CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 389 results for author: <span class="mathjax">Wang, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Wang%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19565">arXiv:2411.19565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19565">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hot-carrier trapping preserves high quantum yields but limits optical gain in InP-based quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vonk%2C+S+J+W">Sander J. W. Vonk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prins%2C+P+T">P. Tim Prins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matthys%2C+J">Jan Matthys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giordano%2C+L">Luca Giordano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schiettecatte%2C+P">Pieter Schiettecatte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondal%2C+N">Navendu Mondal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Hoeven%2C+J+E+S">Jessi E. S. van der Hoeven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hopper%2C+T+R">Thomas R. Hopper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hens%2C+Z">Zeger Hens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiregat%2C+P">Pieter Geiregat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bakulin%2C+A+A">Artem A. Bakulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabouw%2C+F+T">Freddy T. Rabouw</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19565v1-abstract-short" style="display: inline;"> Indium phosphide is the leading material for commercial applications of colloidal quantum dots. To date, however, the community has failed to achieve successful operation under strong excitation conditions, contrasting sharply with other materials. Here, we report how the unusual photophysics of state-of-the-art InP-based quantum dots make them unattractive as a gain material. A combination of ens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19565v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19565v1-abstract-full" style="display: none;"> Indium phosphide is the leading material for commercial applications of colloidal quantum dots. To date, however, the community has failed to achieve successful operation under strong excitation conditions, contrasting sharply with other materials. Here, we report how the unusual photophysics of state-of-the-art InP-based quantum dots make them unattractive as a gain material. A combination of ensemble-based time-resolved spectroscopy over timescales from femtoseconds to microseconds and single-quantum-dot spectroscopy reveals ultrafast trapping of hot charge carriers. This process leads to charge-carrier losses, thereby reducing the achievable population inversion which limits amplification of light in a gain material. Interestingly, fluorescence is only delayed, not quenched, by hot charge-carrier trapping, explaining why InP-based quantum dots are successful as bright luminescent colour convertors for low-intensity applications. Comparison with other popular quantum-dot materials, such as CdSe, Pb-halide perovskites, and CuInS2, indicate that the hot-carrier dynamics observed are unique to InP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19565v1-abstract-full').style.display = 'none'; document.getElementById('2411.19565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06127">arXiv:2411.06127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06127">pdf</a>, <a href="https://arxiv.org/ps/2411.06127">ps</a>, <a href="https://arxiv.org/format/2411.06127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dynamic manifestation of exception points in a non-Hermitian continuous model with an imaginary periodic potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+T">Y. T. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06127v1-abstract-short" style="display: inline;"> Exceptional points (EPs) are distinct characteristics of non-Hermitian Hamiltonians that have no counterparts in Hermitian systems. In this study, we focus on EPs in continuous systems rather than discrete non-Hermitian systems, which are commonly investigated in both the experimental and theoretical studies. The non-Hermiticity of the system stems from the local imaginary potential, which can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06127v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06127v1-abstract-full" style="display: none;"> Exceptional points (EPs) are distinct characteristics of non-Hermitian Hamiltonians that have no counterparts in Hermitian systems. In this study, we focus on EPs in continuous systems rather than discrete non-Hermitian systems, which are commonly investigated in both the experimental and theoretical studies. The non-Hermiticity of the system stems from the local imaginary potential, which can be effectively achieved through particle loss in recent quantum simulation setups. Leveraging the discrete Fourier transform, the dynamics of EPs within the low-energy sector can be well modeled by a Stark ladder system under the influence of a non-Hermitian tilted potential. To illustrate this, we systematically investigate continuous systems with finite imaginary potential wells and demonstrate the distinctive EP dynamics across different orders. Our investigation sheds light on EP behaviors, potentially catalyzing further exploration of EP phenomena across a variety of quantum simulation setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06127v1-abstract-full').style.display = 'none'; document.getElementById('2411.06127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17631">arXiv:2410.17631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17631">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Exploring structure diversity in atomic resolution microscopy with graph neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Z">Zheng Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+M">Ming Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zijian Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jinyang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+L">Liang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+S">Shenao Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shen Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+F">Fangping Ouyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Dawei Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Kele Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanshan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17631v1-abstract-short" style="display: inline;"> The emergence of deep learning (DL) has provided great opportunities for the high-throughput analysis of atomic-resolution micrographs. However, the DL models trained by image patches in fixed size generally lack efficiency and flexibility when processing micrographs containing diversified atomic configurations. Herein, inspired by the similarity between the atomic structures and graphs, we descri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17631v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17631v1-abstract-full" style="display: none;"> The emergence of deep learning (DL) has provided great opportunities for the high-throughput analysis of atomic-resolution micrographs. However, the DL models trained by image patches in fixed size generally lack efficiency and flexibility when processing micrographs containing diversified atomic configurations. Herein, inspired by the similarity between the atomic structures and graphs, we describe a few-shot learning framework based on an equivariant graph neural network (EGNN) to analyze a library of atomic structures (e.g., vacancies, phases, grain boundaries, doping, etc.), showing significantly promoted robustness and three orders of magnitude reduced computing parameters compared to the image-driven DL models, which is especially evident for those aggregated vacancy lines with flexible lattice distortion. Besides, the intuitiveness of graphs enables quantitative and straightforward extraction of the atomic-scale structural features in batches, thus statistically unveiling the self-assembly dynamics of vacancy lines under electron beam irradiation. A versatile model toolkit is established by integrating EGNN sub-models for single structure recognition to process images involving varied configurations in the form of a task chain, leading to the discovery of novel doping configurations with superior electrocatalytic properties for hydrogen evolution reactions. This work provides a powerful tool to explore structure diversity in a fast, accurate, and intelligent manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17631v1-abstract-full').style.display = 'none'; document.getElementById('2410.17631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12252">arXiv:2410.12252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12252">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.matt.2024.09.018">10.1016/j.matt.2024.09.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Enhancement of Properties in Strained Lead-free Multiferroic Solid Solutions with Strong Deviation from Vegard&#39;s Law </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+M">Mingjie Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Dehe Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ku%2C+Y">Yu-Chieh Ku</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yawen Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+S">Shen Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhongqi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zedong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Haoliang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+W">Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yunlong Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Cheng-En Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chun-Fu Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Sujit Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bellaiche%2C+L">Laurent Bellaiche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yurong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiuliang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuo%2C+C">Chang-Yang Kuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xingjun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zuhuang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12252v1-abstract-short" style="display: inline;"> Efforts to combine the advantages of multiple systems to enhance functionlities through solid solution design present a great challenge due to the constraint imposed by the classical Vegard law. Here, we successfully navigate this trade off by leveraging the synergistic effect of chemical doping and strain engineering in solid solution system of BiFeO3 BaTiO3. Unlike bulks, a significant deviation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12252v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12252v1-abstract-full" style="display: none;"> Efforts to combine the advantages of multiple systems to enhance functionlities through solid solution design present a great challenge due to the constraint imposed by the classical Vegard law. Here, we successfully navigate this trade off by leveraging the synergistic effect of chemical doping and strain engineering in solid solution system of BiFeO3 BaTiO3. Unlike bulks, a significant deviation from the Vegard law accompanying with enhanced multiferroism is observed in the strained solid solution epitaxial films, where we achieve a pronounced tetragonality, enhanced saturated magnetization, substantial polarization, high ferroelectric Curie temperature, all while maintaining impressively low leakage current. These characteristics surpass the properties of their parent BiFeO3 and BaTiO3 films. Moreover, the superior ferroelectricity has never been reported in corresponding bulks. These findings underscore the potential of strained BiFeO3 BaTiO3 films as lead-free, room-temperature multiferroics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12252v1-abstract-full').style.display = 'none'; document.getElementById('2410.12252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Matter 8, 1-11, 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10961">arXiv:2410.10961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10961">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> High spatial resolution charge sensing of quantum Hall states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Cheng-Li Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">Ruihua Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaomeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10961v1-abstract-short" style="display: inline;"> Charge distribution offers a unique fingerprint of important properties of electronic systems, including dielectric response, charge ordering and charge fractionalization. We develop a new architecture for charge sensing in two-dimensional electronic systems in a strong magnetic field. We probe local change of the chemical potential in a proximitized detector layer using scanning tunneling microsc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10961v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10961v1-abstract-full" style="display: none;"> Charge distribution offers a unique fingerprint of important properties of electronic systems, including dielectric response, charge ordering and charge fractionalization. We develop a new architecture for charge sensing in two-dimensional electronic systems in a strong magnetic field. We probe local change of the chemical potential in a proximitized detector layer using scanning tunneling microscopy (STS), allowing us to infer the chemical potential and the charge profile in the sample. Our technique has both high energy (&lt;0.3 meV) and spatial (&lt;10 nm) resolution exceeding that of previous studies by an order of magnitude. We apply our technique to study the chemical potential of quantum Hall liquids in monolayer graphene under high magnetic fields and their responses to charge impurities. The chemical potential measurement provides a local probe of the thermodynamic gap of quantum Hall ferromagnets and fractional quantum Hall states. The screening charge profile reveals spatially oscillatory response of the quantum Hall liquids to charge impurities, and is consistent with the composite Fermi liquid picture close to the half-filling. Our technique also paves the way to map moir茅 potentials, probe Wigner crystals, and investigate fractional charges in quantum Hall and Chern insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10961v1-abstract-full').style.display = 'none'; document.getElementById('2410.10961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00953">arXiv:2410.00953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00953">pdf</a>, <a href="https://arxiv.org/format/2410.00953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M">Menghan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhaoyi Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting-Tung Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00953v2-abstract-short" style="display: inline;"> We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process,we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polyno&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00953v2-abstract-full').style.display = 'inline'; document.getElementById('2410.00953v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00953v2-abstract-full" style="display: none;"> We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process,we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions,and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit&#39;s gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying long-time operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00953v2-abstract-full').style.display = 'none'; document.getElementById('2410.00953v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19059">arXiv:2409.19059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19059">pdf</a>, <a href="https://arxiv.org/format/2409.19059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Designing exciton-condensate Josephson junction in quantum Hall heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianle Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">Ruihua Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Z">Zhehao Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19059v1-abstract-short" style="display: inline;"> The exciton condensate (EC), a coherent state of electron-hole pairs, has been robustly realized in two-dimensional quantum Hall bilayer systems at integer fillings. However, direct experimental evidence for many of the remarkable signatures of phase coherence, such as an in-plane Josephson effect, has been lacking. In this work, we propose a gate-defined exciton-condensate Josephson junction suit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19059v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19059v1-abstract-full" style="display: none;"> The exciton condensate (EC), a coherent state of electron-hole pairs, has been robustly realized in two-dimensional quantum Hall bilayer systems at integer fillings. However, direct experimental evidence for many of the remarkable signatures of phase coherence, such as an in-plane Josephson effect, has been lacking. In this work, we propose a gate-defined exciton-condensate Josephson junction suitable for demonstrating the Josephson effect in vdW heterostructures. The design is similar to the S-I-S superconducting Josephson junction but functions with a completely different microscopic mechanism: two exciton condensates are spatially separated by a gated region that is nearly layer-polarized, and the variation of layer pseudospin mediates a Josephson coupling sufficiently strong to have an observable effect. The Josephson coupling can be controlled by both the gate voltage and the magnetic field, and we show our design&#39;s high range of tunability and experimental feasibility with realistic parameters in vdW heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19059v1-abstract-full').style.display = 'none'; document.getElementById('2409.19059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+10 pages, 3+2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17230">arXiv:2409.17230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17230">pdf</a>, <a href="https://arxiv.org/format/2409.17230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Detecting axion dynamics on the surface of magnetic topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhi-Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17230v2-abstract-short" style="display: inline;"> Axions, initially proposed to solve the strong CP problem, have recently gained attention in condensed matter physics, particularly in topological insulators. However, detecting axion dynamics has proven challenging, with no experimental confirmations to date. In this study, we identify the surface of magnetic topological insulators as an ideal platform for observing axion dynamics. The vanishing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17230v2-abstract-full').style.display = 'inline'; document.getElementById('2409.17230v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17230v2-abstract-full" style="display: none;"> Axions, initially proposed to solve the strong CP problem, have recently gained attention in condensed matter physics, particularly in topological insulators. However, detecting axion dynamics has proven challenging, with no experimental confirmations to date. In this study, we identify the surface of magnetic topological insulators as an ideal platform for observing axion dynamics. The vanishing bulk gap at the surface allows for order $O(1)$ variations in the axion field, making the detection of axion-like phenomena more feasible. In contrast, these phenomena are strongly suppressed in the bulk due to the small magnetic exchange gap. We investigate two-photon decay as a signature of axion dynamics and calculate the branching ratio using a perturbative approach. Our findings reveal that the photon flux emitted from the surface is in-plane and orders of magnitude larger than that from the bulk, making it detectable with modern microwave technology. We also discuss potential material platforms for detecting axion two-photon decay and strategies to enhance the signal-to-noise ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17230v2-abstract-full').style.display = 'none'; document.getElementById('2409.17230v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+7 pages, 3+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14380">arXiv:2409.14380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14380">pdf</a>, <a href="https://arxiv.org/format/2409.14380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Realization of a period-3 coplanar state in one-dimensional spin-orbit coupled optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yida Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shijie Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14380v1-abstract-short" style="display: inline;"> In ultracold atoms, achieving a period-$3$ structure poses a significant challenge. In this work, we propose a three-sublattice spin-flop transition mechanism, differing from the two-sublattice counterpart used to explain the emergence of ferrimagnetic orders in higher dimensions. Guided by this mechanism, we design a setup of alkaline-earth-metal atoms to create a spin-orbit coupled optical latti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14380v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14380v1-abstract-full" style="display: none;"> In ultracold atoms, achieving a period-$3$ structure poses a significant challenge. In this work, we propose a three-sublattice spin-flop transition mechanism, differing from the two-sublattice counterpart used to explain the emergence of ferrimagnetic orders in higher dimensions. Guided by this mechanism, we design a setup of alkaline-earth-metal atoms to create a spin-orbit coupled optical lattice, where we identify a triplet-fold degenerate $YX\bar{Y}$ state with a period-$3$ coplanar spin ordering within the deep Mott-insulating phase region of the ground-state phase diagram. The $YX\bar{Y}$ state is protected by a finite gap, and its characteristic angle can be finely tuned by specific setup parameters. Moreover, we use the Rabi spectroscopy technique to detect the $YX\bar{Y}$ state. Our work not only shows the feasibility of achieving a period-$3$ structure \textit{via} the new mechanism but also suggests its potential applications for exploring other periodic structures in optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14380v1-abstract-full').style.display = 'none'; document.getElementById('2409.14380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12434">arXiv:2409.12434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12434">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Precise structure and polarization determination of Hf0.5Zr0.5O2 with electron ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao1%2C+X">Xiaoyue Gao1</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhuohui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+B">Bo Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaowen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+R">Ruilin Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+R">Ruochen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+R">Ruixue Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiangbo Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12434v1-abstract-short" style="display: inline;"> Hf0.5Zr0.5O2 (HZO) is a promising candidate for next generation ferroelectric memories and transistors. However, its ferroelectricity origin is still under debate due to the complex of its phase and microstructure in practical samples. In this study, we investigate the atomic structure of substrate-free HZO freestanding film with multislice electron ptychography, for which the ultra-high space res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12434v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12434v1-abstract-full" style="display: none;"> Hf0.5Zr0.5O2 (HZO) is a promising candidate for next generation ferroelectric memories and transistors. However, its ferroelectricity origin is still under debate due to the complex of its phase and microstructure in practical samples. In this study, we investigate the atomic structure of substrate-free HZO freestanding film with multislice electron ptychography, for which the ultra-high space resolution (up to ~25 pm) and capability to simultaneously image the cation and oxygen allow us to precisely determine the intrinsic atomic structures of different phases and reveal subtle changes among them. We clarify that the orthorhombic phase is ferroelectric with spontaneous polarization ~34{\pm}4 渭C/cm2 (corresponding to 56{\pm}6 pm in displacement) that is accurately measured through statistical analysis. Significant polarization suppression is observed near the grain boundary, while no distinguishable structural changes are detected near the 180掳 ferroelectric domain walls. Through the direct oxygen imaging of orthorhombic phase from the [111] zone axis, we quantify a substantial number of oxygen vacancies with a preferential distribution, which influences the polarization direction and strength. These findings provide fundamentals for HZO research, and thus lay a foundation for the design of high-performance ferroelectric devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12434v1-abstract-full').style.display = 'none'; document.getElementById('2409.12434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10628">arXiv:2409.10628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10628">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single-atom-resolved vibrational spectroscopy of a dislocation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hailing Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhenyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+R">Ruochen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xifan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+B">Bowen Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+W">Weikun Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bo Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindsay%2C+L+R">Lucas R Lindsay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinqiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10628v1-abstract-short" style="display: inline;"> Phonon resistance from dislocation scattering is often divided into short-range core interactions and long-range strain field interactions. Using electron energy-loss spectroscopy on a GaN dislocation, we report observations of vibrational modes localized at specific core atoms (short-range) and strain-driven phonon energy shifts around the dislocation (long-range). Ab initio calculations support&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10628v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10628v1-abstract-full" style="display: none;"> Phonon resistance from dislocation scattering is often divided into short-range core interactions and long-range strain field interactions. Using electron energy-loss spectroscopy on a GaN dislocation, we report observations of vibrational modes localized at specific core atoms (short-range) and strain-driven phonon energy shifts around the dislocation (long-range). Ab initio calculations support these findings and draw out additional details. This study reveals atomically resolved vibrational spectra of dislocations, thus offering insights for engineering improved material functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10628v1-abstract-full').style.display = 'none'; document.getElementById('2409.10628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14306">arXiv:2408.14306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14306">pdf</a>, <a href="https://arxiv.org/format/2408.14306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Delta-Learning approach combined with the cluster Gutzwiller approximation for strongly correlated bosonic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhi Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+S">Sheng Yue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14306v1-abstract-short" style="display: inline;"> The cluster Gutzwiller method is widely used to study the strongly correlated bosonic systems, owing to its ability to provide a more precise description of quantum fluctuations. However, its utility is limited by the exponential increase in computational complexity as the cluster size grows. To overcome this limitation, we propose an artificial intelligence-based method known as $螖$-Learning. Thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14306v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14306v1-abstract-full" style="display: none;"> The cluster Gutzwiller method is widely used to study the strongly correlated bosonic systems, owing to its ability to provide a more precise description of quantum fluctuations. However, its utility is limited by the exponential increase in computational complexity as the cluster size grows. To overcome this limitation, we propose an artificial intelligence-based method known as $螖$-Learning. This approach constructs a predictive model by learning the discrepancies between lower-precision (small cluster sizes) and high-precision (large cluster sizes) implementations of the cluster Gutzwiller method, requiring only a small number of training samples. Using this predictive model, we can effectively forecast the outcomes of high-precision methods with high accuracy. Applied to various Bose-Hubbard models, the $螖$-Learning method effectively predicts phase diagrams while significantly reducing the computational resources and time. Furthermore, we have compared the predictive accuracy of $螖$-Learning with other direct learning methods and found that $螖$-Learning exhibits superior performance in scenarios with limited training data. Therefore, when combined with the cluster Gutzwiller approximation, the $螖$-Learning approach offers a computationally efficient and accurate method for studying phase transitions in large, complex bosonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14306v1-abstract-full').style.display = 'none'; document.getElementById('2408.14306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20500">arXiv:2407.20500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20500">pdf</a>, <a href="https://arxiv.org/format/2407.20500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> An analog of topological entanglement entropy for mixed states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting-Tung Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M">Menghan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grover%2C+T">Tarun Grover</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20500v1-abstract-short" style="display: inline;"> We propose the convex-roof extension of quantum conditional mutual information (&#34;co(QCMI)&#34;) as a diagnostic of long-range entanglement in a mixed state. We focus primarily on topological states subjected to local decoherence, and employ the Levin-Wen scheme to define co(QCMI), so that for a pure state, co(QCMI) equals topological entanglement entropy (TEE). By construction, co(QCMI) is zero if and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20500v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20500v1-abstract-full" style="display: none;"> We propose the convex-roof extension of quantum conditional mutual information (&#34;co(QCMI)&#34;) as a diagnostic of long-range entanglement in a mixed state. We focus primarily on topological states subjected to local decoherence, and employ the Levin-Wen scheme to define co(QCMI), so that for a pure state, co(QCMI) equals topological entanglement entropy (TEE). By construction, co(QCMI) is zero if and only if a mixed state can be decomposed as a convex sum of pure states with zero TEE. We show that co(QCMI) is non-increasing with increasing decoherence when Kraus operators are proportional to the product of onsite unitaries. This implies that unlike a pure state transition between a topologically trivial and a non-trivial phase, the long-range entanglement at a decoherence-induced topological phase transition as quantified by co(QCMI) is less than or equal to that in the proximate topological phase. For the 2d toric code decohered by onsite bit/phase-flip noise, we show that co(QCMI) is non-zero below the error-recovery threshold and zero above it. Relatedly, the decohered state cannot be written as a convex sum of short-range entangled pure states below the threshold. We conjecture and provide evidence that in this example, co(QCMI) equals TEE of a recently introduced pure state. In particular, we develop a tensor-assisted Monte Carlo (TMC) computation method to efficiently evaluate the R茅nyi TEE for the aforementioned pure state and provide non-trivial consistency checks for our conjecture. We use TMC to also calculate the universal scaling dimension of the anyon-condensation order parameter at this transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20500v1-abstract-full').style.display = 'none'; document.getElementById('2407.20500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages main text, 3 pages of appendices, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18458">arXiv:2407.18458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18458">pdf</a>, <a href="https://arxiv.org/format/2407.18458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Phase engineering of giant second harmonic generation in Bi$_2$O$_2$Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+Z">Zhefeng Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yingjie Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zhihao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziye Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mengqi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jialu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+H">Haoyu Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+H">Huakun Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhuokai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jichuang Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shuigang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+W">Wei Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenbin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaorui Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18458v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, we demonstrate the enormous SHG from the phase engineering of a high-performance semiconductor, Bi$_2$O$_2$Se (BOS), under uniaxial strain. SHG signals captured in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18458v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18458v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18458v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials with remarkable second-harmonic generation (SHG) hold promise for future on-chip nonlinear optics. Relevant materials with both giant SHG response and environmental stability are long-sought targets. Here, we demonstrate the enormous SHG from the phase engineering of a high-performance semiconductor, Bi$_2$O$_2$Se (BOS), under uniaxial strain. SHG signals captured in strained 20 nm-BOS films exceed those of NbOI$_2$ and NbOCl$_2$ of similar thickness by a factor of 10, and are four orders of magnitude higher than monolayer-MoS$_2$, resulting in a significant second-order nonlinear susceptibility on the order of 1 nm V$^{-1}$. Intriguingly, the strain enables continuous adjustment of the ferroelectric phase transition across room temperature. Consequently, an exceptionally large tunability of SHG, approximately six orders of magnitude, is achieved through strain or thermal modulation. This colossal SHG, originating from the geometric phase of Bloch wave functions and coupled with sensitive tunability through multiple approaches in this air-stable 2D semiconductor, opens new possibilities for designing chip-scale, switchable nonlinear optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18458v1-abstract-full').style.display = 'none'; document.getElementById('2407.18458v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15145">arXiv:2407.15145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Janus MoSSe nanotubes on one-dimensional SWCNT-BNNT van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chunxia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Q">Qingyun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+Y">Yuta Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yanlin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yongjia Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yicheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruyama%2C+M">Mina Maruyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okada%2C+S">Susumu Okada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suenaga%2C+K">Kazu Suenaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruyama%2C+S">Shigeo Maruyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+R">Rong Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15145v1-abstract-short" style="display: inline;"> 2D Janus TMDC layers with broken mirror symmetry exhibit giant Rashba splitting and unique excitonic behavior. For their 1D counterparts, the Janus nanotubes possess curvature, which introduce an additional degree of freedom to break the structural symmetry. This could potentially enhance these effects or even give rise to novel properties. In addition, Janus MSSe nanotubes (M=W, Mo), with diamete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15145v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15145v1-abstract-full" style="display: none;"> 2D Janus TMDC layers with broken mirror symmetry exhibit giant Rashba splitting and unique excitonic behavior. For their 1D counterparts, the Janus nanotubes possess curvature, which introduce an additional degree of freedom to break the structural symmetry. This could potentially enhance these effects or even give rise to novel properties. In addition, Janus MSSe nanotubes (M=W, Mo), with diameters surpassing 4 nm and Se positioned externally, consistently demonstrate lower energy states than their Janus monolayer counterparts. However, there have been limited studies on the preparation of Janus nanotubes, due to the synthesis challenge and limited sample quality. Here we first synthesized MoS2 nanotubes based on SWCNT-BNNT heterostructure and then explored the growth of Janus MoSSe nanotubes from MoS2 nanotubes with the assistance of H2 plasma at room temperature. The successful formation of the Janus structure was confirmed via Raman spectroscopy, and microscopic morphology and elemental distribution of the grown samples were further characterized. The synthesis of Janus MoSSe nanotubes based on SWCNT-BNNT enables the further exploration of novel properties in Janus TMDC nanotubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15145v1-abstract-full').style.display = 'none'; document.getElementById('2407.15145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10623">arXiv:2407.10623</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10623">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Roadmap for Animate Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Volpe%2C+G">Giorgio Volpe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ara%C3%BAjo%2C+N+A+M">Nuno A. M. Ara煤jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guix%2C+M">Maria Guix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miodownik%2C+M">Mark Miodownik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+N">Nicolas Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alvarez%2C+L">Laura Alvarez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simmchen%2C+J">Juliane Simmchen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Leonardo%2C+R">Roberto Di Leonardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pellicciotta%2C+N">Nicola Pellicciotta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinet%2C+Q">Quentin Martinet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palacci%2C+J">J茅r茅mie Palacci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+W+K">Wai Kit Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+D">Dhruv Saxena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapienza%2C+R">Riccardo Sapienza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nadine%2C+S">Sara Nadine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mano%2C+J+F">Jo茫o F. Mano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahdavi%2C+R">Reza Mahdavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adiels%2C+C+B">Caroline Beck Adiels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forth%2C+J">Joe Forth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santangelo%2C+C">Christian Santangelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palagi%2C+S">Stefano Palagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seok%2C+J+M">Ji Min Seok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Webster-Wood%2C+V+A">Victoria A. Webster-Wood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+L">Lining Yao</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10623v3-abstract-short" style="display: inline;"> Humanity has long sought inspiration from nature to innovate materials and devices. As science advances, nature-inspired materials are becoming part of our lives. Animate materials, characterized by their activity, adaptability, and autonomy, emulate properties of living systems. While only biological materials fully embody these principles, artificial versions are advancing rapidly, promising tra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10623v3-abstract-full').style.display = 'inline'; document.getElementById('2407.10623v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10623v3-abstract-full" style="display: none;"> Humanity has long sought inspiration from nature to innovate materials and devices. As science advances, nature-inspired materials are becoming part of our lives. Animate materials, characterized by their activity, adaptability, and autonomy, emulate properties of living systems. While only biological materials fully embody these principles, artificial versions are advancing rapidly, promising transformative impacts across various sectors. This roadmap presents authoritative perspectives on animate materials across different disciplines and scales, highlighting their interdisciplinary nature and potential applications in diverse fields including nanotechnology, robotics and the built environment. It underscores the need for concerted efforts to address shared challenges such as complexity management, scalability, evolvability, interdisciplinary collaboration, and ethical and environmental considerations. The framework defined by classifying materials based on their level of animacy can guide this emerging field encouraging cooperation and responsible development. By unravelling the mysteries of living matter and leveraging its principles, we can design materials and systems that will transform our world in a more sustainable manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10623v3-abstract-full').style.display = 'none'; document.getElementById('2407.10623v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09914">arXiv:2407.09914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09914">pdf</a>, <a href="https://arxiv.org/format/2407.09914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Fluctuation theorems in general relativistic stochastic thermodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09914v2-abstract-short" style="display: inline;"> Based on the recently proposed framework of general relativistic stochastic mechanics and stochastic thermodynamics at the ensemble level, this work focuses on general relativistic stochastic thermodynamics at the trajectory level. The first law of stochastic thermodynamics is reformulated and the fluctuation theorems are proved on this level, with emphasis on maintaining fully general covariance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09914v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09914v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09914v2-abstract-full" style="display: none;"> Based on the recently proposed framework of general relativistic stochastic mechanics and stochastic thermodynamics at the ensemble level, this work focuses on general relativistic stochastic thermodynamics at the trajectory level. The first law of stochastic thermodynamics is reformulated and the fluctuation theorems are proved on this level, with emphasis on maintaining fully general covariance and on the choice of observers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09914v2-abstract-full').style.display = 'none'; document.getElementById('2407.09914v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 2 figures. v2: fixed a typo and updated the detail of a reference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09912">arXiv:2407.09912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09912">pdf</a>, <a href="https://arxiv.org/ps/2407.09912">ps</a>, <a href="https://arxiv.org/format/2407.09912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> General Relativistic Fluctuation Theorems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09912v2-abstract-short" style="display: inline;"> Using the recently proposed covariant framework of general relativistic stochastic mechanics and stochastic thermodynamics, we proved the detailed and integral fluctuation theorems in curved spacetime. The time-reversal transformation is described as a transformation from the perspective of future-directed observer to that of the corresponding past-directed observer, which enables us to maintain g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09912v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09912v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09912v2-abstract-full" style="display: none;"> Using the recently proposed covariant framework of general relativistic stochastic mechanics and stochastic thermodynamics, we proved the detailed and integral fluctuation theorems in curved spacetime. The time-reversal transformation is described as a transformation from the perspective of future-directed observer to that of the corresponding past-directed observer, which enables us to maintain general covariance throughout the construction. The result presented in this work may be applied in understanding the origin of irreversibility in macroscopic processes in the presence of relativistic gravity, as in most astrophysical or cosmological processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09912v2-abstract-full').style.display = 'none'; document.getElementById('2407.09912v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages. v2: updated the detail of a reference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11211">arXiv:2406.11211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11211">pdf</a>, <a href="https://arxiv.org/format/2406.11211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantized Andreev conductance in semiconductor nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Z">Zuhan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Z">Zhan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangting Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+E">Dong E. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11211v1-abstract-short" style="display: inline;"> Clean one-dimensional electron systems can exhibit quantized conductance. The plateau conductance doubles if the transport is dominated by Andreev reflection. Here, we report quantized conductance observed in both Andreev and normal-state transports in PbTe-Pb and PbTe-In hybrid nanowires. The Andreev plateau is observed at $4e^2/h$, twice of the normal plateau value of $2e^2/h$. In comparison, An&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11211v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11211v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11211v1-abstract-full" style="display: none;"> Clean one-dimensional electron systems can exhibit quantized conductance. The plateau conductance doubles if the transport is dominated by Andreev reflection. Here, we report quantized conductance observed in both Andreev and normal-state transports in PbTe-Pb and PbTe-In hybrid nanowires. The Andreev plateau is observed at $4e^2/h$, twice of the normal plateau value of $2e^2/h$. In comparison, Andreev conductance in the best-optimized III-V nanowires is non-quantized due to mode-mixing induced dips (a disorder effect), despite the quantization of normal-state transport. The negligible mode mixing in PbTe hybrids indicates an unprecedented low-disorder transport regime for nanowire devices, beneficial for Majorana researches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11211v1-abstract-full').style.display = 'none'; document.getElementById('2406.11211v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07313">arXiv:2406.07313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07313">pdf</a>, <a href="https://arxiv.org/format/2406.07313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Experimental Modeling of Chiral Active Robots and a Minimal Model of Non-Gaussian Displacements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+M">Maomao Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07313v1-abstract-short" style="display: inline;"> We design 3D-printed motor-driven active particles and find that their dynamics can be characterized using the model of overdamped chiral active Brownian particles (ABPs), as demonstrated by measured angular statistics and translational mean squared displacements (MSDs). Furthermore, we propose a minimal model that reproduces the double-peak velocity distributions and further predicts a transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07313v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07313v1-abstract-full" style="display: none;"> We design 3D-printed motor-driven active particles and find that their dynamics can be characterized using the model of overdamped chiral active Brownian particles (ABPs), as demonstrated by measured angular statistics and translational mean squared displacements (MSDs). Furthermore, we propose a minimal model that reproduces the double-peak velocity distributions and further predicts a transition from the single-peak to the double-peak displacement distributions in short-time regimes. The model provides a clear physics picture of these phenomena, originating from the competition between the active motion and the translational diffusion. Our experiments confirm such picture. The minimal model enhances our understanding of activity-driven non-Gaussian phenomena. The designed particles could be further applied in the study of collective chiral motions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07313v1-abstract-full').style.display = 'none'; document.getElementById('2406.07313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07175">arXiv:2406.07175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07175">pdf</a>, <a href="https://arxiv.org/ps/2406.07175">ps</a>, <a href="https://arxiv.org/format/2406.07175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Phase Diagram of growth modes in Graphene Growth on Cooper by Vapor Deposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tongtong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xin Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+D">Dajun Shu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07175v1-abstract-short" style="display: inline;"> Understanding the atomistic mechanism in graphene growth is crucial for controlling the number of layers or domain sizes to meet practical needs. In this work, focusing on the growth of graphene by chemical vapor deposition on copper substrates, the surface kinetics in the growth are systematically investigated by first-principles calculations. The phase diagram, predicting whether the growth mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07175v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07175v1-abstract-full" style="display: none;"> Understanding the atomistic mechanism in graphene growth is crucial for controlling the number of layers or domain sizes to meet practical needs. In this work, focusing on the growth of graphene by chemical vapor deposition on copper substrates, the surface kinetics in the growth are systematically investigated by first-principles calculations. The phase diagram, predicting whether the growth mode is monolayer graphene or bilayer graphene under various experimental conditions, is constructed based on classical nucleation theory. Our phase diagram well illustrates the effect of high hydrogen pressure on bilayer graphene growth and clarifies the mechanism of the most widely used experimental growth approaches. The phase diagram can provide guidance and predictions for experiments and inspires the study of other two-dimensional materials with graphene-like growth mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07175v1-abstract-full').style.display = 'none'; document.getElementById('2406.07175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07978">arXiv:2405.07978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07978">pdf</a>, <a href="https://arxiv.org/format/2405.07978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the Pockels Coefficient of Ferroelectric Nitride ScAlN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guangcanlan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haochen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+S">Sai Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+H">Hao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tyler Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">Chengxing He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+M">Mohan Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mengxia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+de+Walle%2C+C+G">Chris G. Van de Walle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+H+X">Hong X. Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07978v2-abstract-short" style="display: inline;"> Nitride ferroelectrics have recently emerged as promising alternatives to oxide ferroelectrics due to their compatibility with mainstream semiconductor processing. ScAlN, in particular, has exhibited remarkable piezoelectric coupling strength ($K^2$) comparable to that of lithium niobate (LN), making it a valuable choice for RF filters in wireless communications. Recently, ScAlN has sparked intere&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07978v2-abstract-full').style.display = 'inline'; document.getElementById('2405.07978v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07978v2-abstract-full" style="display: none;"> Nitride ferroelectrics have recently emerged as promising alternatives to oxide ferroelectrics due to their compatibility with mainstream semiconductor processing. ScAlN, in particular, has exhibited remarkable piezoelectric coupling strength ($K^2$) comparable to that of lithium niobate (LN), making it a valuable choice for RF filters in wireless communications. Recently, ScAlN has sparked interest in its use for nanophotonic devices, chiefly due to its large bandgap facilitating operation in blue wavelengths coupled with promises of enhanced nonlinear optical properties such as a large second-order susceptibility ($蠂^{(2)}$). It is still an open question whether ScAlN can outperform oxide ferroelectrics concerning the Pockels effect -- an electro-optic coupling extensively utilized in optical communications devices. In this paper, we present a comprehensive theoretical analysis and experimental demonstration of ScAlN&#39;s Pockels effect. Our findings reveal that the electro-optic coupling of ScAlN, despite being weak at low Sc concentration, may be significantly enhanced and exceed LiNbO$_3$ at high levels of Sc doping, which points the direction of continued research efforts to unlock the full potential of ScAlN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07978v2-abstract-full').style.display = 'none'; document.getElementById('2405.07978v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17416">arXiv:2404.17416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17416">pdf</a>, <a href="https://arxiv.org/format/2404.17416">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Optical Control of Exciton Diffusion in WSe$_2$/Graphene Heterostructures Revealed by Heterodyne Transient Grating Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rieland%2C+L">Lukas Rieland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+J">Julian Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernhardt%2C+R">Robin Bernhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abdul-Aziz%2C+O">Omar Abdul-Aziz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stein%2C+P">Philipp Stein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pogna%2C+E+A+A">Eva Arianna Aurelia Pogna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+S+D">Stefano Dal Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cerullo%2C+G">Giulio Cerullo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hedayat%2C+H">Hamoon Hedayat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Loosdrecht%2C+P+H+M">Paul H. M. van Loosdrecht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17416v1-abstract-short" style="display: inline;"> Using heterodyne transient grating spectroscopy, we observe a significant enhancement of exciton diffusion within a monolayer WSe$_2$ stacked on top of graphene. We further demonstrate that the diffusion dynamics can be optically tuned on the ultrafast time scale (i.e. a few picoseconds) by altering the photoexcited charge carrier density in graphene. The results reveal that, on a time scale of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17416v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17416v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17416v1-abstract-full" style="display: none;"> Using heterodyne transient grating spectroscopy, we observe a significant enhancement of exciton diffusion within a monolayer WSe$_2$ stacked on top of graphene. We further demonstrate that the diffusion dynamics can be optically tuned on the ultrafast time scale (i.e. a few picoseconds) by altering the photoexcited charge carrier density in graphene. The results reveal that, on a time scale of a few picoseconds, the effective diffusion constant in the WSe$_2$/graphene heterostructure is approximately 40 cm$^2 $/s, representing a substantial improvement over the 2 cm$^2 $/s typical for an isolated monolayer of WSe$_2$. The enhanced diffusion can be understood in terms of a transient screening of impurities, charge traps, and defect states in WSe$_2$ by photoexcited charge carriers in graphene. Furthermore, we observe that the diffusion within WSe$_2$ is affected by interlayer interactions, like charge transfer, exhibiting different dynamic states depending on the incident excitation fluence. These findings underscore the dynamic nature of screening and diffusion processes in heterostructures of 2D semiconductors and graphene and provide valuable insights for future applications of these systems in ultrafast optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17416v1-abstract-full').style.display = 'none'; document.getElementById('2404.17416v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16344">arXiv:2404.16344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16344">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Imaging Tunable Luttinger Liquid Systems in van der Waals Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Ziyu Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianle Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naik%2C+M+H">Mit H. Naik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+W">Woochang Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J">Jiahui Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+Z">Zhehao Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Zehao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+Y">Yunbo Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+R">Rounak Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tongay%2C+S">Sefaattin Tongay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zettl%2C+A">Alex Zettl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16344v1-abstract-short" style="display: inline;"> One-dimensional (1D) interacting electrons are often described as a Luttinger liquid1-4 having properties that are intrinsically different from Fermi liquids in higher dimensions5,6. 1D electrons in materials systems exhibit exotic quantum phenomena that can be tuned by both intra- and inter-1D-chain electronic interactions, but their experimental characterization can be challenging. Here we demon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16344v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16344v1-abstract-full" style="display: none;"> One-dimensional (1D) interacting electrons are often described as a Luttinger liquid1-4 having properties that are intrinsically different from Fermi liquids in higher dimensions5,6. 1D electrons in materials systems exhibit exotic quantum phenomena that can be tuned by both intra- and inter-1D-chain electronic interactions, but their experimental characterization can be challenging. Here we demonstrate that layer-stacking domain walls (DWs) in van der Waals heterostructures form a broadly tunable Luttinger liquid system including both isolated and coupled arrays. We have imaged the evolution of DW Luttinger liquids under different interaction regimes tuned by electron density using a novel scanning tunneling microscopy (STM) technique. Single DWs at low carrier density are highly susceptible to Wigner crystallization consistent with a spin-incoherent Luttinger liquid, while at intermediate densities dimerized Wigner crystals form due to an enhanced magneto-elastic coupling. Periodic arrays of DWs exhibit an interplay between intra- and inter-chain interactions that gives rise to new quantum phases. At low electron densities inter-chain interactions are dominant and induce a 2D electron crystal composed of phased-locked 1D Wigner crystal in a staggered configuration. Increased electron density causes intra-chain fluctuation potentials to dominate, leading to an electronic smectic liquid crystal phase where electrons are ordered with algebraical correlation decay along the chain direction but disordered between chains. Our work shows that layer-stacking DWs in 2D heterostructures offers new opportunities to explore Luttinger liquid physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16344v1-abstract-full').style.display = 'none'; document.getElementById('2404.16344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12682">arXiv:2404.12682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12682">pdf</a>, <a href="https://arxiv.org/ps/2404.12682">ps</a>, <a href="https://arxiv.org/format/2404.12682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Floquet engineering tunable periodic gauge fields and simulating real topological phases in cold alkaline-earth atom optical lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+G">Gui-Xin Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12682v1-abstract-short" style="display: inline;"> We propose to synthesize tunable periodic gauge fields via Floquet engineering cold alkaline-earth atoms in one-dimensional optical lattice. The artificial magnetic flux is designed to emerge during the combined process of Floquet photon assisted tunneling and internal state transitions. By varying initial phases of driving protocol, our proposal presents the ability to smoothly tune the periodic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12682v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12682v1-abstract-full" style="display: none;"> We propose to synthesize tunable periodic gauge fields via Floquet engineering cold alkaline-earth atoms in one-dimensional optical lattice. The artificial magnetic flux is designed to emerge during the combined process of Floquet photon assisted tunneling and internal state transitions. By varying initial phases of driving protocol, our proposal presents the ability to smoothly tune the periodic flux. Moreover, we demonstrate that the effective two-leg flux ladder model can simulate one typical real topological insulator, which is described by the first Stiefel Whitney class and protected by the $PT$ symmetry. Benefiting from the long lifetime of excited states of alkaline-earth atoms, our work opens new possibilities for exploiting the physics related to gauge fields, such as topological phases, in the current cold atom platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12682v1-abstract-full').style.display = 'none'; document.getElementById('2404.12682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10814">arXiv:2404.10814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10814">pdf</a>, <a href="https://arxiv.org/format/2404.10814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Higher Hall conductivity from a single wave function: Obstructions to symmetry-preserving gapped edge of (2+1)D topological order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kobayashi%2C+R">Ryohei Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mong%2C+R+S+K">Roger S. K. Mong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10814v2-abstract-short" style="display: inline;"> A (2+1)D topological ordered phase with U(1) symmetry may or may not have a symmetric gapped edge state, even if both thermal and electric Hall conductivity are vanishing. It is recently discovered that there are &#34;higher&#34; versions of Hall conductivity valid for fermionic fractional quantum Hall (FQH) states, which obstructs symmetry-preserving gapped edge state beyond thermal and electric Hall con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10814v2-abstract-full').style.display = 'inline'; document.getElementById('2404.10814v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10814v2-abstract-full" style="display: none;"> A (2+1)D topological ordered phase with U(1) symmetry may or may not have a symmetric gapped edge state, even if both thermal and electric Hall conductivity are vanishing. It is recently discovered that there are &#34;higher&#34; versions of Hall conductivity valid for fermionic fractional quantum Hall (FQH) states, which obstructs symmetry-preserving gapped edge state beyond thermal and electric Hall conductivity. In this paper, we show that one can extract higher Hall conductivity from a single wave function of an FQH state, by evaluating the expectation value of the &#34;partial rotation&#34; unitary which is a combination of partial spatial rotation and a U(1) phase rotation. This result is verified numerically with the fermionic Laughlin state with $谓=1/3$, $1/5$, as well as the non-Abelian Moore-Read state. Together with topological entanglement entropy, we prove that the expectation values of the partial rotation completely determines if a bosonic/fermionic Abelian topological order with U(1) symmetry has a symmetry-preserving gappable edge state or not. We also show that thermal and electric Hall conductivity of Abelian topological order can be extracted by partial rotations. Even in non-Abelian FQH states, partial rotation provides the Lieb-Schultz-Mattis type theorem constraining the low-energy spectrum of the bulk-boundary system. The generalization of higher Hall conductivity to the case with Lie group symmetry is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10814v2-abstract-full').style.display = 'none'; document.getElementById('2404.10814v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, minor edits</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06899">arXiv:2404.06899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06899">pdf</a>, <a href="https://arxiv.org/format/2404.06899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.045405">10.1103/PhysRevB.110.045405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SQUID oscillations in PbTe nanowire networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangting Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Z">Zuhan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06899v1-abstract-short" style="display: inline;"> Network structures by semiconductor nanowires hold great promise for advanced quantum devices, especially for applications in topological quantum computing. In this study, we created networks of PbTe nanowires arranged in loop configurations. Using shadow-wall epitaxy, we defined superconducting quantum interference devices (SQUIDs) using the superconductor Pb. These SQUIDs exhibit oscillations in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06899v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06899v1-abstract-full" style="display: none;"> Network structures by semiconductor nanowires hold great promise for advanced quantum devices, especially for applications in topological quantum computing. In this study, we created networks of PbTe nanowires arranged in loop configurations. Using shadow-wall epitaxy, we defined superconducting quantum interference devices (SQUIDs) using the superconductor Pb. These SQUIDs exhibit oscillations in supercurrent upon the scanning of a magnetic field. Most of the oscillations can be fitted assuming a sinusoidal current-phase relation for each Josephson junction. Under certain conditions, the oscillations are found to be skewed, suggesting possible deviation from a sinusoidal behavior. Our results highlight the potential of PbTe nanowires for building complex quantum devices in the form of networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06899v1-abstract-full').style.display = 'none'; document.getElementById('2404.06899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 045405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02760">arXiv:2404.02760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02760">pdf</a>, <a href="https://arxiv.org/format/2404.02760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2406884121">10.1073/pnas.2406884121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-tunable subband degeneracy in semiconductor nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Z">Zhan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangting Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Z">Zuhan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+E">Dong E. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02760v1-abstract-short" style="display: inline;"> Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02760v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02760v1-abstract-full" style="display: none;"> Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02760v1-abstract-full').style.display = 'none'; document.getElementById('2404.02760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 121, e2406884121 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02427">arXiv:2404.02427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02427">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0097518">10.1063/5.0097518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-situ tunable giant electrical anisotropy in a grating gated AlGaN/GaN two-dimensional electron gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting-Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+S">Sining Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wen-Cheng Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yang-Yang Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chen-Guang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+C">Chang-Kun Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zixiong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhi-Li Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiaoli Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hua-Bing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+P">Peiheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwok%2C+W">Wai-Kwong Kwok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02427v1-abstract-short" style="display: inline;"> Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02427v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02427v1-abstract-full" style="display: none;"> Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modulated electric potential in the 2DEG induces in-plane electrical anisotropy, which is significantly enhanced in a magnetic field, leading to an ultra large electrical anisotropy. This is induced by a giant positive magnetoresistance and a giant negative magnetoresistance under two orthogonally oriented in-plane current flows, respectively. This giant electrical anisotropy is in-situ tunable by tailoring both the grating gate voltage and the magnetic field. Our semiconductor device with controllable giant electrical anisotropy will stimulate new device applications, such as multi-terminal memtransistors and bionic synapses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02427v1-abstract-full').style.display = 'none'; document.getElementById('2404.02427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 121, 092101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18840">arXiv:2403.18840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18840">pdf</a>, <a href="https://arxiv.org/format/2403.18840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Feynman Diagrams as Computational Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+P">Pengcheng Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cerkoney%2C+D">Daniel Cerkoney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xiansheng Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhiyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Youjin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18840v1-abstract-short" style="display: inline;"> We propose a computational graph representation of high-order Feynman diagrams in Quantum Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes these diagrams into a fractal structure of tensor operations, significantly reducing computational redundancy. This a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18840v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18840v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18840v1-abstract-full" style="display: none;"> We propose a computational graph representation of high-order Feynman diagrams in Quantum Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes these diagrams into a fractal structure of tensor operations, significantly reducing computational redundancy. This approach not only streamlines the evaluation of complex diagrams but also facilitates an efficient implementation of the field-theoretic renormalization scheme, crucial for enhancing perturbative QFT calculations. Key to this advancement is the integration of Taylor-mode automatic differentiation, a key technique employed in machine learning packages to compute higher-order derivatives efficiently on computational graphs. To operationalize these concepts, we develop a Feynman diagram compiler that optimizes diagrams for various computational platforms, utilizing machine learning frameworks. Demonstrating this methodology&#39;s effectiveness, we apply it to the three-dimensional uniform electron gas problem, achieving unprecedented accuracy in calculating the quasiparticle effective mass at metal density. Our work demonstrates the synergy between QFT and machine learning, establishing a new avenue for applying AI techniques to complex quantum many-body problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18840v1-abstract-full').style.display = 'none'; document.getElementById('2403.18840v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15347">arXiv:2403.15347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15347">pdf</a>, <a href="https://arxiv.org/format/2403.15347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.155426">10.1103/PhysRevB.109.155426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exciton-activated effective phonon magnetic moment in monolayer MoS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C">Chunli Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+G">Gaihua Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nnokwe%2C+C">Cynthia Nnokwe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+M">Mengqi Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahjouri-Samani%2C+M">Masoud Mahjouri-Samani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+E">Eui-Hyeok Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tingting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lifa Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Rui He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+W">Wencan Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15347v2-abstract-short" style="display: inline;"> Optical excitation of chiral phonons plays a vital role in studying the phonon-driven magnetic phenomena in solids. Transition metal dichalcogenides host chiral phonons at high symmetry points of the Brillouin zone, providing an ideal platform to explore the interplay between chiral phonons and valley degree of freedom. Here, we investigate the helicity-resolved magneto-Raman response of monolayer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15347v2-abstract-full').style.display = 'inline'; document.getElementById('2403.15347v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15347v2-abstract-full" style="display: none;"> Optical excitation of chiral phonons plays a vital role in studying the phonon-driven magnetic phenomena in solids. Transition metal dichalcogenides host chiral phonons at high symmetry points of the Brillouin zone, providing an ideal platform to explore the interplay between chiral phonons and valley degree of freedom. Here, we investigate the helicity-resolved magneto-Raman response of monolayer MoS2 and identify a doubly degenerate Brillouin-zone-center chiral phonon mode at ~270 cm-1. Our wavelength- and temperature-dependent measurements show that this chiral phonon is activated through the resonant excitation of A exciton. Under an out-of-plane magnetic field, the chiral phonon exhibits giant Zeeman splitting, which corresponds to an effective magnetic moment of ~2.5mu_B. Moreover, we carry out theoretical calculations based on the morphic effects in nonmagnetic crystals, which reproduce the linear Zeeman splitting and Raman cross-section of the chiral phonon. Our study provides important insights into lifting the chiral phonon degeneracy in an achiral covalent material, paving a new route to excite and control chiral phonons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15347v2-abstract-full').style.display = 'none'; document.getElementById('2403.15347v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 155426 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05522">arXiv:2403.05522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05522">pdf</a>, <a href="https://arxiv.org/format/2403.05522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.205124">10.1103/PhysRevB.110.205124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Hall Crystals in Rhombohedral Multilayer Graphene II: General Mechanism and a Minimal Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Junkai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianle Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vishwanath%2C+A">Ashvin Vishwanath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D+E">Daniel E. Parker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05522v3-abstract-short" style="display: inline;"> We propose a minimal &#34;three-patch model&#34; for the anomalous Hall crystal (AHC), a topological electronic state that spontaneously breaks both time-reversal symmetry and continuous translation symmetry. The proposal for this state is inspired by the recently observed integer and fractional quantum Hall states in rhombohedral multilayer graphene at zero magnetic field. There, interaction effects appe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05522v3-abstract-full').style.display = 'inline'; document.getElementById('2403.05522v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05522v3-abstract-full" style="display: none;"> We propose a minimal &#34;three-patch model&#34; for the anomalous Hall crystal (AHC), a topological electronic state that spontaneously breaks both time-reversal symmetry and continuous translation symmetry. The proposal for this state is inspired by the recently observed integer and fractional quantum Hall states in rhombohedral multilayer graphene at zero magnetic field. There, interaction effects appear to amplify the effects of a weak moir茅 potential, leading to the formation of stable, isolated Chern bands. It has been further shown that Chern bands are stabilized in mean field calculations even without a moir茅 potential, enabling a realization of the AHC state. Our model is built upon the dissection of the Brillouin zone into patches centered around high symmetry points. Within this model, the wavefunctions at high symmetry points fully determine the topology and energetics of the state. We extract two quantum geometrical phases of the non-interacting wavefunctions that control the stability of the topologically nontrivial AHC state. The model predicts that the AHC state wins over the topological trivial Wigner crystal in a wide range of parameters, and agrees very well with the results of full self-consistent Hartree-Fock calculations of the rhombohedral multilayer graphene Hamiltonian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05522v3-abstract-full').style.display = 'none'; document.getElementById('2403.05522v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+10 pages, 9+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03092">arXiv:2403.03092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03092">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovering Melting Temperature Prediction Models of Inorganic Solids by Combining Supervised and Unsupervised Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gharakhanyan%2C+V">Vahe Gharakhanyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wirth%2C+L+J">Luke J. Wirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torres%2C+J+A+G">Jose A. Garrido Torres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisenberg%2C+E">Ethan Eisenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trinkle%2C+D+R">Dallas R. Trinkle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatterjee%2C+S">Snigdhansu Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urban%2C+A">Alexander Urban</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03092v1-abstract-short" style="display: inline;"> The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ioni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03092v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03092v1-abstract-full" style="display: none;"> The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid materials. We evaluated different machine-learning models trained on a data set of the melting points of 476 non-metallic crystalline binary compounds, using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs. A direct supervised-learning approach yields a mean absolute error of around 180~K but suffers from low interpretability. We find that the fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of interpretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material. Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which recovered the best-performing features from both prior models and provided additional interpretability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03092v1-abstract-full').style.display = 'none'; document.getElementById('2403.03092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages and 3 figures for the main manuscript, and 11 pages and 15 figures of supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03043">arXiv:2403.03043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching in perpendicularly magnetized materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Chang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wensi Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lujun Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03043v1-abstract-short" style="display: inline;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03043v1-abstract-full" style="display: none;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpendicularly magnetized [Co/Pt]3 sample, which significantly surpasses that of the perpendicularly magnetized CoFeB/Gd/CoFeB sample (approximately 0.04). Such notable difference is attributed to the different spin-orbit correlation strength between the [Co/Pt]3 sample and the CoFeB/Gd/CoFeB sample, which has been confirmed through the theoretical calculations. Furthermore, the full magnetization switching of the [Co/Pt]3 sample with a switching current density of approximately 2.6x106 A/cm2 has been realized through Zr, which even outperforms that of the W spin Hall material. Our finding provides a guideline to understand orbital torque efficiency and paves the way to develop energy-efficient orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'none'; document.getElementById('2403.03043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14916">arXiv:2402.14916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14916">pdf</a>, <a href="https://arxiv.org/format/2402.14916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement Microscopy: Tomography and Entanglement Measures via Quantum Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting-Tung Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M">Menghan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+L">Liuke Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Witczak-Krempa%2C+W">William Witczak-Krempa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14916v4-abstract-short" style="display: inline;"> We employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of microscopic subregion both in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14916v4-abstract-full').style.display = 'inline'; document.getElementById('2402.14916v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14916v4-abstract-full" style="display: none;"> We employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of microscopic subregion both in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions. Our main results are: i) the Ising QCP exhibits short-range entanglement with a finite sudden death of the LN both in space and temperature; ii) the Gross-Neveu QCP has a power-law decaying fermionic LN consistent with conformal field theory (CFT) exponents; iii) going beyond bipartite entanglement, we find no detectable 3-party entanglement with our two witnesses in a large parameter window near the Ising QCP in 2d, in contrast to 1d. We further establish the singular scaling of general multipartite entanglement measures at criticality, and present an explicit analysis in the tripartite case. We also analytically obtain the large-temperature power-law scaling of the fermionic LN for general interacting systems. Entanglement microscopy opens a rich window into quantum matter, with countless systems waiting to be explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14916v4-abstract-full').style.display = 'none'; document.getElementById('2402.14916v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+10 pages, 4+12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04024">arXiv:2402.04024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04024">pdf</a>, <a href="https://arxiv.org/format/2402.04024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Epitaxial Indium on PbTe Nanowires for Quantum Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Z">Zuhan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangting Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04024v1-abstract-short" style="display: inline;"> Superconductivity in semiconductor nanostructures contains fascinating physics due to the interplay between Andreev reflection, spin, and orbital interactions. New material hybrids can access new quantum regimes and phenomena. Here, we report the realization of epitaxial indium thin films on PbTe nanowires.The film is continuous and forms an atomically sharp interface with PbTe.Tunneling devices r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04024v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04024v1-abstract-full" style="display: none;"> Superconductivity in semiconductor nanostructures contains fascinating physics due to the interplay between Andreev reflection, spin, and orbital interactions. New material hybrids can access new quantum regimes and phenomena. Here, we report the realization of epitaxial indium thin films on PbTe nanowires.The film is continuous and forms an atomically sharp interface with PbTe.Tunneling devices reveal a hard superconducting gap.The gap size, 1.08 to 1.18 meV, is twice as large as bulk indium (around 0.5 meV), due to the presence of PbTe. A similar enhancement is also observed in the critical temperature of In on a PbTe substrate. Zero bias conductance peaks appear at finite magnetic fields. The effective g-factor (15 to 45) is notably enhanced compared to bare PbTe wires (less than 10) due to the presence of In, differing from Al-hybrids. Josephson devices exhibit gate-tunable supercurrents. The PbTe-In hybrid enhances the properties of both, the superconductivity of In and g-factors of PbTe, and thus may enable exotic phases of matter such as topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04024v1-abstract-full').style.display = 'none'; document.getElementById('2402.04024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02132">arXiv:2402.02132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02132">pdf</a>, <a href="https://arxiv.org/format/2402.02132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Reducing disorder in PbTe nanowires for Majorana research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Z">Zuhan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangting Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+W">Wentao Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02132v1-abstract-short" style="display: inline;"> Material challenges are the key issue in Majorana nanowires where surface disorder constrains device performance. Here, we tackle this challenge by embedding PbTe nanowires within a latticematched crystal, an oxide-free environment. The wire edges are shaped by self-organized growth instead of lithography, resulting in nearly-atomic-flat facets along both cross-sectional and longitudinal direction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02132v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02132v1-abstract-full" style="display: none;"> Material challenges are the key issue in Majorana nanowires where surface disorder constrains device performance. Here, we tackle this challenge by embedding PbTe nanowires within a latticematched crystal, an oxide-free environment. The wire edges are shaped by self-organized growth instead of lithography, resulting in nearly-atomic-flat facets along both cross-sectional and longitudinal directions. Quantized conductance plateaus are observed at zero magnetic field with channel lengths reaching 1.54 $渭$m, significantly surpassing the state-of-the-art of III-V nanowires (nearly an order-of-magnitude improvement compared to InSb). Coupling PbTe to a Pb film unveils a flat interface spanning microns and a large superconducting gap of 1 meV. Our results meet the stringent low-disorder requirement for the definitive observation of Majoranas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02132v1-abstract-full').style.display = 'none'; document.getElementById('2402.02132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10433">arXiv:2401.10433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10433">pdf</a>, <a href="https://arxiv.org/format/2401.10433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous localization at a potential saddle point from edge state reconstruction in a quantum Hall point contact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cohen%2C+L+A">Liam A. Cohen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samuelson%2C+N+L">Noah L. Samuelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klocke%2C+K">Kai Klocke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reeves%2C+C+C">Cian C. Reeves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vijay%2C+S">Sagar Vijay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+A+F">Andrea F. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10433v1-abstract-short" style="display: inline;"> Quantum point contacts (QPCs) are an essential component in mesoscopic devices. Here, we study the transmission of quantum Hall edge modes through a gate-defined QPC in monolayer graphene. We observe resonant tunneling peaks and a nonlinear conductance pattern characteristic of Coulomb-blockaded localized states. The in-plane electric polarizability reveals the states are localized at a classicall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10433v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10433v1-abstract-full" style="display: none;"> Quantum point contacts (QPCs) are an essential component in mesoscopic devices. Here, we study the transmission of quantum Hall edge modes through a gate-defined QPC in monolayer graphene. We observe resonant tunneling peaks and a nonlinear conductance pattern characteristic of Coulomb-blockaded localized states. The in-plane electric polarizability reveals the states are localized at a classically-unstable electrostatic saddle point. We explain this unexpected finding within a self-consistent Thomas-Fermi model, finding that localization of a zero-dimensional state at the saddle point is favored whenever the applied confinement potential is sufficiently soft compared to the Coulomb energy. Our results provide a direct demonstration of Coulomb-driven reconstruction at the boundary of a quantum Hall system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10433v1-abstract-full').style.display = 'none'; document.getElementById('2401.10433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures. arXiv admin note: text overlap with arXiv:2204.10296</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09933">arXiv:2401.09933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09933">pdf</a>, <a href="https://arxiv.org/format/2401.09933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-integer Floquet Sidebands Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ou-Yang%2C+D">Du-Yi Ou-Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan-Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Ya Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiao-Tong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+H">Hong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09933v1-abstract-short" style="display: inline;"> In the quantum system under periodical modulation, the particle can be excited by absorbing the laser photon with the assistance of integer Floquet photons, so that the Floquet sidebands appear. Here, we experimentally observe non-integer Floquet sidebands (NIFBs) emerging between the integer ones while increasing the strength of the probe laser in the optical lattice clock system. Then, we propos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09933v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09933v1-abstract-full" style="display: none;"> In the quantum system under periodical modulation, the particle can be excited by absorbing the laser photon with the assistance of integer Floquet photons, so that the Floquet sidebands appear. Here, we experimentally observe non-integer Floquet sidebands (NIFBs) emerging between the integer ones while increasing the strength of the probe laser in the optical lattice clock system. Then, we propose the Floquet channel interference hypothesis (FCIH) which surprisingly matches quantitatively well with both experimental and numerical results. With its help, we found both Rabi and Ramsey spectra are very sensitive to the initial phase and exhibit additional two symmetries. More importantly, the height of Ramsey NIFBs is comparable to the integer one at larger $g/蠅_s$ which indicates an exotic phenomenon beyond the perturbative description. Our work provides new insight into the spectroscopy of the Floquet system and has potential application in quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09933v1-abstract-full').style.display = 'none'; document.getElementById('2401.09933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, comments are welcome, and more information at http://cqutp.org/users/xfzhang/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00046">arXiv:2401.00046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00046">pdf</a>, <a href="https://arxiv.org/ps/2401.00046">ps</a>, <a href="https://arxiv.org/format/2401.00046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023007">10.1103/PhysRevResearch.6.023007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuation Theorem on a Riemannian Manifold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00046v3-abstract-short" style="display: inline;"> Based on the covariant underdamped and overdamped Langevin equations with Stratonovich coupling to multiplicative noises and the associated Fokker-Planck equations on Riemannian manifold, we present the first law of stochastic thermodynamics on the trajectory level. The corresponding fluctuation theorems are also established, with the total entropy production of the Brownian particle and the heat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00046v3-abstract-full').style.display = 'inline'; document.getElementById('2401.00046v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00046v3-abstract-full" style="display: none;"> Based on the covariant underdamped and overdamped Langevin equations with Stratonovich coupling to multiplicative noises and the associated Fokker-Planck equations on Riemannian manifold, we present the first law of stochastic thermodynamics on the trajectory level. The corresponding fluctuation theorems are also established, with the total entropy production of the Brownian particle and the heat reservoir playing the role of dissipation function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00046v3-abstract-full').style.display = 'none'; document.getElementById('2401.00046v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages. v3: final published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 6, 023007 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15500">arXiv:2312.15500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15500">pdf</a>, <a href="https://arxiv.org/format/2312.15500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcis.2023.12.103">10.1016/j.jcis.2023.12.103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coalescence of immiscible droplets in liquid environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Huadan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianyou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+Z">Zhizhao Che</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15500v1-abstract-short" style="display: inline;"> Hypothesis: Droplet coalescence process is important in many applications and has been studied extensively when two droplets are surrounded by gas. However, the coalescence dynamics would be different when the two droplets are surrounded by an external viscous liquid. The coalescence of immiscible droplets in liquids has not been explored. Experiments: In the present research, the coalescence of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15500v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15500v1-abstract-full" style="display: none;"> Hypothesis: Droplet coalescence process is important in many applications and has been studied extensively when two droplets are surrounded by gas. However, the coalescence dynamics would be different when the two droplets are surrounded by an external viscous liquid. The coalescence of immiscible droplets in liquids has not been explored. Experiments: In the present research, the coalescence of two immiscible droplets in low- and high-viscosity liquids is investigated and compared with their miscible counterparts experimentally. The coalescence dynamics is investigated via high-speed imaging, and theoretical models are proposed to analyze the growth of the liquid bridge. Findings: We find that, the liquid bridge $r$ evolves differently due to the constraint from the triple line in the bridge region, which follows $r\propto {{t}^{{2}/{3}}}$ for low-viscosity surroundings. While for high-viscosity surroundings, the liquid bridge grows at a constant velocity ${{u}_{r}}$ which varies with the surrounding viscosity ${{渭}_{s}}$ as ${{u}_{r}}\propto {{渭}_{s}}^{{1}/{2}}$. In the later stage of the bridge growth, the bridge evolution again merges with the well-established power-law regime $r\propto {{t}^{{1}/{2}}}$, being either in low or high-viscosity liquids. Moreover, a new inertia-viscous-capillary timescale is proposed, which unifies the combined influence of inertia, viscous, and capillary forces on the evolution of the liquid bridge in liquid environments, highlighting the joint role of inertia and viscous resistance in the coalescence process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15500v1-abstract-full').style.display = 'none'; document.getElementById('2312.15500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15491">arXiv:2312.15491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15491">pdf</a>, <a href="https://arxiv.org/format/2312.15491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcis.2022.08.013">10.1016/j.jcis.2022.08.013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bridge evolution during the coalescence of immiscible droplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Huadan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianyou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+Z">Zhizhao Che</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15491v1-abstract-short" style="display: inline;"> Hypothesis: Droplet coalescence is a common phenomenon and plays an important role in many applications. When two liquid droplets are brought into contact, a liquid bridge forms and expands quickly. Different from miscible droplets, an extra immiscible interface exists throughout the coalescence of immiscible droplets and is expected to affect the evolution of the liquid bridge, which has not been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15491v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15491v1-abstract-full" style="display: none;"> Hypothesis: Droplet coalescence is a common phenomenon and plays an important role in many applications. When two liquid droplets are brought into contact, a liquid bridge forms and expands quickly. Different from miscible droplets, an extra immiscible interface exists throughout the coalescence of immiscible droplets and is expected to affect the evolution of the liquid bridge, which has not been investigated. We hypothesized that the liquid bridge of immiscible droplets exhibits a different growth dynamics. Experiments: We experimentally study the coalescence dynamics of immiscible droplets. The evolution of the liquid bridge is measured and compared with miscible droplets. We also propose a theoretical model to analyze the effects of immiscibility. Findings: We find that immiscibility plays different roles in the viscous-dominated and inertia-dominated regimes. In the initial viscous-dominated regime, the coalescence of immiscible droplets follows the linear evolution of the bridge radius as that of miscible droplets. However, in the later inertia-dominated regime, the coalescence of immiscible droplets is slower than that of miscible droplets due to the water-oil interface. By developing a theoretical model based on the force balance, we show that this slower motion is due to the immiscible interface and the extra interfacial tension. In addition, a modified Ohnesorge number is proposed to characterize the transition from the viscous-dominated regime to the inertia-dominated regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15491v1-abstract-full').style.display = 'none'; document.getElementById('2312.15491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Colloid and Interface Science, (2022), 628, 869-877 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12531">arXiv:2312.12531</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12531">pdf</a>, <a href="https://arxiv.org/format/2312.12531">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Topology, magnetism and charge order in twisted MoTe2 at higher integer hole fillings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Minxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+W">Woochang Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12531v1-abstract-short" style="display: inline;"> Twisted homobilayer transition metal dichalcogenide (TMD) attracts an expanding experimental interest recently for exhibiting a variety of topological and magnetic states even at zero magnetic field. Most of the studies right now focus on hole filling nu_h &lt; 1, while a rich phase diagram at higher hole filling calls for more investigation. We perform a thorough survey of possible interaction-drive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12531v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12531v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12531v1-abstract-full" style="display: none;"> Twisted homobilayer transition metal dichalcogenide (TMD) attracts an expanding experimental interest recently for exhibiting a variety of topological and magnetic states even at zero magnetic field. Most of the studies right now focus on hole filling nu_h &lt; 1, while a rich phase diagram at higher hole filling calls for more investigation. We perform a thorough survey of possible interaction-driven phases at higher integer hole fillings. We first construct the continuum model from a first-principles calculation, and then perform a self-consistent Hartree-Fock study of the interacting ground states. We identify various valley polarized (VP) states at odd integer fillings and intervalley coherent (IVC) states at even integer fillings and discuss the energetics competition among them. We also discuss the origin and the experimental implications of the curious Chern insulator at nu_h = 2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12531v1-abstract-full').style.display = 'none'; document.getElementById('2312.12531v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11632">arXiv:2312.11632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11632">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct observation of a magnetic field-induced Wigner crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tsui%2C+Y">Yen-Chen Tsui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Minhao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuwen Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+E">Ethan Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11632v1-abstract-short" style="display: inline;"> Eugene Wigner predicted long ago that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice. A variety of two-dimensional systems have shown evidence for Wigner crystals; however, a spontaneously formed classical or quantum Wigner crystal (WC) has never been directly visualized. Neither the identification&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11632v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11632v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11632v1-abstract-full" style="display: none;"> Eugene Wigner predicted long ago that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice. A variety of two-dimensional systems have shown evidence for Wigner crystals; however, a spontaneously formed classical or quantum Wigner crystal (WC) has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunneling microscopy (STM) measurements to directly image a magnetic field-induced electron WC in Bernal-stacked bilayer graphene (BLG), and examine its structural properties as a function of electron density, magnetic field, and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau Level (LLL) of BLG. The WC possesses the expected lattice constant and is robust in a range of filling factors between $谓\sim$ 0.13 and $谓\sim$ 0.38 except near fillings where it competes with fractional quantum Hall (FQH) states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the WC&#39;s Bragg wavevector. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher LLs. Analysis of individual lattice sites reveals signatures that may be related to the quantum zero-point motion of electrons in the WC lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11632v1-abstract-full').style.display = 'none'; document.getElementById('2312.11632v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16815">arXiv:2311.16815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16815">pdf</a>, <a href="https://arxiv.org/format/2311.16815">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c00900">10.1021/acs.nanolett.4c00900 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective-Area-Grown PbTe-Pb Planar Josephson Junctions for Quantum Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+W">Wentao Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangting Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Z">Zuhan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16815v2-abstract-short" style="display: inline;"> Planar Josephson junctions are predicted to host Majorana zero modes. The material platforms in previous studies are two dimensional electron gases (InAs, InSb, InAsSb and HgTe) coupled to a superconductor such as Al or Nb. Here, we introduce a new material platform for planar JJs, the PbTe-Pb hybrid. The semiconductor, PbTe, was grown as a thin film via selective area epitaxy. The Josephson junct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16815v2-abstract-full').style.display = 'inline'; document.getElementById('2311.16815v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16815v2-abstract-full" style="display: none;"> Planar Josephson junctions are predicted to host Majorana zero modes. The material platforms in previous studies are two dimensional electron gases (InAs, InSb, InAsSb and HgTe) coupled to a superconductor such as Al or Nb. Here, we introduce a new material platform for planar JJs, the PbTe-Pb hybrid. The semiconductor, PbTe, was grown as a thin film via selective area epitaxy. The Josephson junction was defined by a shadow wall during the deposition of the superconductor Pb. Scanning transmission electron microscopy reveals a sharp semiconductor-superconductor interface. Gate-tunable supercurrent and multiple Andreev reflections are observed. A perpendicular magnetic field causes interference patterns of the switching current, exhibiting Fraunhofer-like and SQUID-like behaviors. We further demonstrate a prototype device for Majorana detection, wherein phase bias and tunneling spectroscopy are applicable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16815v2-abstract-full').style.display = 'none'; document.getElementById('2311.16815v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07943">arXiv:2311.07943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07943">pdf</a>, <a href="https://arxiv.org/ps/2311.07943">ps</a>, <a href="https://arxiv.org/format/2311.07943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity with $T_c$ up to 30.7 K in air-annealed CaFeAsF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yixin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Teng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zulei Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Da Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoni Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Ming Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+W">Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+G">Gang Mu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07943v1-abstract-short" style="display: inline;"> Exploring new unconventional superconductors is of great value for both fundamental research and practical applications. It is a long-term challenge to develop and study more hole-doped superconductors in 1111 system of iron-based superconductors. However, fifteen years after the discovery of iron-based superconductors, it has become increasingly difficult to discover new members in this system by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07943v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07943v1-abstract-full" style="display: none;"> Exploring new unconventional superconductors is of great value for both fundamental research and practical applications. It is a long-term challenge to develop and study more hole-doped superconductors in 1111 system of iron-based superconductors. However, fifteen years after the discovery of iron-based superconductors, it has become increasingly difficult to discover new members in this system by conventional means. Here we report the discovery of superconductivity with the critical transition temperature up to 30.7 K in the parent compound CaFeAsF by an annealing treatment in air atmosphere. The superconducting behaviors are verified in both the single-crystalline and polycrystalline samples by the resistance and magnetization measurements. The analysis by combining the depth-resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) measurements show that the introduction of oxygen elements and the consequent changing in Fe valence by the annealing treatment may lead to the hole-type doping, which is the origin for the occurrence of superconductivity. Our results provide a new route to induce hole-doped superconductivity in Fe-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07943v1-abstract-full').style.display = 'none'; document.getElementById('2311.07943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05568">arXiv:2311.05568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05568">pdf</a>, <a href="https://arxiv.org/format/2311.05568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.206503">10.1103/PhysRevLett.133.206503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Hall Crystals in Rhombohedral Multilayer Graphene I: Interaction-Driven Chern Bands and Fractional Quantum Hall States at Zero Magnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Junkai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Taige Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianle Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soejima%2C+T">Tomohiro Soejima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M+P">Michael P. Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vishwanath%2C+A">Ashvin Vishwanath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D+E">Daniel E. Parker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05568v2-abstract-short" style="display: inline;"> Recent experiments on rhombohedral pentalayer graphene flakes with a substrate induced moir茅 potential have identified both Chern insulators and fractional Quantum Hall states in the absence of an applied magnetic field. Surprisingly, these states are observed in strong displacement fields where the effects of the moir茅 lattice are weak, and seem to be readily accessed without fine-tuning. To addr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05568v2-abstract-full').style.display = 'inline'; document.getElementById('2311.05568v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05568v2-abstract-full" style="display: none;"> Recent experiments on rhombohedral pentalayer graphene flakes with a substrate induced moir茅 potential have identified both Chern insulators and fractional Quantum Hall states in the absence of an applied magnetic field. Surprisingly, these states are observed in strong displacement fields where the effects of the moir茅 lattice are weak, and seem to be readily accessed without fine-tuning. To address these experimental puzzles we study an interacting model of electrons in this geometry, first within the self-consistent Hartree-Fock (SCHF) approximation. We find an isolated Chern band with Chern number $|C|=1$, that moreover is relatively flat and shows good quantum geometry. Exact diagonalization and density matrix renormalization group methods at fractional filling establish the presence of fractional quantum anomalous Hall (FQAH) states. The $|C|=1$ band in SCHF is remarkably robust to varying microscopic parameters, and is also found in the $N_L=4$ and $N_L=6$ layer systems. Remarkably, it appears stable even to switching off the moir茅 potential, pointing to spontaneous breaking of translation symmetry. We term this topological crystalline state the ``anomalous Hall crystal&#34; (AHC), and argue that it constitutes a general mechanism for creating stable Chern bands in rhombohedral graphene. Our work elucidates the physics behind the recent rhombohedral pentalayer graphene observations, predicts the appearance of the same phase in other systems, and opens the door to studying the interplay between electronic topology and spontaneous translation symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05568v2-abstract-full').style.display = 'none'; document.getElementById('2311.05568v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+9 pages, 4+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 206503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04025">arXiv:2311.04025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04025">pdf</a>, <a href="https://arxiv.org/format/2311.04025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> General relativistic stochastic thermodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yifan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+L">Long Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04025v2-abstract-short" style="display: inline;"> Based on the recent work [1,2], we formulate the first law and the second law of stochastic thermodynamics in the framework of general relativity. These laws are established for a charged Brownian particle moving in a heat reservoir and subjecting to an external electromagnetic field in generic stationary spacetime background, and in order to maintain general covariance, they are presented respect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04025v2-abstract-full').style.display = 'inline'; document.getElementById('2311.04025v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04025v2-abstract-full" style="display: none;"> Based on the recent work [1,2], we formulate the first law and the second law of stochastic thermodynamics in the framework of general relativity. These laws are established for a charged Brownian particle moving in a heat reservoir and subjecting to an external electromagnetic field in generic stationary spacetime background, and in order to maintain general covariance, they are presented respectively in terms of the divergences of the energy current and the entropy density current. The stability of the equilibrium state is also analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04025v2-abstract-full').style.display = 'none'; document.getElementById('2311.04025v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01160">arXiv:2311.01160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01160">pdf</a>, <a href="https://arxiv.org/format/2311.01160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c11538">10.1021/acsnano.3c11538 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transformable Super-Isostatic Crystals Self-Assembled from Segment Colloidal Rods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Ji-Dong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Q">Qun-Li Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yu-qiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01160v2-abstract-short" style="display: inline;"> Colloidal particles can spontaneously self-assemble into ordered structures, which not only can manipulate the propagation of light, but also vibration or phonons. Using Monte Carlo simulation, we study the self-assembly of perfectly aligned segment rod particles with lateral flat cutting. Under the help of surface attractions, we find that particles with different cutting degree can self-assemble&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01160v2-abstract-full').style.display = 'inline'; document.getElementById('2311.01160v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01160v2-abstract-full" style="display: none;"> Colloidal particles can spontaneously self-assemble into ordered structures, which not only can manipulate the propagation of light, but also vibration or phonons. Using Monte Carlo simulation, we study the self-assembly of perfectly aligned segment rod particles with lateral flat cutting. Under the help of surface attractions, we find that particles with different cutting degree can self-assemble into different crystal phases characterized by bond coordination z that varies from 3 to 6. Importantly, we identify a transformable super-isostatic structures with pgg symmetry and redundant bonds (z=5). We find that this structure can support either the soft bulk model or soft edge model depending on its Poisson&#39;s ratio which can be tuned from positive to negative by a uniform soft deformation. Importantly, the bulk soft modes are associated with states of self-stress along the direction of zero strain during the uniform soft deformation. This self-assembled transformable super-isostatic structure may act as mechanical metamaterials with potential application in micro-mechanical engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01160v2-abstract-full').style.display = 'none'; document.getElementById('2311.01160v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19907">arXiv:2310.19907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19907">pdf</a>, <a href="https://arxiv.org/format/2310.19907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pair-density wave signature observed by x-ray scattering in La-based high-$T_{\rm c}$ cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jun-Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kivelson%2C+S+A">Steven A. Kivelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ikeda%2C+Y">Yoichi Ikeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takanori Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+M">Masaki Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+C">Chi-Chang Kao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19907v1-abstract-short" style="display: inline;"> Suggestive, but indirect evidence of the existence of pair-density wave (PDW) order in several high-$T_{\rm c}$ cuprates has been reported. As this constitutes a new quantum phase of matter, it is important to {\it establish} its existence at least somewhere in the phase diagram. However, a direct correspondence between experiment and theory has remained elusive. Here, we report the observation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19907v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19907v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19907v1-abstract-full" style="display: none;"> Suggestive, but indirect evidence of the existence of pair-density wave (PDW) order in several high-$T_{\rm c}$ cuprates has been reported. As this constitutes a new quantum phase of matter, it is important to {\it establish} its existence at least somewhere in the phase diagram. However, a direct correspondence between experiment and theory has remained elusive. Here, we report the observation of a theoretically predicted PDW {\it bulk} signature in two La-based cuprates, Sr-doped La$_{1.875}$Ba$_{0.125}$CuO$_4$ and Fe-doped La$_{1.87}$Sr$_{0.13}$CuO$_4$, through a comprehensive study that incorporates zero-magnetic field x-ray scattering, neutron scattering, and transport measurements. Specifically, we observe the emergence of so-called &#34;1Q&#34; order, which is to say subharmonic order associated with the charge-density wave (CDW) stripes, in a range of temperatures in which independent evidence suggests the co-existence of PDW long-range order and fluctuating uniform superconducting order. The subharmonic order is most pronounced around a half-integer $l$-vector, where the CDW diffraction peak is also strongest. This is consistent with the theoretical proposal that the cancellation of the Josephson coupling (&#34;layer-decoupling&#34;), is a signature of PDW order and that it is commensurately locked to the density wave stripes that are known to alternate orientation between adjacent layers. Even if the PDW is not the &#34;mother of all state&#34;, it is at least a close relative -- possibly a second cousin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19907v1-abstract-full').style.display = 'none'; document.getElementById('2310.19907v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10