CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 450 results for author: <span class="mathjax">Zhao, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Zhao%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhao, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhao%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhao, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15841">arXiv:2501.15841</a> <span> [<a href="https://arxiv.org/pdf/2501.15841">pdf</a>, <a href="https://arxiv.org/format/2501.15841">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Self-Adapted Josephson Oscillation of Dark-Bright Solitons under Constant Forces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+L">Ling-Zheng Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+X">Xi-Wang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Li-Chen Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15841v1-abstract-short" style="display: inline;"> We study the propagation of dark-bright solitons in two-component Bose-Einstein condensates (BECs) with general nonlinear parameters, and explore how nonlinear interactions enrich the soliton dynamics giving rise to nonsinusoidal oscillations under constant forces. Treating the bright soliton as an effective barrier, we reveal that such oscillations are characterized by the Josephson equations wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15841v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15841v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15841v1-abstract-full" style="display: none;"> We study the propagation of dark-bright solitons in two-component Bose-Einstein condensates (BECs) with general nonlinear parameters, and explore how nonlinear interactions enrich the soliton dynamics giving rise to nonsinusoidal oscillations under constant forces. Treating the bright soliton as an effective barrier, we reveal that such oscillations are characterized by the Josephson equations with self-adapted critical current and bias voltage, whose explicit analytic expressions are derived using the Lagrangian variational method. The dynamical phase diagram in nonlinear parameter space is presented, identifying oscillation regions with different skewed sinusoidal dependence, and diffusion regions with irreversible soliton spreading due to instability of the barrier. Furthermore, we obtain periodic dispersion relations of the solitons, indicating a switch between positive and negative inertial masses, consistent with the oscillation behaviors. Our results provide a general and comprehensive theoretical framework for soliton oscillation dynamics and pave the way for investigating various nonlinear transports and their potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15841v1-abstract-full').style.display = 'none'; document.getElementById('2501.15841v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08784">arXiv:2501.08784</a> <span> [<a href="https://arxiv.org/pdf/2501.08784">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Unconventional bias-dependent tunneling magnetoresistance in van der Waals ferromagnetic/semiconductor heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenkai Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+H">Hui Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+S">Shouguo Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Q">Qirui Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+S">Shihong Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Gaojie Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Hao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaomin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Weihao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lixia Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Patan%C3%A8%2C+A">Amalia Patan猫</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+H">Haixin Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lin-Wang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Kaiyou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08784v1-abstract-short" style="display: inline;"> Two-dimensional van der Waals (vdW) ferromagnetic/semiconductor heterojunctions represent an ideal platform for studying and exploiting tunneling magnetoresistance (TMR) effects due to the versatile band structure of semiconductors and their high-quality interfaces. In the all-vdW magnetic tunnel junction (MTJ) devices, both the magnitude and sign of the TMR can be tuned by an applied voltage. Typ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08784v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08784v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08784v1-abstract-full" style="display: none;"> Two-dimensional van der Waals (vdW) ferromagnetic/semiconductor heterojunctions represent an ideal platform for studying and exploiting tunneling magnetoresistance (TMR) effects due to the versatile band structure of semiconductors and their high-quality interfaces. In the all-vdW magnetic tunnel junction (MTJ) devices, both the magnitude and sign of the TMR can be tuned by an applied voltage. Typically, as the bias voltage increases, first the amplitude of the TMR decreases, then the sign of the TMR reverses and/or oscillates. Here, we report on an unconventional bias-dependent TMR in the all-vdW Fe3GaTe2/GaSe/Fe3GaTe2 MTJs, where the TMR first increases, then decreases, and finally undergoes a sign reversal as the bias voltage increases. This dependence cannot be explained by traditional models of MTJs. We propose an in-plane electron momentum (k//) resolved tunneling model that considers both the coherent degree of k// and the decay of the electron wave function through the semiconductor spacer layer. This can explain well the conventional and unconventional bias-dependent TMR. Our results thus provide a deeper understanding of the bias-dependent spin-transport in semiconductor-based MTJs and offer new insights into semiconductor spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08784v1-abstract-full').style.display = 'none'; document.getElementById('2501.08784v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06852">arXiv:2501.06852</a> <span> [<a href="https://arxiv.org/pdf/2501.06852">pdf</a>, <a href="https://arxiv.org/ps/2501.06852">ps</a>, <a href="https://arxiv.org/format/2501.06852">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Flat Band and Many-body Gap in Chirally Twisted Triple Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Wenlu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+S">Shimin Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+M">Miao Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Jinhua Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiaobo Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06852v1-abstract-short" style="display: inline;"> We experimentally investigate the band structures of chirally twisted triple bilayer graphene. The new kind of moir茅 structure, formed by three pieces of helically stacked Bernal bilayer graphene, has flat bands at charge neutral point based on the continuum approximation. We experimentally confirm the existence of flat bands and directly acquire the gap in-between flat bands as well as between th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06852v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06852v1-abstract-full" style="display: none;"> We experimentally investigate the band structures of chirally twisted triple bilayer graphene. The new kind of moir茅 structure, formed by three pieces of helically stacked Bernal bilayer graphene, has flat bands at charge neutral point based on the continuum approximation. We experimentally confirm the existence of flat bands and directly acquire the gap in-between flat bands as well as between the flat bands and dispersive bands from the capacitance measurements. We discover a finite gap even at zero perpendicular electric field, possibly induced by the Coulomb interaction and ferromagnetism. Our quantitative study not only provides solid evidence for the flat-band and interesting physics, but also introduces a quantitative approach to explore phenomena of similar moir茅 systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06852v1-abstract-full').style.display = 'none'; document.getElementById('2501.06852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07101">arXiv:2412.07101</a> <span> [<a href="https://arxiv.org/pdf/2412.07101">pdf</a>, <a href="https://arxiv.org/format/2412.07101">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Manipulating topological charges via engineering zeros of wave functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiao-Lin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yu-Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Li-Chen Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07101v1-abstract-short" style="display: inline;"> Topological charges are typically manipulated by managing their energy bands in quantum systems. In this work, we propose a new approach to manipulate the topological charges of systems by engineering density zeros of localized wave excitations in them. We demonstrate via numerical simulation and analytical analysis that the winding number of a toroidal Bose condensate can be well manipulated by e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07101v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07101v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07101v1-abstract-full" style="display: none;"> Topological charges are typically manipulated by managing their energy bands in quantum systems. In this work, we propose a new approach to manipulate the topological charges of systems by engineering density zeros of localized wave excitations in them. We demonstrate via numerical simulation and analytical analysis that the winding number of a toroidal Bose condensate can be well manipulated by engineering the relative velocities between the dark solitons and their backgrounds. The crossing of relative velocities through zero makes a change in winding number by inducing density zeros during acceleration, with the direction of crossing determining whether charge increases or decreases. Possibilities of observing such winding number manipulation are discussed for current experimental settings. This idea may also be to higher dimensions. These results will inspire new pathways in designing topological materials using quantum simulation platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07101v1-abstract-full').style.display = 'none'; document.getElementById('2412.07101v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11586">arXiv:2411.11586</a> <span> [<a href="https://arxiv.org/pdf/2411.11586">pdf</a>, <a href="https://arxiv.org/format/2411.11586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Scalable amplitude of Sondheimer oscillations in thin cadmium crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xiaodong Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11586v3-abstract-short" style="display: inline;"> Decades ago, Sondheimer discovered that the electric conductivity of metallic crystals hosting ballistic electrons oscillates with magnetic field. These oscillations, periodic in magnetic field with the period proportional to the sample thickness, have been understood in a semi-classical framework. Here, we present a study of longitudinal and transverse conductivity in cadmium single crystals with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11586v3-abstract-full').style.display = 'inline'; document.getElementById('2411.11586v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11586v3-abstract-full" style="display: none;"> Decades ago, Sondheimer discovered that the electric conductivity of metallic crystals hosting ballistic electrons oscillates with magnetic field. These oscillations, periodic in magnetic field with the period proportional to the sample thickness, have been understood in a semi-classical framework. Here, we present a study of longitudinal and transverse conductivity in cadmium single crystals with thickness varying between 12.6 to 475 $渭$m. When the magnetic field is sufficiently large or the sample sufficiently thick, the amplitude of oscillation falls off as $B^{-4}$ as previously reported. In contrast, the ten first oscillations follow a $B^{-2.5}e^{-B/B_0}$ field dependence and their amplitude is set by the quantum of conductance, the sample thickness, the magnetic length and the Fermi surface geometry. This expression is in disagreement with what was predicted in semi-classical scenarios, which neglect Landau quantization. We argue that the classical/quantum crossover occurs at accessible magnetic fields for states whose Fermi wave-vector is almost parallel to the magnetic field. As a consequence, the intersection between the lowest Landau tube and flat toroids on the Fermi surface induced by confinement give rise to oscillations with a periodicity identical to the semi-classical one. A rigorous theoretical account of our data is missing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11586v3-abstract-full').style.display = 'none'; document.getElementById('2411.11586v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures and a supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08322">arXiv:2411.08322</a> <span> [<a href="https://arxiv.org/pdf/2411.08322">pdf</a>, <a href="https://arxiv.org/format/2411.08322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Uncovering the Hidden Ferroaxial Density Wave as the Origin of the Axial Higgs Mode in RTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Birender Singh</a>, <a href="/search/cond-mat?searchtype=author&query=McNamara%2C+G">Grant McNamara</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kyung-Mo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Siddique%2C+S">Saif Siddique</a>, <a href="/search/cond-mat?searchtype=author&query=Funni%2C+S+D">Stephen D. Funni</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Weizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+X">Xiangpeng Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Sakrikar%2C+P">Piyush Sakrikar</a>, <a href="/search/cond-mat?searchtype=author&query=Kenney%2C+E+M">Eric M. Kenney</a>, <a href="/search/cond-mat?searchtype=author&query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&query=Alekseev%2C+S">Sergey Alekseev</a>, <a href="/search/cond-mat?searchtype=author&query=Ghorashi%2C+S+A+A">Sayed Ali Akbar Ghorashi</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">Thomas J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">Christopher Baines</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">Hubertus Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yiping Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Plisson%2C+V+M">Vincent M. Plisson</a>, <a href="/search/cond-mat?searchtype=author&query=Geiwitz%2C+M">Michael Geiwitz</a>, <a href="/search/cond-mat?searchtype=author&query=Occhialini%2C+C+A">Connor A. Occhialini</a>, <a href="/search/cond-mat?searchtype=author&query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&query=Graf%2C+M+J">Michael J. Graf</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Cha%2C+J+J">Judy J. Cha</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08322v2-abstract-short" style="display: inline;"> The recent discovery of an axial amplitude (Higgs) mode in the long-studied charge density wave (CDW) systems GdTe$_3$ and LaTe$_3$ suggests a heretofore unidentified hidden order. A theoretical study proposed that the axial Higgs results from a hidden ferroaxial component of the CDW, which could arise from non-trivial orbital texture. Here, we report extensive experimental studies on ErTe$_3$ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08322v2-abstract-full').style.display = 'inline'; document.getElementById('2411.08322v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08322v2-abstract-full" style="display: none;"> The recent discovery of an axial amplitude (Higgs) mode in the long-studied charge density wave (CDW) systems GdTe$_3$ and LaTe$_3$ suggests a heretofore unidentified hidden order. A theoretical study proposed that the axial Higgs results from a hidden ferroaxial component of the CDW, which could arise from non-trivial orbital texture. Here, we report extensive experimental studies on ErTe$_3$ and HoTe$_3$ that possess a high-temperature CDW similar to other RTe$_3$ (R = rare earth), along with an additional low-temperature CDW with an orthogonal ordering vector. Combining Raman spectroscopy with large-angle convergent beam electron diffraction (LACBED), rotational anisotropy second-harmonic generation (RA-SHG), and muon-spin relaxation ($渭$SR), we provide unambiguous evidence that the high-temperature CDW breaks translation, rotation, and all vertical and diagonal mirror symmetries, but not time-reversal or inversion. In contrast, the low-temperature CDW only additionally breaks translation symmetry. Simultaneously, Raman scattering shows the high-temperature CDW produces an axial Higgs mode while the low-temperature mode is scalar. The weak monoclinic structural distortion and clear axial response in Raman and SHG are consistent with a ferroaxial phase in RTe$_3$ driven by coupled orbital and charge orders. Thus, our study provides a new standard for uncovering unconventional orders and confirms the power of Higgs modes to reveal them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08322v2-abstract-full').style.display = 'none'; document.getElementById('2411.08322v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span> [<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03094">arXiv:2411.03094</a> <span> [<a href="https://arxiv.org/pdf/2411.03094">pdf</a>, <a href="https://arxiv.org/format/2411.03094">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Linear response in a charged gas in curved spacetime and covariant heat equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cui%2C+L">Long Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+X">Xin Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03094v1-abstract-short" style="display: inline;"> We consider the linear response of a near-equilibrium charged relativistic gas in the presence of electromagnetic and gravitational field in a generic stationary spacetime up to the second order of relaxation time and calculate the tensorial kinetic coefficients introduced by the presence of the strong electromagnetic and/or gravitational field. Using the covariant transfer equations thus develope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03094v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03094v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03094v1-abstract-full" style="display: none;"> We consider the linear response of a near-equilibrium charged relativistic gas in the presence of electromagnetic and gravitational field in a generic stationary spacetime up to the second order of relaxation time and calculate the tensorial kinetic coefficients introduced by the presence of the strong electromagnetic and/or gravitational field. Using the covariant transfer equations thus developed, a covariant heat equation governing the relativistic heat conduction is derived, which, in Minkowski spacetime, reduces into a form which is remarkably similar to the well-known Cattaneo equation but with a different sign in front of the second-order time derivative term. We also perform a comparative analysis on the different behaviors of our heat equation and the Cattaneo equation in Minkowski spacetime. Furthermore, the effect of gravity on the heat conduction predicted by our heat equation is illustrated around Schwarzschild black hole, which makes a sharp contrast to the Minkowski case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03094v1-abstract-full').style.display = 'none'; document.getElementById('2411.03094v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 2 fifures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01189">arXiv:2411.01189</a> <span> [<a href="https://arxiv.org/pdf/2411.01189">pdf</a>, <a href="https://arxiv.org/format/2411.01189">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Macroscopic superposition of vortex states in a matter wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kong%2C+L">Lingran Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+T">Tianyou Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+S">Shi-Guo Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+N">Nenghao Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lijie Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+L">Lushuai Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+G">Guangshan Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenxian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+M">Mingsheng Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kaijun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01189v1-abstract-short" style="display: inline;"> Generating the vortex-state superposition in a matter wave is demanded in many quantum processes such as quantum memory and quantum metrology. Here we report the experimental generation of macroscopic superposition of vortex states in ultracold quantum gases. By transferring an optical vortex-state superposition to the center-of-mass rotational state of ultracold atoms using the Raman coupling tec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01189v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01189v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01189v1-abstract-full" style="display: none;"> Generating the vortex-state superposition in a matter wave is demanded in many quantum processes such as quantum memory and quantum metrology. Here we report the experimental generation of macroscopic superposition of vortex states in ultracold quantum gases. By transferring an optical vortex-state superposition to the center-of-mass rotational state of ultracold atoms using the Raman coupling technique, we realize two-vortex and three-vortex superposition states in quantum gases, demonstrating the high dimensionality of the vortex state. We show the controllability of the superposition states on the Bloch sphere. The lifetime of the vortex superposition state in quantum gases is as large as 25 ms, about two orders of magnitude longer than the storage time in atomic ensembles. This work paves the way for high dimensional quantum processing in matter waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01189v1-abstract-full').style.display = 'none'; document.getElementById('2411.01189v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14542">arXiv:2410.14542</a> <span> [<a href="https://arxiv.org/pdf/2410.14542">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> La$_2$O$_3$Mn$_2$Se$_2$: a correlated insulating layered d-wave altermagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+C">Chao-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaoyin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Hatt%2C+S">Sabrina Hatt</a>, <a href="/search/cond-mat?searchtype=author&query=Huai%2C+X">Xudong Huai</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jue Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Birender Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kyung-Mo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Cardon%2C+P">Paul Cardon</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Tran%2C+T+T">Thao T. Tran</a>, <a href="/search/cond-mat?searchtype=author&query=Frandsen%2C+B+M">Benjamin M. Frandsen</a>, <a href="/search/cond-mat?searchtype=author&query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Feng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+H">Huiwen Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14542v1-abstract-short" style="display: inline;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14542v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14542v1-abstract-full" style="display: none;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconventional superconductors and can yield spin polarized electrical currents in the absence of external magnetic fields, making them promising candidates for next-generation spintronics. Here, we report altermagnetism in the correlated insulator, magnetically-ordered tetragonal oxychalcogenide, La$_2$O$_3$Mn$_2$Se$_2$. Symmetry analysis reveals a $\mathit{d}_{x^2 - y^2}$-wave type spin momentum locking, which is supported by density functional theory (DFT) calculations. Magnetic measurements confirm the AFM transition below $\sim$166 K while neutron pair distribution function analysis reveals a 2D short-range magnetic order that persists above the N茅el temperature. Single crystals are grown and characterized using X-ray diffraction, optical and electron microscopy, and microRaman spectroscopy to confirm the crystal structure, stoichiometry, and uniformity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'none'; document.getElementById('2410.14542v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10539">arXiv:2410.10539</a> <span> [<a href="https://arxiv.org/pdf/2410.10539">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Incommensurate Transverse Peierls Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F+Z">F. Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+K+F">K. F. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Weizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xiaoyu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Meier%2C+W+R">W. R. Meier</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+H">H. Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H+X">H. X. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lozano%2C+P+M">P. Mercado Lozano</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+C">C. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T+T">T. T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&query=McGuire%2C+M+A">M. A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&query=Juneja%2C+R">R. Juneja</a>, <a href="/search/cond-mat?searchtype=author&query=Lindsay%2C+L">L. Lindsay</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+H+N">H. N. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+J+-">J. -M. Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+M+F">M. F. Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">H. Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10539v1-abstract-short" style="display: inline;"> In one-dimensional quantum materials, conducting electrons and the underlying lattices can undergo a spontaneous translational symmetry breaking, known as Peierls transition. For nearly a century, the Peierls transition has been understood within the paradigm of electron-electron interactions mediated by longitudinal acoustic phonons. This classical picture has recently been revised in topological… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10539v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10539v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10539v1-abstract-full" style="display: none;"> In one-dimensional quantum materials, conducting electrons and the underlying lattices can undergo a spontaneous translational symmetry breaking, known as Peierls transition. For nearly a century, the Peierls transition has been understood within the paradigm of electron-electron interactions mediated by longitudinal acoustic phonons. This classical picture has recently been revised in topological semimetals, where transverse acoustic phonons can couple with conducting p-orbital electrons and give rise to an unconventional Fermi surface instability, dubbed the transverse Peierls transition (TPT). Most interestingly, the TPT induced lattice distortions can further break rotation or mirror/inversion symmetries, leading to nematic or chiral charge density waves (CDWs). Quantum materials that host the TPT, however, have not been experimentally established. Here, we report the experimental discovery of an incommensurate TPT in the tetragonal Dirac semimetal EuAl$_4$. Using inelastic x-ray scattering with meV resolution, we observe the complete softening of a transverse acoustic phonon at the CDW wavevector upon cooling, whereas the longitudinal acoustic phonon is nearly unchanged. Combining with first principles calculations, we show that the incommensurate CDW wavevector matches the calculated charge susceptibility peak and connects the nested Dirac bands with Al 3$p_{x}$ and 3$p_{y}$ orbitals. Supplemented by second harmonic generation measurements, we show that the CDW induced lattice distortions break all vertical and diagonal mirrors whereas the four-fold rotational symmetry is retained below the CDW transition. Our observations strongly suggest a chiral CDW in EuAl$_4$ and highlight the TPT as a new avenue for chiral quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10539v1-abstract-full').style.display = 'none'; document.getElementById('2410.10539v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary materials are available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07698">arXiv:2409.07698</a> <span> [<a href="https://arxiv.org/pdf/2409.07698">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interlayer Engineering of Lattice Dynamics and Elastic Constants of 2D Layered Nanomaterials under Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Du%2C+G">Guoshuai Du</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuchang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+S">Susu Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+W">Wuxiao Han</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiayin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yubing Du</a>, <a href="/search/cond-mat?searchtype=author&query=Ming%2C+J">Jiaxin Ming</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tiansong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+J">Jun Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaoyan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">Weigao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yabin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07698v1-abstract-short" style="display: inline;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07698v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07698v1-abstract-full" style="display: none;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains vague, despite significant efforts. Herein, the layer-dependent lattice dynamics and elastic constants of 2D nanomaterials have been systematically investigated via pressure-engineering strategy based on ultralow frequency Raman spectroscopy. The shearing mode and layer-breathing Raman shifts of MoS2 with various thicknesses were analyzed by the linear chain model. Intriguingly, it was found that the layer-dependent d蠅/dP of shearing and breathing Raman modes display the opposite trends, quantitatively consistent with our molecular dynamics simulations and density functional theory calculations. These results can be generalized to other van der Waals systems, and may shed light on the potential applications of 2D materials in nanomechanics and nanoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'none'; document.getElementById('2409.07698v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08362">arXiv:2408.08362</a> <span> [<a href="https://arxiv.org/pdf/2408.08362">pdf</a>, <a href="https://arxiv.org/format/2408.08362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Multiplet Supercurrents in a Josephson Circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Arnault%2C+E+G">Ethan G. Arnault</a>, <a href="/search/cond-mat?searchtype=author&query=Chiles%2C+J">John Chiles</a>, <a href="/search/cond-mat?searchtype=author&query=Larson%2C+T+F+Q">Trevyn F. Q. Larson</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chun-Chia Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingfei Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Amet%2C+F">Francois Amet</a>, <a href="/search/cond-mat?searchtype=author&query=Finkelstein%2C+G">Gleb Finkelstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08362v1-abstract-short" style="display: inline;"> Multiterminal Josephson junctions are a promising platform to host synthetic topological phases of matter and Floquet states. However, the energy scales governing topological protection in these devices are on the order of the spacing between Andreev bound states. Recent theories suggest that similar phenomena may instead be explored in circuits composed of two-terminal Josephson junctions, allowi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08362v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08362v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08362v1-abstract-full" style="display: none;"> Multiterminal Josephson junctions are a promising platform to host synthetic topological phases of matter and Floquet states. However, the energy scales governing topological protection in these devices are on the order of the spacing between Andreev bound states. Recent theories suggest that similar phenomena may instead be explored in circuits composed of two-terminal Josephson junctions, allowing for the topological protection to be controlled by the comparatively large Josephson energy. Here, we explore a Josephson circuit, in which three superconducting electrodes are connected through Josephson junctions to a common superconducting island. We demonstrate the dynamic generation of multiplet resonances, which have previously been observed in multiterminal Josephson junctions. The multiplets are found to be robust to elevated temperatures and are confirmed by exhibiting the expected Shapiro step quantization under a microwave drive. We also find an unexpected novel supercurrent, which couples a pair of contacts that are both voltage-biased with respect to the common superconducting island. We show that this supercurrent results from synchronization of the phase dynamics and pose the question whether it should also carry a topological contribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08362v1-abstract-full').style.display = 'none'; document.getElementById('2408.08362v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07339">arXiv:2408.07339</a> <span> [<a href="https://arxiv.org/pdf/2408.07339">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Bilayer TeO2: The First Oxide Semiconductor with Symmetric Sub-5-nm NMOS and PMOS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+L">Linqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liya Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+S">Chit Siong Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+L">Lianqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiuhui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+S">Shibo Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Ang%2C+Y+S">Yee Sin Ang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+X">Xiaotian Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+J">Jing Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07339v1-abstract-short" style="display: inline;"> Wide bandgap oxide semiconductors are very promising channel candidates for next-generation electronics due to their large-area manufacturing, high-quality dielectrics, low contact resistance, and low leakage current. However, the absence of ultra-short gate length (Lg) p-type transistors has restricted their application in future complementary metal-oxide-semiconductor (CMOS) integration. Inspire… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07339v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07339v1-abstract-full" style="display: none;"> Wide bandgap oxide semiconductors are very promising channel candidates for next-generation electronics due to their large-area manufacturing, high-quality dielectrics, low contact resistance, and low leakage current. However, the absence of ultra-short gate length (Lg) p-type transistors has restricted their application in future complementary metal-oxide-semiconductor (CMOS) integration. Inspired by the successfully grown high-hole mobility bilayer (BL) beta tellurium dioxide (\b{eta}-TeO2), we investigate the performance of sub-5-nm-Lg BL \b{eta}-TeO2 field-effect transistors (FETs) by utilizing first-principles quantum transport simulation. The distinctive anisotropy of BL \b{eta}-TeO2 yields different transport properties. In the y-direction, both the sub-5-nm-Lg n-type and p-type BL \b{eta}-TeO2 FETs can fulfill the International Technology Roadmap for Semiconductors (ITRS) criteria for high-performance (HP) devices, which are superior to the reported oxide FETs (only n-type). Remarkably, we for the first time demonstrate the existence of the NMOS and PMOS symmetry in sub-5-nm-Lg oxide semiconductor FETs. As to the x-direction, the n-type BL \b{eta}-TeO2 FETs satisfy both the ITRS HP and low-power (LP) requirements with Lg down to 3 nm. Consequently, our work shed light on the tremendous prospects of BL \b{eta}-TeO2 for CMOS application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07339v1-abstract-full').style.display = 'none'; document.getElementById('2408.07339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02892">arXiv:2408.02892</a> <span> [<a href="https://arxiv.org/pdf/2408.02892">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.046503">10.1103/PhysRevLett.133.046503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local excitation of kagome spin ice magnetism in HoAgGe seen by scanning tunneling microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hanbin Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T">Tianyu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guowei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+W">Wei Song</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiang-Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+J">Jifeng Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y+Y">Y. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">Nan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hao Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Liyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Mei%2C+J">Jia-Wei Mei</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jiaqing He</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qihang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02892v1-abstract-short" style="display: inline;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02892v1-abstract-full" style="display: none;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical bias voltages with negative intensity values, serving as a striking inelastic tunneling signal. This signal disappears above the spin ice formation temperature and has a dependence on the magnetic fields, demonstrating its intimate relation with the spin ice magnetism. We provide a two-level spin-flip model to explain the tunneling dips considering the spin ice magnetism under spin-orbit coupling. Our results uncover a local emergent excitation of spin ice magnetism in a kagome metal, suggesting that local electrical field induced spin flip climbs over a barrier caused by spin-orbital locking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'none'; document.getElementById('2408.02892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 046503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20771">arXiv:2407.20771</a> <span> [<a href="https://arxiv.org/pdf/2407.20771">pdf</a>, <a href="https://arxiv.org/format/2407.20771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Absence of BCS-BEC Crossover in FeSe0.45Te0 55 Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Y">Yadong Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Shu%2C+Y">Yingjie Shu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+J">Jumin Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+B">Bo Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenpei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+N">Neng Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zhian Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20771v1-abstract-short" style="display: inline;"> In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS-BEC crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe0… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20771v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20771v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20771v1-abstract-full" style="display: none;"> In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS-BEC crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe0.45Te0.55 superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20771v1-abstract-full').style.display = 'none'; document.getElementById('2407.20771v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 33, 077404 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17375">arXiv:2407.17375</a> <span> [<a href="https://arxiv.org/pdf/2407.17375">pdf</a>, <a href="https://arxiv.org/format/2407.17375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconducting phase interference effect in momentum space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+B">Bo Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+R">Runze Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+D">Dingshun Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17375v1-abstract-short" style="display: inline;"> The pairing symmetry of superconducting electrons can be identified through various phase-sensitive experiments. However, phenomena like the Josephson effect predominantly depend on frameworks exhibiting macroscopic interference. At the microscopic level, phase interference effects within momentum space are absent due to the intrinsic challenge of extracting phase information from specific momentu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17375v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17375v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17375v1-abstract-full" style="display: none;"> The pairing symmetry of superconducting electrons can be identified through various phase-sensitive experiments. However, phenomena like the Josephson effect predominantly depend on frameworks exhibiting macroscopic interference. At the microscopic level, phase interference effects within momentum space are absent due to the intrinsic challenge of extracting phase information from specific momentum points. By incorporating the hybridization effect between a primary band and its replica bands generated by density wave orders or other interactions, we introduce a superconducting phase interference effect at the intersection points on the Fermi surfaces of these two bands. This effect clarifies the extraordinary behavior observed in the single-particle spectral function in recent angle-resolved photoemission spectroscopy (ARPES) measurements in the $Bi_2Sr_2CaCu_2O_{8+未}$ (Bi2212) superconductor. It also offers a new insight into the non-zero Josephson current observed in a $45^\circ$-twisted Josephson junction of cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17375v1-abstract-full').style.display = 'none'; document.getElementById('2407.17375v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12744">arXiv:2407.12744</a> <span> [<a href="https://arxiv.org/pdf/2407.12744">pdf</a>, <a href="https://arxiv.org/format/2407.12744">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad51f8">10.1088/1674-1056/ad51f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negligible Normal Fluid in Superconducting State of Heavily Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Detected by Ultra-Low Temperature Angle-Resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qinghong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yuyang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junhao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiangang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+W">Wenkai Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zong%2C+N">Nan Zong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Lijuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Rukang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xintong Li</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12744v1-abstract-short" style="display: inline;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a he… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12744v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12744v1-abstract-full" style="display: none;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a $T_{\mathrm{c}}$ of 48 K. We find that this heavily overdoped Bi2212 remains in the strong coupling regime with $2 \mathit螖_0 / k_{\mathrm{B}} T_{\mathrm{c}}=5.8$. The single-particle scattering rate is very small along the nodal direction ($\sim$5 meV) and increases as the momentum moves from the nodal to the antinodal regions. A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero. The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212. These results provide key information to understand the high $T_\mathrm{c}$ mechanism in the cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'none'; document.getElementById('2407.12744v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 33, 077405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09914">arXiv:2407.09914</a> <span> [<a href="https://arxiv.org/pdf/2407.09914">pdf</a>, <a href="https://arxiv.org/format/2407.09914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Fluctuation theorems in general relativistic stochastic thermodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09914v2-abstract-short" style="display: inline;"> Based on the recently proposed framework of general relativistic stochastic mechanics and stochastic thermodynamics at the ensemble level, this work focuses on general relativistic stochastic thermodynamics at the trajectory level. The first law of stochastic thermodynamics is reformulated and the fluctuation theorems are proved on this level, with emphasis on maintaining fully general covariance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09914v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09914v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09914v2-abstract-full" style="display: none;"> Based on the recently proposed framework of general relativistic stochastic mechanics and stochastic thermodynamics at the ensemble level, this work focuses on general relativistic stochastic thermodynamics at the trajectory level. The first law of stochastic thermodynamics is reformulated and the fluctuation theorems are proved on this level, with emphasis on maintaining fully general covariance and on the choice of observers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09914v2-abstract-full').style.display = 'none'; document.getElementById('2407.09914v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 2 figures. v2: fixed a typo and updated the detail of a reference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09912">arXiv:2407.09912</a> <span> [<a href="https://arxiv.org/pdf/2407.09912">pdf</a>, <a href="https://arxiv.org/ps/2407.09912">ps</a>, <a href="https://arxiv.org/format/2407.09912">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> General Relativistic Fluctuation Theorems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09912v3-abstract-short" style="display: inline;"> Using the recently proposed covariant framework of general relativistic stochastic mechanics and stochastic thermodynamics, we proved the detailed and integral fluctuation theorems in curved spacetime. The time-reversal transformation is described as a transformation from the perspective of future-directed observer to that of the corresponding past-directed observer, which enables us to maintain g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09912v3-abstract-full').style.display = 'inline'; document.getElementById('2407.09912v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09912v3-abstract-full" style="display: none;"> Using the recently proposed covariant framework of general relativistic stochastic mechanics and stochastic thermodynamics, we proved the detailed and integral fluctuation theorems in curved spacetime. The time-reversal transformation is described as a transformation from the perspective of future-directed observer to that of the corresponding past-directed observer, which enables us to maintain general covariance throughout the construction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09912v3-abstract-full').style.display = 'none'; document.getElementById('2407.09912v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages. v3: published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 860 (2025) 139220 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04679">arXiv:2407.04679</a> <span> [<a href="https://arxiv.org/pdf/2407.04679">pdf</a>, <a href="https://arxiv.org/format/2407.04679">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2410345121">10.1073/pnas.2410345121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asymmetric fluctuations and self-folding of active interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Gulati%2C+P">Paarth Gulati</a>, <a href="/search/cond-mat?searchtype=author&query=Caballero%2C+F">Fernando Caballero</a>, <a href="/search/cond-mat?searchtype=author&query=Kolvin%2C+I">Itamar Kolvin</a>, <a href="/search/cond-mat?searchtype=author&query=Adkins%2C+R">Raymond Adkins</a>, <a href="/search/cond-mat?searchtype=author&query=Marchetti%2C+M+C">M. Cristina Marchetti</a>, <a href="/search/cond-mat?searchtype=author&query=Dogic%2C+Z">Zvonimir Dogic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04679v1-abstract-short" style="display: inline;"> We study the structure and dynamics of the interface separating a passive fluid from a microtubule-based active fluid. Turbulent-like active flows power giant interfacial fluctuations, which exhibit pronounced asymmetry between regions of positive and negative curvature. Experiments, numerical simulations, and theoretical arguments reveal how the interface breaks up the spatial symmetry of the fun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04679v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04679v1-abstract-full" style="display: none;"> We study the structure and dynamics of the interface separating a passive fluid from a microtubule-based active fluid. Turbulent-like active flows power giant interfacial fluctuations, which exhibit pronounced asymmetry between regions of positive and negative curvature. Experiments, numerical simulations, and theoretical arguments reveal how the interface breaks up the spatial symmetry of the fundamental bend instability to generate local vortical flows that lead to asymmetric interface fluctuations. The magnitude of interface deformations increases with activity: In the high activity limit, the interface self-folds invaginating passive droplets and generating a foam-like phase, where active fluid is perforated with passive droplets. These results demonstrate how active stresses control the structure, dynamics, and break-up of soft, deformable, and reconfigurable liquid-liquid interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04679v1-abstract-full').style.display = 'none'; document.getElementById('2407.04679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04643">arXiv:2407.04643</a> <span> [<a href="https://arxiv.org/pdf/2407.04643">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Granular Ta-Te nanowire superconductivity violating the Pauli limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+L">Lin Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+H">Haiyin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ying%2C+T">Tianping Ying</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04643v1-abstract-short" style="display: inline;"> Strategies to achieve higher upper-critical-field superconductors (渭0Hc2(0)) are of great interest for both fundamental science and practical applications. While reducing the thickness of two-dimensional (2D) materials to a few layers significantly enhances 渭0Hc2(0) with accompanied potential unconventional pairing mechanisms, further dimensional reduction to 1D compounds rarely exceeds the expect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04643v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04643v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04643v1-abstract-full" style="display: none;"> Strategies to achieve higher upper-critical-field superconductors (渭0Hc2(0)) are of great interest for both fundamental science and practical applications. While reducing the thickness of two-dimensional (2D) materials to a few layers significantly enhances 渭0Hc2(0) with accompanied potential unconventional pairing mechanisms, further dimensional reduction to 1D compounds rarely exceeds the expected Pauli limit. Here, we report the discovery of a 1D granular Ta-Te nanowire that becomes superconducting under high pressure, with a maximum critical temperature (Tc) of 5.1 K. Remarkably, the 渭0Hc2(0) reaches 16 T, which is twice the Pauli limit, setting a record of 渭0Hc2 (0) in all the reported 1D superconductors. Our work demonstrates that the Ta-Te nanowire not only is a potential candidate for applications in high magnetic fields, but also provides an ideal platform for further investigations of the mechanisms between nanowires and large 渭0Hc2(0). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04643v1-abstract-full').style.display = 'none'; document.getElementById('2407.04643v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01740">arXiv:2407.01740</a> <span> [<a href="https://arxiv.org/pdf/2407.01740">pdf</a>, <a href="https://arxiv.org/format/2407.01740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Analysis and ODEs">math.CA</span> </div> </div> <p class="title is-5 mathjax"> Chevron patterns in an active nematic liquid crystal film in contact with Smectic A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Calderer%2C+M+C">M. Carme Calderer</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+L">Lingxing Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Longhua Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Golovaty%2C+D">Dmitry Golovaty</a>, <a href="/search/cond-mat?searchtype=author&query=Ign%C3%A9s-Mullol%2C+J">Jordi Ign茅s-Mullol</a>, <a href="/search/cond-mat?searchtype=author&query=Sagu%C3%A9s%2C+F">Francesc Sagu茅s</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01740v1-abstract-short" style="display: inline;"> We study a new mechanism of active matter confinement of a thin, active nematic sample consisting of microtubules, activated by Adenosine Triphosphate (ATP), placed between a slab of passive liquid crystal, the compound 8CB, and water. The 8CB slab is kept at a temperature below the phase transition value between the nematic and the smectic A phases. The smectic A molecules are horizontally aligne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01740v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01740v1-abstract-full" style="display: none;"> We study a new mechanism of active matter confinement of a thin, active nematic sample consisting of microtubules, activated by Adenosine Triphosphate (ATP), placed between a slab of passive liquid crystal, the compound 8CB, and water. The 8CB slab is kept at a temperature below the phase transition value between the nematic and the smectic A phases. The smectic A molecules are horizontally aligned with an applied magnetic field, with their centers of mass arranged on equally spaced layers perpendicular to the field. The contact with the active nematic prompts flow in the smectic slab, along the direction parallel to the layers. This flow direction is transferred back to the active nematic. We set up a model of such contact flow and make predictions on the experimentally observed pattern, from the point of view of asymptotic, linear and nonlinear analyses. We examine such results within the scope of the principle of minimum energy dissipation of the flow. For analytic convenience, we consider the active nematic confined between two symmetric 8CB slabs, and show that the conclusions still hold when replacing the bottom smectic A substrate with water, as in the experimental setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01740v1-abstract-full').style.display = 'none'; document.getElementById('2407.01740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17621">arXiv:2406.17621</a> <span> [<a href="https://arxiv.org/pdf/2406.17621">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quasiphase transition of a single-file water chain influenced by atomic charges in a water model using orientational-biased replica exchange Monte Carlo simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+J">Junqing Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zhi Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+Y">Yusong Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chunlei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17621v3-abstract-short" style="display: inline;"> The recently observed temperature-dependent quasiphase transition of the single-file water chain confined within a carbon nanotube in experiments has been validated by the simple lattice theory and molecular dynamics simulations. It has been pointed out that the atomic charges in water models are important, yet how the values will affect the structural details and thermodynamic properties of the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17621v3-abstract-full').style.display = 'inline'; document.getElementById('2406.17621v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17621v3-abstract-full" style="display: none;"> The recently observed temperature-dependent quasiphase transition of the single-file water chain confined within a carbon nanotube in experiments has been validated by the simple lattice theory and molecular dynamics simulations. It has been pointed out that the atomic charges in water models are important, yet how the values will affect the structural details and thermodynamic properties of the quasiphase transition has not been fully revealed. In this work, we perform orientational-biased replica exchange Monte Carlo simulations in the canonical ensemble to explore the effect of atomic charges in the SPC/E water model on the quasiphase transition of a single-file water chain. Based on the atomic charge values reported in literature, three distinct quasiphases are reproduced, comprising a fully hydrogen-bonded water chain at lower temperatures, a more ordered dipolar orientation along the tube axis at intermediate temperatures, and a completely disordered structure at higher temperatures. Then by increasing the atomic charge values, we find that the fragmentation of the entire water chain into shorter water segments, the orientational ordering of water dipoles along the tube axis, and the transition towards complete disorder are all inhibited. Consequently, the transition temperatures between three quasiphases have been shifted to higher temperatures. The thermodynamic analysis demonstrates that the increased atomic charge values enhance the hydrogen bonding between neighbouring water molecules also the electrostatic attraction within the water chain, leading to a longer water dipole correlation length even at higher temperatures. These findings highlight the vital role of atomic charges in water models also the electrostatic interaction in regulating the orientational ordering of water molecules under nanoconfinement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17621v3-abstract-full').style.display = 'none'; document.getElementById('2406.17621v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages and 7 figures in Main text, 5 figures in Appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12250">arXiv:2406.12250</a> <span> [<a href="https://arxiv.org/pdf/2406.12250">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49942-2">10.1038/s41467-024-49942-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of stacking engineered magnetic phase transitions within moir茅 supercells of twisted van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&query=Sharmin%2C+A">Afsana Sharmin</a>, <a href="/search/cond-mat?searchtype=author&query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12250v1-abstract-short" style="display: inline;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12250v1-abstract-full" style="display: none;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moir茅 supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moir茅 supercell of small-angle twisted double trilayer CrI3. By measuring temperature dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the N茅el temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of the moir茅 superlattices. The presented results highlight twist engineering as a promising tuning knob to realize on-demand control of not only the nanoscale spin order of moir茅 quantum matter but also its dynamic magnetic responses, which may find relevant applications in developing transformative vdW electronic and magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'none'; document.getElementById('2406.12250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 5712 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00850">arXiv:2406.00850</a> <span> [<a href="https://arxiv.org/pdf/2406.00850">pdf</a>, <a href="https://arxiv.org/format/2406.00850">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Thermal properties of the superconductor-quantum Hall interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingfei Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Larson%2C+T+F+Q">Trevyn F. Q. Larson</a>, <a href="/search/cond-mat?searchtype=author&query=Iftikhar%2C+Z">Zubair Iftikhar</a>, <a href="/search/cond-mat?searchtype=author&query=Chiles%2C+J">John Chiles</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Amet%2C+F">Francois Amet</a>, <a href="/search/cond-mat?searchtype=author&query=Finkelstein%2C+G">Gleb Finkelstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00850v1-abstract-short" style="display: inline;"> An important route of engineering topological states and excitations is to combine superconductors (SC) with the quantum Hall (QH) effect, and over the past decade, significant progress has been made in this direction. While typical measurements of these states focus on electronic properties, little attention has been paid to the accompanying thermal responses. Here, we examine the thermal propert… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00850v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00850v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00850v1-abstract-full" style="display: none;"> An important route of engineering topological states and excitations is to combine superconductors (SC) with the quantum Hall (QH) effect, and over the past decade, significant progress has been made in this direction. While typical measurements of these states focus on electronic properties, little attention has been paid to the accompanying thermal responses. Here, we examine the thermal properties of the interface between a type-II superconducting electrodes and graphene in the QH regime. We use the thermal noise measurement to probe the local electron temperature of the biased interface. Surprisingly, the measured temperature raise indicates that the superconductor provides a significant thermal conductivity, which is linear in temperature. This suggests electronic heat transport and may be unexpected, because the number of the quasiparticles in the superconductor should be exponentially suppressed. Instead, we attribute the measured electronic heat conductivity to the overlap of the normal states in the vortex cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00850v1-abstract-full').style.display = 'none'; document.getElementById('2406.00850v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Lingfei Zhao, Trevyn F.Q. Larson and Zubair Iftikhar contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06449">arXiv:2405.06449</a> <span> [<a href="https://arxiv.org/pdf/2405.06449">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202401118">10.1002/adma.202401118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disorder-broadened phase boundary with enhanced amorphous superconductivity in pressurized In2Te5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ying%2C+T">Tianping Ying</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jun Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+S">Shihao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+N">Na Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Lili Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chui-Zhen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+T">Tongxu Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06449v1-abstract-short" style="display: inline;"> As an empirical tool in materials science and engineering, the iconic phase diagram owes its robustness and practicality to the topological characteristics rooted in the celebrated Gibbs phase law (F = C - P + 2). When crossing the phase diagram boundary, the structure transition occurs abruptly, bringing about an instantaneous change in physical properties and limited controllability on the bound… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06449v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06449v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06449v1-abstract-full" style="display: none;"> As an empirical tool in materials science and engineering, the iconic phase diagram owes its robustness and practicality to the topological characteristics rooted in the celebrated Gibbs phase law (F = C - P + 2). When crossing the phase diagram boundary, the structure transition occurs abruptly, bringing about an instantaneous change in physical properties and limited controllability on the boundaries (F = 1). Here, we expand the sharp phase boundary to an amorphous transition region (F = 2) by partially disrupting the long-range translational symmetry, leading to a sequential crystalline-amorphous-crystalline (CAC) transition in a pressurized In2Te5 single crystal. Through detailed in-situ synchrotron diffraction, we elucidate that the phase transition stems from the rotation of immobile blocks [In2Te2]2+, linked by hinge-like [Te3]2- trimers. Remarkably, within the amorphous region, the amorphous phase demonstrates a notable 25 % increase of the superconducting transition temperature (Tc), while the carrier concentration remains relatively constant. Furthermore, we propose a theoretical framework revealing that the unconventional boost in amorphous superconductivity might be attributed to an intensified electron correlation, triggered by a disorder-augmented multifractal behavior. These findings underscore the potential of disorder and prompt further exploration of unforeseen phenomena on the phase boundaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06449v1-abstract-full').style.display = 'none'; document.getElementById('2405.06449v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, Accepted for publication in Advanced Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05838">arXiv:2405.05838</a> <span> [<a href="https://arxiv.org/pdf/2405.05838">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Altermagnetic Polar Metallic phase in Ultra-Thin Epitaxially-Strained RuO2 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+I+H">In Hyeok Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Nair%2C+S">Sreejith Nair</a>, <a href="/search/cond-mat?searchtype=author&query=Buiarelli%2C+L">Luca Buiarelli</a>, <a href="/search/cond-mat?searchtype=author&query=Pourbahari%2C+B">Bita Pourbahari</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+J+Y">Jin Young Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Bassim%2C+N">Nabil Bassim</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+A">Ambrose Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+W+S">Woo Seok Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Birol%2C+T">Turan Birol</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Jong Seok Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jalan%2C+B">Bharat Jalan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05838v1-abstract-short" style="display: inline;"> Altermagnetism refers to a wide class of compensated magnetic orders featuring magnetic sublattices with opposite spins related by rotational symmetry rather than inversion or translational operations, resulting in non-trivial spin splitting and high-order multipolar orders. Here, by combining theoretical analysis, electrical transport, X-ray and optical spectroscopies, and nonlinear optical measu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05838v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05838v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05838v1-abstract-full" style="display: none;"> Altermagnetism refers to a wide class of compensated magnetic orders featuring magnetic sublattices with opposite spins related by rotational symmetry rather than inversion or translational operations, resulting in non-trivial spin splitting and high-order multipolar orders. Here, by combining theoretical analysis, electrical transport, X-ray and optical spectroscopies, and nonlinear optical measurements, we establish a phase diagram in hybrid molecular beam epitaxy-grown RuO2/TiO2 (110) films, mapping the broken symmetries along the altermagnetic/electronic/structural phase transitions as functions of film thickness and temperature. This phase diagram features a novel altermagnetic metallic polar phase in strained 2 nm samples, extending the concept of multiferroics to altermagnetic systems. These results provide a comprehensive understanding of altermagnetism upon epitaxial heterostructure design for emergent novel phases with multifunctionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05838v1-abstract-full').style.display = 'none'; document.getElementById('2405.05838v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04939">arXiv:2405.04939</a> <span> [<a href="https://arxiv.org/pdf/2405.04939">pdf</a>, <a href="https://arxiv.org/format/2405.04939">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intermediates of Forming Transition Metal Dichalcogenides Heterostructures Revealed by Machine Learning Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Luneng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongsheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+Y">Yuan Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">Xiaoran Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Junfeng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+F">Feng Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04939v2-abstract-short" style="display: inline;"> The primary restrictions on 2D transition metal dichalcogenides (TMD) vdW heterostructures (vdWHs) are size limitation and alloying. Recently, a two-step vapor deposition method was reported to grow wafer-scale TMD vdWHs with little contamination [Nature 621, 499 (2023)]. In this letter, we developed a machine learning potential (MLP) which can accurately simulate the growth processes of bilayer M… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04939v2-abstract-full').style.display = 'inline'; document.getElementById('2405.04939v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04939v2-abstract-full" style="display: none;"> The primary restrictions on 2D transition metal dichalcogenides (TMD) vdW heterostructures (vdWHs) are size limitation and alloying. Recently, a two-step vapor deposition method was reported to grow wafer-scale TMD vdWHs with little contamination [Nature 621, 499 (2023)]. In this letter, we developed a machine learning potential (MLP) which can accurately simulate the growth processes of bilayer MoS$_2$/WS$_2$ vdWHs under various conditions. Importantly, a SMMS (where M is Mo or W) structure is revealed as a highly stable intermediate easily introduces metal atom exchange and alloying. Eliminating the alloying contamination in TMD vdWHs is avoiding SMMS structure by preventing the landing of bare metal atoms. However, SMMS is revealed as an ideal electrode for MoS$_2$ FETs with low Schottky barrier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04939v2-abstract-full').style.display = 'none'; document.getElementById('2405.04939v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13926">arXiv:2404.13926</a> <span> [<a href="https://arxiv.org/pdf/2404.13926">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Using Polyvinyl Alcohol as Polymeric Adhesive to Enhance the Water Stability of Soil and its Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+C">Chunyan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Gang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13926v1-abstract-short" style="display: inline;"> Soil degradation threatens agricultural productivity and food supply, leading to hunger issues in some developing regions. To address this challenge, we developed a low-cost, highly efficient, and long-term stable soil improvement method. We chose polyvinyl alcohol (PVA), a commercially available polymer that is safe and non-degradable, to serve as a soil adhesive. We mixed PVA solution into the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13926v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13926v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13926v1-abstract-full" style="display: none;"> Soil degradation threatens agricultural productivity and food supply, leading to hunger issues in some developing regions. To address this challenge, we developed a low-cost, highly efficient, and long-term stable soil improvement method. We chose polyvinyl alcohol (PVA), a commercially available polymer that is safe and non-degradable, to serve as a soil adhesive. We mixed PVA solution into the soil and applied a drying treatment to enhance the bonding between PVA and the soil, achieving highly water-stable soil. This PVA-stabilized soil exhibits low bulk density, high porosity, and high permeability, making it an ideal substrate for planting. In a germination test, the PVA-stabilized soil revealed a higher germination rate and growth rate compared to those of the non-treated soil. We believe this simple and efficient soil improvement method can restore degraded soil and contribute to sustainable agriculture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13926v1-abstract-full').style.display = 'none'; document.getElementById('2404.13926v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12374">arXiv:2404.12374</a> <span> [<a href="https://arxiv.org/pdf/2404.12374">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Realization of Kagome Kondo lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Song%2C+B">Boqin Song</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yuyang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei-Jian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jian-gang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+S">Shun-Li Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ying%2C+T">Tianping Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12374v2-abstract-short" style="display: inline;"> The Kondo lattice, describing a grid of the local magnetic moments coupling to itinerant electrons, is a fertile ground of strongly correlated states in condensed matter physics. While the Kagome lattice has long been predicted to host Kondo physics with exotic magnetism and nontrivial topology, no experimental realization has been achieved. Here, we report the discovery of CsCr6Sb6, a van der Waa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12374v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12374v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12374v2-abstract-full" style="display: none;"> The Kondo lattice, describing a grid of the local magnetic moments coupling to itinerant electrons, is a fertile ground of strongly correlated states in condensed matter physics. While the Kagome lattice has long been predicted to host Kondo physics with exotic magnetism and nontrivial topology, no experimental realization has been achieved. Here, we report the discovery of CsCr6Sb6, a van der Waals-like Kagome Kondo lattice featuring extremely flat, isolated bands at the Fermi level (EF) that composed entirely of Cr-3d electrons. We observe heavy fermions with the effective mass over 100 times greater than those of its vanadium counterpart. We also observe Kondo insulating behavior in an ultra-low carrier density of 1019 cm-3 and dimensionality-induced Kondo breakdown. More interestingly, the frustrated magnetism observed in the bulk give way to a hidden A-type antiferromagnetic ordering in few layers, in sharp contrast to the common sense of weakened magnetism with thinning. The realization of Kondo physics in Kagome lattice opens avenues for exploring diverse quantum criticalities in a strongly-correlated frustrated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12374v2-abstract-full').style.display = 'none'; document.getElementById('2404.12374v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13897">arXiv:2403.13897</a> <span> [<a href="https://arxiv.org/pdf/2403.13897">pdf</a>, <a href="https://arxiv.org/format/2403.13897">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Large Exciton Binding Energy in the Bulk van der Waals Magnet CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Smolenski%2C+S">Shane Smolenski</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+M">Ming Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiuyang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Downey%2C+E">Eoghan Downey</a>, <a href="/search/cond-mat?searchtype=author&query=Alfrey%2C+A">Adam Alfrey</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Wenhao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kondusamy%2C+A+L+N">Aswin L. N. Kondusamy</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hui Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+B">Bing Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Zgid%2C+D">Dominika Zgid</a>, <a href="/search/cond-mat?searchtype=author&query=Gull%2C+E">Emanuel Gull</a>, <a href="/search/cond-mat?searchtype=author&query=Jo%2C+N+H">Na Hyun Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13897v1-abstract-short" style="display: inline;"> Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid state systems. Excitons and their associated many-body physics are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13897v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13897v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13897v1-abstract-full" style="display: none;"> Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid state systems. Excitons and their associated many-body physics are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr. Utilizing state-of-the-art angle-resolved photoemission spectroscopy and self-consistent ab-initio GW calculations, we present direct spectroscopic evidence that robust electronic and structural anisotropy can significantly amplify the exciton binding energy within bulk crystals. Furthermore, the application of a vertical electric field enables broad tunability of the optical and electronic properties. Our results indicate that CrSBr is a promising material for the study of the role of anisotropy in strongly interacting bulk systems and for the development of exciton-based optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13897v1-abstract-full').style.display = 'none'; document.getElementById('2403.13897v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13306">arXiv:2403.13306</a> <span> [<a href="https://arxiv.org/pdf/2403.13306">pdf</a>, <a href="https://arxiv.org/format/2403.13306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamic origin of the phonon Hall effect in a honeycomb antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Q">Qingkai Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+C">Chao Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13306v2-abstract-short" style="display: inline;"> The underlying mechanism of the thermal Hall effect (THE) generated by phonons in a variety of insulators is yet to be identified. Here, we report on a sizeable thermal Hall conductivity in NiPS$_3$, a van der Waals stack of honeycomb layers with a zigzag antiferromagnetic order below $T_N$ = 155 K. The longitudinal ($魏_{aa}$) and the transverse ($魏_{ab}$) thermal conductivities peak at the same t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13306v2-abstract-full').style.display = 'inline'; document.getElementById('2403.13306v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13306v2-abstract-full" style="display: none;"> The underlying mechanism of the thermal Hall effect (THE) generated by phonons in a variety of insulators is yet to be identified. Here, we report on a sizeable thermal Hall conductivity in NiPS$_3$, a van der Waals stack of honeycomb layers with a zigzag antiferromagnetic order below $T_N$ = 155 K. The longitudinal ($魏_{aa}$) and the transverse ($魏_{ab}$) thermal conductivities peak at the same temperature and the thermal Hall angle, at this peak, respects a previously identified bound. The amplitude of $魏_{ab}$ is extremely sensitive to the amplitude of magnetization along the $b$-axis, in contrast to the phonon mean free path, which is not at all. We show that the magnon and acoustic phonon bands cross each other along the $b^\ast$ orientation in the momentum space. The relevance of a thermodynamic property, combined with the irrelevance of the mean free path, points to an intrinsic origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13306v2-abstract-full').style.display = 'none'; document.getElementById('2403.13306v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Supplemental Materials included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09517">arXiv:2403.09517</a> <span> [<a href="https://arxiv.org/pdf/2403.09517">pdf</a>, <a href="https://arxiv.org/format/2403.09517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of quantum thermalization restricted to Hilbert space fragments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Luheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Datla%2C+P+R">Prithvi Raj Datla</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+W">Weikun Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Aliyu%2C+M+M">Mohammad Mujahid Aliyu</a>, <a href="/search/cond-mat?searchtype=author&query=Loh%2C+H">Huanqian Loh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09517v2-abstract-short" style="display: inline;"> Quantum thermalization occurs in a broad class of systems from elementary particles to complex materials. Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both. Here we achieve the first coexistence of thermalization and memory in a quantum system, where we use both Rydberg blockade and facilitation in an atom array… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09517v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09517v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09517v2-abstract-full" style="display: none;"> Quantum thermalization occurs in a broad class of systems from elementary particles to complex materials. Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both. Here we achieve the first coexistence of thermalization and memory in a quantum system, where we use both Rydberg blockade and facilitation in an atom array to engineer a fragmentation of the Hilbert space into exponentially many disjointed subspaces. We find that the kinetically constrained system yields quantum many-body scars arising from the $\mathbb{Z}_{2k}$ class of initial states, which generalizes beyond the $\mathbb{Z}_{2}$ scars previously reported in other quantum systems. When bringing multiple long-range interactions into resonance, we observe quantum thermalization restricted to Hilbert space fragments, where the thermalized system retains characteristics of the initial configuration. Intriguingly, states belonging to different subspaces do not thermalize with each other even when they have the same energy. Our work challenges established ideas of quantum thermalization while experimentally resolving the longstanding tension between thermalization and memory. These results may be applied to control entanglement dynamics in quantum processors and quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09517v2-abstract-full').style.display = 'none'; document.getElementById('2403.09517v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06085">arXiv:2403.06085</a> <span> [<a href="https://arxiv.org/pdf/2403.06085">pdf</a>, <a href="https://arxiv.org/format/2403.06085">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> van Hove Singularity-Driven Emergence of Multiple Flat Bands in Kagome Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Luo%2C+H">Hailan Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yun-Peng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Y">Yuhao Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+C">Chengmin Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+B">Bo Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Shu%2C+Y">Yingjie Shu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zuyan Xu</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06085v1-abstract-short" style="display: inline;"> The newly discovered Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb and Cs) continue to bring surprises in generating unusual phenomena and physical properties, including anomalous Hall effect, unconventional charge density wave, electronic nematicity and time-reversal symmetry breaking. Here we report an unexpected emergence of multiple flat bands in the AV$_3$Sb$_5$ superconductors. By performing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06085v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06085v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06085v1-abstract-full" style="display: none;"> The newly discovered Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb and Cs) continue to bring surprises in generating unusual phenomena and physical properties, including anomalous Hall effect, unconventional charge density wave, electronic nematicity and time-reversal symmetry breaking. Here we report an unexpected emergence of multiple flat bands in the AV$_3$Sb$_5$ superconductors. By performing high-resolution angle-resolved photoemission (ARPES) measurements, we observed four branches of flat bands that span over the entire momentum space. The appearance of the flat bands is not anticipated from the band structure calculations and cannot be accounted for by the known mechanisms of flat band generation. It is intimately related to the evolution of van Hove singularities. It is for the first time to observe such emergence of multiple flat bands in solid materials. Our findings provide new insights in revealing the underlying mechanism that governs the unusual behaviors in the Kagome superconductors. They also provide a new pathway in producing flat bands and set a platform to study the flat bands related physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06085v1-abstract-full').style.display = 'none'; document.getElementById('2403.06085v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05875">arXiv:2403.05875</a> <span> [<a href="https://arxiv.org/pdf/2403.05875">pdf</a>, <a href="https://arxiv.org/format/2403.05875">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Detecting quantum chaos via pseudo-entropy and negativity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+S">Song He</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+P+H+C">Pak Hang Chris Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Long Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05875v1-abstract-short" style="display: inline;"> Quantum informatic quantities such as entanglement entropy are useful in detecting quantum phase transitions. Recently, a new entanglement measure called pseudo-entropy was proposed which is a generalization of the more well-known entanglement entropy. It has many nice properties and is useful in the study of post-selection measurements. In this paper, one of our goals is to explore the properties… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05875v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05875v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05875v1-abstract-full" style="display: none;"> Quantum informatic quantities such as entanglement entropy are useful in detecting quantum phase transitions. Recently, a new entanglement measure called pseudo-entropy was proposed which is a generalization of the more well-known entanglement entropy. It has many nice properties and is useful in the study of post-selection measurements. In this paper, one of our goals is to explore the properties of pseudo-entropy and study the effectiveness of it as a quantum chaos diagnostic, i.e. as a tool to distinguish between chaotic and integrable systems. Using various variants of the SYK model, we study the signal of quantum chaos captured in the pseudo-entropy and relate it to the spectral form factor (SFF) and local operator entanglement (LOE). We also explore another quantity called the negativity of entanglement which is a useful entanglement measure for a mixed state. We generalized it to accommodate the transition matrix and called it pseudo-negativity in analogy to pseudo-entropy. We found that it also nicely captures the spectral properties of a chaotic system and hence also plays a role as a tool of quantum chaos diagnostic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05875v1-abstract-full').style.display = 'none'; document.getElementById('2403.05875v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11921">arXiv:2402.11921</a> <span> [<a href="https://arxiv.org/pdf/2402.11921">pdf</a>, <a href="https://arxiv.org/ps/2402.11921">ps</a>, <a href="https://arxiv.org/format/2402.11921">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10955-024-03297-6">10.1007/s10955-024-03297-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrodynamics for asymmetric simple exclusion on a finite segment with Glauber-type source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+L">Lu Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Linjie Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11921v4-abstract-short" style="display: inline;"> We consider an open interacting particle system on a finite lattice. The particles perform asymmetric simple exclusion and are randomly created or destroyed at all sites, with rates that grow rapidly near the boundaries. We study the hydrodynamic limit for the particle density at the hyperbolic space-time scale and obtain the entropy solution to a boundary-driven quasilinear conservation law with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11921v4-abstract-full').style.display = 'inline'; document.getElementById('2402.11921v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11921v4-abstract-full" style="display: none;"> We consider an open interacting particle system on a finite lattice. The particles perform asymmetric simple exclusion and are randomly created or destroyed at all sites, with rates that grow rapidly near the boundaries. We study the hydrodynamic limit for the particle density at the hyperbolic space-time scale and obtain the entropy solution to a boundary-driven quasilinear conservation law with a relaxation term. Different from the usual boundary conditions introduced in [Bardos, Roux, and Nedelec, (1979), Comm. Part. Diff. Equ], discontinuity (boundary layer) does not formulate at the boundaries due to the strong relaxation scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11921v4-abstract-full').style.display = 'none'; document.getElementById('2402.11921v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Statistical Physics, 191, 78, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13781">arXiv:2401.13781</a> <span> [<a href="https://arxiv.org/pdf/2401.13781">pdf</a>, <a href="https://arxiv.org/format/2401.13781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Progress and Prospects in Two-Dimensional Magnetism of van der Waals Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+Y">Youngjun Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xiaoyu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Son%2C+S">Suhan Son</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13781v1-abstract-short" style="display: inline;"> Two-dimensional (2D) magnetism in van der Waals (vdW) atomic crystals and moir茅 superlattices has emerged as a topic of tremendous interest in the fields of condensed matter physics and materials science within the past half-decade since its first experimental discovery in 2016 - 2017. It has not only served as a powerful platform for investigating phase transitions in the 2D limit and exploring n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13781v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13781v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13781v1-abstract-full" style="display: none;"> Two-dimensional (2D) magnetism in van der Waals (vdW) atomic crystals and moir茅 superlattices has emerged as a topic of tremendous interest in the fields of condensed matter physics and materials science within the past half-decade since its first experimental discovery in 2016 - 2017. It has not only served as a powerful platform for investigating phase transitions in the 2D limit and exploring new phases of matter, but also provided new opportunities for applications in microelectronics, spintronics, magnonics, optomagnetics, and so on. Despite the flourishing developments in 2D magnetism over this short period of time, further efforts are welcome in multiple forefronts of 2D magnetism research for achieving the ultimate goal of routinely implementing 2D magnets as quantum electronic components. In this review article, we will start with basic concepts and properties of 2D magnetism, followed by a brief overview of historical efforts in 2D magnetism research and then a comprehensive review of vdW material-based 2D magnetism. We will conclude with discussions on potential future research directions for this growing field of 2D vdW magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13781v1-abstract-full').style.display = 'none'; document.getElementById('2401.13781v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 31 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08963">arXiv:2401.08963</a> <span> [<a href="https://arxiv.org/pdf/2401.08963">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A critical review on recent progress of solution-processed monolayer assembly of nanomaterials and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Chenchi Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Dyke%2C+A">Alexis Dyke</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weilu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08963v1-abstract-short" style="display: inline;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'inline'; document.getElementById('2401.08963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08963v1-abstract-full" style="display: none;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes the recent progress on the methods to achieve MAN and discusses important control factors. Moreover, the importance of MAN is elaborated by a broad range of applications in electronics and photonics. In the end, we outlook the opportunities as well as challenges in manufacturing and new applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'none'; document.getElementById('2401.08963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08284">arXiv:2401.08284</a> <span> [<a href="https://arxiv.org/pdf/2401.08284">pdf</a>, <a href="https://arxiv.org/format/2401.08284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53140-5">10.1038/s41467-024-53140-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang-Ren Liu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08284v2-abstract-short" style="display: inline;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'inline'; document.getElementById('2401.08284v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08284v2-abstract-full" style="display: none;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages, which unfortunately pose tremendous challenges as GHZ states are vulnerable to noise. Here we propose a general strategy for creating, preserving, and manipulating large-scale GHZ entanglement, and demonstrate a series of experiments underlined by high-fidelity digital quantum circuits. For initialization, we employ a scalable protocol to create genuinely entangled GHZ states with up to 60 qubits, almost doubling the previous size record. For protection, we take a new perspective on discrete time crystals (DTCs), originally for exploring exotic nonequilibrium quantum matters, and embed a GHZ state into the eigenstates of a tailor-made cat scar DTC to extend its lifetime. For manipulation, we switch the DTC eigenstates with in-situ quantum gates to modify the effectiveness of the GHZ protection. Our findings establish a viable path towards coherent operations on large-scale entanglement, and further highlight superconducting processors as a promising platform to explore nonequilibrium quantum matters and emerging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'none'; document.getElementById('2401.08284v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 8823 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00046">arXiv:2401.00046</a> <span> [<a href="https://arxiv.org/pdf/2401.00046">pdf</a>, <a href="https://arxiv.org/ps/2401.00046">ps</a>, <a href="https://arxiv.org/format/2401.00046">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023007">10.1103/PhysRevResearch.6.023007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuation Theorem on a Riemannian Manifold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00046v3-abstract-short" style="display: inline;"> Based on the covariant underdamped and overdamped Langevin equations with Stratonovich coupling to multiplicative noises and the associated Fokker-Planck equations on Riemannian manifold, we present the first law of stochastic thermodynamics on the trajectory level. The corresponding fluctuation theorems are also established, with the total entropy production of the Brownian particle and the heat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00046v3-abstract-full').style.display = 'inline'; document.getElementById('2401.00046v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00046v3-abstract-full" style="display: none;"> Based on the covariant underdamped and overdamped Langevin equations with Stratonovich coupling to multiplicative noises and the associated Fokker-Planck equations on Riemannian manifold, we present the first law of stochastic thermodynamics on the trajectory level. The corresponding fluctuation theorems are also established, with the total entropy production of the Brownian particle and the heat reservoir playing the role of dissipation function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00046v3-abstract-full').style.display = 'none'; document.getElementById('2401.00046v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages. v3: final published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 6, 023007 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10489">arXiv:2312.10489</a> <span> [<a href="https://arxiv.org/pdf/2312.10489">pdf</a>, <a href="https://arxiv.org/format/2312.10489">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced Superconductivity in Tellurium Single Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+B">Bangshuai Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10489v1-abstract-short" style="display: inline;"> Tellurium (Te) is one of the p-orbital chalcogens, which shows attractive physical properties at ambient pressure. Here, we systematically investigate both structural and electronic evolution of Te single crystal under high pressure up to 40 GPa. The pressure dependence of the experimental Raman spectrum reveals the occurrence of multiple phase transitions, which is consistent with highpressure sy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10489v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10489v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10489v1-abstract-full" style="display: none;"> Tellurium (Te) is one of the p-orbital chalcogens, which shows attractive physical properties at ambient pressure. Here, we systematically investigate both structural and electronic evolution of Te single crystal under high pressure up to 40 GPa. The pressure dependence of the experimental Raman spectrum reveals the occurrence of multiple phase transitions, which is consistent with highpressure synchrotron X-ray diffraction (XRD) measurements. The appearance of superconductivity in high-pressure phase of Te is accompanied by structural phase transitions. The high-pressure phases of Te reveal a nonmonotonic evolution of superconducting temperature Tc with notably different upper critical fields. The theoretical calculations demonstrate that the pressure dependence of the density of states(DOS) agrees well with the variation of Tc. Our results provide a systematic phase diagram for the pressure-induced superconductivity of Te. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10489v1-abstract-full').style.display = 'none'; document.getElementById('2312.10489v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 108 (21), 214518 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17694">arXiv:2311.17694</a> <span> [<a href="https://arxiv.org/pdf/2311.17694">pdf</a>, <a href="https://arxiv.org/format/2311.17694">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic Electronic Structure and Nodeless Superconducting Gap of $\mathrm{YBa_{2} Cu_{3} O_{7-未} }$ Observed by Spatially-Resolved Laser-Based Angle Resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuaishuai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yinghao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+B">Bo Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenpei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+C">Chengtian Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17694v1-abstract-short" style="display: inline;"> The spatially-resolved laser-based high resolution ARPES measurements have been performed on the optimally-doped $\mathrm{YBa_{2} Cu_{3} O_{7-未} }$ (Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 are observed. The Fermi surface-dependent and momentum-depend… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17694v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17694v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17694v1-abstract-full" style="display: none;"> The spatially-resolved laser-based high resolution ARPES measurements have been performed on the optimally-doped $\mathrm{YBa_{2} Cu_{3} O_{7-未} }$ (Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 are observed. The Fermi surface-dependent and momentum-dependent superconducting gap is determined which is nodeless and consistent with the d+is gap form. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17694v1-abstract-full').style.display = 'none'; document.getElementById('2311.17694v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 32, 117401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11665">arXiv:2311.11665</a> <span> [<a href="https://arxiv.org/pdf/2311.11665">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4TA00725E">10.1039/D4TA00725E <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing crystal structure prediction by combining computational and experimental data via graph networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qin%2C+C">Chenglong Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinde Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+S">Shiyin Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+J">Jiguang Du</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+G">Gang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11665v2-abstract-short" style="display: inline;"> Crystal structure prediction (CSP) stands as a powerful tool in materials science, driving the discovery and design of innovative materials. However, existing CSP methods heavily rely on formation enthalpies derived from density functional theory (DFT) calculations, often overlooking differences between DFT and experimental values. Moreover, material synthesis is intricately influenced by factors… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11665v2-abstract-full').style.display = 'inline'; document.getElementById('2311.11665v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11665v2-abstract-full" style="display: none;"> Crystal structure prediction (CSP) stands as a powerful tool in materials science, driving the discovery and design of innovative materials. However, existing CSP methods heavily rely on formation enthalpies derived from density functional theory (DFT) calculations, often overlooking differences between DFT and experimental values. Moreover, material synthesis is intricately influenced by factors such as kinetics and experimental conditions. To overcome these limitations, a novel collaborative approach was proposed for CSP that combines DFT with experimental data, utilizing advanced deep learning models and optimization algorithms. We illustrate the capability to predict formation enthalpies that closely align with actual experimental observations through the transfer learning on experimental data. By incorporating experimental synthesizable information of crystals, our model is capable of reverse engineering crystal structures that can be synthesized in experiments. Applying the model to 17 representative compounds, the results indicate that the model can accurately identify experimentally synthesized structures with high precision. Moreover, the obtained formation enthalpies and lattice constants closely align with experimental values, underscoring the model's effectiveness. The synergistic approach between theoretical and experimental data bridges the longstanding disparities between theoretical predictions and experimental results, thereby alleviating the demand for extensive and costly experimental trials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11665v2-abstract-full').style.display = 'none'; document.getElementById('2311.11665v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Mater. Chem. A, 2024, Advance Article </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11540">arXiv:2311.11540</a> <span> [<a href="https://arxiv.org/pdf/2311.11540">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40525-1">10.1038/s41467-023-40525-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prominent Josephson tunneling between twisted single copper oxide planes of Bi$_2$Sr$_{2-x}$LaxCuO$_{6+y}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Heng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yuying Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+Z">Zhonghua Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zechao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+S">Shuxu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+H">Hong-Yi Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+X">Xiaopeng Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+J">Jian Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Miaoling Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Y">Ying Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xinyan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Ding Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11540v1-abstract-short" style="display: inline;"> Josephson tunneling in twisted cuprate junctions provides a litmus test for the pairing symmetry, which is fundamental for understanding the microscopic mechanism of high temperature superconductivity. This issue is rekindled by experimental advances in van der Waals stacking and the proposal of an emergent d+id-wave. So far, all experiments have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11540v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11540v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11540v1-abstract-full" style="display: none;"> Josephson tunneling in twisted cuprate junctions provides a litmus test for the pairing symmetry, which is fundamental for understanding the microscopic mechanism of high temperature superconductivity. This issue is rekindled by experimental advances in van der Waals stacking and the proposal of an emergent d+id-wave. So far, all experiments have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi-2212) with double CuO$_2$ planes but show controversial results. Here, we investigate junctions made of Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+y}$ (Bi-2201) with single CuO$_2$ planes. Our on-site cold stacking technique ensures uncompromised crystalline quality and stoichiometry at the interface. Junctions with carefully calibrated twist angles around 45掳 show strong Josephson tunneling and conventional temperature dependence. Furthermore, we observe standard Fraunhofer diffraction patterns and integer Fiske steps in a junction with a twist angle of 45.0$\pm$0.2掳. Together, these results pose strong constraints on the d or d+id-wave pairing and suggest an indispensable isotropic pairing component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11540v1-abstract-full').style.display = 'none'; document.getElementById('2311.11540v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 5201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07262">arXiv:2311.07262</a> <span> [<a href="https://arxiv.org/pdf/2311.07262">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Stability and superconductivity of freestanding two-dimensional transition metal boridene: M4/3B2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">Xiaoran Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Junfeng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+S">Shi Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+Y">Yuan Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Luneng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Z">Zhen-Guo Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Ping Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07262v1-abstract-short" style="display: inline;"> The small atomic mass of boron indicates strong electron-phonon coupling, so it may have a brilliant performance in superconductivity. Recently, a new 2D boride sheet with ordered metal vacancies and surface terminals (Mo4/3B2-x) was realized in experiments (Science 2021, 373, 801). Here, the 2D monolayer freestanding Mo4/3B2is evidenced to be thermodynamically stable. Through electronic structure… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07262v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07262v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07262v1-abstract-full" style="display: none;"> The small atomic mass of boron indicates strong electron-phonon coupling, so it may have a brilliant performance in superconductivity. Recently, a new 2D boride sheet with ordered metal vacancies and surface terminals (Mo4/3B2-x) was realized in experiments (Science 2021, 373, 801). Here, the 2D monolayer freestanding Mo4/3B2is evidenced to be thermodynamically stable. Through electronic structure, phonon spectrum and electron-phonon coupling, monolayer Mo4/3B2 is found to be an intrinsic phonon-mediated superconductor. The superconducting transition temperature (Tc) is determined to be 4.06 K by the McMillian-Allen-Dynes formula. Remarkably, the Tc of monolayer Mo4/3B2 can be increased to 6.78 K with an appropriate biaxial tensile strain (+5%). Moreover, we predict that other transition metal replacing Mo atoms is also stable and retaining the superconductivity. Such as monolayer W4/3B2 is also a superconductor with the Tc of 2.37 K. Our research results enrich the database of 2D monolayer superconductors and boron-related formed materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07262v1-abstract-full').style.display = 'none'; document.getElementById('2311.07262v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04025">arXiv:2311.04025</a> <span> [<a href="https://arxiv.org/pdf/2311.04025">pdf</a>, <a href="https://arxiv.org/format/2311.04025">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhysCore.7.4.082">10.21468/SciPostPhysCore.7.4.082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> General relativistic stochastic thermodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+L">Long Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04025v2-abstract-short" style="display: inline;"> Based on the recent work [1,2], we formulate the first law and the second law of stochastic thermodynamics in the framework of general relativity. These laws are established for a charged Brownian particle moving in a heat reservoir and subjecting to an external electromagnetic field in generic stationary spacetime background, and in order to maintain general covariance, they are presented respect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04025v2-abstract-full').style.display = 'inline'; document.getElementById('2311.04025v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04025v2-abstract-full" style="display: none;"> Based on the recent work [1,2], we formulate the first law and the second law of stochastic thermodynamics in the framework of general relativity. These laws are established for a charged Brownian particle moving in a heat reservoir and subjecting to an external electromagnetic field in generic stationary spacetime background, and in order to maintain general covariance, they are presented respectively in terms of the divergences of the energy current and the entropy density current. The stability of the equilibrium state is also analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04025v2-abstract-full').style.display = 'none'; document.getElementById('2311.04025v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. Core 7, 082 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03493">arXiv:2311.03493</a> <span> [<a href="https://arxiv.org/pdf/2311.03493">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02618-6">10.1038/s41567-024-02618-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensionality crossover to 2D vestigial nematicity from 3D zigzag antiferromagnetism in an XY-type honeycomb van der Waals magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+G">Gaihua Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chengkang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+N">Nan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiuyang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+Z">Zhipeng Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Nnokwe%2C+C">Cynthia Nnokwe</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hui Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C">Chunhui Du</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+R">Rui He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03493v1-abstract-short" style="display: inline;"> Fluctuations and disorder effects are substantially enhanced in reduced dimensionalities. While they are mostly considered as the foe for long-range orders, fluctuations and disorders can also stimulate the emergence of novel phases of matter, for example, vestigial orders. Taking 2D magnetism as a platform, existing efforts have been focused on maintaining 2D long-range magnetic orders by suppres… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03493v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03493v1-abstract-full" style="display: none;"> Fluctuations and disorder effects are substantially enhanced in reduced dimensionalities. While they are mostly considered as the foe for long-range orders, fluctuations and disorders can also stimulate the emergence of novel phases of matter, for example, vestigial orders. Taking 2D magnetism as a platform, existing efforts have been focused on maintaining 2D long-range magnetic orders by suppressing fluctuations, whereas the other side, exploiting fluctuations for realizing new 2D magnetic phases, remains as an uncharted territory. Here, using a combination of NV spin relaxometry, optical spectroscopy, and Monte Carlo simulations, we report, in an XY-type honeycomb magnet NiPS3, the phase transition from the zigzag AFM order in 3D bulk to a new Z3 vestigial Potts-nematicity in 2D few layers. Spin fluctuations are shown to significantly enhance over the GHz-THz range as the layer number of NiPS3 reduces, using the NV spin relaxometry and the optical Raman quasi-elastic scattering. As a result, the Raman signatures of the zigzag AFM for bulk NiPS3, a zone-folded phonon at ~30cm-1 from the broken translational symmetry (PBTS) and a degeneracy lift of two phonons at ~180cm-1 for the broken 3-fold rotational symmetry (PBRS), evolve into the disappearance of PBTS and the survival of PBRS in few-layer NiPS3, with a critical thickness of ~10nm. The optical linear dichroism microscopy images all three nematic domain states in a single few-layer NiPS3 flake. The large-scale Monte Carlo simulations for bilayer NiPS3 model confirms the absence of long-range zigzag AFM order but the formation of the Z3 vestigial Potts-nematic phase, corroborating with the experimental finding. Our results demonstrate the positivity of strong fluctuations in creating new phases of matter after destroying more conventional ones, and offer an unprecedented pathway for developing novel 2D phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03493v1-abstract-full').style.display = 'none'; document.getElementById('2311.03493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15423">arXiv:2310.15423</a> <span> [<a href="https://arxiv.org/pdf/2310.15423">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-023-01300-2">10.1038/s41566-023-01300-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric quadrupole second harmonic generation revealing dual magnetic orders in a magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ahn%2C+Y">Youngjun Ahn</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xiaoyu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+R">Rui Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+K">Kejian Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Mandrus%2C+D">David Mandrus</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15423v1-abstract-short" style="display: inline;"> Broken symmetries and electronic topology are nicely manifested together in the second order nonlinear optical responses from topologically nontrivial materials. While second order nonlinear optical effects from the electric dipole (ED) contribution have been extensively explored in polar Weyl semimetals (WSMs) with broken spatial inversion (SI) symmetry, they are rarely studied in centrosymmetric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15423v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15423v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15423v1-abstract-full" style="display: none;"> Broken symmetries and electronic topology are nicely manifested together in the second order nonlinear optical responses from topologically nontrivial materials. While second order nonlinear optical effects from the electric dipole (ED) contribution have been extensively explored in polar Weyl semimetals (WSMs) with broken spatial inversion (SI) symmetry, they are rarely studied in centrosymmetric magnetic WSMs with broken time reversal (TR) symmetry due to complete suppression of the ED contribution. Here, we report experimental demonstration of optical second harmonic generation (SHG) in a magnetic WSM Co$_{3}$Sn$_{2}$S$_{2}$ from the electric quadrupole (EQ) contribution. By tracking the temperature dependence of the rotation anisotropy (RA) of SHG, we capture two magnetic phase transitions, with both the SHG intensity increasing and its RA pattern rotating at $T_{C,1}$=175K and $T_{C,2}$=120K subsequently. The fitted critical exponents for the SHG intensity and RA orientation near $T_{C,1}$ and $T_{C,2}$ suggest that the magnetic phase at $T_{C,1}$ is a 3D Ising-type out-of-plane ferromagnetism while the other at $T_{C,2}$ is a 3D XY-type all-in-all-out in-plane antiferromagnetism. Our results show the success of detection and exploration of EQ SHG in a centrosymmetric magnetic WSM, and hence open the pathway towards the future investigation of its tie to the band topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15423v1-abstract-full').style.display = 'none'; document.getElementById('2310.15423v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08850">arXiv:2310.08850</a> <span> [<a href="https://arxiv.org/pdf/2310.08850">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> An unprecedented synergy of high-temperature tensile strength and ductility in a NiCoCrAlTi high-entropy alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+F">Fanchao Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+H">Haoyan Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Tong%2C+Y">Yang Tong</a>, <a href="/search/cond-mat?searchtype=author&query=Liaw%2C+P+K">Peter K. Liaw</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xiao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lei Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yanfei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+S">Shuying Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08850v1-abstract-short" style="display: inline;"> The present work reported a novel L12-strengthening NiCoCrAlTi high entropy alloy (HEA) with an outstanding synergy of tensile strength and ductility at both ambient and high temperatures. Transmission electron microscopy (TEM) characterization revealed a high density of rod-like and spheroidal L12 precipitates distributing in the micro/nanograins and non-recrystallized regions in the annealed spe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08850v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08850v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08850v1-abstract-full" style="display: none;"> The present work reported a novel L12-strengthening NiCoCrAlTi high entropy alloy (HEA) with an outstanding synergy of tensile strength and ductility at both ambient and high temperatures. Transmission electron microscopy (TEM) characterization revealed a high density of rod-like and spheroidal L12 precipitates distributing in the micro/nanograins and non-recrystallized regions in the annealed specimens. The tremendously high yield stress, ultimate tensile stress (UTS), and ductility of the HEA at 600 C were ~1060 MPa, 1271 MPa, and 25%, respectively, which were significantly superior to most reported HEAs and Co- and Ni-based superalloys to date. Systematic TEM analysis unveiled that the cooperation among L12 precipitation, extensive stacking faults (SFs), deformation twins (DTs), immobile Lomer-Cottrell (L-C) locks formed from interactions between SFs and SFs/DTs, hierarchical SFs/DTs networks, as well as hetero-deformation-induced strengthening dominated the plastic deformation at 600 C. Such a unique deformation mechanism enabled extremely high tensile strength and sustained ductility of the HEA at a high temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08850v1-abstract-full').style.display = 'none'; document.getElementById('2310.08850v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhao%2C+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>