) and for three future climate scenarios, SSP245, SSP370, and SSP585, into the year 2100. The HeatPath Analyzer and TransitSim 4.0 models were applied to predict cumulative heat exposure and trip-level risk for 35,999 trip equivalents for an average Atlanta area weekday in the summer of 2019. The analyses show that under 2019 weather conditions, 8.33% of summer trips were estimated to be conducted under extreme heat. With the projected future climate conditions, the percentage of trips under extreme heat risk grows steadily. By 2100, 37.1%, 56.1%, and 76.4% are projected to be under extreme heat risk for scenarios SSP245, SSP370, and SSP585, respectively. Under current weather conditions, Atlanta transit riders that own no vehicles and transit riders that are African American are disproportionately influenced by extreme heat. The disparity between these two groups and other groups of transit riders becomes wider as climate change continues to exacerbate. The findings of the study highlight an urgent need to implement heat mitigation and adaptation strategies in urban transit networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03457v1-abstract-full').style.display = 'none'; document.getElementById('2408.03457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 1 table, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03075">arXiv:2408.03075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03075">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the current systems in the Martian ionosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">Jiawei Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shibang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mittelholz%2C+A">Anna Mittelholz</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+Z">Zhaojin Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Persson%2C+M">Moa Persson</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhen Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haoyu Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaodong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chuanfei Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Klinger%2C+L">Lucy Klinger</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jun Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yongxin Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03075v1-abstract-short" style="display: inline;"> When the solar wind interacts with the ionosphere of an unmagnetized planet, it induces currents that form an induced magnetosphere. These currents and their associated magnetic fields play a pivotal role in controlling the movement of charged particles, which is essential for understanding the escape of planetary ions. Unlike the well-documented magnetospheric current systems, the ionospheric cur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03075v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03075v1-abstract-full" style="display: none;"> When the solar wind interacts with the ionosphere of an unmagnetized planet, it induces currents that form an induced magnetosphere. These currents and their associated magnetic fields play a pivotal role in controlling the movement of charged particles, which is essential for understanding the escape of planetary ions. Unlike the well-documented magnetospheric current systems, the ionospheric current systems on unmagnetized planets remain less understood, which constrains the quantification of electrodynamic energy transfer from stars to these planets. Here, utilizing eight years of data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we investigate the global distribution of ionospheric currents on Mars. We have identified two distinct current systems in the ionosphere: one aligns with the solar wind electric field yet exhibits hemispheric asymmetry perpendicular to the electric field direction; the other corresponds to the flow pattern of annually-averaged neutral winds. We propose that these two current systems are driven by the solar wind and atmospheric neutral winds, respectively. Our findings reveal that Martian ionospheric dynamics are influenced by the neutral winds from below and the solar wind from above, highlighting the complex and intriguing nature of current systems on unmagnetized planets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03075v1-abstract-full').style.display = 'none'; document.getElementById('2408.03075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20443">arXiv:2407.20443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20443">pdf</a>, <a href="https://arxiv.org/format/2407.20443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Resilient Entanglement Distribution in a Multihop Quantum Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alshowkan%2C+M">Muneer Alshowkan</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+N+A">Nicholas A. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20443v1-abstract-short" style="display: inline;"> The evolution of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions. We introduce multihop quantum networks to improve network reach and resilience by enabling quantum communications across intermediate nodes, thus broadening network connectivity and increasing sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20443v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20443v1-abstract-full" style="display: none;"> The evolution of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions. We introduce multihop quantum networks to improve network reach and resilience by enabling quantum communications across intermediate nodes, thus broadening network connectivity and increasing scalability. We present multihop two-qubit polarization-entanglement distribution within a quantum network at the Oak Ridge National Laboratory campus. Our system uses wavelength-selective switches for adaptive bandwidth management on a software-defined quantum network that integrates a quantum data plane with classical data and control planes, creating a flexible, reconfigurable mesh. Our network distributes entanglement across six nodes within three subnetworks, each located in a separate building, optimizing quantum state fidelity and transmission rate through adaptive resource management. Additionally, we demonstrate the network&#39;s resilience by implementing a link recovery approach that monitors and reroutes quantum resources to maintain service continuity despite link failures -- paving the way for scalable and reliable quantum networking infrastructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20443v1-abstract-full').style.display = 'none'; document.getElementById('2407.20443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 PAGES, 6 FIGURES</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17330">arXiv:2407.17330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17330">pdf</a>, <a href="https://arxiv.org/format/2407.17330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum nonlocal modulation cancellation with distributed clocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+S+D">Stephen D. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Seshadri%2C+S">Suparna Seshadri</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+N+A">Nicholas A. Peters</a>, <a href="/search/physics?searchtype=author&amp;query=McKinney%2C+J+D">Jason D. McKinney</a>, <a href="/search/physics?searchtype=author&amp;query=Weiner%2C+A+M">Andrew M. Weiner</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17330v1-abstract-short" style="display: inline;"> We demonstrate nonlocal modulation of entangled photons with truly distributed RF clocks. Leveraging a custom radio-over-fiber (RFoF) system characterized via classical spectral interference, we validate its effectiveness for quantum networking by multiplexing the RFoF clock with one photon from a frequency-bin-entangled pair and distributing the coexisting quantum-classical signals over fiber. Ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17330v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17330v1-abstract-full" style="display: none;"> We demonstrate nonlocal modulation of entangled photons with truly distributed RF clocks. Leveraging a custom radio-over-fiber (RFoF) system characterized via classical spectral interference, we validate its effectiveness for quantum networking by multiplexing the RFoF clock with one photon from a frequency-bin-entangled pair and distributing the coexisting quantum-classical signals over fiber. Phase modulation of the two photons reveals nonlocal correlations in excellent agreement with theory: in-phase modulation produces additional sidebands in the joint spectral intensity, while out-of-phase modulation is nonlocally canceled. Our simple, feedback-free design attains sub-picosecond synchronization -- namely, drift less than $\sim$0.5 ps in a 5.5 km fiber over 30 min (fractionally only $\sim$2$\times$10$^{-8}$ of the total fiber delay) -- and should facilitate frequency-encoded quantum networking protocols such as high-dimensional quantum key distribution and entanglement swapping, unlocking frequency-bin qubits for practical quantum communications in deployed metropolitan-scale networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17330v1-abstract-full').style.display = 'none'; document.getElementById('2407.17330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13037">arXiv:2407.13037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13037">pdf</a>, <a href="https://arxiv.org/format/2407.13037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Dispersion Relations for Active Undulators in Overdamped Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pierce%2C+C+J">Christopher J. Pierce</a>, <a href="/search/physics?searchtype=author&amp;query=Irvine%2C+D">Daniel Irvine</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+L">Lucinda Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+X">Xuefei Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Goldman%2C+D+I">Daniel I. Goldman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13037v1-abstract-short" style="display: inline;"> Organisms that locomote by propagating waves of body bending can maintain performance across heterogeneous environments by modifying their gait frequency $蠅$ or wavenumber $k$. We identify a unifying relationship between these parameters for overdamped undulatory swimmers (including nematodes, spermatozoa, and mm-scale fish) moving in diverse environmental rheologies, in the form of an active `dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13037v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13037v1-abstract-full" style="display: none;"> Organisms that locomote by propagating waves of body bending can maintain performance across heterogeneous environments by modifying their gait frequency $蠅$ or wavenumber $k$. We identify a unifying relationship between these parameters for overdamped undulatory swimmers (including nematodes, spermatozoa, and mm-scale fish) moving in diverse environmental rheologies, in the form of an active `dispersion relation&#39; $蠅\propto k^{\pm2}$. A model treating the organisms as actively driven viscoelastic beams reproduces the experimentally observed scaling. The relative strength of rate-dependent dissipation in the body and the environment determines whether $k^2$ or $k^{-2}$ scaling is observed. The existence of these scaling regimes reflects the $k$ and $蠅$ dependence of the various underlying force terms and how their relative importance changes with the external environment and the neuronally commanded gait. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13037v1-abstract-full').style.display = 'none'; document.getElementById('2407.13037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02817">arXiv:2407.02817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02817">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Operando monitoring of strain field distribution in lithium battery anode via ultra-high spatial resolution optical frequency domain reflectometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kaijun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+Z">Zhijuan Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+G">Guolu Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y">Yingze Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zeheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+Y">Yuyang Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Z">Zixuan Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Huafeng Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Duidui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+T">Tao Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02817v1-abstract-short" style="display: inline;"> The cycling performance of lithium-ion batteries is closely related to the expansion effect of anode materials during charge and discharge processes. Studying the mechanical field evolution of anode materials is crucial for evaluating battery per-formance. Here, we propose a phase-sensitive ultra-high spatial resolution optical frequency domain reflectometry tech-nique, in which the test fiber is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02817v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02817v1-abstract-full" style="display: none;"> The cycling performance of lithium-ion batteries is closely related to the expansion effect of anode materials during charge and discharge processes. Studying the mechanical field evolution of anode materials is crucial for evaluating battery per-formance. Here, we propose a phase-sensitive ultra-high spatial resolution optical frequency domain reflectometry tech-nique, in which the test fiber is embedded into the anode of a lithium-ion battery to monitor the mechanical evolution of the anode material during cycling. We investigated the strain evolution of the anode material under different loading levels and used this method to infer the morphological changes of the material. Furthermore, combining this with battery capacity in-formation provides a new approach for assessing the performance of lithium-ion batteries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02817v1-abstract-full').style.display = 'none'; document.getElementById('2407.02817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17439">arXiv:2406.17439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17439">pdf</a>, <a href="https://arxiv.org/format/2406.17439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.519265">10.1364/OE.519265 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient generation of broadband photon pairs in shallow-etched lithium niobate nanowaveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fang%2C+X">Xiao-Xu Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Leiran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">He Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17439v1-abstract-short" style="display: inline;"> We design and fabricate shallow-etched periodically poled lithium niobate waveguide to realize highly-efficient broadband spontaneous parametric down-conversion~(SPDC) on nanophotonic chip. The shallow-etched waveguide is capable to tolerate the non-uniformities of waveguide width induced by fabrication imperfections, enabling generation of photon pairs with high count rate and bandwidth. We demon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17439v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17439v1-abstract-full" style="display: none;"> We design and fabricate shallow-etched periodically poled lithium niobate waveguide to realize highly-efficient broadband spontaneous parametric down-conversion~(SPDC) on nanophotonic chip. The shallow-etched waveguide is capable to tolerate the non-uniformities of waveguide width induced by fabrication imperfections, enabling generation of photon pairs with high count rate and bandwidth. We demonstrate photon-pair generation with a high brightness of 11.7~GHz/mW and bandwidth of 22~THz, in a 5.7-mm-long PPLN waveguide. The generated photon pairs exhibit strong temporal correlation with a coincidence-to-accidental ratio up to 16262$\pm$850. Our results confirm the feasibility of shallow etching in fabrication of efficient SPDC device on platform of lithium niobate on insulator, and benefit quantum information processing with broadband photon source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17439v1-abstract-full').style.display = 'none'; document.getElementById('2406.17439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 32, 22945-22954 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07317">arXiv:2404.07317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07317">pdf</a>, <a href="https://arxiv.org/format/2404.07317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICAQ.525837">10.1364/OPTICAQ.525837 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Building a controlled-NOT gate between polarization and frequency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Alshowkan%2C+M">Muneer Alshowkan</a>, <a href="/search/physics?searchtype=author&amp;query=Kirby%2C+B+T">Brian T. Kirby</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+N+A">Nicholas A. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07317v1-abstract-short" style="display: inline;"> By harnessing multiple degrees of freedom (DoFs) within a single photon, controlled quantum unitaries, such as the two-qubit controlled-NOT (CNOT) gate, play a pivotal role in advancing quantum communication protocols like dense coding and entanglement distillation. In this work, we devise and realize a CNOT operation between polarization and frequency DoFs by exploiting directionally dependent el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07317v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07317v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07317v1-abstract-full" style="display: none;"> By harnessing multiple degrees of freedom (DoFs) within a single photon, controlled quantum unitaries, such as the two-qubit controlled-NOT (CNOT) gate, play a pivotal role in advancing quantum communication protocols like dense coding and entanglement distillation. In this work, we devise and realize a CNOT operation between polarization and frequency DoFs by exploiting directionally dependent electro-optic phase modulation within a fiber Sagnac loop. Alongside computational basis measurements, we validate the effectiveness of this operation through the synthesis of all four Bell states in a single photon, all with fidelities greater than 98%. This demonstration opens new avenues for manipulating hyperentanglement across these two crucial DoFs, marking a foundational step toward leveraging polarization-frequency resources in fiber networks for future quantum applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07317v1-abstract-full').style.display = 'none'; document.getElementById('2404.07317v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica Quantum 2, 282-287 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02427">arXiv:2404.02427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02427">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0097518">10.1063/5.0097518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-situ tunable giant electrical anisotropy in a grating gated AlGaN/GaN two-dimensional electron gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Ting-Ting Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chen-Guang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+C">Chang-Kun Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zixiong Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhi-Li Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+X">Xiaoli Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hua-Bing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Kwok%2C+W">Wai-Kwong Kwok</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02427v1-abstract-short" style="display: inline;"> Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02427v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02427v1-abstract-full" style="display: none;"> Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modulated electric potential in the 2DEG induces in-plane electrical anisotropy, which is significantly enhanced in a magnetic field, leading to an ultra large electrical anisotropy. This is induced by a giant positive magnetoresistance and a giant negative magnetoresistance under two orthogonally oriented in-plane current flows, respectively. This giant electrical anisotropy is in-situ tunable by tailoring both the grating gate voltage and the magnetic field. Our semiconductor device with controllable giant electrical anisotropy will stimulate new device applications, such as multi-terminal memtransistors and bionic synapses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02427v1-abstract-full').style.display = 'none'; document.getElementById('2404.02427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 121, 092101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09244">arXiv:2403.09244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09244">pdf</a>, <a href="https://arxiv.org/format/2403.09244">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> High precision proton beam monitor system concept design on CSNS based on SiC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Ye He</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xingchen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zijun Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+M">Ming Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Congcong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+X">Xiaojun Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+R">Ruirui Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+H">Hantao Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+W">Weiming Song</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Keqi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+P">Peilian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zaiyi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Chenxi Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiyuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+X">Xiaoshen Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+W">Weiguo Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Suyu Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+X">Xin Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09244v1-abstract-short" style="display: inline;"> A high precision beam monitor system based on silicon carbide PIN sensor is designed for China Spallation Neutron Source 1.6 GeV proton beam to monitor the proton beam fluence.The concept design of the beam monitor system is finished together with front-end electronics with silicon carbide PIN sensors, readout system and mechanical system.Several tests are performed to study the performance of eac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09244v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09244v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09244v1-abstract-full" style="display: none;"> A high precision beam monitor system based on silicon carbide PIN sensor is designed for China Spallation Neutron Source 1.6 GeV proton beam to monitor the proton beam fluence.The concept design of the beam monitor system is finished together with front-end electronics with silicon carbide PIN sensors, readout system and mechanical system.Several tests are performed to study the performance of each component of the system.The charge collection of the SiC PIN sensors after proton radiation is studied with 80 MeV proton beam for continuous running. Research on the performance of the front-end electronics and readout system is finished for better data acquisition.The uncertainty of proton beam fluence is below 1% in the beam monitor system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09244v1-abstract-full').style.display = 'none'; document.getElementById('2403.09244v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15187">arXiv:2402.15187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15187">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultra-short lifetime isomer studies from photonuclear reactions using laser-driven ultra-intense 纬-ray </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+H">Haoyang Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiaxing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Huangang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jianyao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+J">Jianfeng Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xuezhi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yadong Xia</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Q">Qiangyou He</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Jie Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q">Qianyi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yuhui Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">Meizhi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhiyan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xinlu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+Y">Yixing Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+C">Chen Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W">Wenjun Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yanying Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haoran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fulong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chuangye He</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J">Jinqing Yu</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15187v1-abstract-short" style="display: inline;"> Isomers, ubiquitous populations of relatively long-lived nuclear excited states, play a crucial role in nuclear physics. However, isomers with half-life times of several seconds or less barely had experimental cross section data due to the lack of a suitable measuring method. We report a method of online 纬 spectroscopy for ultra-short-lived isomers from photonuclear reactions using laser-driven ul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15187v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15187v1-abstract-full" style="display: none;"> Isomers, ubiquitous populations of relatively long-lived nuclear excited states, play a crucial role in nuclear physics. However, isomers with half-life times of several seconds or less barely had experimental cross section data due to the lack of a suitable measuring method. We report a method of online 纬 spectroscopy for ultra-short-lived isomers from photonuclear reactions using laser-driven ultra-intense 纬-rays. The fastest time resolution can reach sub-ps level with 纬-ray intensities &gt;10^{19}/s ({\geqslant} 8 MeV). The ^{115}In(纬, n)^{114m2}In reaction (T_{1/2} = 43.1 ms) was first measured in the high-energy region which shed light on the nuclear structure studies of In element. Simulations showed it would be an efficient way to study ^{229m}Th (T_{1/2} = 7 渭s), which is believed to be the next generation of nuclear clock. This work offered a unique way of gaining insight into ultra-short lifetimes and promised an effective way to fill the gap in relevant experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15187v1-abstract-full').style.display = 'none'; document.getElementById('2402.15187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11978">arXiv:2402.11978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11978">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Thermal Stress Analysis of the LNG Corrugated Cryogenic Hose During Gas Pre-Cooling Process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Miaoer Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fangqiu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+H">Hao Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+E">Endao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+J">Jun Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hailong Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Y">Yufeng Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+T">Tingting Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhaokuan Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11978v1-abstract-short" style="display: inline;"> In this study, thermal-fluid-solid coupled simulations on the gas-phase pre-cooling operation of the corrugated cryogenic hoses were performed. Attention was focused on the temporal evolution and spatial distribution of transient thermal stress in the hose structure caused by convective heat transfer of the cooling medium, Liquefied Natural Gas Boil-Off Gas (BOG). The effects of different corrugat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11978v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11978v1-abstract-full" style="display: none;"> In this study, thermal-fluid-solid coupled simulations on the gas-phase pre-cooling operation of the corrugated cryogenic hoses were performed. Attention was focused on the temporal evolution and spatial distribution of transient thermal stress in the hose structure caused by convective heat transfer of the cooling medium, Liquefied Natural Gas Boil-Off Gas (BOG). The effects of different corrugated hose parameters, i.e., boundary conditions, hose lengths, BOG inlet flow rates, and corrugation shapes (C-type and U-type), on the transient thermal stress behavior were thoroughly assessed. The thermal stress developed at different locations of the corrugated hoses with these parameters is found to be governed by two major factors: the boundary constraint and local temperature gradient. The objective of this study is to offer practical insights for the structural strength design of corrugated cryogenic hoses and effective pre-cooling strategies, aiming to mitigate structural safety risks caused by excessive thermal stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11978v1-abstract-full').style.display = 'none'; document.getElementById('2402.11978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09307">arXiv:2402.09307</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09307">pdf</a>, <a href="https://arxiv.org/format/2402.09307">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICAQ.521418">10.1364/OPTICAQ.521418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CMOS photonic integrated source of ultrabroadband polarization-entangled photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Miloshevsky%2C+A">Alexander Miloshevsky</a>, <a href="/search/physics?searchtype=author&amp;query=Cohen%2C+L+M">Lucas M. Cohen</a>, <a href="/search/physics?searchtype=author&amp;query=Myilswamy%2C+K+V">Karthik V. Myilswamy</a>, <a href="/search/physics?searchtype=author&amp;query=Alshowkan%2C+M">Muneer Alshowkan</a>, <a href="/search/physics?searchtype=author&amp;query=Fatema%2C+S">Saleha Fatema</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Weiner%2C+A+M">Andrew M. Weiner</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09307v1-abstract-short" style="display: inline;"> We showcase a fully on-chip CMOS-fabricated silicon photonic integrated circuit employing a bidirectionally pumped microring and polarization splitter-rotators tailored for the generation of ultrabroadband ($&gt;$9 THz), high-fidelity (90-98%) polarization-entangled photons. Spanning the optical C+L-band and producing over 116 frequency-bin pairs on a 38.4 GHz-spaced grid, this source is ideal for fl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09307v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09307v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09307v1-abstract-full" style="display: none;"> We showcase a fully on-chip CMOS-fabricated silicon photonic integrated circuit employing a bidirectionally pumped microring and polarization splitter-rotators tailored for the generation of ultrabroadband ($&gt;$9 THz), high-fidelity (90-98%) polarization-entangled photons. Spanning the optical C+L-band and producing over 116 frequency-bin pairs on a 38.4 GHz-spaced grid, this source is ideal for flex-grid wavelength-multiplexed entanglement distribution in multiuser networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09307v1-abstract-full').style.display = 'none'; document.getElementById('2402.09307v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica Quantum 2, 254-259 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07513">arXiv:2401.07513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07513">pdf</a>, <a href="https://arxiv.org/format/2401.07513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2458-9">10.1007/s11433-024-2458-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detector performance of the Gamma-ray Transient Monitor onboard DRO-A Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chen-Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jia-Cong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Min Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiang-Yang Wen</a>, <a href="/search/physics?searchtype=author&amp;query=liu%2C+Y">Ya-Qing liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiao-Yun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07513v2-abstract-short" style="display: inline;"> Gamma-ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 keV to 1 MeV. GTM is equipped with 5 Gamma-ray Transient Probe (GTP) detector modules, utilizing the NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP makes use of a dedicated dua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07513v2-abstract-full').style.display = 'inline'; document.getElementById('2401.07513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07513v2-abstract-full" style="display: none;"> Gamma-ray Transient Monitor (GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A (DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 keV to 1 MeV. GTM is equipped with 5 Gamma-ray Transient Probe (GTP) detector modules, utilizing the NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP makes use of a dedicated dual-channel coincident readout design. In this work, we firstly studied the impact of different coincidence times on detection efficiency and ultimately selected the 500 ns time coincidence window for offline data processing. To test the performance of GTPs and validate the Monte Carlo simulated energy response, we conducted comprehensive ground calibration tests using Hard X-ray Calibration Facility (HXCF) and radioactive sources, including energy response, detection efficiency, spatial response, bias-voltage response, and temperature dependence. We extensively presented the ground calibration results, and validated the design and mass model of GTP detector. These work paved the road for the in-flight observation and science data analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07513v2-abstract-full').style.display = 'none'; document.getElementById('2401.07513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 25 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China-Phys. Mech. Astron. 67, 111013 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01718">arXiv:2401.01718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01718">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> RHDLPP: A multigroup radiation hydrodynamics code for laser-produced plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Min%2C+Q">Qi Min</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Ziyang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S">Siqi He</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haidong Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xingbang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+R">Ruizi Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yanhong Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Q">Qikun Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+C">Chongxiao Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Fei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+M">Maogen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chenzhong Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01718v1-abstract-short" style="display: inline;"> We introduce the RHDLPP, a flux-limited multigroup radiation hydrodynamics numerical code designed for simulating laser-produced plasmas in diverse environments. The code bifurcates into two packages: RHDLPP-LTP for low-temperature plasmas generated by moderate-intensity nanosecond lasers, and RHDLPP-HTP for high-temperature, high-density plasmas formed by high-intensity laser pulses. The core rad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01718v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01718v1-abstract-full" style="display: none;"> We introduce the RHDLPP, a flux-limited multigroup radiation hydrodynamics numerical code designed for simulating laser-produced plasmas in diverse environments. The code bifurcates into two packages: RHDLPP-LTP for low-temperature plasmas generated by moderate-intensity nanosecond lasers, and RHDLPP-HTP for high-temperature, high-density plasmas formed by high-intensity laser pulses. The core radiation hydrodynamic equations are resolved in the Eulerian frame, employing an operator-split method. This method decomposes the solution into two substeps: first, the explicit resolution of the hyperbolic subsystems integrating radiation and fluid dynamics, and second, the implicit treatment of the parabolic part comprising stiff radiation diffusion, heat conduction, and energy exchange. Laser propagation and energy deposition are modeled through a hybrid approach, combining geometrical optics ray-tracing in sub-critical plasma regions with a one-dimensional solution of the Helmholtz wave equation in super-critical areas. The thermodynamic states are ascertained using an equation of state, based on either the real gas approximation or the quotidian equation of state (QEOS). Additionally, RHDLPP includes RHDLPP-SpeIma3D, a three-dimensional spectral simulation post-processing module, for generating both temporally-spatially resolved and time-integrated spectra and imaging, facilitating direct comparisons with experimental data. The paper showcases a series of verification tests to establish the code&#39;s accuracy and efficiency, followed by application cases, including simulations of laser-produced aluminum (Al) plasmas, pre-pulse-induced target deformation of tin (Sn) microdroplets relevant to extreme ultraviolet lithography light sources, and varied imaging and spectroscopic simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01718v1-abstract-full').style.display = 'none'; document.getElementById('2401.01718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01311">arXiv:2401.01311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01311">pdf</a>, <a href="https://arxiv.org/format/2401.01311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.044027">10.1103/PhysRevApplied.21.044027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Procrustean entanglement concentration in quantum-classical networking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Alshowkan%2C+M">Muneer Alshowkan</a>, <a href="/search/physics?searchtype=author&amp;query=Alnas%2C+J">Jude Alnas</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+N+A">Nicholas A. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01311v1-abstract-short" style="display: inline;"> The success of a future quantum internet will rest in part on the ability of quantum and classical signals to coexist in the same optical fiber infrastructure, a challenging endeavor given the orders of magnitude differences in flux of single-photon-level quantum fields and bright classical traffic. We theoretically describe and experimentally implement Procrustean entanglement concentration for p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01311v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01311v1-abstract-full" style="display: none;"> The success of a future quantum internet will rest in part on the ability of quantum and classical signals to coexist in the same optical fiber infrastructure, a challenging endeavor given the orders of magnitude differences in flux of single-photon-level quantum fields and bright classical traffic. We theoretically describe and experimentally implement Procrustean entanglement concentration for polarization-entangled states contaminated with classical light, showing significant mitigation of crosstalk noise in dense wavelength-division multiplexing. Our approach leverages a pair of polarization-dependent loss emulators to attenuate highly polarized crosstalk that results from imperfect isolation of conventional signals copropagating on shared fiber links. We demonstrate our technique both on the tabletop and over a deployed quantum local area network, finding a substantial improvement of two-qubit entangled state fidelity from approximately 75\% to over 92\%. This local filtering technique could be used as a preliminary step to reduce asymmetric errors, potentially improving the overall efficiency when combined with more complex error mitigation techniques in future quantum repeater networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01311v1-abstract-full').style.display = 'none'; document.getElementById('2401.01311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 21, 044027 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00226">arXiv:2401.00226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00226">pdf</a>, <a href="https://arxiv.org/format/2401.00226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Intrinsic Energy Resolution of LaBr$_3$(Ce) Crystal for GECAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng-Er Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00226v1-abstract-short" style="display: inline;"> The intrinsic resolution is the primary limitation on the total energy resolution of LaBr$_3$(Ce) crystal. This intrinsic resolution arises from two effects: fluctuations occurring in the process of energy transfer to luminescent centers within the LaBr$_3$(Ce) crystal and the LaBr$_3$(Ce) crystal&#39;s non-proportional luminescence. Presently, experimental measurements regarding the intrinsic resolut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00226v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00226v1-abstract-full" style="display: none;"> The intrinsic resolution is the primary limitation on the total energy resolution of LaBr$_3$(Ce) crystal. This intrinsic resolution arises from two effects: fluctuations occurring in the process of energy transfer to luminescent centers within the LaBr$_3$(Ce) crystal and the LaBr$_3$(Ce) crystal&#39;s non-proportional luminescence. Presently, experimental measurements regarding the intrinsic resolution of LaBr$_3$(Ce) crystal are scarce, and the underlying physical mechanisms remain incompletely understood. In this paper, we aim to elucidate the concept of intrinsic resolution. We investigated the entire physical process of luminescence following energy deposition in the LaBr$_3$(Ce) crystal, quantifying the various components in the total energy resolution. We conducted a series of experimental measurements and Geant4 simulations, determining the intrinsic resolution of LaBr$_3$(Ce) crystal to 100 keV electrons as 2.12%. The non-proportionality contributes significantly at 1.43%, while fluctuations in the energy transfer process accounted for 0.27%. It is evident that non-proportionality in light output constitutes the primary source of intrinsic resolution. Horizontal and vertical unevenness in light collection contributed 0.25% and 0.07%, respectively. Statistical fluctuations showed the largest impact on the total energy resolution, at 2.86%. The contribution from fluctuations in single-photoelectron events was 0.77%. Furthermore, we reconstructed the photon response using Geant4, and the consistency between the simulated relative light yield and the experimentally measured one confirmed the reliability of the LaBr$_3$(Ce) detector mass model employed in the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00226v1-abstract-full').style.display = 'none'; document.getElementById('2401.00226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16658">arXiv:2312.16658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16658">pdf</a>, <a href="https://arxiv.org/format/2312.16658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Energy Response of LaBr3(Ce), LaBr3(Ce,Sr) and NaI(Tl) Crystals for GECAM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pei-Yi Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xi-Lei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Z">Zheng-Hua An</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng-Er Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">Huang Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun-Jie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Da-Li Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin-Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shao-Lin Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+C">Chao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Min Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+X">Xiang-Yang Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Ya-Qing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yan-Bing Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiao-Yun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jia-Cong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16658v1-abstract-short" style="display: inline;"> The GECAM series of satellites utilize LaBr3(Ce), LaBr3(Ce,Sr), and NaI(Tl) crystals as sensitive materials for gamma-ray detectors (GRDs). To investigate the non-linearity in the detection of low-energy gamma rays and address errors in the E-C relationship calibration, comprehensive tests and comparative studies of the non-linearity of these three crystals were conducted using Compton electrons,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16658v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16658v1-abstract-full" style="display: none;"> The GECAM series of satellites utilize LaBr3(Ce), LaBr3(Ce,Sr), and NaI(Tl) crystals as sensitive materials for gamma-ray detectors (GRDs). To investigate the non-linearity in the detection of low-energy gamma rays and address errors in the E-C relationship calibration, comprehensive tests and comparative studies of the non-linearity of these three crystals were conducted using Compton electrons, radioactive sources, and mono-energetic X-rays. The non-linearity test results for Compton electrons and X-rays displayed substantial differences, with all three crystals showing higher non-linearity for X-rays and gamma-rays than for Compton electrons. Despite LaBr3(Ce) and LaBr3(Ce,Sr) crystals having higher absolute light yields, they exhibited a noticeable non-linear decrease in light yield, especially at energies below 400 keV. The NaI(Tl) crystal demonstrated excess light output in the 6~200 keV range, reaching a maximum excess of 9.2% at 30 keV in X-ray testing and up to 15.5% at 14 keV during Compton electron testing, indicating a significant advantage in the detection of low-energy gamma rays. Furthermore, this paper explores the underlying causes of the observed non-linearity in these crystals. This study not only elucidates the detector responses of GECAM, but also marks the inaugural comprehensive investigation into the non-linearity of domestically produced lanthanum bromide and sodium iodide crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16658v1-abstract-full').style.display = 'none'; document.getElementById('2312.16658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11491">arXiv:2312.11491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11491">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Lithium niobate-enhanced laser photoacoustic spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+H">Haoyang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+W">Wenguo Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Y">Yongchun Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jieyuan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Huihui Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J">Jianhui Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H">Huadan Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11491v1-abstract-short" style="display: inline;"> In this paper, the photoacoustic spectroscopy technique based on lithium niobate crystals is initially reported, to our knowledge. A novel dual-cantilever tuning fork structure and new electrodes have been designed using Y-cut 128掳 blackened lithium niobate wafers. The tuning fork, with a resonant frequency of only 10.46 kHz and a prong gap of 1 mm, is engineered to achieve superior performance in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11491v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11491v1-abstract-full" style="display: none;"> In this paper, the photoacoustic spectroscopy technique based on lithium niobate crystals is initially reported, to our knowledge. A novel dual-cantilever tuning fork structure and new electrodes have been designed using Y-cut 128掳 blackened lithium niobate wafers. The tuning fork, with a resonant frequency of only 10.46 kHz and a prong gap of 1 mm, is engineered to achieve superior performance in photoacoustic spectroscopy. In the demonstration experiment, acetylene was detected using a 1.53 um semiconductor laser, achieving a detection limit of about 9 ppb within a one-second integration time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11491v1-abstract-full').style.display = 'none'; document.getElementById('2312.11491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04497">arXiv:2312.04497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04497">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Automatic Calculation of the Transition Temperatures for two-dimensional Heisenberg type Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haichang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">Tai Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Z">Zhimei Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Robertson%2C+J">John Robertson</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04497v1-abstract-short" style="display: inline;"> Theoretical prediction of the 2nd-order magnetic transition temperature (TM) used to be arduous. Here, we develop a first principle-based, fully automatic structure-to-TM method for two-dimensional (2D) magnets whose effective Hamiltonians follow the Heisenberg model. The Heisenberg exchanges, which can be calculated to an arbitrary shell, are transferred into the Monte Carlo calculation. Using Cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04497v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04497v1-abstract-full" style="display: none;"> Theoretical prediction of the 2nd-order magnetic transition temperature (TM) used to be arduous. Here, we develop a first principle-based, fully automatic structure-to-TM method for two-dimensional (2D) magnets whose effective Hamiltonians follow the Heisenberg model. The Heisenberg exchanges, which can be calculated to an arbitrary shell, are transferred into the Monte Carlo calculation. Using Cr-based magnets as the showcases, we show that our method is a powerful tool to study the 2D magnets in two aspects. First, considering long-range exchanges enables us to identify the spin frustration in the suspended CrTe2 monolayer, whereas the heterostructure calculations reveal that the ferromagnetism can be recovered if the monolayer CrTe2 is grown onto various 2D substrates. Second, we realize a high-throughput screening of novel magnets discovered by random structure searches. Six 2D Cr chalcogenides are selected to have high TM. Our work provides a new insight for the study of 2D magnets and helps accelerate the pace of magnetic materials data-mining. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04497v1-abstract-full').style.display = 'none'; document.getElementById('2312.04497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03264">arXiv:2312.03264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.03264">pdf</a>, <a href="https://arxiv.org/format/2312.03264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> On the generation of attosecond gigawatt soft X-ray pulses through coherent Thomson backscattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q">Qianyi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiaxin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Z">Zhuo Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xuezhi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Huangang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yuhui Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuekai Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+K">Kyle Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xinlu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X">Xueqing Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03264v1-abstract-short" style="display: inline;"> Collision between relativistic electron sheets and counter-propagating laser pulses is recognized as a promising way to produce intense attosecond X-rays through coherent Thomson backscattering (TBS). In a double-layer scheme, the electrons in an ultrathin solid foil are first pushed out by an intense laser driver and then interact with the laser reflected off a second foil to form a high-density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03264v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03264v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03264v1-abstract-full" style="display: none;"> Collision between relativistic electron sheets and counter-propagating laser pulses is recognized as a promising way to produce intense attosecond X-rays through coherent Thomson backscattering (TBS). In a double-layer scheme, the electrons in an ultrathin solid foil are first pushed out by an intense laser driver and then interact with the laser reflected off a second foil to form a high-density relativistic electron sheet with vanishing transverse momentum. However, the repulsion between these concentrated electrons can increase the thickness of the layer, reducing both its density and subsequently the coherent TBS. Here, we present a systematic study on the evolution of the flying electron layer and find that its resulting thickness is determined by the interplay between the intrinsic space-charge expansion and the velocity compression induced by the drive laser. How the laser driver, the target areal density, the reflector and the collision laser intensity affect the properties of the produced X-rays is explored. Multi-dimensional particle-in-cell simulations indicate that employing this scheme in the nonlinear regime has the potential to stably produce soft X-rays with several GW peak power in hundreds of TW ultrafast laser facilities. The pulse duration can be tuned to tens of attoseconds. This compact and intense attosecond X-ray source may have broad applications in attosecond science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03264v1-abstract-full').style.display = 'none'; document.getElementById('2312.03264v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01293">arXiv:2312.01293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01293">pdf</a>, <a href="https://arxiv.org/format/2312.01293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A novel design for 100 meter-scale water attenuation length measurement and monitoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jilei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+S">Shuxiang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haoqi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Min Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Sibo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Changgen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yichen Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01293v1-abstract-short" style="display: inline;"> Water Cherenov detector is a vital part in most of neutrino or cosmic ray research. As detectors grow in size, the water attenuation length (WAL) becomes increasingly essential for detector performance. It is essential to measure or monitor the WAL. While many experiments have measured WAL in the lab or detector, only the Super-Kamiokande experiment has achieved values exceeding 50 meters in the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01293v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01293v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01293v1-abstract-full" style="display: none;"> Water Cherenov detector is a vital part in most of neutrino or cosmic ray research. As detectors grow in size, the water attenuation length (WAL) becomes increasingly essential for detector performance. It is essential to measure or monitor the WAL. While many experiments have measured WAL in the lab or detector, only the Super-Kamiokande experiment has achieved values exceeding 50 meters in the detector with a moving light source. However, it is impractical for many experiments to place a moving light source inside the detector, necessitating an alternative method for investigating long WAL. A novel system has been proposed to address the challenge of investigating long WAL. This system focuses on ample water Cherenkov detectors and features a fixed light source and photomultiplier tubes (PMTs) at varying distances, eliminating the need for moving parts. The static setup demands high precision for accurate measurement of long WAL. Each component, including LED, diffuse ball, PMTs, and fibers, is introduced to explain uncertainty control. Based on lab tests, the system&#39;s uncertainty has been controlled within 5\%. Additionally, camera technology is also used during the evaluation of the system uncertainty, which has the potential to replace PMTs in the future for this measurement. Monte Carlo simulations have shown that the system can achieve a 5\% measurement uncertainty at WAL of 80 meters and 8\% at WAL of 100 meters. This system can be used in experiments with large Cherenkov detectors such as JUNO water veto and Hyper-K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01293v1-abstract-full').style.display = 'none'; document.getElementById('2312.01293v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17991">arXiv:2310.17991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17991">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effects of impurity band on multiphoton photocurrent from InGaN and GaN photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chuanliang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">Ahsan Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jinlei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+W">Wei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Karki%2C+K+J">Khadga Jung Karki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17991v1-abstract-short" style="display: inline;"> Multiphoton absorption of wide band-gap semiconductors has shown great prospects in many fundamental researches and practical applications. With intensity-modulated femtosecond lasers by acousto-optic frequency shifters, photocurrents and yellow luminescence induced by two-photon absorption of InGaN and GaN photodetectors are investigated experimentally. Photocurrent from InGaN detector shows near&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17991v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17991v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17991v1-abstract-full" style="display: none;"> Multiphoton absorption of wide band-gap semiconductors has shown great prospects in many fundamental researches and practical applications. With intensity-modulated femtosecond lasers by acousto-optic frequency shifters, photocurrents and yellow luminescence induced by two-photon absorption of InGaN and GaN photodetectors are investigated experimentally. Photocurrent from InGaN detector shows nearly perfect quadratic dependence on excitation intensity, while that in GaN detector shows cubic and higher order dependence. Yellow luminescence from both detectors show sub-quadratic dependence on excitation intensity. Highly nonlinear photocurrent from GaN is ascribed to absorption of additional photons by long-lived electrons in traps and impurity bands. Our investigation indicates that InGaN can serve as a superior detector for multiphoton absorption, absent of linear and higher order process, while GaN, which suffers from absorption by trapped electrons and impurity bands, must be used with caution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17991v1-abstract-full').style.display = 'none'; document.getElementById('2310.17991v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16285">arXiv:2308.16285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16285">pdf</a>, <a href="https://arxiv.org/format/2308.16285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.503127">10.1364/OL.503127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation and characterization of ultrabroadband polarization-frequency hyperentangled photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Alshowkan%2C+M">Muneer Alshowkan</a>, <a href="/search/physics?searchtype=author&amp;query=Myilswamy%2C+K+V">Karthik V. Myilswamy</a>, <a href="/search/physics?searchtype=author&amp;query=Weiner%2C+A+M">Andrew M. Weiner</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+N+A">Nicholas A. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16285v1-abstract-short" style="display: inline;"> We generate ultrabroadband photon pairs entangled in both polarization and frequency bins through an all-waveguided Sagnac source covering the entire optical C- and L-bands (1530--1625 nm). We perform comprehensive characterization of high-fidelity states in multiple dense wavelength-division multiplexed channels, achieving full tomography of effective four-qubit systems. Additionally, leveraging&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16285v1-abstract-full').style.display = 'inline'; document.getElementById('2308.16285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16285v1-abstract-full" style="display: none;"> We generate ultrabroadband photon pairs entangled in both polarization and frequency bins through an all-waveguided Sagnac source covering the entire optical C- and L-bands (1530--1625 nm). We perform comprehensive characterization of high-fidelity states in multiple dense wavelength-division multiplexed channels, achieving full tomography of effective four-qubit systems. Additionally, leveraging the inherent high dimensionality of frequency encoding and our electro-optic measurement approach, we demonstrate the scalability of our system to higher dimensions, reconstructing states in a 36-dimensional Hilbert space consisting of two polarization qubits and two frequency-bin qutrits. Our findings hold potential significance for quantum networking, particularly dense coding and entanglement distillation in wavelength-multiplexed quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16285v1-abstract-full').style.display = 'none'; document.getElementById('2308.16285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Lett. 48, 6031-6034 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08101">arXiv:2308.08101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08101">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> The interface states in gate-all-around transistors (GAAFETs) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yue-Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haoran Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zirui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+H">Hui-Xiong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+L">Lang Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Z">Zhongming Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+J">Jun-Wei Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Runsheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08101v1-abstract-short" style="display: inline;"> The atomic-level structural detail and the quantum effects are becoming crucial to device performance as the emerging advanced transistors, representatively GAAFETs, are scaling down towards sub-3nm nodes. However, a multiscale simulation framework based on atomistic models and ab initio quantum simulation is still absent. Here, we propose such a simulation framework by fulfilling three challengin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08101v1-abstract-full').style.display = 'inline'; document.getElementById('2308.08101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08101v1-abstract-full" style="display: none;"> The atomic-level structural detail and the quantum effects are becoming crucial to device performance as the emerging advanced transistors, representatively GAAFETs, are scaling down towards sub-3nm nodes. However, a multiscale simulation framework based on atomistic models and ab initio quantum simulation is still absent. Here, we propose such a simulation framework by fulfilling three challenging tasks, i.e., building atomistic all-around interfaces between semiconductor and amorphous gate-oxide, conducting large-scale first-principles calculations on the interface models containing up to 2796 atoms, and finally bridging the state-of-the-art atomic level calculation to commercial TCAD. With this framework, two unnoticed origins of interface states are demonstrated, and their tunability by changing channel size, orientation and geometry is confirmed. The quantitative study of interface states and their effects on device performance explains why the nanosheet channel is preferred in industry. We believe such a bottom-up framework is necessary and promising for the accurate simulation of emerging advanced transistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08101v1-abstract-full').style.display = 'none'; document.getElementById('2308.08101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07067">arXiv:2308.07067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07067">pdf</a>, <a href="https://arxiv.org/format/2308.07067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48213-4">10.1038/s41467-024-48213-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Characterizations of Multiphoton States with an Ultra-thin Optical Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+K">Kui An</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zilei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+T">Ting Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+X">Xiao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Leiran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenfu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guoxi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">He Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07067v2-abstract-short" style="display: inline;"> Metasurface enables the generation and manipulation of multiphoton entanglement with flat optics, providing a more efficient platform for large-scale photonic quantum information processing. Here, we show that a single metasurface optical device would allow more efficient characterizations of multiphoton entangled states, such as shadow tomography, which generally requires fast and complicated con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07067v2-abstract-full').style.display = 'inline'; document.getElementById('2308.07067v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07067v2-abstract-full" style="display: none;"> Metasurface enables the generation and manipulation of multiphoton entanglement with flat optics, providing a more efficient platform for large-scale photonic quantum information processing. Here, we show that a single metasurface optical device would allow more efficient characterizations of multiphoton entangled states, such as shadow tomography, which generally requires fast and complicated control of optical setups to perform information-complete measurements, a demanding task using conventional optics. The compact and stable device here allows implementations of general positive observable value measures with a reduced sample complexity and significantly alleviates the experimental complexity to implement shadow tomography. Integrating self-learning and calibration algorithms, we observe notable advantages in the reconstruction of multiphoton entanglement, including using fewer measurements, having higher accuracy, and being robust against experimental imperfections. Our work unveils the feasibility of metasurface as a favorable integrated optical device for efficient characterization of multiphoton entanglement, and sheds light on scalable photonic quantum technologies with ultra-thin optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07067v2-abstract-full').style.display = 'none'; document.getElementById('2308.07067v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 3944 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16640">arXiv:2306.16640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16640">pdf</a>, <a href="https://arxiv.org/format/2306.16640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0157862">10.1063/5.0157862 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultraviolet photon-counting single-pixel imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ye%2C+J">Jun-Tian Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenwen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zheng-Ping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feihu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16640v1-abstract-short" style="display: inline;"> We demonstrate photon-counting single-pixel imaging in the ultraviolet region. Toward this target, we develop a high-performance compact single-photon detector based on a 4H-SiC single-photon avalanche diode (SPAD), where a tailored readout circuit with active hold-off time is designed to restrain detector noise and operate the SPAD in free-running mode. We use structured illumination to reconstru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16640v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16640v1-abstract-full" style="display: none;"> We demonstrate photon-counting single-pixel imaging in the ultraviolet region. Toward this target, we develop a high-performance compact single-photon detector based on a 4H-SiC single-photon avalanche diode (SPAD), where a tailored readout circuit with active hold-off time is designed to restrain detector noise and operate the SPAD in free-running mode. We use structured illumination to reconstruct 192$\times$192 compressed images at a 4 fps frame rate. To show the superior capability of ultraviolet characteristics, we use our single-pixel imaging system to identify and distinguish different transparent objects under low-intensity irradiation, and image ultraviolet light sources. The results provide a practical solution for general ultraviolet imaging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16640v1-abstract-full').style.display = 'none'; document.getElementById('2306.16640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, accepted for publication in Applied Physics Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 123, 024005 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15207">arXiv:2306.15207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.15207">pdf</a>, <a href="https://arxiv.org/format/2306.15207">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient Photonic Integration of Diamond Color Centers and Thin-Film Lithium Niobate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Riedel%2C+D">Daniel Riedel</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">Hope Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Herrmann%2C+J+F">Jason F. Herrmann</a>, <a href="/search/physics?searchtype=author&amp;query=Grzesik%2C+J">Jakob Grzesik</a>, <a href="/search/physics?searchtype=author&amp;query=Ansari%2C+V">Vahid Ansari</a>, <a href="/search/physics?searchtype=author&amp;query=Borit%2C+J">Jean-Michel Borit</a>, <a href="/search/physics?searchtype=author&amp;query=Stokowski%2C+H+S">Hubert S. Stokowski</a>, <a href="/search/physics?searchtype=author&amp;query=Aghaeimeibodi%2C+S">Shahriar Aghaeimeibodi</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/physics?searchtype=author&amp;query=McQuade%2C+P+J">Patrick J. McQuade</a>, <a href="/search/physics?searchtype=author&amp;query=Melosh%2C+N+A">Nick A. Melosh</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Safavi-Naeini%2C+A+H">Amir H. Safavi-Naeini</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15207v1-abstract-short" style="display: inline;"> On-chip photonic quantum circuits with integrated quantum memories have the potential to radically progress hardware for quantum information processing. In particular, negatively charged group-IV color centers in diamond are promising candidates for quantum memories, as they combine long storage times with excellent optical emission properties and an optically-addressable spin state. However, as a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15207v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15207v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15207v1-abstract-full" style="display: none;"> On-chip photonic quantum circuits with integrated quantum memories have the potential to radically progress hardware for quantum information processing. In particular, negatively charged group-IV color centers in diamond are promising candidates for quantum memories, as they combine long storage times with excellent optical emission properties and an optically-addressable spin state. However, as a material, diamond lacks many functionalities needed to realize scalable quantum systems. Thin-film lithium niobate (TFLN), in contrast, offers a number of useful photonic nonlinearities, including the electro-optic effect, piezoelectricity, and capabilities for periodically-poled quasi-phase matching. Here, we present highly efficient heterogeneous integration of diamond nanobeams containing negatively charged silicon-vacancy (SiV) centers with TFLN waveguides. We observe greater than 90\% transmission efficiency between the diamond nanobeam and TFLN waveguide on average across multiple measurements. By comparing saturation signal levels between confocal and integrated collection, we determine a $10$-fold increase in photon counts channeled into TFLN waveguides versus that into out-of-plane collection channels. Our results constitute a key step for creating scalable integrated quantum photonic circuits that leverage the advantages of both diamond and TFLN materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15207v1-abstract-full').style.display = 'none'; document.getElementById('2306.15207v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07187">arXiv:2305.07187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07187">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Point convolutional neural network algorithm for Ising model ground state research based on spring vibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Z">Zhelong Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Gang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+R">Ruixiu Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Pengcheng Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yihao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+J">Junjia Su</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zhiyuan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+M">Min Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhigang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Huaxiang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07187v1-abstract-short" style="display: inline;"> The ground state search of the Ising model can be used to solve many combinatorial optimization problems. Under the current computer architecture, an Ising ground state search algorithm suitable for hardware computing is necessary for solving practical problems. Inspired by the potential energy conversion of springs, we propose a point convolutional neural network algorithm for ground state search&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07187v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07187v1-abstract-full" style="display: none;"> The ground state search of the Ising model can be used to solve many combinatorial optimization problems. Under the current computer architecture, an Ising ground state search algorithm suitable for hardware computing is necessary for solving practical problems. Inspired by the potential energy conversion of springs, we propose a point convolutional neural network algorithm for ground state search based on spring vibration model, called Spring-Ising Algorithm. Spring-Ising Algorithm regards the spin as a moving mass point connected to a spring and establish the equation of motion for all spins. Spring-Ising Algorithm can be mapped on the GPU or AI chips through the basic structure of the neural network for fast and efficient parallel computing. The algorithm has very productive results for solving the Ising model and has been test in the recognized test benchmark K2000. The algorithm introduces the concept of dynamic equilibrium to achieve a more detailed local search by dynamically adjusting the weight of the Ising model in the spring oscillation model. Finally, there is the simple hardware test speed evaluation. Spring-Ising Algorithm can provide the possibility to calculate the Ising model on a chip which focuses on accelerating neural network calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07187v1-abstract-full').style.display = 'none'; document.getElementById('2305.07187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12571">arXiv:2303.12571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12571">pdf</a>, <a href="https://arxiv.org/format/2303.12571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/05/P05012">10.1088/1748-0221/18/05/P05012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The New Small Wheel electronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Iakovidis%2C+G">G. Iakovidis</a>, <a href="/search/physics?searchtype=author&amp;query=Levinson%2C+L">L. Levinson</a>, <a href="/search/physics?searchtype=author&amp;query=Afik%2C+Y">Y. Afik</a>, <a href="/search/physics?searchtype=author&amp;query=Alexa%2C+C">C. Alexa</a>, <a href="/search/physics?searchtype=author&amp;query=Alexopoulos%2C+T">T. Alexopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Ameel%2C+J">J. Ameel</a>, <a href="/search/physics?searchtype=author&amp;query=Amidei%2C+D">D. Amidei</a>, <a href="/search/physics?searchtype=author&amp;query=Antrim%2C+D">D. Antrim</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">A. Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalis%2C+C">C. Bakalis</a>, <a href="/search/physics?searchtype=author&amp;query=Boterenbrood%2C+H">H. Boterenbrood</a>, <a href="/search/physics?searchtype=author&amp;query=Brener%2C+R+S">R. S. Brener</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+S">S. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+J">J. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Chatzianastasiou%2C+G">G. Chatzianastasiou</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Coliban%2C+R+M">R. M. Coliban</a>, <a href="/search/physics?searchtype=author&amp;query=de+Paiva%2C+T+C">T. Costa de Paiva</a>, <a href="/search/physics?searchtype=author&amp;query=de+Geronimo%2C+G">G. de Geronimo</a>, <a href="/search/physics?searchtype=author&amp;query=Edgar%2C+R">R. Edgar</a>, <a href="/search/physics?searchtype=author&amp;query=Felt%2C+N">N. Felt</a>, <a href="/search/physics?searchtype=author&amp;query=Francescato%2C+S">S. Francescato</a>, <a href="/search/physics?searchtype=author&amp;query=Franklin%2C+M">M. Franklin</a>, <a href="/search/physics?searchtype=author&amp;query=Geralis%2C+T">T. Geralis</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12571v2-abstract-short" style="display: inline;"> The increase in luminosity, and consequent higher backgrounds, of the LHC upgrades require improved rejection of fake tracks in the forward region of the ATLAS Muon Spectrometer. The New Small Wheel upgrade of the Muon Spectrometer aims to reduce the large background of fake triggers from track segments that are not originated from the interaction point. The New Small Wheel employs two detector te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12571v2-abstract-full').style.display = 'inline'; document.getElementById('2303.12571v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12571v2-abstract-full" style="display: none;"> The increase in luminosity, and consequent higher backgrounds, of the LHC upgrades require improved rejection of fake tracks in the forward region of the ATLAS Muon Spectrometer. The New Small Wheel upgrade of the Muon Spectrometer aims to reduce the large background of fake triggers from track segments that are not originated from the interaction point. The New Small Wheel employs two detector technologies, the resistive strip Micromegas detectors and the &#34;small&#34; Thin Gap Chambers, with a total of 2.45 Million electrodes to be sensed. The two technologies require the design of a complex electronics system given that it consists of two different detector technologies and is required to provide both precision readout and a fast trigger. It will operate in a high background radiation region up to about 20 kHz/cm$^{2}$ at the expected HL-LHC luminosity of $\mathcal{L}$=7.5$\times10^{34}$cm$^{-2}$s$^{-1}$. The architecture of the system is strongly defined by the GBTx data aggregation ASIC, the newly-introduced FELIX data router and the software based data handler of the ATLAS detector. The electronics complex of this new detector was designed and developed in the last ten years and consists of multiple radiation tolerant Application Specific Integrated Circuits, multiple front-end boards, dense boards with FPGA&#39;s and purpose-built Trigger Processor boards within the ATCA standard. The New Small Wheel has been installed in 2021 and is undergoing integration within ATLAS for LHC Run 3. It should operate through the end of Run 4 (December 2032). In this manuscript, the overall design of the New Small Wheel electronics is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12571v2-abstract-full').style.display = 'none'; document.getElementById('2303.12571v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 18 P05012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08304">arXiv:2303.08304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08304">pdf</a>, <a href="https://arxiv.org/format/2303.08304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Law of Coiling for a Short Elastic Strip Contacting Within a Tube </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J+Y">Jeng Yi Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hao-Yu Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+R">Ray-Kuang Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08304v1-abstract-short" style="display: inline;"> We find that there exists a universal law of coiling not only for a long elastic strip contacting within a tube but also for a short one. Here the elastic strip we consider has the ratio of $2 &lt; L/R \le 2蟺$ for its length $L$ to the tube radius $R$. By varying the ratio of $L/R$, we identify four types of deformation for such a short elastic strip, namely, two point-contact, three point-contact, c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08304v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08304v1-abstract-full" style="display: none;"> We find that there exists a universal law of coiling not only for a long elastic strip contacting within a tube but also for a short one. Here the elastic strip we consider has the ratio of $2 &lt; L/R \le 2蟺$ for its length $L$ to the tube radius $R$. By varying the ratio of $L/R$, we identify four types of deformation for such a short elastic strip, namely, two point-contact, three point-contact, continuous-contact, and self-contact. With theoretical formulas in closed forms and experimental demonstration, these four types are verified for any elastic strips contacting within a tube, irrespective of elastic properties, strip lengths, and tube radius. Our results on coiling can be readily applied to a variety of physical systems, including thin flexible electronic devices, van der Waals materials in scroll shape, and DNA packaging into viral capsids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08304v1-abstract-full').style.display = 'none'; document.getElementById('2303.08304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07031">arXiv:2303.07031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07031">pdf</a>, <a href="https://arxiv.org/format/2303.07031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> A Complete Approach to Determine the $^3$He neutron incoherent scattering length $b_i$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Holderer%2C+O">O. Holderer</a>, <a href="/search/physics?searchtype=author&amp;query=Ioffe%2C+A">A. Ioffe</a>, <a href="/search/physics?searchtype=author&amp;query=Pasini%2C+S">S. Pasini</a>, <a href="/search/physics?searchtype=author&amp;query=Pistel%2C+P">P. Pistel</a>, <a href="/search/physics?searchtype=author&amp;query=Salhi%2C+Z">Z. Salhi</a>, <a href="/search/physics?searchtype=author&amp;query=Goodson%2C+B+M">B. M. Goodson</a>, <a href="/search/physics?searchtype=author&amp;query=Snow%2C+W+M">W. M. Snow</a>, <a href="/search/physics?searchtype=author&amp;query=Babcock%2C+E">E. Babcock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07031v1-abstract-short" style="display: inline;"> We report the first results from a new approach for measuring the $^3$He neutron incoherent scattering length $b_{i}$. $b_{i}$ is directly proportional to the difference $螖b=b_{+}-b_{-}$ in the two low-energy s-wave neutron-nucleus scattering amplitudes $b_{+}$ and $b_{-}$, corresponding to the singlet $J=0$ and triplet $J=1$ states of the neutron-$^3$He interaction, respectively. An accurate meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07031v1-abstract-full').style.display = 'inline'; document.getElementById('2303.07031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07031v1-abstract-full" style="display: none;"> We report the first results from a new approach for measuring the $^3$He neutron incoherent scattering length $b_{i}$. $b_{i}$ is directly proportional to the difference $螖b=b_{+}-b_{-}$ in the two low-energy s-wave neutron-nucleus scattering amplitudes $b_{+}$ and $b_{-}$, corresponding to the singlet $J=0$ and triplet $J=1$ states of the neutron-$^3$He interaction, respectively. An accurate measurement of $b_{i}$ can help distinguish among different models of three-nucleon interactions by comparison to {\it ab initio} nuclear theory calculations. The neutron birefringence caused by $螖b$ results in neutron spin rotation around the nuclear polarization. We measured $螖b$ using polarized neutron spin rotation and the transmission of neutrons through a $^3$He gas target polarized in situ by spin-exchange optical pumping. This brief test measurement, conducted at the FZ-J眉lich neutron spin echo spectrometer at the Heinz Maier Leibnitz Zentrum (MLZ), yielded $螖b = [-5.27 \pm 0.05$ (stat.) $- 0.05$ (syst.)] fm. We argue that this method can be improved in precision to resolve the discrepancies between two prior measurements of $b_i$ which are dependent on the polarized absorption cross section $蟽_p$. Further with absolute $^{3}$He polarization via NMR (in a properly-shaped cell) concurrent with accurate neutron transmission measurements, $蟽_p$ can be measured to obtain independent values of $b_{+}$ and $b_{-}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07031v1-abstract-full').style.display = 'none'; document.getElementById('2303.07031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. includes Supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14645">arXiv:2302.14645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14645">pdf</a>, <a href="https://arxiv.org/format/2302.14645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0137823">10.1063/5.0137823 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tianyi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xian-Song Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feihu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14645v1-abstract-short" style="display: inline;"> Ultraviolet single-photon detector (UVSPD) provides a key tool for the applications requiring ultraweak light detection in the wavelength band. Here, we report a 4H-SiC single-photon avalanche diode (SPAD) based free-running UVSPD with ultralow afterpulse probability. We design and fabricate the 4H-SiC SPAD with a beveled mesa structure, which exhibits the characteristic of ultralow dark current.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14645v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14645v1-abstract-full" style="display: none;"> Ultraviolet single-photon detector (UVSPD) provides a key tool for the applications requiring ultraweak light detection in the wavelength band. Here, we report a 4H-SiC single-photon avalanche diode (SPAD) based free-running UVSPD with ultralow afterpulse probability. We design and fabricate the 4H-SiC SPAD with a beveled mesa structure, which exhibits the characteristic of ultralow dark current. We further develop a readout circuit of passive quenching and active reset with tunable hold-off time setting to considerably suppress the afterpulsing effect. The nonuniformity of photon detection efficiency (PDE) across the SPAD active area with a diameter of $\sim$ 180 $渭$m is investigated for performance optimization. The compact UVSPD is then characterized, exhibiting a typical performance of 10.3% PDE, 133 kcps dark count rate and 0.3% afterpulse probability at 266 nm. Such performance indicates that the compact UVSPD could be used for practical ultraviolet photon-counting applications <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14645v1-abstract-full').style.display = 'none'; document.getElementById('2302.14645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, accepted for publication in Review of Scientific Instruments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 94, 033101 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01495">arXiv:2302.01495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01495">pdf</a>, <a href="https://arxiv.org/format/2302.01495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSTQE.2023.3266662">10.1109/JSTQE.2023.3266662 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of Quantum Frequency Processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+N+A">Nicholas A. Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Weiner%2C+A+M">Andrew M. Weiner</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01495v1-abstract-short" style="display: inline;"> Frequency-bin qubits possess unique synergies with wavelength-multiplexed lightwave communications, suggesting valuable opportunities for quantum networking with the existing fiber-optic infrastructure. Although the coherent manipulation of frequency-bin states requires highly controllable multi-spectral-mode interference, the quantum frequency processor (QFP) provides a scalable path for gate syn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01495v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01495v1-abstract-full" style="display: none;"> Frequency-bin qubits possess unique synergies with wavelength-multiplexed lightwave communications, suggesting valuable opportunities for quantum networking with the existing fiber-optic infrastructure. Although the coherent manipulation of frequency-bin states requires highly controllable multi-spectral-mode interference, the quantum frequency processor (QFP) provides a scalable path for gate synthesis leveraging standard telecom components. Here we summarize the state of the art in experimental QFP characterization. Distinguishing between physically motivated &#39;&#39;open box&#39;&#39; approaches that treat the QFP as a multiport interferometer, and &#39;&#39;black box&#39;&#39; approaches that view the QFP as a general quantum operation, we highlight the assumptions and results of multiple techniques, including quantum process tomography of a tunable beamsplitter -- to our knowledge the first full process tomography of any frequency-bin operation. Our findings should inform future characterization efforts as the QFP increasingly moves beyond proof-of-principle tabletop demonstrations toward integrated devices and deployed quantum networking experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01495v1-abstract-full').style.display = 'none'; document.getElementById('2302.01495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00460">arXiv:2301.00460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00460">pdf</a>, <a href="https://arxiv.org/format/2301.00460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> First Measurement of Neutron Birefringence in Polarized $^{129}$Xe and $^{131}$Xe Nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Barlow%2C+M+J">M. J. Barlow</a>, <a href="/search/physics?searchtype=author&amp;query=Basler%2C+D">D. Basler</a>, <a href="/search/physics?searchtype=author&amp;query=Gutfreund%2C+P">P. Gutfreund</a>, <a href="/search/physics?searchtype=author&amp;query=Holderer%2C+O">O. Holderer</a>, <a href="/search/physics?searchtype=author&amp;query=Ioffe%2C+A">A. Ioffe</a>, <a href="/search/physics?searchtype=author&amp;query=Pasini%2C+S">S. Pasini</a>, <a href="/search/physics?searchtype=author&amp;query=Pistel%2C+P">P. Pistel</a>, <a href="/search/physics?searchtype=author&amp;query=Salhi%2C+Z">Z. Salhi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhernenkov%2C+K">K. Zhernenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Goodson%2C+B+M">B. M. Goodson</a>, <a href="/search/physics?searchtype=author&amp;query=Snow%2C+W+M">W. M. Snow</a>, <a href="/search/physics?searchtype=author&amp;query=Babcock%2C+E">E. Babcock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00460v1-abstract-short" style="display: inline;"> We present the first measurements of polarized neutron birefringence in transmission through nuclear-polarized $^{129}$Xe and $^{131}$Xe gas and determine the neutron incoherent scattering lengths $b_i(^{129}Xe)=0.186\pm(0.021)_{stat.}\pm(0.004)_{syst.}\space\text{ fm}$ and $b_i(^{131}Xe)=2.09\pm(0.29)_{stat.}\pm(0.12)_{syst.}\space\text{ fm}$ for the first time. These results determine the essent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00460v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00460v1-abstract-full" style="display: none;"> We present the first measurements of polarized neutron birefringence in transmission through nuclear-polarized $^{129}$Xe and $^{131}$Xe gas and determine the neutron incoherent scattering lengths $b_i(^{129}Xe)=0.186\pm(0.021)_{stat.}\pm(0.004)_{syst.}\space\text{ fm}$ and $b_i(^{131}Xe)=2.09\pm(0.29)_{stat.}\pm(0.12)_{syst.}\space\text{ fm}$ for the first time. These results determine the essential parameter needed for interpretation of spin-dependent neutron-scattering studies on polarized xenon ensembles, with possible future applications ranging from tests of time-reversal violation to mode-entangled neutron scattering experiments on nuclear-polarized systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00460v1-abstract-full').style.display = 'none'; document.getElementById('2301.00460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, submitted to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10741">arXiv:2212.10741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10741">pdf</a>, <a href="https://arxiv.org/format/2212.10741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11514-x">10.1140/epjc/s10052-023-11514-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation Software of the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+T">Tao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuxiang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+M">Miao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Haosen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S+C">Simon Charles Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yaoguang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haoqi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">Cecile Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Ziyan Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G">Guofu Cao</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=Chimenti%2C+P">Pietro Chimenti</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+X">Xiao Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yuhang Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+W">Wenhao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xingtao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Rui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Teng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weidong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xinying Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yankai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Meregaglia%2C+A">Anselmo Meregaglia</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Z">Zhen Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Y">Yuhan Ren</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10741v2-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose experiment, under construction in southeast China, that is designed to determine the neutrino mass ordering and precisely measure neutrino oscillation parameters. Monte Carlo simulation plays an important role for JUNO detector design, detector commissioning, offline data processing, and physics processing. The JUNO experiment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10741v2-abstract-full').style.display = 'inline'; document.getElementById('2212.10741v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10741v2-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose experiment, under construction in southeast China, that is designed to determine the neutrino mass ordering and precisely measure neutrino oscillation parameters. Monte Carlo simulation plays an important role for JUNO detector design, detector commissioning, offline data processing, and physics processing. The JUNO experiment has the world&#39;s largest liquid scintillator detector instrumented with many thousands of PMTs. The broad energy range of interest, long lifetime, and the large scale present data processing challenges across all areas. This paper describes the JUNO simulation software, highlighting the challenges of JUNO simulation and solutions to meet these challenges, including such issues as support for time-correlated analysis, event mixing, event correlation and handling the simulation of many millions of optical photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10741v2-abstract-full').style.display = 'none'; document.getElementById('2212.10741v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 382 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13947">arXiv:2209.13947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13947">pdf</a>, <a href="https://arxiv.org/ps/2209.13947">ps</a>, <a href="https://arxiv.org/format/2209.13947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> $^{197}$Au($纬,\,xn;\,x\,=\,1\thicksim9$) Reaction Cross Section Measurements using Laser-Driven Ultra-Intense $纬$-Ray Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">D. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+H+Y">H. Y. Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+Y">J. Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+X">J. X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H+G">H. G. Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+J+F">J. F. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X+Z">X. Z. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">J. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q+Y">Q. Y. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y+H">Y. H. Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z+N">Z. N. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M+Z">M. Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z+Y">Z. Y. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X+L">X. L. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+Y+X">Y. X. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y+Y">Y. Y. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+C">C. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W+J">W. J. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J+Q">J. Q. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H+R">H. R. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F+L">F. L. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C+Y">C. Y. He</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">B. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+P">P. Zhu</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13947v2-abstract-short" style="display: inline;"> We present a new method for the measurements of photonuclear reaction flux-weighted average cross sections and isomeric ratios using a laser-driven bremsstrahlung $纬$-ray source. An ultra-bright ultra-fast 60$\,\thicksim\,$250 MeV bremsstrahlung $纬$-ray source was established using the 200 TW laser facility in the Compact Laser Plasma Accelerator Laboratory, Peking University, which could cover th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13947v2-abstract-full').style.display = 'inline'; document.getElementById('2209.13947v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13947v2-abstract-full" style="display: none;"> We present a new method for the measurements of photonuclear reaction flux-weighted average cross sections and isomeric ratios using a laser-driven bremsstrahlung $纬$-ray source. An ultra-bright ultra-fast 60$\,\thicksim\,$250 MeV bremsstrahlung $纬$-ray source was established using the 200 TW laser facility in the Compact Laser Plasma Accelerator Laboratory, Peking University, which could cover the energy range from knocking out neutrons to producing pions. Stable quasi-monoenergetic electron beams were generated via laser wakefield acceleration with a charge of 300$\,\thicksim\,$600 pC per shot. The averaged $纬$-ray intensities ($\geqslant$8 MeV) were higher than 10$^{8}$ per shot and the instantaneous intensities can reach above 10$^{19}$ s$^{-1}$ with a duration time about 6.7 ps. $^{65}$Cu($纬,\,n$)$^{64}$Cu and $^{27}$Al($纬,\,x$)$^{24}$Na reactions were used as $纬$-ray flux monitors in the experiments. The flux-weighted average cross sections and isomeric ratios of $^{197}$Au($纬,\,xn;\,x\,=\,1\thicksim9$) reactions were analyzed through activation measurements. The results showed good agreement with previous works and proved this method to be accurate. The $^{197}$Au($纬,\,xn;\,x\,=\,7\thicksim\,9$) reaction cross sections were first achieved with the highest threshold energy of 71.410 MeV. Theoretical cross sections of TALYS 1.9 were calculated to compare with experiment results. This method offered a unique way of gaining insight into photonuclear reaction research, especially for short-lived isomers which extremely lack experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13947v2-abstract-full').style.display = 'none'; document.getElementById('2209.13947v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01082">arXiv:2209.01082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01082">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Transport dynamics study of laser-accelerated proton beams and design of double achromatic beam translation system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J+G">J. G. Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H+Y">H. Y. Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Y. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+M+F">M. F. Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y+L">Y. L. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S+X">S. X. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C+T">C. T. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01082v1-abstract-short" style="display: inline;"> Proton beams generated from laser acceleration show merit for their unique spatial (micron-size) and temporal (picosecond) properties, which make them desirable for many potential applications. However, the large energy spread and divergence angle make it difficult to maintain these beam properties after delivery. This hinders the wide application of laser acceleration. In this paper, we design a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01082v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01082v1-abstract-full" style="display: none;"> Proton beams generated from laser acceleration show merit for their unique spatial (micron-size) and temporal (picosecond) properties, which make them desirable for many potential applications. However, the large energy spread and divergence angle make it difficult to maintain these beam properties after delivery. This hinders the wide application of laser acceleration. In this paper, we design a double achromatic beam translation system (DABTS), based on weak-focusing magnets, to realize achromatic transmission in both the horizontal and vertical directions, and compress the bunch length of the delivered proton beam at the same time. We make use of fringe angles and special steering magnets to effectively reduce the influence of chromatic aberrations and high-order nonlinear terms and realize close to ideal point-to-point optics. We believe this work contributes to the ongoing effort to apply laser accelerators to a variety of fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01082v1-abstract-full').style.display = 'none'; document.getElementById('2209.01082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12885">arXiv:2207.12885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12885">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwac154">10.1093/nsr/nwac154 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-electrical switching of a topological non-collinear antiferromagnet at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yongcheng Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xionghua Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yiyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Z">Zongzheng Du</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+N">Nai Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+E">Enze Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H">Houzhi Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12885v1-abstract-short" style="display: inline;"> Non-collinear antiferromagnetic Weyl semimetals, combining the advantages of a zero stray field and ultrafast spin dynamics as well as a large anomalous Hall effect and the chiral anomaly of Weyl fermions, have attracted extensive interests. However, the all-electrical control of such systems at room temperature, a crucial step toward practical applications, has not been reported. Here using a sma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12885v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12885v1-abstract-full" style="display: none;"> Non-collinear antiferromagnetic Weyl semimetals, combining the advantages of a zero stray field and ultrafast spin dynamics as well as a large anomalous Hall effect and the chiral anomaly of Weyl fermions, have attracted extensive interests. However, the all-electrical control of such systems at room temperature, a crucial step toward practical applications, has not been reported. Here using a small writing current of around 5*10^{6} A/cm^{2}, we realize the all-electrical current-induced deterministic switching of the non-collinear antiferromagnet Mn3Sn with a strong readout signal at room temperature in the Si/SiO2/Mn3Sn/AlOx structure, without external magnetic field and injected spin current. Our simulations reveal that the switching is originated from the current-induced intrinsic non-collinear spin-orbit torques in Mn3Sn itself. Our findings pave the way for the development of topological antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12885v1-abstract-full').style.display = 'none'; document.getElementById('2207.12885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08909">arXiv:2207.08909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08909">pdf</a>, <a href="https://arxiv.org/format/2207.08909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.471363">10.1364/OL.471363 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband polarization-entangled source for C+L-band flex-grid quantum networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alshowkan%2C+M">Muneer Alshowkan</a>, <a href="/search/physics?searchtype=author&amp;query=Lukens%2C+J+M">Joseph M. Lukens</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hsuan-Hao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Kirby%2C+B+T">Brian T. Kirby</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+B+P">Brian P. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Grice%2C+W+P">Warren P. Grice</a>, <a href="/search/physics?searchtype=author&amp;query=Peters%2C+N+A">Nicholas A. Peters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08909v1-abstract-short" style="display: inline;"> The rising demand for transmission capacity in optical networks has motivated steady interest in expansion beyond the standard C-band (1530-1565 nm) into the adjacent L-band (1565-1625 nm), for an approximate doubling of capacity in a single stroke. However, in the context of quantum networking, the ability to leverage the L-band will require advanced tools for characterization and management of e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08909v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08909v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08909v1-abstract-full" style="display: none;"> The rising demand for transmission capacity in optical networks has motivated steady interest in expansion beyond the standard C-band (1530-1565 nm) into the adjacent L-band (1565-1625 nm), for an approximate doubling of capacity in a single stroke. However, in the context of quantum networking, the ability to leverage the L-band will require advanced tools for characterization and management of entanglement resources which have so far been lagging. In this work, we demonstrate an ultrabroadband two-photon source integrating both C- and L-band wavelength-selective switches for complete control of spectral routing and allocation across 7.5 THz in a single setup. Polarization state tomography of all 150 pairs of 25 GHz-wide channels reveals an average fidelity of 0.98 and total distillable entanglement greater than 181 kebits/s. This source is explicitly designed for flex-grid optical networks and can facilitate optimal utilization of entanglement resources across the full C+L-band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08909v1-abstract-full').style.display = 'none'; document.getElementById('2207.08909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lu%2C+H&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10