CINXE.COM
Glossary of engineering: A–L - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Glossary of engineering: A–L - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat": "dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"5978457b-b37a-4e5d-88ed-8949ba5b0d86","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Glossary_of_engineering:_A–L","wgTitle":"Glossary of engineering: A–L","wgCurRevisionId":1245543686,"wgRevisionId":1245543686,"wgArticleId":36535684,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: unfit URL","Wikipedia articles needing page number citations from February 2013","Webarchive template wayback links","CS1 German-language sources (de)","CS1 French-language sources (fr)","CS1 maint: archived copy as title","CS1: long volume value","CS1 maint: location missing publisher","All articles with incomplete citations","Articles with incomplete citations from May 2020","All articles with dead external links", "Articles with dead external links from May 2020","Articles with short description","Short description with empty Wikidata description","Articles containing Latin-language text","All articles with unsourced statements","Articles with unsourced statements from February 2019","Articles with unsourced statements from August 2020","Articles containing French-language text","Pages with French IPA","Articles with dead external links from September 2023","Articles with permanently dead external links","Wikipedia glossaries using description lists","Engineering disciplines","Engineering","Glossaries of science","Glossaries of technology","Safety"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Glossary_of_engineering:_A–L","wgRelevantArticleId":36535684,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive": false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":300000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5571805","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Glossary of engineering: A–L - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Glossary_of_engineering:_A%E2%80%93L"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Glossary_of_engineering:_A%E2%80%93L"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Glossary_of_engineering_A–L rootpage-Glossary_of_engineering_A–L skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Glossary+of+engineering%3A+A%E2%80%93L" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Glossary+of+engineering%3A+A%E2%80%93L" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Glossary+of+engineering%3A+A%E2%80%93L" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Glossary+of+engineering%3A+A%E2%80%93L" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Glossary of engineering: A–L</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 2 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-2" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">2 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Glosar_de_tehnic%C4%83" title="Glosar de tehnică – Romanian" lang="ro" hreflang="ro" data-title="Glosar de tehnică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B7%A5%E7%A8%8B%E5%AD%B8%E8%A9%9E%E5%BD%99%E8%A1%A8" title="工程學詞彙表 – Cantonese" lang="yue" hreflang="yue" data-title="工程學詞彙表" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5571805#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_engineering:_A%E2%80%93L" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Glossary_of_engineering:_A%E2%80%93L" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Glossary_of_engineering:_A%E2%80%93L"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Glossary_of_engineering:_A%E2%80%93L"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Glossary_of_engineering:_A%E2%80%93L" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Glossary_of_engineering:_A%E2%80%93L" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&oldid=1245543686" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Glossary_of_engineering%3A_A%E2%80%93L&id=1245543686&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_engineering%3A_A%25E2%2580%2593L"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlossary_of_engineering%3A_A%25E2%2580%2593L"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Glossary_of_engineering%3A_A%E2%80%93L&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5571805" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">List of definitions of terms and concepts commonly used in the study of engineering</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Glossary_of_engineering:_M%E2%80%93Z" title="Glossary of engineering: M–Z">Glossary of engineering: M–Z</a></div> <p>This <b>glossary of engineering terms</b> is a list of definitions about the major concepts of <a href="/wiki/Engineering" title="Engineering">engineering</a>. Please see the bottom of the page for glossaries of specific fields of engineering. </p> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar nomobile nowraplinks"><tbody><tr><th class="sidebar-title"><a href="/wiki/Engineering" title="Engineering">Engineering</a></th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/History_of_engineering" title="History of engineering">History</a></li> <li><a href="/wiki/Outline_of_engineering" title="Outline of engineering">Outline</a></li> <li>Glossary <ul><li><a class="mw-selflink selflink">A–L</a></li> <li><a href="/wiki/Glossary_of_engineering:_M%E2%80%93Z" title="Glossary of engineering: M–Z">M–Z</a></li></ul></li> <li><a href="/wiki/Category:Engineering" title="Category:Engineering">Category</a></li> <li><a href="/wiki/Portal:Engineering" title="Portal:Engineering">Portal</a></li></ul> </div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:TopicTOC-Engineering" title="Template:TopicTOC-Engineering"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:TopicTOC-Engineering" title="Template talk:TopicTOC-Engineering"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:TopicTOC-Engineering" title="Special:EditPage/Template:TopicTOC-Engineering"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="A">A</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=1" title="Edit section: A"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1228772891">.mw-parser-output .glossary dt{margin-top:0.4em}.mw-parser-output .glossary dt+dt{margin-top:-0.2em}.mw-parser-output .glossary .templatequote{margin-top:0;margin-bottom:-0.5em}</style> <dl class="glossary"> <dt id="absolute_electrode_potential"><dfn><b><a href="/wiki/Absolute_electrode_potential" title="Absolute electrode potential">Absolute electrode potential</a></b></dfn></dt><dd>In <a href="/wiki/Electrochemistry" title="Electrochemistry">electrochemistry</a>, according to an <a href="/wiki/IUPAC" class="mw-redirect" title="IUPAC">IUPAC</a> definition,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> is the <a href="/wiki/Electrode_potential" title="Electrode potential">electrode potential</a> of a <a href="/wiki/Metal" title="Metal">metal</a> measured with respect to a universal reference system (without any additional metal–solution interface).</dd> <dt id="absolute_pressure"><dfn><b><a href="/wiki/Absolute_pressure" class="mw-redirect" title="Absolute pressure">Absolute pressure</a></b></dfn></dt><dd>is zero-referenced against a perfect vacuum, using an <a href="/wiki/Absolute_scale" title="Absolute scale">absolute scale</a>, so it is equal to gauge pressure plus atmospheric pressure.</dd> <dt id="absolute_zero"><dfn><b><a href="/wiki/Absolute_zero" title="Absolute zero">Absolute zero</a></b></dfn></dt><dd>The lower limit of the <a href="/wiki/Thermodynamic_temperature" title="Thermodynamic temperature">thermodynamic temperature</a> scale, a state at which the <a href="/wiki/Enthalpy" title="Enthalpy">enthalpy</a> and <a href="/wiki/Entropy" title="Entropy">entropy</a> of a cooled <a href="/wiki/Ideal_gas" title="Ideal gas">ideal gas</a> reach their minimum value, taken as 0. Absolute zero is the point at which the fundamental particles of nature have minimal vibrational motion, retaining only quantum mechanical, <a href="/wiki/Zero-point_energy" title="Zero-point energy">zero-point energy</a>-induced particle motion. The theoretical temperature is determined by extrapolating the <a href="/wiki/Ideal_gas_law" title="Ideal gas law">ideal gas law</a>; by international agreement, absolute zero is taken as −273.15° on the <a href="/wiki/Celsius" title="Celsius">Celsius</a> scale (<a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a>),<sup id="cite_ref-sib2115_2-0" class="reference"><a href="#cite_note-sib2115-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-arora_3-0" class="reference"><a href="#cite_note-arora-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> which equals −459.67° on the <a href="/wiki/Fahrenheit" title="Fahrenheit">Fahrenheit</a> scale (<a href="/wiki/United_States_customary_units" title="United States customary units">United States customary units</a> or <a href="/wiki/Imperial_units" title="Imperial units">Imperial units</a>).<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> The corresponding <a href="/wiki/Kelvin" title="Kelvin">Kelvin</a> and <a href="/wiki/Rankine_scale" title="Rankine scale">Rankine</a> temperature scales set their zero points at absolute zero by definition.</dd> <dt id="absorbance"><dfn><b><a href="/wiki/Absorbance" title="Absorbance">Absorbance</a></b></dfn></dt><dd>Absorbance or <i>decadic absorbance</i> is the <i><a href="/wiki/Common_logarithm" title="Common logarithm">common logarithm</a></i> of the ratio of incident to <i>transmitted</i> <a href="/wiki/Radiant_power" class="mw-redirect" title="Radiant power">radiant power</a> through a material, and <i>spectral absorbance</i> or <i>spectral decadic absorbance</i> is the common logarithm of the ratio of incident to <i>transmitted</i> <a href="/wiki/Radiant_power" class="mw-redirect" title="Radiant power">spectral radiant power</a> through a material.<sup id="cite_ref-GoldBook_5-0" class="reference"><a href="#cite_note-GoldBook-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></dd> <dt id="ac_power"><dfn><b><a href="/wiki/AC_power" title="AC power">AC power</a></b></dfn></dt><dd>Electric power delivered by alternating current; common household power is AC.</dd> <dt id="acceleration"><dfn><b><a href="/wiki/Acceleration" title="Acceleration">Acceleration</a></b></dfn></dt><dd>The rate at which the velocity of a body changes with time, and the direction in which that change is acting.</dd> <dt id="acid"><dfn><b><a href="/wiki/Acid" title="Acid">Acid</a></b></dfn></dt><dd>A <a href="/wiki/Molecule" title="Molecule">molecule</a> or <a href="/wiki/Ion" title="Ion">ion</a> capable of donating a <a href="/wiki/Hydron_(chemistry)" title="Hydron (chemistry)">hydron</a> (proton or hydrogen ion H<sup>+</sup>), or, alternatively, capable of forming a <a href="/wiki/Covalent_bond" title="Covalent bond">covalent bond</a> with an <a href="/wiki/Electron_pair" title="Electron pair">electron pair</a> (a Lewis acid).<sup id="cite_ref-IUPAC_acid_6-0" class="reference"><a href="#cite_note-IUPAC_acid-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></dd> <dt id="acid–base_reaction"><dfn><b><a href="/wiki/Acid%E2%80%93base_reaction" title="Acid–base reaction">Acid–base reaction</a></b></dfn></dt><dd>A chemical reaction that occurs between an acid and a base, which can be used to determine pH.</dd> <dt id="acid_strength"><dfn><b><a href="/wiki/Acid_strength" title="Acid strength">Acid strength</a></b></dfn></dt><dd>In strong acids, most of the molecules give up a hydrogen ion and become ionized.</dd> <dt id="acoustics"><dfn><b><a href="/wiki/Acoustics" title="Acoustics">Acoustics</a></b></dfn></dt><dd>The scientific study of sound.</dd> <dt id="activated_sludge"><dfn><b><a href="/wiki/Activated_sludge" title="Activated sludge">Activated sludge</a></b></dfn></dt><dd>A type of wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa.</dd> <dt id="activated_sludge_model"><dfn><b><a href="/wiki/Activated_sludge_model" title="Activated sludge model">Activated sludge model</a></b></dfn></dt><dd>A generic name for a group of mathematical methods to model activated sludge systems.</dd> <dt id="active_transport"><dfn><b><a href="/wiki/Active_transport" title="Active transport">Active transport</a></b></dfn></dt><dd>In cellular biology, active transport is the movement of molecules across a membrane from a region of their lower concentration to a region of their higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: <i>primary active transport</i> that uses <a href="/wiki/Adenosine_triphosphate" title="Adenosine triphosphate">ATP</a>, and <i>secondary active transport</i> that uses an electrochemical gradient. An example of active transport in <a href="/wiki/Human_physiology" class="mw-redirect" title="Human physiology">human physiology</a> is the uptake of <a href="/wiki/Glucose" title="Glucose">glucose</a> in the <a href="/wiki/Gastrointestinal_tract" title="Gastrointestinal tract">intestines</a>.</dd> <dt id="actuator"><dfn><b><a href="/wiki/Actuator" title="Actuator">Actuator</a></b></dfn></dt><dd>A device that accepts 2 inputs (control signal, energy source) and outputs kinetic energy in the form of physical movement (linear, rotary, or oscillatory). The control signal input specifies which motion should be taken. The energy source input is typically either an electric current, hydraulic pressure, or pneumatic pressure. An actuator can be the final element of a control loop</dd> <dt id="adenosine_triphosphate"><dfn><b><a href="/wiki/Adenosine_triphosphate" title="Adenosine triphosphate">Adenosine triphosphate</a></b></dfn></dt><dd>A complex <a href="/wiki/Organic_compound" title="Organic compound">organic chemical</a> that provides energy to drive many processes in living <a href="/wiki/Cell_(biology)" title="Cell (biology)">cells</a>, e.g. muscle contraction, nerve impulse propagation, chemical synthesis. Found in all forms of life, ATP is often referred to as the "molecular unit of <a href="/wiki/Currency" title="Currency">currency</a>" of intracellular <a href="/wiki/Energy_transfer" class="mw-redirect" title="Energy transfer">energy transfer</a>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></dd> <dt id="adhesion"><dfn><b><a href="/wiki/Adhesion" title="Adhesion">Adhesion</a></b></dfn></dt><dd>The tendency of dissimilar particles or surfaces to cling to one another (cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another).</dd> <dt id="adiabatic_process"><dfn><b><a href="/wiki/Adiabatic_process" title="Adiabatic process">Adiabatic process</a></b></dfn></dt><dd>A process where no heat energy is lost to outside space.</dd> <dt id="adiabatic_wall"><dfn><b><a href="/wiki/Adiabatic_wall" title="Adiabatic wall">Adiabatic wall</a></b></dfn></dt><dd>A barrier through which heat energy cannot pass.</dd> <dt id="aerobic_digestion"><dfn><b><a href="/wiki/Aerobic_digestion" title="Aerobic digestion">Aerobic digestion</a></b></dfn></dt><dd>A process in <a href="/wiki/Sewage_treatment" title="Sewage treatment">sewage treatment</a> designed to reduce the volume of sewage sludge and make it suitable<sup id="cite_ref-WEF_8-0" class="reference"><a href="#cite_note-WEF-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> for subsequent use.<sup id="cite_ref-Handbook_9-0" class="reference"><a href="#cite_note-Handbook-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></dd> <dt id="aerodynamics"><dfn><b><a href="/wiki/Aerodynamics" title="Aerodynamics">Aerodynamics</a></b></dfn></dt><dd>The study of the motion of air, particularly its interaction with a solid object, such as an airplane wing. It is a sub-field of fluid dynamics and gas dynamics, and many aspects of aerodynamics theory are common to these fields.</dd> <dt id="aerospace_engineering"><dfn><b><a href="/wiki/Aerospace_engineering" title="Aerospace engineering">Aerospace engineering</a></b></dfn></dt><dd>is the primary field of <a href="/wiki/Engineering" title="Engineering">engineering</a> concerned with the development of <a href="/wiki/Aircraft" title="Aircraft">aircraft</a> and <a href="/wiki/Spacecraft" title="Spacecraft">spacecraft</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> It has two major and overlapping branches: Aeronautical engineering and Astronautical Engineering. <a href="/wiki/Avionics" title="Avionics">Avionics</a> engineering is similar, but deals with the <a href="/wiki/Electronic_engineering" title="Electronic engineering">electronics</a> side of aerospace engineering.</dd> <dt id="afocal_system"><dfn><b><a href="/wiki/Afocal_system" title="Afocal system">Afocal system</a></b></dfn></dt><dd>An optical system that produces no net convergence or divergence of the beam, i.e. has an infinite <a href="/wiki/Effective_focal_length" class="mw-redirect" title="Effective focal length">effective focal length</a>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></dd> <dt id="agricultural_engineering"><dfn><b><a href="/wiki/Agricultural_engineering" title="Agricultural engineering">Agricultural engineering</a></b></dfn></dt><dd>The profession of designing machinery, processes, and systems for use in agriculture.</dd> <dt id="albedo"><dfn><b><a href="/wiki/Albedo" title="Albedo">Albedo</a></b></dfn></dt><dd>A measure of the fraction of light reflected from an astronomical body or other object.</dd> <dt id="alkane"><dfn><b><a href="/wiki/Alkane" title="Alkane">Alkane</a></b></dfn></dt><dd>An alkane, or <i>paraffin</i> (a historical name that also has <a href="/wiki/Paraffin_(disambiguation)" class="mw-redirect mw-disambig" title="Paraffin (disambiguation)">other meanings</a>), is an <a href="/wiki/Open-chain_compound" title="Open-chain compound">acyclic</a> <a href="/wiki/Saturated_and_unsaturated_compounds" title="Saturated and unsaturated compounds">saturated</a> <a href="/wiki/Hydrocarbon" title="Hydrocarbon">hydrocarbon</a>. In other words, an alkane consists of <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> and <a href="/wiki/Carbon" title="Carbon">carbon</a> atoms arranged in a <a href="/wiki/Tree_(graph_theory)" title="Tree (graph theory)">tree</a> structure in which all the <a href="/wiki/Carbon%E2%80%93carbon_bond" title="Carbon–carbon bond">carbon–carbon bonds</a> are <a href="/wiki/Single_bond" title="Single bond">single</a>.<sup id="cite_ref-goldbook-alkanes_12-0" class="reference"><a href="#cite_note-goldbook-alkanes-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></dd> <dt id="alkene"><dfn><b><a href="/wiki/Alkene" title="Alkene">Alkene</a></b></dfn></dt><dd>An <a href="/wiki/Unsaturated_hydrocarbon" class="mw-redirect" title="Unsaturated hydrocarbon">unsaturated hydrocarbon</a> that contains at least one <a href="/wiki/Carbon" title="Carbon">carbon</a>–carbon <a href="/wiki/Double_bond" title="Double bond">double bond</a>.<sup id="cite_ref-Wade_13-0" class="reference"><a href="#cite_note-Wade-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> The words alkene and olefin are often used interchangeably.</dd> <dt id="alkyne"><dfn><b><a href="/wiki/Alkyne" title="Alkyne">Alkyne</a></b></dfn></dt><dd>is an <a href="/wiki/Saturated_and_unsaturated_compounds" title="Saturated and unsaturated compounds">unsaturated</a> <a href="/wiki/Hydrocarbon" title="Hydrocarbon">hydrocarbon</a> containing at least one carbon—carbon <a href="/wiki/Triple_bond" title="Triple bond">triple bond</a>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> The simplest acyclic alkynes with only one triple bond and no other <a href="/wiki/Functional_group" title="Functional group">functional groups</a> form a <a href="/wiki/Homologous_series" title="Homologous series">homologous series</a> with the general chemical formula <style data-mw-deduplicate="TemplateStyles:r1123817410">.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}</style><span class="chemf nowrap"><a href="/wiki/Carbon" title="Carbon">C</a><sub class="template-chem2-sub"><i>n</i></sub><a href="/wiki/Hydrogen" title="Hydrogen">H</a><sub class="template-chem2-sub">2<i>n</i>−2</sub></span>.</dd> <dt id="alloy"><dfn><b><a href="/wiki/Alloy" title="Alloy">Alloy</a></b></dfn></dt><dd>is a combination of <a href="/wiki/Metal" title="Metal">metals</a> or of a metal and another <a href="/wiki/Chemical_element" title="Chemical element">element</a>. Alloys are defined by a <a href="/wiki/Metallic_bonding" title="Metallic bonding">metallic bonding</a> character.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup></dd> <dt id="alpha_particle"><dfn><b><a href="/wiki/Alpha_particle" title="Alpha particle">Alpha particle</a></b></dfn></dt><dd>Alpha particles consist of two <a href="/wiki/Proton" title="Proton">protons</a> and two <a href="/wiki/Neutron" title="Neutron">neutrons</a> bound together into a particle identical to a <a href="/wiki/Helium-4" title="Helium-4">helium-4</a> <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a>. They are generally produced in the process of <a href="/wiki/Alpha_decay" title="Alpha decay">alpha decay</a>, but may also be produced in other ways. Alpha particles are named after the first letter in the <a href="/wiki/Greek_alphabet" title="Greek alphabet">Greek alphabet</a>, <a href="/wiki/Alpha" title="Alpha">α</a>.</dd> <dt id="alternating_current"><dfn><b><a href="/wiki/Alternating_current" title="Alternating current">Alternating current</a></b></dfn></dt><dd>Electrical current that regularly reverses direction.</dd> <dt id="alternative_hypothesis"><dfn><b><a href="/wiki/Alternative_hypothesis" title="Alternative hypothesis">Alternative hypothesis</a></b></dfn></dt><dd>In <a href="/wiki/Statistical_hypothesis_testing" class="mw-redirect" title="Statistical hypothesis testing">statistical hypothesis testing</a>, the alternative hypothesis (or <i>maintained hypothesis</i> or <i>research hypothesis</i>) and the <a href="/wiki/Null_hypothesis" title="Null hypothesis">null hypothesis</a> are the two rival hypotheses which are compared by a <a href="/wiki/Statistical_hypothesis_testing" class="mw-redirect" title="Statistical hypothesis testing">statistical hypothesis test</a>. In the domain of science two rival hypotheses can be compared by <a href="/wiki/Explanatory_power" title="Explanatory power">explanatory power</a> and <a href="/wiki/Predictive_power" title="Predictive power">predictive power</a>.</dd> <dt id="ammeter"><dfn><b><a href="/wiki/Ammeter" title="Ammeter">Ammeter</a></b></dfn></dt><dd>An instrument that measures current.</dd> <dt id="amino_acids"><dfn><b><a href="/wiki/Amino_acids" class="mw-redirect" title="Amino acids">Amino acids</a></b></dfn></dt><dd>are <a href="/wiki/Organic_compound" title="Organic compound">organic compounds</a> containing <a href="/wiki/Amine" title="Amine">amine</a> (–NH<sub>2</sub>) and <a href="/wiki/Carboxylic_acid" title="Carboxylic acid">carboxyl</a> (–COOH) <a href="/wiki/Functional_group" title="Functional group">functional groups</a>, along with a <a href="/wiki/Substituent" title="Substituent">side chain</a> (R group) specific to each amino acid.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> The key <a href="/wiki/Chemical_element" title="Chemical element">elements</a> of an amino acid are <a href="/wiki/Carbon" title="Carbon">carbon</a> (C), <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> (H), <a href="/wiki/Oxygen" title="Oxygen">oxygen</a> (O), and <a href="/wiki/Nitrogen" title="Nitrogen">nitrogen</a> (N), although other elements are found in the side chains of certain amino acids. About 500 naturally occurring amino acids are known (though only 20 appear in the <a href="/wiki/Genetic_code" title="Genetic code">genetic code</a>) and can be classified in many ways.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></dd> <dt id="amorphous_solid"><dfn><b><a href="/wiki/Amorphous_solid" title="Amorphous solid">Amorphous solid</a></b></dfn></dt><dd>An amorphous (from the Greek <i>a</i>, without, <i>morphé</i>, shape, form) or non-crystalline solid is a solid that lacks the long-range order that is characteristic of a crystal.</dd> <dt id="ampere"><dfn><b><a href="/wiki/Ampere" title="Ampere">Ampere</a></b></dfn></dt><dd>The SI unit of current flow, one <a href="#coulomb"><span title="See entry on this page at § coulomb" class="glossary-link-internal" style="border-bottom:1px dashed #86a1ff;color:initial;">coulomb</span></a> per second.</dd> <dt id="amphoterism"><dfn><b><a href="/wiki/Amphoterism" title="Amphoterism">Amphoterism</a></b></dfn></dt><dd>In chemistry, an <i>amphoteric</i> compound is a molecule or ion that can react both as an <a href="/wiki/Acid" title="Acid">acid</a> as well as a <a href="/wiki/Base_(chemistry)" title="Base (chemistry)">base</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Many metals (such as <a href="/wiki/Copper" title="Copper">copper</a>, <a href="/wiki/Zinc" title="Zinc">zinc</a>, <a href="/wiki/Tin" title="Tin">tin</a>, <a href="/wiki/Lead" title="Lead">lead</a>, <a href="/wiki/Aluminium" title="Aluminium">aluminium</a>, and <a href="/wiki/Beryllium" title="Beryllium">beryllium</a>) form amphoteric oxides or hydroxides. Amphoterism depends on the <a href="/wiki/Oxidation_states" class="mw-redirect" title="Oxidation states">oxidation states</a> of the oxide. Al<sub>2</sub>O<sub>3</sub> is an example of an amphoteric oxide.</dd> <dt id="amplifier"><dfn><b><a href="/wiki/Amplifier" title="Amplifier">Amplifier</a></b></dfn></dt><dd>A device that replicates a signal with increased power.</dd> <dt id="amplitude"><dfn><b><a href="/wiki/Amplitude" title="Amplitude">Amplitude</a></b></dfn></dt><dd>The amplitude of a <a href="/wiki/Periodic_function" title="Periodic function">periodic</a> <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> is a measure of its change over a single <a href="/wiki/Period_(mathematics)" class="mw-redirect" title="Period (mathematics)">period</a> (such as <a href="/wiki/Period_(physics)" class="mw-redirect" title="Period (physics)">time</a> or <a href="/wiki/Wavelength" title="Wavelength">spatial period</a>). There are various definitions of amplitude, which are all <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> of the magnitude of the difference between the variable's <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">extreme values</a>. In older texts the <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase</a> is sometimes called the amplitude.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></dd> <dt id="anaerobic_digestion"><dfn><b><a href="/wiki/Anaerobic_digestion" title="Anaerobic digestion">Anaerobic digestion</a></b></dfn></dt><dd>is a collection of processes by which <a href="/wiki/Microorganisms" class="mw-redirect" title="Microorganisms">microorganisms</a> break down <a href="/wiki/Biodegradable" class="mw-redirect" title="Biodegradable">biodegradable</a> material in the absence of <a href="/wiki/Oxygen" title="Oxygen">oxygen</a>.<sup id="cite_ref-nnfcc_22-0" class="reference"><a href="#cite_note-nnfcc-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> The process is used for industrial or domestic purposes to <a href="/wiki/Waste_management" title="Waste management">manage waste</a> or to produce fuels. Much of the <a href="/wiki/Fermentation_(biochemistry)" class="mw-redirect" title="Fermentation (biochemistry)">fermentation</a> used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion.</dd> <dt id="angular_acceleration"><dfn><b><a href="/wiki/Angular_acceleration" title="Angular acceleration">Angular acceleration</a></b></dfn></dt><dd>is the rate of change of <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a>. In three dimensions, it is a <a href="/wiki/Pseudovector" title="Pseudovector">pseudovector</a>. In <a href="/wiki/SI" class="mw-redirect" title="SI">SI</a> units, it is measured in <a href="/wiki/Radians" class="mw-redirect" title="Radians">radians</a> per <a href="/wiki/Second" title="Second">second</a> squared (rad/s<sup>2</sup>), and is usually denoted by the Greek letter <a href="/wiki/Alpha_(letter)" class="mw-redirect" title="Alpha (letter)">alpha</a> (<a href="/wiki/%CE%91" class="mw-redirect" title="Α">α</a>).<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup></dd> <dt id="angular_momentum"><dfn><b><a href="/wiki/Angular_momentum" title="Angular momentum">Angular momentum</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, angular momentum (rarely, <i>moment of momentum</i> or <i>rotational momentum</i>) is the rotational equivalent of <a href="/wiki/Linear_momentum" class="mw-redirect" title="Linear momentum">linear momentum</a>. It is an important quantity in physics because it is a <a href="/wiki/Conservation_law" title="Conservation law">conserved quantity</a>—the total angular momentum of a system remains constant unless acted on by an external <a href="/wiki/Torque" title="Torque">torque</a>.</dd> <dt id="angular_velocity"><dfn><b><a href="/wiki/Angular_velocity" title="Angular velocity">Angular velocity</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, the angular velocity of a particle is the rate at which it rotates around a chosen center point: that is, the time rate of change of its <a href="/wiki/Angular_displacement" title="Angular displacement">angular displacement</a> relative to the origin (i.e. in layman's terms: how quickly an object goes around something over a period of time - e.g. how fast the earth orbits the sun). It is measured in angle per unit time, <a href="/wiki/Radians_per_second" class="mw-redirect" title="Radians per second">radians per second</a> in <a href="/wiki/SI" class="mw-redirect" title="SI">SI</a> units, and is usually represented by the symbol <a href="/wiki/Omega" title="Omega">omega</a> (<b>ω</b>, sometimes <b>Ω</b>). By convention, positive angular velocity indicates counter-clockwise rotation, while negative is clockwise.</dd> <dt id="anion"><dfn><b><a href="/wiki/Anion" class="mw-redirect" title="Anion">Anion</a></b></dfn></dt><dd>is an ion with more electrons than protons, giving it a net negative charge (since electrons are negatively charged and protons are positively charged).<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup></dd> <dt id="annealing_(metallurgy)"><dfn><b><a href="/wiki/Annealing_(metallurgy)" class="mw-redirect" title="Annealing (metallurgy)">Annealing (metallurgy)</a></b></dfn></dt><dd>A heat treatment process that relieves internal stresses.</dd> <dt id="annihilation"><dfn><b><a href="/wiki/Annihilation" title="Annihilation">Annihilation</a></b></dfn></dt><dd>In <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a>, annihilation is the process that occurs when a <a href="/wiki/Subatomic_particle" title="Subatomic particle">subatomic particle</a> collides with its respective <a href="/wiki/Antiparticle" title="Antiparticle">antiparticle</a> to produce other particles, such as an <a href="/wiki/Electron" title="Electron">electron</a> colliding with a <a href="/wiki/Positron" title="Positron">positron</a> to produce two <a href="/wiki/Photon" title="Photon">photons</a>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> The total <a href="/wiki/Energy" title="Energy">energy</a> and <a href="/wiki/Momentum" title="Momentum">momentum</a> of the initial pair are conserved in the process and distributed among a set of other particles in the final state. Antiparticles have exactly opposite additive <a href="/wiki/Quantum_number" title="Quantum number">quantum numbers</a> from particles, so the sums of all quantum numbers of such an original pair are zero. Hence, any set of particles may be produced whose total quantum numbers are also zero as long as <a href="/wiki/Conservation_of_energy" title="Conservation of energy">conservation of energy</a> and <a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">conservation of momentum</a> are obeyed.<sup id="cite_ref-Particleadventure.org_26-0" class="reference"><a href="#cite_note-Particleadventure.org-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup></dd> <dt id="anode"><dfn><b><a href="/wiki/Anode" title="Anode">Anode</a></b></dfn></dt><dd>The electrode at which current enters a device such as an electrochemical cell or vacuum tube.</dd> <dt id="ansi"><dfn><b><a href="/wiki/ANSI" class="mw-redirect" title="ANSI">ANSI</a></b></dfn></dt><dd>The <i>American National Standards Institute</i> is a private <a href="/wiki/Non-profit_organization" class="mw-redirect" title="Non-profit organization">non-profit organization</a> that oversees the development of <a href="/wiki/Standardization" title="Standardization">voluntary consensus standards</a> for products, services, processes, systems, and personnel in the United States.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> The organization also coordinates U.S. standards with international standards so that American products can be used worldwide.</dd> <dt id="anti-gravity"><dfn><b><a href="/wiki/Anti-gravity" title="Anti-gravity">Anti-gravity</a></b></dfn></dt><dd>Anti-gravity (also known as <i>non-gravitational field</i>) is a theory of creating a place or object that is free from the force of <a href="/wiki/Gravity" title="Gravity">gravity</a>. It does not refer to the lack of weight under gravity experienced in <a href="/wiki/Free_fall" title="Free fall">free fall</a> or <a href="/wiki/Orbit" title="Orbit">orbit</a>, or to balancing the force of gravity with some other force, such as electromagnetism or aerodynamic lift.</dd> <dt id="applied_engineering"><dfn><b><a href="/wiki/Applied_engineering_(field)" title="Applied engineering (field)">Applied engineering</a></b></dfn></dt><dd>is the field concerned with the application of management, design, and technical skills for the design and integration of systems, the execution of new <a href="/wiki/Product_design" title="Product design">product designs</a>, the improvement of manufacturing processes, and the management and direction of physical and/or technical functions of a firm or organization. Applied-engineering degreed programs typically include instruction in basic engineering principles, <a href="/wiki/Project_management" title="Project management">project management</a>, industrial processes, production and operations management, systems integration and control, quality control, and statistics.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></dd> <dt id="applied_mathematics"><dfn><b><a href="/wiki/Applied_mathematics" title="Applied mathematics">Applied mathematics</a></b></dfn></dt><dd>Mathematics used for solutions of practical problems, as opposed to pure mathematics.</dd> <dt id="arc_length"><dfn><b><a href="/wiki/Arc_length" title="Arc length">Arc length</a></b></dfn></dt><dd>Arc length is the distance between two points along a section of a <a href="/wiki/Curve" title="Curve">curve</a>. Determining the length of an irregular arc segment is also called <em>rectification</em> of a curve. The advent of <a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">infinitesimal calculus</a> led to a general formula that provides <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed-form solutions</a> in some cases.</dd> <dt id="archimedes'_principle"><dfn><b><a href="/wiki/Archimedes%27_principle" title="Archimedes' principle">Archimedes' principle</a></b></dfn></dt><dd>states that the upward <a href="/wiki/Buoyancy" title="Buoyancy">buoyant force</a> that is exerted on a body immersed in a <a href="/wiki/Fluid" title="Fluid">fluid</a>, whether fully or partially submerged, is equal to the <a href="/wiki/Weight" title="Weight">weight</a> of the fluid that the body <a href="/wiki/Displacement_(fluid)" title="Displacement (fluid)">displaces</a> and acts in the upward direction at the center of mass of the displaced fluid.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Archimedes' principle is a <a href="/wiki/Law_of_physics" class="mw-redirect" title="Law of physics">law of physics</a> fundamental to fluid mechanics. It was formulated by <a href="/wiki/Archimedes" title="Archimedes">Archimedes of Syracuse</a><sup id="cite_ref-acottLaw_30-0" class="reference"><a href="#cite_note-acottLaw-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup></dd> <dt id="area_moment_of_inertia"><dfn><b><a href="/wiki/Area_moment_of_inertia" class="mw-redirect" title="Area moment of inertia">Area moment of inertia</a></b></dfn></dt><dd>The <i>2nd moment of area</i>, also known as <i>moment of inertia of plane area</i>, <i>area moment of inertia</i>, or <i>second area moment</i>, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> for an axis that lies in the plane or with a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> for an axis perpendicular to the plane. In both cases, it is calculated with a <a href="/wiki/Multiple_integral" title="Multiple integral">multiple integral</a> over the object in question. Its dimension is L (length) to the fourth power. Its <a href="/wiki/Physical_unit" class="mw-redirect" title="Physical unit">unit</a> of dimension when working with the <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a> is meters to the fourth power, <a href="/wiki/Metre" title="Metre">m</a><sup>4</sup>.</dd> <dt id="arithmetic_mean"><dfn><b><a href="/wiki/Arithmetic_mean" title="Arithmetic mean">Arithmetic mean</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <i>arithmetic mean</i> or simply the <a href="/wiki/Mean" title="Mean">mean</a> or <i>average</i> when the context is clear, is the sum of a collection of numbers divided by the number of numbers in the collection.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></dd> <dt id="arithmetic_progression"><dfn><b><a href="/wiki/Arithmetic_progression" title="Arithmetic progression">Arithmetic progression</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an <i>arithmetic progression</i> (AP) or <i>arithmetic sequence</i> is a <a href="/wiki/Sequence" title="Sequence">sequence</a> of numbers such that the difference between the consecutive terms is constant. Difference here means the second minus the first. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with <i>common difference</i> of 2.</dd> <dt id="aromatic_hydrocarbon"><dfn><b><a href="/wiki/Aromatic_hydrocarbon" class="mw-redirect" title="Aromatic hydrocarbon">Aromatic hydrocarbon</a></b></dfn></dt><dd>An <i>aromatic hydrocarbon</i> or <i>arene</i><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> (or sometimes <i>aryl hydrocarbon</i>)<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> is a <a href="/wiki/Hydrocarbon" title="Hydrocarbon">hydrocarbon</a> with <a href="/wiki/Sigma_bond" title="Sigma bond">sigma bonds</a> and delocalized <a href="/wiki/Pi_electron" class="mw-redirect" title="Pi electron">pi electrons</a> between carbon atoms forming a circle. In contrast, <a href="/wiki/Aliphatic_compound" title="Aliphatic compound">aliphatic</a> hydrocarbons lack this delocalization. The term <i>aromatic</i> was assigned before the physical mechanism determining <a href="/wiki/Aromaticity" title="Aromaticity">aromaticity</a> was discovered; the term was coined as such simply because many of the compounds have a sweet or pleasant odour. The configuration of six carbon atoms in aromatic compounds is known as a benzene ring, after the simplest possible such hydrocarbon, <a href="/wiki/Benzene" title="Benzene">benzene</a>. Aromatic hydrocarbons can be <i>monocyclic</i> (MAH) or <i>polycyclic</i> (PAH).</dd> <dt id="arrhenius_equation"><dfn><b><a href="/wiki/Arrhenius_equation" title="Arrhenius equation">Arrhenius equation</a></b></dfn></dt><dd>The Arrhenius equation is a formula for the temperature dependence of <a href="/wiki/Reaction_rate" title="Reaction rate">reaction rates</a>. The equation was proposed by <a href="/wiki/Svante_Arrhenius" title="Svante Arrhenius">Svante Arrhenius</a> in 1889, based on the work of Dutch chemist <a href="/wiki/Jacobus_Henricus_van_%27t_Hoff" title="Jacobus Henricus van 't Hoff">Jacobus Henricus van 't Hoff</a> who had noted in 1884 that <a href="/wiki/Van_%27t_Hoff_equation" title="Van 't Hoff equation">Van 't Hoff's equation</a> for the temperature dependence of <a href="/wiki/Equilibrium_constant" title="Equilibrium constant">equilibrium constants</a> suggests such a formula for the rates of both forward and reverse reactions. This equation has a vast and important application in determining rate of chemical reactions and for calculation of energy of activation. Arrhenius provided a physical justification and interpretation for the formula.<sup id="cite_ref-Arrhenius96_34-0" class="reference"><a href="#cite_note-Arrhenius96-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Arrhenius226_35-0" class="reference"><a href="#cite_note-Arrhenius226-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Laidler42_36-0" class="reference"><a href="#cite_note-Laidler42-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> Currently, it is best seen as an <a href="/wiki/Empirical" class="mw-redirect" title="Empirical">empirical</a> relationship.<sup id="cite_ref-Connors_37-0" class="reference"><a href="#cite_note-Connors-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 188">: 188 </span></sup> It can be used to model the temperature variation of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally-induced processes/reactions. The <a href="/wiki/Eyring_equation" title="Eyring equation">Eyring equation</a>, developed in 1935, also expresses the relationship between rate and energy.</dd> <dt id="artificial_intelligence"><dfn><b><a href="/wiki/Artificial_intelligence" title="Artificial intelligence">Artificial intelligence</a></b></dfn></dt><dd>(AI), is <a href="/wiki/Intelligence" title="Intelligence">intelligence</a> demonstrated by <a href="/wiki/Machine" title="Machine">machines</a>, unlike the natural intelligence <a href="/wiki/Human_intelligence" title="Human intelligence">displayed by humans</a> and <a href="/wiki/Animal_cognition" title="Animal cognition">animals</a>. Leading AI textbooks define the field as the study of "<a href="/wiki/Intelligent_agent" title="Intelligent agent">intelligent agents</a>": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals.<sup id="cite_ref-Definition_of_AI_40-0" class="reference"><a href="#cite_note-Definition_of_AI-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> Colloquially, the term "artificial intelligence" is often used to describe machines (or computers) that mimic "cognitive" functions that humans associate with the <a href="/wiki/Human_mind" class="mw-redirect" title="Human mind">human mind</a>, such as "learning" and "problem solving".<sup id="cite_ref-FOOTNOTERussellNorvig20092_41-0" class="reference"><a href="#cite_note-FOOTNOTERussellNorvig20092-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup></dd> <dt id="assembly_language"><dfn><b><a href="/wiki/Assembly_language" title="Assembly language">Assembly language</a></b></dfn></dt><dd>A computer programming language where most statements correspond to one or a few machine op-codes.</dd> <dt id="atomic_orbital"><dfn><b><a href="/wiki/Atomic_orbital" title="Atomic orbital">Atomic orbital</a></b></dfn></dt><dd>In <a href="/wiki/Atomic_theory" class="mw-redirect" title="Atomic theory">atomic theory</a> and <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, an atomic orbital is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">mathematical function</a> that describes the wave-like behavior of either one <a href="/wiki/Electron" title="Electron">electron</a> or a pair of electrons in an <a href="/wiki/Atom" title="Atom">atom</a>.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> This function can be used to calculate the <a href="/wiki/Probability" title="Probability">probability</a> of finding any electron of an atom in any specific region around the <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">atom's nucleus</a>. The term <i>atomic orbital</i> may also refer to the physical region or space where the electron can be calculated to be present, as defined by the particular mathematical form of the orbital.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup></dd> <dt id="atomic_packing_factor"><dfn><b><a href="/wiki/Atomic_packing_factor" title="Atomic packing factor">Atomic packing factor</a></b></dfn></dt><dd>The percentage of the volume filled with atomic mass in a crystal formation.</dd> <dt id="audio_frequency"><dfn><b><a href="/wiki/Audio_frequency" title="Audio frequency">Audio frequency</a></b></dfn></dt><dd>An audio frequency (abbreviation: AF), or <i>audible frequency</i> is characterized as a <a href="/wiki/Periodic_function" title="Periodic function">periodic</a> <a href="/wiki/Vibration" title="Vibration">vibration</a> whose <a href="/wiki/Frequency" title="Frequency">frequency</a> is audible to the average human. The <a href="/wiki/International_System_of_Units" title="International System of Units">SI unit</a> of audio frequency is the <a href="/wiki/Hertz" title="Hertz">hertz</a> (Hz). It is the property of <a href="/wiki/Sound" title="Sound">sound</a> that most determines <a href="/wiki/Pitch_(music)" title="Pitch (music)">pitch</a>.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup></dd> <dt id="austenitization"><dfn><b><a href="/wiki/Austenite#Austenitization" title="Austenite">Austenitization</a></b></dfn></dt><dd><i>Austenitization</i> means to heat iron, iron-based metal, or steel to a temperature at which it changes crystal structure from ferrite to austenite.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> The more open structure of the austenite is then able to absorb carbon from the iron-carbides in carbon steel. An incomplete initial austenitization can leave undissolved <a href="/wiki/Carbide" title="Carbide">carbides</a> in the matrix.<sup id="cite_ref-Lambers_46-0" class="reference"><a href="#cite_note-Lambers-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> For some irons, iron-based metals, and steels, the presence of carbides may occur during the austenitization step. The term commonly used for this is <i>two-phase austenitization</i>.<sup id="cite_ref-smnm_47-0" class="reference"><a href="#cite_note-smnm-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup></dd> <dt id="automation"><dfn><b><a href="/wiki/Automation" title="Automation">Automation</a></b></dfn></dt><dd>is the technology by which a process or procedure is performed with minimum human assistance.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> Automation<sup id="cite_ref-Rifkin_1995_49-0" class="reference"><a href="#cite_note-Rifkin_1995-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> or automatic control is the use of various <a href="/wiki/Control_system" title="Control system">control systems</a> for operating equipment such as machinery, processes in factories, boilers, and heat-treating ovens, switching on telephone networks, steering and stabilization of ships, aircraft and other applications and vehicles with minimal or reduced human intervention. Some processes have been completely automated.</dd> <dt id="autonomous_vehicle"><dfn><b><a href="/wiki/Autonomous_vehicle" class="mw-redirect" title="Autonomous vehicle">Autonomous vehicle</a></b></dfn></dt><dd>A vehicle capable of driving from one point to another without input from a human operator.</dd> <dt id="azimuthal_quantum_number"><dfn><b><a href="/wiki/Azimuthal_quantum_number" title="Azimuthal quantum number">Azimuthal quantum number</a></b></dfn></dt><dd>The <i>azimuthal quantum number</i> is a <a href="/wiki/Quantum_number" title="Quantum number">quantum number</a> for an <a href="/wiki/Atomic_orbital" title="Atomic orbital">atomic orbital</a> that determines its <a href="/wiki/Angular_momentum_operator" title="Angular momentum operator">orbital angular momentum</a> and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers which describe the unique <a href="/wiki/Quantum_state" title="Quantum state">quantum state</a> of an electron (the others being the <a href="/wiki/Principal_quantum_number" title="Principal quantum number">principal quantum number</a>, following <a href="/wiki/Spectroscopic_notation" title="Spectroscopic notation">spectroscopic notation</a>, the <a href="/wiki/Magnetic_quantum_number" title="Magnetic quantum number">magnetic quantum number</a>, and the <a href="/wiki/Spin_quantum_number" title="Spin quantum number">spin quantum number</a>). It is also known as the <i>orbital angular momentum</i> quantum number, <i>orbital quantum number</i> or <i>second quantum number</i>, and is symbolized as <b>ℓ</b>.</dd> </dl> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="B">B</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=2" title="Edit section: B"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="barometer"><dfn><b><a href="/wiki/Barometer" title="Barometer">Barometer</a></b></dfn></dt><dd>A device for measuring pressure.</dd> <dt id="battery"><dfn><b><a href="/wiki/Battery_(electricity)" class="mw-redirect" title="Battery (electricity)">Battery</a></b></dfn></dt><dd>Electrochemical cells that transform chemical energy into electricity.</dd> <dt id="base"><dfn><b><a href="/wiki/Base_(chemistry)" title="Base (chemistry)">Base</a></b></dfn></dt><dd>In <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, <i>bases</i> are substances that, in <a href="/wiki/Aqueous_solution" title="Aqueous solution">aqueous solution</a>, release <a href="/wiki/Hydroxide" title="Hydroxide">hydroxide</a> (OH<sup>−</sup>) ions, are slippery to the touch, can taste <a href="/wiki/Taste#Bitterness" title="Taste">bitter</a> if an alkali,<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> change the color of indicators (e.g., turn red <a href="/wiki/Litmus_paper" class="mw-redirect" title="Litmus paper">litmus paper</a> blue), react with <a href="/wiki/Acid" title="Acid">acids</a> to form <a href="/wiki/Salts" class="mw-redirect" title="Salts">salts</a>, promote certain chemical reactions (<a href="/wiki/Base_catalysis" class="mw-redirect" title="Base catalysis">base catalysis</a>), accept <a href="/wiki/Proton" title="Proton">protons</a> from any proton donor, and/or contain completely or partially displaceable OH<sup>−</sup> <a href="/wiki/Ions" class="mw-redirect" title="Ions">ions</a>.</dd> <dt id="baud"><dfn><b><a href="/wiki/Baud" title="Baud">Baud</a></b></dfn></dt><dd>Rate at which data is transferred in symbols/second; a symbol may represent one or more bits.</dd> <dt id="beam"><dfn><b><a href="/wiki/Beam_(structure)" title="Beam (structure)">Beam</a></b></dfn></dt><dd>A structural element whose length is significantly greater than its width or height.</dd> <dt id="beer–lambert_law"><dfn><b><a href="/wiki/Beer%E2%80%93Lambert_law" title="Beer–Lambert law">Beer–Lambert law</a></b></dfn></dt><dd>The <i>Beer–Lambert law</i>, also known as <i>Beer's law</i>, the <i>Lambert–Beer law</i>, or the <i>Beer–Lambert–Bouguer law</i> relates the <a href="/wiki/Absorption_(electromagnetic_radiation)" title="Absorption (electromagnetic radiation)">attenuation</a> of <a href="/wiki/Light" title="Light">light</a> to the properties of the material through which the light is travelling. The law is commonly applied to <a href="/wiki/Chemical_analysis" class="mw-redirect" title="Chemical analysis">chemical analysis</a> measurements and used in understanding attenuation in <a href="/wiki/Physical_optics" title="Physical optics">physical optics</a>, for <a href="/wiki/Photon" title="Photon">photons</a>, <a href="/wiki/Neutron" title="Neutron">neutrons</a>, or rarefied gases. In <a href="/wiki/Mathematical_physics" title="Mathematical physics">mathematical physics</a>, this law arises as a solution of the <a href="/wiki/Bhatnagar%E2%80%93Gross%E2%80%93Krook" class="mw-redirect" title="Bhatnagar–Gross–Krook">BGK equation</a>.</dd> <dt id="belt"><dfn><b><a href="/wiki/Belt_(mechanical)" title="Belt (mechanical)">Belt</a></b></dfn></dt><dd>A closed loop of flexible material used to transmit mechanical power from one pulley to another.</dd> <dt id="belt_friction"><dfn><b><a href="/wiki/Belt_friction" title="Belt friction">Belt friction</a></b></dfn></dt><dd>Describes the friction forces between a <a href="/wiki/Belt_(mechanical)" title="Belt (mechanical)">belt</a> and a surface, such as a belt wrapped around a <a href="/wiki/Bollard" title="Bollard">bollard</a>. When one end of the belt is being pulled only part of this force is transmitted to the other end wrapped about a surface. The friction force increases with the amount of wrap about a surface and makes it so the <a href="/wiki/Tension_(physics)" title="Tension (physics)">tension</a> in the belt can be different at both ends of the belt. Belt friction can be modeled by the <a href="/wiki/Capstan_equation" title="Capstan equation">Belt friction equation</a>.<sup id="cite_ref-Attaway_51-0" class="reference"><a href="#cite_note-Attaway-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup></dd> <dt id="bending"><dfn><b><a href="/wiki/Bending" title="Bending">Bending</a></b></dfn></dt><dd>In <a href="/wiki/Applied_mechanics" title="Applied mechanics">applied mechanics</a>, bending (also known as <i>flexure</i>) characterizes the behavior of a slender <a href="/wiki/Structural" class="mw-redirect" title="Structural">structural</a> element subjected to an external <a href="/wiki/Structural_load" title="Structural load">load</a> applied perpendicularly to a longitudinal axis of the element. The structural element is assumed to be such that at least one of its dimensions is a small fraction, typically 1/10 or less, of the other two.<sup id="cite_ref-Boresi_52-0" class="reference"><a href="#cite_note-Boresi-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup></dd><dt id="bending_moment"><dfn><b><a href="/wiki/Bending_moment" title="Bending moment">Bending moment</a></b></dfn></dt><dd>In <a href="/wiki/Solid_mechanics" title="Solid mechanics">solid mechanics</a>, a bending moment is the <a href="/wiki/Reaction_(physics)" title="Reaction (physics)">reaction</a> induced in a <a href="/wiki/Structural_element" title="Structural element">structural element</a> when an external <a href="/wiki/Force" title="Force">force</a> or <a href="/wiki/Moment_of_force" class="mw-redirect" title="Moment of force">moment</a> is applied to the element, causing the element to <a href="/wiki/Bending" title="Bending">bend</a>.<sup id="cite_ref-timo_53-0" class="reference"><a href="#cite_note-timo-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> <sup id="cite_ref-beer_54-0" class="reference"><a href="#cite_note-beer-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> The most common or simplest structural element subjected to bending moments is the <a href="/wiki/Beam_(structure)" title="Beam (structure)">beam</a>.</dd> <dt id="benefit–cost_analysis"><dfn><b><a href="/wiki/Benefit%E2%80%93cost_analysis" class="mw-redirect" title="Benefit–cost analysis">Benefit–cost analysis</a></b></dfn></dt><dd><i>Cost–benefit analysis</i> (<i>CBA</i>), sometimes called <i>benefit costs analysis</i> (<i>BCA</i>), is a systematic approach to estimating the strengths and weaknesses of alternatives (for example in transactions, activities, functional business requirements); it is used to determine options that provide the best approach to achieve benefits while preserving savings.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> It may be used to compare potential (or completed) courses of actions; or estimate (or evaluate) the value against <a href="/wiki/Costs" class="mw-redirect" title="Costs">costs</a> of a single decision, project, or policy.</dd> <dt id="bernoulli_differential_equation"><dfn><b><a href="/wiki/Bernoulli_differential_equation" title="Bernoulli differential equation">Bernoulli differential equation</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equation</a> of the form: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'+P(x)y=Q(x)y^{n}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>=</mo> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'+P(x)y=Q(x)y^{n}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0df4fcdfdb40fe6b609da7321a8c1d1a63c90eb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.567ex; height:3.009ex;" alt="{\displaystyle y'+P(x)y=Q(x)y^{n}\,}"></span></dd></dl> is called a <i>Bernoulli differential equation</i> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is any real number and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5920e98ff3dd1cb41e01f76243300450c958d5e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.656ex; height:2.676ex;" alt="{\displaystyle n\neq 0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\neq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≠<!-- ≠ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\neq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/096f0036b76638006d76cde5ce49aa80d2a9abf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.656ex; height:2.676ex;" alt="{\displaystyle n\neq 1}"></span>.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> It is named after <a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a> who discussed it in 1695. Bernoulli equations are special because they are nonlinear differential equations with known exact solutions. A famous special case of the Bernoulli equation is the <a href="/wiki/Logistic_differential_equation" class="mw-redirect" title="Logistic differential equation">logistic differential equation</a>.</dd> <dt id="bernoulli's_equation"><dfn><b><a href="/wiki/Bernoulli%27s_equation" class="mw-redirect" title="Bernoulli's equation">Bernoulli's equation</a></b></dfn></dt><dd>An equation for relating several measurements within a fluid flow, such as velocity, pressure, and potential energy.</dd> <dt id="bernoulli's_principle"><dfn><b><a href="/wiki/Bernoulli%27s_principle" title="Bernoulli's principle">Bernoulli's principle</a></b></dfn></dt><dd>In <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, <i>Bernoulli's principle</i> states that an increase in the speed of a fluid occurs simultaneously with a decrease in <a href="/wiki/Pressure" title="Pressure">pressure</a> or a decrease in the <a href="/wiki/Fluid" title="Fluid">fluid</a>'s <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a>.<sup id="cite_ref-Clancy1975_57-0" class="reference"><a href="#cite_note-Clancy1975-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: Ch.3">: Ch.3 </span></sup><sup id="cite_ref-Batchelor2000_58-0" class="reference"><a href="#cite_note-Batchelor2000-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 156–164, § 3.5">: 156–164, § 3.5 </span></sup> The principle is named after <a href="/wiki/Daniel_Bernoulli" title="Daniel Bernoulli">Daniel Bernoulli</a> who published it in his book <i><a href="/wiki/Hydrodynamica" title="Hydrodynamica">Hydrodynamica</a></i> in 1738.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Although Bernoulli deduced that pressure decreases when the flow speed increases, it was <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> who derived <i>Bernoulli's equation</i> in its usual form in 1752.<sup id="cite_ref-Anderson2016_60-0" class="reference"><a href="#cite_note-Anderson2016-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> The principle is only applicable for <a href="/wiki/Isentropic_flow" class="mw-redirect" title="Isentropic flow">isentropic flows</a>: when the effects of <a href="/wiki/Irreversible_process" title="Irreversible process">irreversible processes</a> (like <a href="/wiki/Turbulence" title="Turbulence">turbulence</a>) and non-<a href="/wiki/Adiabatic_process" title="Adiabatic process">adiabatic processes</a> (e.g. <a href="/wiki/Heat_radiation" class="mw-redirect" title="Heat radiation">heat radiation</a>) are small and can be neglected.</dd> <dt id="beta_particle"><dfn><b><a href="/wiki/Beta_particle" title="Beta particle">Beta particle</a></b></dfn></dt><dd>also called <i>beta ray</i> or <i>beta radiation</i> (symbol <b>β</b>), is a high-energy, high-speed <a href="/wiki/Electron" title="Electron">electron</a> or <a href="/wiki/Positron" title="Positron">positron</a> emitted by the <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a> of an <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">atomic nucleus</a> during the process of <a href="/wiki/Beta_decay" title="Beta decay">beta decay</a>. There are two forms of beta decay, β<sup>−</sup> decay and β<sup>+</sup> decay, which produce electrons and positrons respectively.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup></dd> <dt id="binomial_distribution"><dfn><b><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distribution</a></b></dfn></dt><dd>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <i>binomial distribution</i> with parameters <i>n</i> and <i>p</i> is the <a href="/wiki/Discrete_probability_distribution" class="mw-redirect" title="Discrete probability distribution">discrete probability distribution</a> of the number of successes in a sequence of <i>n</i> <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a> <a href="/wiki/Experiment_(probability_theory)" title="Experiment (probability theory)">experiments</a>, each asking a <a href="/wiki/Yes%E2%80%93no_question" title="Yes–no question">yes–no question</a>, and each with its own <a href="/wiki/Boolean-valued_function" title="Boolean-valued function">boolean</a>-valued <a href="/wiki/Outcome_(probability)" title="Outcome (probability)">outcome</a>: a <a href="/wiki/Random_variable" title="Random variable">random variable</a> containing a single <a href="/wiki/Bit" title="Bit">bit</a> of information: success/<a href="/wiki/Yes_and_no" title="Yes and no">yes</a>/<a href="/wiki/Truth" title="Truth">true</a>/<a href="/wiki/One" class="mw-redirect" title="One">one</a> (with <a href="/wiki/Probability" title="Probability">probability</a> <i>p</i>) or <a href="/wiki/Failure" title="Failure">failure</a>/no/<a href="/wiki/False_(logic)" title="False (logic)">false</a>/<a href="/wiki/Zero" class="mw-redirect" title="Zero">zero</a> (with <a href="/wiki/Probability" title="Probability">probability</a> <i>q</i>=1 − <i>p</i>). A single success-failure experiment is also called a <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a> or Bernoulli experiment and a sequence of outcomes is called a <a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a>; for a single trial, i.e., <i>n</i>=1, the binomial distribution is a <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a>. The binomial distribution is the basis for the popular <a href="/wiki/Binomial_test" title="Binomial test">binomial test</a> of <a href="/wiki/Statistical_significance" title="Statistical significance">statistical significance</a>.</dd> <dt id="biocatalysis"><dfn><b><a href="/wiki/Biocatalysis" title="Biocatalysis">Biocatalysis</a></b></dfn></dt><dd><i>Biocatalysis</i> refers to the use of <a href="/wiki/Life" title="Life">living</a> (biological) systems or their parts to speed up (<a href="/wiki/Catalysis" title="Catalysis">catalyze</a>) chemical reactions. In biocatalytic processes, natural catalysts, such as <a href="/wiki/Enzyme" title="Enzyme">enzymes</a>, perform chemical transformations on <a href="/wiki/Organic_compounds" class="mw-redirect" title="Organic compounds">organic compounds</a>. Both enzymes that have been more or less <a href="/wiki/List_of_purification_methods_in_chemistry" title="List of purification methods in chemistry">isolated</a> and enzymes still residing inside living <a href="/wiki/Cell_(biology)" title="Cell (biology)">cells</a> are employed for this task.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> The modern usage of biotechnologically produced and possibly modified enzymes for <a href="/wiki/Organic_synthesis" title="Organic synthesis">organic synthesis</a> is termed <i>chemoenzymatic synthesis</i>; the reactions performed are <i>chemoenzymatic reactions</i>.</dd> <dt id="biomedical_engineering"><dfn><b><a href="/wiki/Biomedical_engineering" title="Biomedical engineering">Biomedical engineering</a></b></dfn></dt><dd><i>Biomedical engineering</i> (<b>BME</b>) or <i>medical engineering</i> is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g. diagnostic or therapeutic). This field seeks to close the gap between <a href="/wiki/Engineering" title="Engineering">engineering</a> and <a href="/wiki/Medicine" title="Medicine">medicine</a>, combining the design and problem solving skills of engineering with medical biological sciences to advance health care treatment, including <a href="/wiki/Medical_diagnosis" title="Medical diagnosis">diagnosis</a>, <a href="/wiki/Medical_monitor" class="mw-redirect" title="Medical monitor">monitoring</a>, and <a href="/wiki/Therapy" title="Therapy">therapy</a>.<sup id="cite_ref-EnderleBronzino2012_66-0" class="reference"><a href="#cite_note-EnderleBronzino2012-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup></dd> <dt id="biomimetic"><dfn><b><a href="/wiki/Biomimetic" class="mw-redirect" title="Biomimetic">Biomimetic</a></b></dfn></dt><dd><i>Biomimetics</i> or <i>biomimicry</i> is the imitation of the models, systems, and elements of nature for the purpose of solving complex human problems.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup></dd> <dt id="bionics"><dfn><b><a href="/wiki/Bionics" title="Bionics">Bionics</a></b></dfn></dt><dd>The application of biological methods to engineering systems.</dd> <dt id="biophysics"><dfn><b><a href="/wiki/Biophysics" title="Biophysics">Biophysics</a></b></dfn></dt><dd>is an interdisciplinary science that applies approaches and methods traditionally used in <a href="/wiki/Physics" title="Physics">physics</a> to study <a href="/wiki/Biology" title="Biology">biological</a> phenomena.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> Biophysics covers all scales of <a href="/wiki/Biological_organization" class="mw-redirect" title="Biological organization">biological organization</a>, from <a href="/wiki/Molecule" title="Molecule">molecular</a> to <a href="/wiki/Organism" title="Organism">organismic</a> and <a href="/wiki/Population_(biology)" class="mw-redirect" title="Population (biology)">populations</a>. Biophysical research shares significant overlap with <a href="/wiki/Biochemistry" title="Biochemistry">biochemistry</a>, <a href="/wiki/Molecular_biology" title="Molecular biology">molecular biology</a>, <a href="/wiki/Physical_chemistry" title="Physical chemistry">physical chemistry</a>, <a href="/wiki/Physiology" title="Physiology">physiology</a>, <a href="/wiki/Nanotechnology" title="Nanotechnology">nanotechnology</a>, <a href="/wiki/Bioengineering" class="mw-redirect" title="Bioengineering">bioengineering</a>, <a href="/wiki/Computational_biology" title="Computational biology">computational biology</a>, <a href="/wiki/Biomechanics" title="Biomechanics">biomechanics</a> and <a href="/wiki/Systems_biology" title="Systems biology">systems biology</a>.</dd> <dt id="biot_number"><dfn><b><a href="/wiki/Biot_number" title="Biot number">Biot number</a></b></dfn></dt><dd>The <i>Biot number</i> (<b>Bi</b>) is a <a href="/wiki/Dimensionless_quantity" title="Dimensionless quantity">dimensionless quantity</a> used in heat transfer calculations. It is named after the eighteenth century French physicist <a href="/wiki/Jean-Baptiste_Biot" title="Jean-Baptiste Biot">Jean-Baptiste Biot</a> (1774–1862), and gives a simple index of the ratio of the heat transfer resistances <i>inside of</i> and <i>at the surface of</i> a body. This ratio determines whether or not the temperatures inside a body will vary significantly in space, while the body heats or cools over time, from a thermal gradient applied to its surface.</dd> <dt id="block_and_tackle"><dfn><b><a href="/wiki/Block_and_tackle" title="Block and tackle">Block and tackle</a></b></dfn></dt><dd>A system of pulleys and a rope threaded between them, used to lift or pull heavy loads.</dd> <dt id="body_force"><dfn><b><a href="/wiki/Body_force" title="Body force">Body force</a></b></dfn></dt><dd>is a force that acts throughout the volume of a body. Forces due to <a href="/wiki/Gravity" title="Gravity">gravity</a>, <a href="/wiki/Electrostatics" title="Electrostatics">electric fields</a> and <a href="/wiki/Magnetic_fields" class="mw-redirect" title="Magnetic fields">magnetic fields</a> are examples of body forces. Body forces contrast with <a href="/wiki/Contact_force" title="Contact force">contact forces</a> or <a href="/wiki/Surface_force" title="Surface force">surface forces</a> which are exerted to the surface of an object.</dd> <dt id="boiler"><dfn><b><a href="/wiki/Boiler" title="Boiler">Boiler</a></b></dfn></dt><dd>is a closed <a href="/wiki/Pressure_vessel" title="Pressure vessel">vessel</a> in which <a href="/wiki/Fluid" title="Fluid">fluid</a> (generally water) is heated. The fluid does not necessarily <a href="/wiki/Boiling" title="Boiling">boil</a>. The heated or vaporized fluid exits the boiler for use in various processes or heating applications,<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> including <a href="/wiki/Boiler_(water_heating)" title="Boiler (water heating)">water heating</a>, <a href="/wiki/Central_heating" title="Central heating">central heating</a>, <a href="/wiki/Boiler_(power_generation)" title="Boiler (power generation)">boiler-based power generation</a>, <a href="/wiki/Cooking" title="Cooking">cooking</a>, and <a href="/wiki/Sanitation" title="Sanitation">sanitation</a>.</dd> <dt id="boiling_point"><dfn><b><a href="/wiki/Boiling_point" title="Boiling point">Boiling point</a></b></dfn></dt><dd>The boiling point of a substance is the temperature at which the <a href="/wiki/Vapor_pressure" title="Vapor pressure">vapor pressure</a> of a <a href="/wiki/Liquid" title="Liquid">liquid</a> equals the <a href="/wiki/Pressure" title="Pressure">pressure</a> surrounding the liquid<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> and the liquid changes into a vapor.</dd> <dt id="boiling-point_elevation"><dfn><b><a href="/wiki/Boiling-point_elevation" title="Boiling-point elevation">Boiling-point elevation</a></b></dfn></dt><dd><i>Boiling-point elevation</i> describes the phenomenon that the <a href="/wiki/Boiling_point" title="Boiling point">boiling point</a> of a <a href="/wiki/Liquid" title="Liquid">liquid</a> (a <a href="/wiki/Solvent" title="Solvent">solvent</a>) will be higher when another compound is added, meaning that a <a href="/wiki/Solution_(chemistry)" title="Solution (chemistry)">solution</a> has a higher boiling point than a pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water. The boiling point can be measured accurately using an <a href="/wiki/Ebullioscope" title="Ebullioscope">ebullioscope</a>.</dd> <dt id="boltzmann_constant"><dfn><b><a href="/wiki/Boltzmann_constant" title="Boltzmann constant">Boltzmann constant</a></b></dfn></dt><dd>The <i>Boltzmann constant</i> (<span class="texhtml"><i>k</i><sub>B</sub></span> or <span class="texhtml mvar" style="font-style:italic;">k</span>) is a <a href="/wiki/Physical_constant" title="Physical constant">physical constant</a> relating the average <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic energy</a> of <a href="/wiki/Particle" title="Particle">particles</a> in a <a href="/wiki/Ideal_gas" title="Ideal gas">gas</a> with the <a href="/wiki/Temperature" title="Temperature">temperature</a> of the gas<sup id="cite_ref-Feynman1Ch39-10_75-0" class="reference"><a href="#cite_note-Feynman1Ch39-10-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> and occurs in <a href="/wiki/Planck%27s_law" title="Planck's law">Planck's law</a> of <a href="/wiki/Black-body_radiation" title="Black-body radiation">black-body radiation</a> and in <a href="/wiki/Boltzmann%27s_entropy_formula" title="Boltzmann's entropy formula">Boltzmann's entropy formula</a>. It was introduced by <a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a>, but named after <a href="/wiki/Ludwig_Boltzmann" title="Ludwig Boltzmann">Ludwig Boltzmann</a>. It is the <a href="/wiki/Gas_constant" title="Gas constant">gas constant</a> <span class="texhtml mvar" style="font-style:italic;">R</span> divided by the <a href="/wiki/Avogadro_constant" title="Avogadro constant">Avogadro constant</a> <span class="texhtml"><i>N</i><sub>A</sub></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k={\frac {R}{N_{\text{A}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>R</mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>A</mtext> </mrow> </msub> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k={\frac {R}{N_{\text{A}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd1507e257b477c572f290622dc1ad5b88668d66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.124ex; height:5.676ex;" alt="{\displaystyle k={\frac {R}{N_{\text{A}}}}.}"></span>.</dd></dl></dd></dl> <dt id="boson"><dfn><b><a href="/wiki/Boson" title="Boson">Boson</a></b></dfn></dt><dd>In <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, a <i>boson</i> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="'b' in 'buy'">b</span><span title="/oʊ/: 'o' in 'code'">oʊ</span><span title="'s' in 'sigh'">s</span><span title="/ɒ/: 'o' in 'body'">ɒ</span><span title="'n' in 'nigh'">n</span></span>/</a></span></span>,<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> <span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="'b' in 'buy'">b</span><span title="/oʊ/: 'o' in 'code'">oʊ</span><span title="'z' in 'zoom'">z</span><span title="/ɒ/: 'o' in 'body'">ɒ</span><span title="'n' in 'nigh'">n</span></span>/</a></span></span><sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup>) is a particle that follows <a href="/wiki/Bose%E2%80%93Einstein_statistics" title="Bose–Einstein statistics">Bose–Einstein statistics</a>. Bosons make up one of the two classes of <a href="/wiki/Elementary_particle" title="Elementary particle">particles</a>, the other being <a href="/wiki/Fermion" title="Fermion">fermions</a>.<sup id="cite_ref-DarkMatter_78-0" class="reference"><a href="#cite_note-DarkMatter-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> The name boson was coined by <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> to commemorate the contribution of Indian physicist and professor of physics at <a href="/wiki/University_of_Calcutta" title="University of Calcutta">University of Calcutta</a> and at <a href="/wiki/University_of_Dhaka" title="University of Dhaka">University of Dhaka</a>, <a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Satyendra Nath Bose</a><sup id="cite_ref-AP-20120710_81-0" class="reference"><a href="#cite_note-AP-20120710-81"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NYT-20120919_82-0" class="reference"><a href="#cite_note-NYT-20120919-82"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> in developing, with <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>, Bose–Einstein statistics—which theorizes the characteristics of elementary particles.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup></dd> <dt id="boyle's_law"><dfn><b><a href="/wiki/Boyle%27s_law" title="Boyle's law">Boyle's law</a></b></dfn></dt><dd><i>Boyle's law</i> (sometimes referred to as the <i>Boyle–Mariotte law</i>, or <i>Mariotte's law</i><sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup>) is an experimental <a href="/wiki/Gas_laws" title="Gas laws">gas law</a> that describes how the <a href="/wiki/Pressure" title="Pressure">pressure</a> of a <a href="/wiki/Gas" title="Gas">gas</a> tends to increase as the <a href="/wiki/Volume" title="Volume">volume</a> of the container decreases. A modern statement of Boyle's law is: The absolute pressure exerted by a given mass of an <a href="/wiki/Ideal_gas" title="Ideal gas">ideal gas</a> is inversely proportional to the volume it occupies if the <a href="/wiki/Temperature" title="Temperature">temperature</a> and <a href="/wiki/Amount_of_substance" title="Amount of substance">amount of gas</a> remain unchanged within a <a href="/wiki/Closed_system" title="Closed system">closed system</a>.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-levine_1_86-0" class="reference"><a href="#cite_note-levine_1-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup></dd> <dt id="bravais_lattice"><dfn><b><a href="/wiki/Bravais_lattice" title="Bravais lattice">Bravais lattice</a></b></dfn></dt><dd>In <a href="/wiki/Geometry" title="Geometry">geometry</a> and <a href="/wiki/Crystallography" title="Crystallography">crystallography</a>, a <i>Bravais lattice</i>, named after <a href="/wiki/Auguste_Bravais" title="Auguste Bravais">Auguste Bravais</a> (<a href="#CITEREFBravais1850">1850</a>),<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> is an infinite array (or a finite array, if we consider the edges, obviously) of discrete points generated by a set of <a href="/wiki/Translation_operator_(quantum_mechanics)#Discrete_Translational_Symmetry" title="Translation operator (quantum mechanics)">discrete translation</a> operations described in three dimensional space by: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} =n_{1}\mathbf {a} _{1}+n_{2}\mathbf {a} _{2}+n_{3}\mathbf {a} _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} =n_{1}\mathbf {a} _{1}+n_{2}\mathbf {a} _{2}+n_{3}\mathbf {a} _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45d50ae6e0a26eabb84ff67d440ecb8559e1cf6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.191ex; height:2.509ex;" alt="{\displaystyle \mathbf {R} =n_{1}\mathbf {a} _{1}+n_{2}\mathbf {a} _{2}+n_{3}\mathbf {a} _{3}}"></span></dd></dl> where <i>n<sub>i</sub></i> are any integers and <b>a</b><sub><i>i</i></sub> are known as the primitive vectors which lie in different directions (not necessarily mutually perpendicular) and span the lattice. This discrete set of vectors must be closed under vector addition and subtraction. For any choice of position vector <b>R</b>, the lattice looks exactly the same.</dd> <dt id="brayton_cycle"><dfn><b><a href="/wiki/Brayton_cycle" title="Brayton cycle">Brayton cycle</a></b></dfn></dt><dd>A thermodynamic cycle model for an ideal heat engine, in which heat is added or removed at constant pressure; approximated by a gas turbine.</dd> <dt id="break-even"><dfn><b><a href="/wiki/Break-even_(economics)" class="mw-redirect" title="Break-even (economics)">Break-even</a></b></dfn></dt><dd>The <i>break-even point</i> (BEP) in <a href="/wiki/Economics" title="Economics">economics</a>, <a href="/wiki/Business" title="Business">business</a>—and specifically <a href="/wiki/Cost_accounting" title="Cost accounting">cost accounting</a>—is the point at which total cost and total revenue are equal, i.e. "even". There is no net loss or gain, and one has "broken even", though <a href="/wiki/Opportunity_cost" title="Opportunity cost">opportunity costs</a> have been paid and capital has received the risk-adjusted, expected return. In short, all costs that must be paid are paid, and there is neither profit nor loss.<sup id="cite_ref-R000000_88-0" class="reference"><a href="#cite_note-R000000-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup></dd> <dt id="brewster's_angle"><dfn><b><a href="/wiki/Brewster%27s_angle" title="Brewster's angle">Brewster's angle</a></b></dfn></dt><dd><i>Brewster's angle</i> (also known as the <i>polarization angle</i>) is an <a href="/wiki/Angle_of_incidence_(optics)" title="Angle of incidence (optics)">angle of incidence</a> at which <a href="/wiki/Light" title="Light">light</a> with a particular <a href="/wiki/Polarization_(waves)" title="Polarization (waves)">polarization</a> is perfectly transmitted through a transparent <a href="/wiki/Dielectric" title="Dielectric">dielectric</a> surface, with <i>no <a href="/wiki/Reflection_(physics)" title="Reflection (physics)">reflection</a></i>. When <i>unpolarized</i> light is incident at this angle, the light that is reflected from the surface is therefore perfectly polarized. This special angle of incidence is named after the Scottish physicist <a href="/wiki/David_Brewster" title="David Brewster">Sir David Brewster</a> (1781–1868).<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup></dd> <dt id="brittleness"><dfn><b><a href="/wiki/Brittleness" title="Brittleness">Brittleness</a></b></dfn></dt><dd>A material is <i>brittle</i> if, when subjected to <a href="/wiki/Stress_(physics)" class="mw-redirect" title="Stress (physics)">stress</a>, it breaks without significant <a href="/wiki/Plastic_Deformation" class="mw-redirect" title="Plastic Deformation">plastic deformation</a>. Brittle materials absorb relatively little <a href="/wiki/Energy" title="Energy">energy</a> prior to fracture, even those of high <a href="/wiki/Strength_of_materials" title="Strength of materials">strength</a>. Breaking is often accompanied by a snapping sound. Brittle materials include most <a href="/wiki/Ceramic_materials" class="mw-redirect" title="Ceramic materials">ceramics</a> and <a href="/wiki/Glass" title="Glass">glasses</a> (which do not deform plastically) and some <a href="/wiki/Polymer" title="Polymer">polymers</a>, such as <a href="/wiki/Polymethyl_methacrylate" class="mw-redirect" title="Polymethyl methacrylate">PMMA</a> and <a href="/wiki/Polystyrene" title="Polystyrene">polystyrene</a>. Many <a href="/wiki/Steel" title="Steel">steels</a> become brittle at low temperatures (see <a href="/wiki/Ductility#Ductile–brittle_transition_temperature" title="Ductility">ductile–brittle transition temperature</a>), depending on their composition and processing.</dd> <dt id="bromide"><dfn><b><a href="/wiki/Bromide" title="Bromide">Bromide</a></b></dfn></dt><dd>Any chemical substance made up of bromine, along with other elements.</dd> <dt id="brønsted–lowry_acid–base_theory"><dfn><b><a href="/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory" title="Brønsted–Lowry acid–base theory">Brønsted–Lowry acid–base theory</a></b></dfn></dt><dd>is an <a href="/wiki/Acid%E2%80%93base_reaction" title="Acid–base reaction">acid–base reaction</a> theory which was proposed independently by <a href="/wiki/Johannes_Nicolaus_Br%C3%B8nsted" title="Johannes Nicolaus Brønsted">Johannes Nicolaus Brønsted</a> and <a href="/wiki/Thomas_Martin_Lowry" class="mw-redirect" title="Thomas Martin Lowry">Thomas Martin Lowry</a> in 1923.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> The fundamental concept of this theory is that when an acid and a base react with each other, the acid forms its <a href="/wiki/Conjugate_acid" class="mw-redirect" title="Conjugate acid">conjugate base</a>, and the base forms its conjugate acid by exchange of a <a href="/wiki/Proton" title="Proton">proton</a> (the hydrogen cation, or H<sup>+</sup>). This theory is a generalization of the <a href="/wiki/Arrhenius_theory" class="mw-redirect" title="Arrhenius theory">Arrhenius theory</a>.</dd> <dt id="brownian_motion"><dfn><b><a href="/wiki/Brownian_motion" title="Brownian motion">Brownian motion</a></b></dfn></dt><dd><i>Brownian motion</i>, or <i>pedesis</i>, is the random motion of <a href="/wiki/Particle" title="Particle">particles</a> suspended in a <a href="/wiki/Fluid" title="Fluid">fluid</a> (a <a href="/wiki/Liquid" title="Liquid">liquid</a> or a <a href="/wiki/Gas" title="Gas">gas</a>) resulting from their collision with the fast-moving <a href="/wiki/Molecule" title="Molecule">molecules</a> in the fluid.<sup id="cite_ref-Feynman-41_94-0" class="reference"><a href="#cite_note-Feynman-41-94"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup></dd> <dt id="buckingham_π_theorem"><dfn><b><a href="/wiki/Buckingham_%CF%80_theorem" title="Buckingham π theorem">Buckingham π theorem</a></b></dfn></dt><dd>A method for determining Π groups, or dimensionless descriptors of physical phenomena.</dd> <dt id="buffer_solution"><dfn><b><a href="/wiki/Buffer_solution" title="Buffer solution">Buffer solution</a></b></dfn></dt><dd>A <i>buffer solution</i> (more precisely, <a href="/wiki/PH" title="PH">pH</a> buffer or <a href="/wiki/Hydrogen_ion" title="Hydrogen ion">hydrogen ion</a> buffer) is an <a href="/wiki/Aqueous_solution" title="Aqueous solution">aqueous solution</a> consisting of a <a href="/wiki/Mixture" title="Mixture">mixture</a> of a <a href="/wiki/Weak_acid" class="mw-redirect" title="Weak acid">weak acid</a> and its <a href="/wiki/Conjugate_base" class="mw-redirect" title="Conjugate base">conjugate base</a>, or vice versa. Its pH changes very little when a small amount of <a href="/wiki/Strong_acid" class="mw-redirect" title="Strong acid">strong acid</a> or <a href="/wiki/Base_(chemistry)#Strong_bases" title="Base (chemistry)">base</a> is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. In nature, there are many systems that use buffering for pH regulation.</dd> <dt id="bulk_modulus"><dfn><b><a href="/wiki/Bulk_modulus" title="Bulk modulus">Bulk modulus</a></b></dfn></dt><dd>The <i>bulk modulus</i> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>) of a substance is a measure of how resistant to compression that substance is. It is defined as the ratio of the <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> <a href="/wiki/Pressure" title="Pressure">pressure</a> increase to the resulting <i>relative</i> decrease of the <a href="/wiki/Volume" title="Volume">volume</a>.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> Other moduli describe the material's response (<a href="/wiki/Strain_(materials_science)" class="mw-redirect" title="Strain (materials science)">strain</a>) to other kinds of <a href="/wiki/Stress_(physics)" class="mw-redirect" title="Stress (physics)">stress</a>: the <a href="/wiki/Shear_modulus" title="Shear modulus">shear modulus</a> describes the response to shear, and <a href="/wiki/Young%27s_modulus" title="Young's modulus">Young's modulus</a> describes the response to linear stress. For a <a href="/wiki/Fluid" title="Fluid">fluid</a>, only the bulk modulus is meaningful. For a complex <a href="/wiki/Anisotropic" class="mw-redirect" title="Anisotropic">anisotropic</a> solid such as <a href="/wiki/Wood" title="Wood">wood</a> or <a href="/wiki/Paper" title="Paper">paper</a>, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized <a href="/wiki/Hooke%27s_law" title="Hooke's law">Hooke's law</a>.</dd> <dt id="buoyancy"><dfn><b><a href="/wiki/Buoyancy" title="Buoyancy">Buoyancy</a></b></dfn></dt><dd>A force caused by displacement in a fluid by an object of different density than the fluid.</dd> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="C">C</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=3" title="Edit section: C"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="calculus"><dfn><b><a href="/wiki/Calculus" title="Calculus">Calculus</a></b></dfn></dt><dd>The mathematics of change.</dd> <dt id="capacitance"><dfn><b><a href="/wiki/Capacitance" title="Capacitance">Capacitance</a></b></dfn></dt><dd>The ability of a body to store electrical charge.</dd> <dt id="capacitive_reactance"><dfn><b><a href="/wiki/Capacitive_reactance" class="mw-redirect" title="Capacitive reactance">Capacitive reactance</a></b></dfn></dt><dd>The impedance of a capacitor in an alternating current circuit, the opposition to current flow.</dd> <dt id="capacitor"><dfn><b><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a></b></dfn></dt><dd>An electrical component that stores energy in an electric field.</dd> <dt id="capillary_action"><dfn><b><a href="/wiki/Capillary_action" title="Capillary action">Capillary action</a></b></dfn></dt><dd><i>Capillary action</i> (sometimes <i>capillarity</i>, <i>capillary motion</i>, <i>capillary effect</i>, or <i>wicking</i>) is the ability of a <a href="/wiki/Liquid" title="Liquid">liquid</a> to flow in narrow spaces without the assistance of, or even in opposition to, external forces like <a href="/wiki/Gravitation" class="mw-redirect" title="Gravitation">gravity</a>. The effect can be seen in the drawing up of liquids between the hairs of a paintbrush, in a thin tube, in porous materials such as paper and plaster, in some non-porous materials such as sand and liquefied <a href="/wiki/Carbon_fiber" class="mw-redirect" title="Carbon fiber">carbon fiber</a>, or in a cell. It occurs because of <a href="/wiki/Intermolecular_force" title="Intermolecular force">intermolecular forces</a> between the liquid and surrounding solid surfaces. If the diameter of the tube is sufficiently small, then the combination of <a href="/wiki/Surface_tension" title="Surface tension">surface tension</a> (which is caused by <a href="/wiki/Cohesion_(chemistry)" title="Cohesion (chemistry)">cohesion</a> within the liquid) and <a href="/wiki/Adhesion" title="Adhesion">adhesive forces</a> between the liquid and container wall act to propel the liquid.</dd> <dt id="carbonate"><dfn><b><a href="/wiki/Carbonate" title="Carbonate">Carbonate</a></b></dfn></dt><dd>Any mineral with bound carbon dioxide.</dd> <dt id="carnot_cycle"><dfn><b><a href="/wiki/Carnot_cycle" title="Carnot cycle">Carnot cycle</a></b></dfn></dt><dd>A hypothetical thermodynamic cycle for a heat engine; no thermodynamic cycle can be more efficient than a Carnot cycle operating between the same two temperature limits.</dd> <dt id="cartesian_coordinates"><dfn><b><a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a></b></dfn></dt><dd>Coordinates within a rectangular Cartesian plane.</dd> <dt id="castigliano's_method"><dfn><b><a href="/wiki/Castigliano%27s_method" title="Castigliano's method">Castigliano's method</a></b></dfn></dt><dd>Named for <a href="/wiki/Carlo_Alberto_Castigliano" title="Carlo Alberto Castigliano">Carlo Alberto Castigliano</a>, is a method for determining the displacements of a <a href="/wiki/Linear_elasticity" title="Linear elasticity">linear-elastic</a> system based on the <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivatives</a> of the <a href="/wiki/Energy" title="Energy">energy</a>. He is known for his two theorems. The basic concept is that a change in energy is equal to the causing force times the resulting displacement. Therefore, the causing force is equal to the change in energy divided by the resulting displacement. Alternatively, the resulting displacement is equal to the change in energy divided by the causing force. Partial derivatives are needed to relate causing forces and resulting displacements to the change in energy.</dd> <dt id="casting"><dfn><b><a href="/wiki/Casting" title="Casting">Casting</a></b></dfn></dt><dd>Forming of an object by pouring molten metal (or other substances) into a mold.</dd> <dt id="cathode"><dfn><b><a href="/wiki/Cathode" title="Cathode">Cathode</a></b></dfn></dt><dd>The terminal of a device by which current exits.</dd> <dt id="cathode_ray"><dfn><b><a href="/wiki/Cathode_ray" title="Cathode ray">Cathode ray</a></b></dfn></dt><dd>The stream of electrons emitted from a heated negative electrode and attracted to a positive electrode.</dd> <dt id="cell_membrane"><dfn><b><a href="/wiki/Cell_membrane" title="Cell membrane">Cell membrane</a></b></dfn></dt><dd>The <i>cell membrane</i> (also known as the <i>plasma membrane</i> or <i>cytoplasmic membrane</i>, and historically referred to as the <i>plasmalemma</i>) is a <a href="/wiki/Biological_membrane" title="Biological membrane">biological membrane</a> that separates the <a href="/wiki/Cytoplasm" title="Cytoplasm">interior</a> of all <a href="/wiki/Cell_(biology)" title="Cell (biology)">cells</a> from the <a href="/wiki/Extracellular_space" title="Extracellular space">outside environment</a> (the extracellular space) which protects the cell from its environment<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> consisting of a <a href="/wiki/Lipid_bilayer" title="Lipid bilayer">lipid bilayer</a> with embedded <a href="/wiki/Protein" title="Protein">proteins</a>.</dd> <dt id="cell_nucleus"><dfn><b><a href="/wiki/Cell_nucleus" title="Cell nucleus">Cell nucleus</a></b></dfn></dt><dd>In <a href="/wiki/Cell_biology" title="Cell biology">cell biology</a>, the <i>nucleus</i> (pl. <i>nuclei</i>; from <a href="/wiki/Latin" title="Latin">Latin</a> <span title="Latin-language text"><i lang="la">nucleus</i></span> or <span title="Latin-language text"><i lang="la">nuculeus</i></span>, meaning 'kernel' or 'seed') is a <a href="/wiki/Biological_membrane" title="Biological membrane">membrane</a>-enclosed <a href="/wiki/Organelle" title="Organelle">organelle</a> found in <a href="/wiki/Eukaryote" title="Eukaryote">eukaryotic</a> <a href="/wiki/Cell_(biology)" title="Cell (biology)">cells</a>. Eukaryotes usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have <a href="#Anucleated_cells">no nuclei</a>, and a few others including <a href="/wiki/Osteoclast" title="Osteoclast">osteoclasts</a> have <a href="/wiki/Multinucleate" title="Multinucleate">many</a>.</dd> <dt id="cell_theory"><dfn><b><a href="/wiki/Cell_theory" title="Cell theory">Cell theory</a></b></dfn></dt><dd>In <a href="/wiki/Biology" title="Biology">biology</a>, <i>cell theory</i> is the historic <a href="/wiki/Scientific_theory" title="Scientific theory">scientific theory</a>, now universally accepted, that living organisms are made up of <a href="/wiki/Cell_(biology)" title="Cell (biology)">cells</a>, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells. Cells are the basic unit of structure in all organisms and also the basic unit of reproduction.</dd> <dt id="center_of_gravity"><dfn><b><a href="/wiki/Center_of_gravity" class="mw-redirect" title="Center of gravity">Center of gravity</a></b></dfn></dt><dd>The center of mass of an object, its balance point.</dd> <dt id="center_of_mass"><dfn><b><a href="/wiki/Center_of_mass" title="Center of mass">Center of mass</a></b></dfn></dt><dd>The weighted center of an object; a force applied through the center of mass will not cause rotation of the object.</dd> <dt id="center_of_pressure"><dfn><b><a href="/wiki/Center_of_pressure_(fluid_mechanics)" title="Center of pressure (fluid mechanics)">Center of pressure</a></b></dfn></dt><dd>is the point where the total sum of a <a href="/wiki/Pressure" title="Pressure">pressure</a> field acts on a body, causing a <a href="/wiki/Force" title="Force">force</a> to act through that point. The total force vector acting at the center of pressure is the value of the integrated vectorial pressure field. The resultant force and center of pressure location produce equivalent force and moment on the body as the original pressure field.</dd> <dt id="central_force_motion"><dfn><b><a href="/wiki/Central_force_motion" class="mw-redirect" title="Central force motion">Central force motion</a></b></dfn></dt><dd>.</dd> <dt id="central_limit_theorem"><dfn><b><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></b></dfn></dt><dd>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, the <i>central limit theorem</i> (<i>CLT</i>) establishes that, in some situations, when <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent random variables</a> are added, their properly normalized sum tends toward a <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> (informally a <i>bell curve</i>) even if the original variables themselves are not normally distributed. The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions.</dd> <dt id="central_processing_unit"><dfn><b><a href="/wiki/Central_processing_unit" title="Central processing unit">Central processing unit</a></b></dfn></dt><dd>A <i>central processing unit</i> (<i>CPU</i>) is the <a href="/wiki/Electronic_circuit" title="Electronic circuit">electronic circuitry</a> within a <a href="/wiki/Computer" title="Computer">computer</a> that carries out the <a href="/wiki/Instruction_(computing)" class="mw-redirect" title="Instruction (computing)">instructions</a> of a <a href="/wiki/Computer_program" title="Computer program">computer program</a> by performing the basic <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a>, logic, controlling and <a href="/wiki/Input/output" title="Input/output">input/output</a> (I/O) operations specified by the instructions. The computer industry has used the term <i>central processing unit</i> at least since the early 1960s.<sup id="cite_ref-weik1961_98-0" class="reference"><a href="#cite_note-weik1961-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> Traditionally, the term <i>CPU</i> refers to a <i>processor</i>, more specifically to its processing unit and <a href="/wiki/Control_unit" title="Control unit">control unit</a> (CU), distinguishing these core elements of a computer from external components such as <a href="/wiki/Main_memory" class="mw-redirect" title="Main memory">main memory</a> and <a href="/wiki/I/O" class="mw-redirect" title="I/O">I/O</a> circuitry.<sup id="cite_ref-kuck_99-0" class="reference"><a href="#cite_note-kuck-99"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup></dd> <dt id="centripetal_acceleration"><dfn><b><a href="/wiki/Acceleration#Tangential_and_centripetal_acceleration" title="Acceleration">Centripetal acceleration</a></b></dfn></dt><dd>.</dd> <dt id="centripetal_force"><dfn><b><a href="/wiki/Centripetal_force" title="Centripetal force">Centripetal force</a></b></dfn></dt><dd>A force acting against rotational acceleration.</dd> <dt id="centroid"><dfn><b><a href="/wiki/Centroid" title="Centroid">Centroid</a></b></dfn></dt><dd>The average point of volume for an object.</dd> <dt id="centrosome"><dfn><b><a href="/wiki/Centrosome" title="Centrosome">Centrosome</a></b></dfn></dt><dd>In <a href="/wiki/Cell_biology" title="Cell biology">cell biology</a>, the <i>centrosome</i> is an <a href="/wiki/Organelle" title="Organelle">organelle</a> that serves as the main <a href="/wiki/Microtubule_organizing_center" title="Microtubule organizing center">microtubule organizing center</a> (MTOC) of the animal <a href="/wiki/Cell_(biology)" title="Cell (biology)">cell</a> as well as a regulator of <a href="/wiki/Cell-cycle" class="mw-redirect" title="Cell-cycle">cell-cycle</a> progression. The centrosome is thought to have evolved only in the <a href="/wiki/Metazoa" class="mw-redirect" title="Metazoa">metazoan</a> lineage of <a href="/wiki/Eukaryote" title="Eukaryote">eukaryotic cells</a>.<sup id="cite_ref-pmid17977464_100-0" class="reference"><a href="#cite_note-pmid17977464-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Fungus" title="Fungus">Fungi</a> and <a href="/wiki/Plant" title="Plant">plants</a> lack centrosomes and therefore use structures other than MTOCs to organize their microtubules.<sup id="cite_ref-pmid12224551_101-0" class="reference"><a href="#cite_note-pmid12224551-101"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> <sup id="cite_ref-pmid15473833_102-0" class="reference"><a href="#cite_note-pmid15473833-102"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup></dd> <dt id="chain_reaction"><dfn><b><a href="/wiki/Chain_reaction" title="Chain reaction">Chain reaction</a></b></dfn></dt><dd>is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, <a href="/wiki/Positive_feedback" title="Positive feedback">positive feedback</a> leads to a self-amplifying <a href="/wiki/Chain_of_events" title="Chain of events">chain of events</a>.</dd> <dt id="change_of_base_rule"><dfn><b><a href="/wiki/Change_of_base_rule" class="mw-redirect" title="Change of base rule">Change of base rule</a></b></dfn></dt><dd>.</dd> <dt id="charles's_law"><dfn><b><a href="/wiki/Charles%27s_law" title="Charles's law">Charles's law</a></b></dfn></dt><dd><i>Charles's law</i> (also known as the <i>law of volumes</i>) is an experimental <a href="/wiki/Gas_laws" title="Gas laws">gas law</a> that describes how <a href="/wiki/Gas" title="Gas">gases</a> <a href="/wiki/Thermal_expansion" title="Thermal expansion">tend to expand when heated</a>. A modern statement of Charles's law is: When the <a href="/wiki/Pressure" title="Pressure">pressure</a> on a sample of a dry gas is held constant, the Kelvin temperature and the volume will be in direct proportion.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup></dd> <dt id="chemical_bond"><dfn><b><a href="/wiki/Chemical_bond" title="Chemical bond">Chemical bond</a></b></dfn></dt><dd>is a lasting attraction between <a href="/wiki/Atom" title="Atom">atoms</a>, <a href="/wiki/Ions" class="mw-redirect" title="Ions">ions</a> or <a href="/wiki/Molecules" class="mw-redirect" title="Molecules">molecules</a> that enables the formation of <a href="/wiki/Chemical_compound" title="Chemical compound">chemical compounds</a>. The bond may result from the <a href="/wiki/Electrostatic_force" class="mw-redirect" title="Electrostatic force">electrostatic force</a> of attraction between oppositely charged ions as in ionic bonds or through the sharing of electrons as in <a href="/wiki/Covalent_bond" title="Covalent bond">covalent bonds</a>. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bonds" such as covalent, <a href="/wiki/Ionic_bond" class="mw-redirect" title="Ionic bond">ionic</a> and <a href="/wiki/Metallic_bonding" title="Metallic bonding">metallic</a> bonds, and "weak bonds" or "secondary bonds" such as <a href="/wiki/Dipole%E2%80%93dipole_interaction" class="mw-redirect" title="Dipole–dipole interaction">dipole–dipole interactions</a>, the <a href="/wiki/London_dispersion_force" title="London dispersion force">London dispersion force</a> and <a href="/wiki/Hydrogen_bond" title="Hydrogen bond">hydrogen bonding</a>.</dd> <dt id="chemical_compound"><dfn><b><a href="/wiki/Chemical_compound" title="Chemical compound">Chemical compound</a></b></dfn></dt><dd>is a <a href="/wiki/Chemical_substance" title="Chemical substance">chemical substance</a> composed of many identical <a href="/wiki/Molecule" title="Molecule">molecules</a> (or <a href="/wiki/Molecular_entity" title="Molecular entity">molecular entities</a>) composed of <a href="/wiki/Atom" title="Atom">atoms</a> from more than one <a href="/wiki/Chemical_element" title="Chemical element">element</a> held together by <a href="/wiki/Chemical_bond" title="Chemical bond">chemical bonds</a>. A <a href="/wiki/Chemical_element" title="Chemical element">chemical element</a> bonded to an identical chemical element is not a chemical compound since only one element, not two different elements, is involved.</dd> <dt id="chemical_equilibrium"><dfn><b><a href="/wiki/Chemical_equilibrium" title="Chemical equilibrium">Chemical equilibrium</a></b></dfn></dt><dd>In a <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reaction</a>, <i>chemical equilibrium</i> is the state in which both reactants and products are present in <a href="/wiki/Concentration" title="Concentration">concentrations</a> which have no further tendency to change with time, so that there is no observable change in the properties of the system.<sup id="cite_ref-Atkins_104-0" class="reference"><a href="#cite_note-Atkins-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> Usually, this state results when the forward reaction proceeds at the same rate as the <a href="/wiki/Reversible_reaction" title="Reversible reaction">reverse reaction</a>. The <a href="/wiki/Reaction_rate" title="Reaction rate">reaction rates</a> of the forward and backward reactions are generally not zero, but equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as <i><a href="/wiki/Dynamic_equilibrium" title="Dynamic equilibrium">dynamic equilibrium</a></i>.<sup id="cite_ref-aj_105-0" class="reference"><a href="#cite_note-aj-105"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup></dd> <dt id="chemical_kinetics"><dfn><b><a href="/wiki/Chemical_kinetics" title="Chemical kinetics">Chemical kinetics</a></b></dfn></dt><dd><i>Chemical kinetics</i>, also known as <i>reaction kinetics</i>, is the study of <a href="/wiki/Reaction_rate" title="Reaction rate">rates</a> of <a href="/wiki/Chemical_process" title="Chemical process">chemical processes</a>. Chemical kinetics includes investigations of how different experimental conditions can influence the speed of a <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reaction</a> and yield information about the <a href="/wiki/Reaction_mechanism" title="Reaction mechanism">reaction's mechanism</a> and <a href="/wiki/Transition_state" title="Transition state">transition states</a>, as well as the construction of <a href="/wiki/Mathematical_model" title="Mathematical model">mathematical models</a> that can describe the characteristics of a chemical reaction.</dd> <dt id="chemical_reaction"><dfn><b><a href="/wiki/Chemical_reaction" title="Chemical reaction">Chemical reaction</a></b></dfn></dt><dd>A <i>chemical reaction</i> is a process that leads to the <a href="/wiki/IUPAC_nomenclature_for_organic_chemical_transformations" title="IUPAC nomenclature for organic chemical transformations">chemical transformation</a> of one set of <a href="/wiki/Chemical_substance" title="Chemical substance">chemical substances</a> to another.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> Classically, chemical reactions encompass changes that only involve the positions of <a href="/wiki/Electron" title="Electron">electrons</a> in the forming and breaking of <a href="/wiki/Chemical_bond" title="Chemical bond">chemical bonds</a> between <a href="/wiki/Atom" title="Atom">atoms</a>, with no change to the nuclei (no change to the elements present), and can often be described by a <a href="/wiki/Chemical_equation" title="Chemical equation">chemical equation</a>. <a href="/wiki/Nuclear_chemistry" title="Nuclear chemistry">Nuclear chemistry</a> is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.</dd> <dt id="chemistry"><dfn><b><a href="/wiki/Chemistry" title="Chemistry">Chemistry</a></b></dfn></dt><dd>is the <a href="/wiki/Scientific_discipline" class="mw-redirect" title="Scientific discipline">scientific discipline</a> involved with <a href="/wiki/Chemical_element" title="Chemical element">elements</a> and <a href="/wiki/Chemical_compound" title="Chemical compound">compounds</a> composed of <a href="/wiki/Atom" title="Atom">atoms</a>, <a href="/wiki/Molecule" title="Molecule">molecules</a> and <a href="/wiki/Ion" title="Ion">ions</a>: their composition, structure, properties, behavior and the changes they undergo during a <a href="/wiki/Chemical_reaction" title="Chemical reaction">reaction</a> with other <a href="/wiki/Chemical_substance" title="Chemical substance">substances</a>.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup></dd> <dt id="chloride"><dfn><b><a href="/wiki/Chloride" title="Chloride">Chloride</a></b></dfn></dt><dd>Any chemical compound containing the element chlorine.</dd> <dt id="chromate"><dfn><b><a href="/wiki/Chromate_ion" class="mw-redirect" title="Chromate ion">Chromate</a></b></dfn></dt><dd><i>Chromate</i> salts contain the chromate anion, <span class="chemf nowrap">CrO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>. <i>Dichromate</i> salts contain the dichromate anion, <span class="chemf nowrap">Cr<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">7</sub></span></span></span>. They are <a href="/wiki/Oxyanion" title="Oxyanion">oxyanions</a> of <a href="/wiki/Chromium" title="Chromium">chromium</a> in the 6+ <a href="/wiki/Oxidation_state" title="Oxidation state">oxidation state</a> . They are moderately strong <a href="/wiki/Oxidizing_agent" title="Oxidizing agent">oxidizing agents</a>. In an <a href="/wiki/Aqueous" class="mw-redirect" title="Aqueous">aqueous</a> <a href="/wiki/Solution_(chemistry)" title="Solution (chemistry)">solution</a>, chromate and dichromate ions can be interconvertible.</dd> <dt id="circular_motion"><dfn><b><a href="/wiki/Circular_motion" title="Circular motion">Circular motion</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, circular motion is a movement of an object along the <a href="/wiki/Circumference" title="Circumference">circumference</a> of a <a href="/wiki/Circle" title="Circle">circle</a> or <a href="/wiki/Rotation" title="Rotation">rotation</a> along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The <a href="/wiki/Rotation_around_a_fixed_axis" title="Rotation around a fixed axis">rotation around a fixed axis</a> of a three-dimensional body involves circular motion of its parts. The equations of motion describe the movement of the <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a> of a body.</dd> <dt id="civil_engineering"><dfn><b><a href="/wiki/Civil_engineering" title="Civil engineering">Civil engineering</a></b></dfn></dt><dd>The profession that deals with the design and construction of structures, or other fixed works.</dd> <dt id="clausius–clapeyron_relation"><dfn><b><a href="/wiki/Clausius%E2%80%93Clapeyron_relation" title="Clausius–Clapeyron relation">Clausius–Clapeyron relation</a></b></dfn></dt><dd>The <i>Clausius–Clapeyron relation</i>, named after <a href="/wiki/Rudolf_Clausius" title="Rudolf Clausius">Rudolf Clausius</a><sup id="cite_ref-clausius_112-0" class="reference"><a href="#cite_note-clausius-112"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Beno%C3%AEt_Paul_%C3%89mile_Clapeyron" class="mw-redirect" title="Benoît Paul Émile Clapeyron">Benoît Paul Émile Clapeyron</a>,<sup id="cite_ref-clapeyron_113-0" class="reference"><a href="#cite_note-clapeyron-113"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> is a way of characterizing a discontinuous <a href="/wiki/Phase_transition" title="Phase transition">phase transition</a> between two <a href="/wiki/Phases_of_matter" class="mw-redirect" title="Phases of matter">phases of matter</a> of a single constituent. On a <a href="/wiki/Pressure" title="Pressure">pressure</a>–<a href="/wiki/Temperature" title="Temperature">temperature</a> (P–T) diagram, the line separating the two phases is known as the <i>coexistence curve</i>. The Clausius–Clapeyron relation gives the <a href="/wiki/Slope" title="Slope">slope</a> of the <a href="/wiki/Tangents" class="mw-redirect" title="Tangents">tangents</a> to this curve. Mathematically, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} P}{\mathrm {d} T}}={\frac {L}{T\,\Delta v}}={\frac {\Delta s}{\Delta v}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>P</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>T</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mrow> <mi>T</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} P}{\mathrm {d} T}}={\frac {L}{T\,\Delta v}}={\frac {\Delta s}{\Delta v}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/764c7d6b1653754aab38fd018226af1628c25840" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.54ex; height:5.509ex;" alt="{\displaystyle {\frac {\mathrm {d} P}{\mathrm {d} T}}={\frac {L}{T\,\Delta v}}={\frac {\Delta s}{\Delta v}},}"></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} P/\mathrm {d} T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} P/\mathrm {d} T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a823c52bc697716c7b5af6725a82a4eb771d3fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.129ex; height:2.843ex;" alt="{\displaystyle \mathrm {d} P/\mathrm {d} T}"></span> is the slope of the tangent to the coexistence curve at any point, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is the specific <a href="/wiki/Latent_heat" title="Latent heat">latent heat</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> is the <a href="/wiki/Temperature" title="Temperature">temperature</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e18b43e4225eeaafeeb25aefc4ee90bd86f004dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.063ex; height:2.176ex;" alt="{\displaystyle \Delta v}"></span> is the <a href="/wiki/Specific_volume" title="Specific volume">specific volume</a> change of the phase transition, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd7783a6d29d2ca4d9f1e0f501c4c6483fc058bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.026ex; height:2.176ex;" alt="{\displaystyle \Delta s}"></span> is the <a href="/wiki/Specific_entropy" class="mw-redirect" title="Specific entropy">specific entropy</a> change of the phase transition.</dd> <dt id="clausius_inequality"><dfn><b><a href="/wiki/Clausius_inequality" class="mw-redirect" title="Clausius inequality">Clausius inequality</a></b></dfn></dt><dd>.</dd> <dt id="clausius_theorem"><dfn><b><a href="/wiki/Clausius_theorem" title="Clausius theorem">Clausius theorem</a></b></dfn></dt><dd>The <i>Clausius theorem</i> (1855) states that a system exchanging heat with external reservoirs and undergoing a cyclic process, is one that ultimately returns a system to its original state, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oint {\frac {\delta Q}{T_{surr}}}\leq 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mi>Q</mi> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>u</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oint {\frac {\delta Q}{T_{surr}}}\leq 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/475878bcbfacd52be555be4453874e9af7b5f444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.109ex; height:5.843ex;" alt="{\displaystyle \oint {\frac {\delta Q}{T_{surr}}}\leq 0,}"></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf715eece146c816847a8c5d56eae97798453d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.887ex; height:2.676ex;" alt="{\displaystyle \delta Q}"></span> is the infinitesimal amount of heat absorbed by the system from the reservoir and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{surr}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>u</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{surr}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bde5f10746eb785350c6da956d15eeea4ea4f2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.784ex; height:2.509ex;" alt="{\displaystyle T_{surr}}"></span> is the <a href="/wiki/Temperature" title="Temperature">temperature</a> of the external reservoir (surroundings) at a particular instant in time. In the special case of a reversible process, the equality holds.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> The reversible case is used to introduce the <a href="/wiki/Entropy" title="Entropy">entropy</a> state function. This is because in a cyclic process the variation of a state function is zero. In words, the Clausius statement states that it is impossible to construct a device whose sole effect is the transfer of heat from a cool reservoir to a hot reservoir.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> Equivalently, heat spontaneously flows from a hot body to a cooler one, not the other way around.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> The generalized "inequality of Clausius"<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dS>{\frac {\delta Q}{T_{surr}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>S</mi> <mo>></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mi>Q</mi> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>u</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dS>{\frac {\delta Q}{T_{surr}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d85744bbf212d267a1e343230ea76a45b23c0654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.434ex; height:5.676ex;" alt="{\displaystyle dS>{\frac {\delta Q}{T_{surr}}}}"></span></dd></dl> for an infinitesimal change in entropy <i>S</i> applies not only to cyclic processes, but to any process that occurs in a closed system.</dd> <dt id="coefficient_of_performance"><dfn><b><a href="/wiki/Coefficient_of_performance" title="Coefficient of performance">Coefficient of performance</a></b></dfn></dt><dd>The <i>coefficient of performance</i> or <i>COP</i> (sometimes <i>CP</i> or <i>CoP</i>) of a <a href="/wiki/Heat_pump_and_refrigeration_cycle" title="Heat pump and refrigeration cycle">heat pump, refrigerator or air conditioning system</a> is a ratio of useful heating or cooling provided to work required.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup> Higher COPs equate to lower operating costs. The COP usually exceeds 1, especially in heat pumps, because, instead of just converting work to heat (which, if 100% efficient, would be a COP_hp of 1), it pumps additional heat from a heat source to where the heat is required. For complete systems, COP calculations should include energy consumption of all power consuming auxiliaries. COP is highly dependent on operating conditions, especially absolute temperature and relative temperature between sink and system, and is often graphed or averaged against expected conditions.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup></dd> <dt id="coefficient_of_variation"><dfn><b><a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">Coefficient of variation</a></b></dfn></dt><dd>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <i>coefficient of variation</i> (<i>CV</i>), also known as <i>relative standard deviation</i> (<i>RSD</i>), is a <a href="/wiki/Standardized_(statistics)" class="mw-redirect" title="Standardized (statistics)">standardized</a> measure of <a href="/wiki/Statistical_dispersion" title="Statistical dispersion">dispersion</a> of a <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> or <a href="/wiki/Frequency_distribution" class="mw-redirect" title="Frequency distribution">frequency distribution</a>. It is often expressed as a percentage, and is defined as the ratio of the <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>σ<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d4ebf618b2ab59428af1b3f2e8e251c78d2f57a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.91ex; height:1.676ex;" alt="{\displaystyle \ \sigma }"></span> to the <a href="/wiki/Mean" title="Mean">mean</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09bfcd47d25310c5187294b07d55e0954c2685f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.982ex; height:2.176ex;" alt="{\displaystyle \ \mu }"></span> (or its <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mu |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mu |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f48e9c3009a01ad6bf5f22ce62c842ff99f19521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.695ex; height:2.843ex;" alt="{\displaystyle |\mu |}"></span>).</dd> <dt id="coherence"><dfn><b><a href="/wiki/Coherence_(physics)" title="Coherence (physics)">Coherence</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, two wave sources are perfectly coherent if they have a constant <a href="/wiki/Phase_difference" class="mw-redirect" title="Phase difference">phase difference</a> and the same <a href="/wiki/Frequency" title="Frequency">frequency</a>, and the same <a href="/wiki/Waveform" title="Waveform">waveform</a>. Coherence is an ideal property of <a href="/wiki/Wave" title="Wave">waves</a> that enables stationary (i.e. temporally and spatially constant) <a href="/wiki/Interference_(wave_propagation)" class="mw-redirect" title="Interference (wave propagation)">interference</a>. It contains several distinct concepts, which are limiting cases that never quite occur in reality but allow an understanding of the physics of waves, and has become a very important concept in quantum physics. More generally, <i>coherence</i> describes all properties of the <a href="/wiki/Correlation_function" title="Correlation function">correlation</a> between <a href="/wiki/Physical_quantities" class="mw-redirect" title="Physical quantities">physical quantities</a> of a single wave, or between several waves or wave packets.</dd> <dt id="cohesion"><dfn><b><a href="/wiki/Cohesion_(chemistry)" title="Cohesion (chemistry)">Cohesion</a></b></dfn></dt><dd>or <i>cohesive attraction</i> or <i>cohesive force</i> is the action or <a href="/wiki/Chemical_property" title="Chemical property">property</a> of like <a href="/wiki/Molecule" title="Molecule">molecules</a> sticking together, being mutually <a href="/wiki/Intermolecular_attraction" class="mw-redirect" title="Intermolecular attraction">attractive</a>. It is an intrinsic property of a <a href="/wiki/Chemical_substance" title="Chemical substance">substance</a> that is caused by the shape and structure of its molecules, which makes the distribution of orbiting <a href="/wiki/Electron" title="Electron">electrons</a> irregular when molecules get close to one another, creating <a href="/wiki/Coulomb_force" class="mw-redirect" title="Coulomb force">electrical attraction</a> that can maintain a microscopic structure such as a <a href="/wiki/Drop_(liquid)" title="Drop (liquid)">water drop</a>. In other words, cohesion allows for <a href="/wiki/Surface_tension" title="Surface tension">surface tension</a>, creating a "solid-like" state upon which light-weight or low-density materials can be placed.</dd> <dt id="cold_forming"><dfn><b><a href="/wiki/Cold_forming" class="mw-redirect" title="Cold forming">Cold forming</a></b></dfn></dt><dd>or <i>cold working</i>, any metal-working procedure (such as hammering, rolling, shearing, bending, milling, etc.) carried out below the metal's recrystallization temperature.</dd> <dt id="combustion"><dfn><b><a href="/wiki/Combustion" title="Combustion">Combustion</a></b></dfn></dt><dd>or <i>burning</i>,<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup> is a high-temperature <a href="/wiki/Exothermic" class="mw-redirect" title="Exothermic">exothermic</a> <a href="/wiki/Redox" title="Redox">redox</a> <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reaction</a> between a <a href="/wiki/Fuel" title="Fuel">fuel</a> (the reductant) and an <a href="/wiki/Oxidant" class="mw-redirect" title="Oxidant">oxidant</a>, usually atmospheric <a href="/wiki/Oxygen" title="Oxygen">oxygen</a>, that produces oxidized, often gaseous products, in a mixture termed as <a href="/wiki/Smoke" title="Smoke">smoke</a>.</dd> <dt id="'''compensation'''"><dfn><b>Compensation</b></dfn></dt><dd>Is planning for side effects or other unintended issues in a <a href="/wiki/Design" title="Design">design</a>. In a more simpler term, it is a "counter-procedure" plan on expected side effect performed to produce more efficient and useful results. The design of an <a href="/wiki/Invention" title="Invention">invention</a> can itself also be to compensate for some other existing issue or <a href="/wiki/Action_(philosophy)" title="Action (philosophy)">exception</a>.</dd> <dt id="compiler"><dfn><b><a href="/wiki/Compiler" title="Compiler">Compiler</a></b></dfn></dt><dd>A computer program that translates a high-level language into machine language.</dd> <dt id="compressive_strength"><dfn><b><a href="/wiki/Compressive_strength" title="Compressive strength">Compressive strength</a></b></dfn></dt><dd><i>Compressive strength</i> or <i>compression strength</i> is the capacity of a material or structure to withstand loads tending to reduce size, as opposed to <a href="/wiki/Ultimate_tensile_strength" title="Ultimate tensile strength">tensile strength</a>, which withstands loads tending to elongate. In other words, compressive strength resists <a href="/wiki/Compression_(physics)" title="Compression (physics)">compression</a> (being pushed together), whereas tensile strength resists <a href="/wiki/Tension_(physics)" title="Tension (physics)">tension</a> (being pulled apart). In the study of <a href="/wiki/Strength_of_materials" title="Strength of materials">strength of materials</a>, tensile strength, compressive strength, and <a href="/wiki/Shear_strength" title="Shear strength">shear strength</a> can be analyzed independently.</dd> <dt id="computational_fluid_dynamics"><dfn><b><a href="/wiki/Computational_fluid_dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a></b></dfn></dt><dd>The numerical solution of flow equations in practical problems such as aircraft design or hydraulic structures.</dd> <dt id="computer"><dfn><b><a href="/wiki/Computer" title="Computer">Computer</a></b></dfn></dt><dd>A <b>computer</b> is a device that can be instructed to carry out sequences of <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a> or <a href="/wiki/Boolean_algebra" title="Boolean algebra">logical</a> operations automatically via <a href="/wiki/Computer_programming" title="Computer programming">computer programming</a>. Modern computers have the ability to follow generalized sets of operations, called <i><a href="/wiki/Computer_program" title="Computer program">programs</a>.</i> These programs enable computers to perform an extremely wide range of tasks.</dd> <dt id="computer-aided_design"><dfn><b><a href="/wiki/Computer-aided_design" title="Computer-aided design">Computer-aided design</a></b></dfn></dt><dd><i>Computer-aided design</i> (<i>CAD</i>) is the use of <a href="/wiki/Computer_system" class="mw-redirect" title="Computer system">computer systems</a> (or <style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="[[workstation]]s"></span><span class="vanchor-text"><a href="/wiki/Workstation" title="Workstation">workstations</a></span></span>) to aid in the creation, modification, analysis, or optimization of a <a href="/wiki/Design" title="Design">design</a>.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup> CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing.<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup> CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The term <i>CADD</i> (for <i>computer aided design and drafting</i>) is also used.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup></dd> <dt id="computer-aided_engineering"><dfn><b><a href="/wiki/Computer-aided_engineering" title="Computer-aided engineering">Computer-aided engineering</a></b></dfn></dt><dd><i>Computer-aided engineering</i> (<i>CAE</i>) is the broad usage of <a href="/wiki/Computer_software" class="mw-redirect" title="Computer software">computer software</a> to aid in <a href="/wiki/Engineering" title="Engineering">engineering</a> analysis tasks. It includes <span class="nowrap"><a href="/wiki/Finite_element_analysis" class="mw-redirect" title="Finite element analysis">finite element analysis</a> (FEA)</span>, <span class="nowrap"><a href="/wiki/Computational_fluid_dynamics" title="Computational fluid dynamics">computational fluid dynamics</a> (CFD)</span>, <span class="nowrap"><a href="/wiki/Multibody_dynamics" class="mw-redirect" title="Multibody dynamics">multibody dynamics</a> (MBD)</span>, <a href="/wiki/Durability" title="Durability">durability</a> and <a href="/wiki/Optimization" class="mw-redirect" title="Optimization">optimization</a>.</dd> <dt id="computer-aided_manufacturing"><dfn><b><a href="/wiki/Computer-aided_manufacturing" title="Computer-aided manufacturing">Computer-aided manufacturing</a></b></dfn></dt><dd><b>Computer-aided manufacturing</b> (<b>CAM</b>) is the use of software to control <a href="/wiki/Machine_tool" title="Machine tool">machine tools</a> and related ones in the <a href="/wiki/Manufacturing" title="Manufacturing">manufacturing</a> of workpieces.<sup id="cite_ref-ota_125-0" class="reference"><a href="#cite_note-ota-125"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-daintith_127-0" class="reference"><a href="#cite_note-daintith-127"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup> This is not the only definition for CAM, but it is the most common;<sup id="cite_ref-ota_125-1" class="reference"><a href="#cite_note-ota-125"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup> CAM may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup></dd> <dt id="computer_engineering"><dfn><b><a href="/wiki/Computer_engineering" title="Computer engineering">Computer engineering</a></b></dfn></dt><dd><i>Computer engineering</i> is a <a href="/wiki/Discipline_(academia)" class="mw-redirect" title="Discipline (academia)">discipline</a> that integrates several fields of <a href="/wiki/Computer_science" title="Computer science">computer science</a> and <a href="/wiki/Electronics_engineering" class="mw-redirect" title="Electronics engineering">electronics engineering</a> required to develop computer hardware and <a href="/wiki/Computer_software" class="mw-redirect" title="Computer software">software</a>.<sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup></dd> <dt id="computer_science"><dfn><b><a href="/wiki/Computer_science" title="Computer science">Computer science</a></b></dfn></dt><dd>is the theory, experimentation, and engineering that form the basis for the design and use of <a href="/wiki/Computer" title="Computer">computers</a>. It involves the study of <a href="/wiki/Algorithm" title="Algorithm">algorithms</a> that process, store, and communicate <a href="/wiki/Digital_data" title="Digital data">digital</a> <a href="/wiki/Information" title="Information">information</a>. A <a href="/wiki/Computer_scientist" title="Computer scientist">computer scientist</a> specializes in the theory of computation and the design of computational systems.<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup></dd> <dt id="concave_lens"><dfn><b><a href="/wiki/Concave_lens" class="mw-redirect" title="Concave lens">Concave lens</a></b></dfn></dt><dd>Lenses are classified by the curvature of the two optical surfaces. A lens is <i>biconvex</i> (or <i>double convex</i>, or just <i>convex</i>) if both surfaces are <a href="https://en.wiktionary.org/wiki/convex" class="extiw" title="wikt:convex">convex</a>. If both surfaces have the same radius of curvature, the lens is <i>equiconvex</i>. A lens with two <a href="https://en.wiktionary.org/wiki/concave" class="extiw" title="wikt:concave">concave</a> surfaces is <i>biconcave</i> (or just <i>concave</i>). If one of the surfaces is flat, the lens is <i>plano-convex</i> or <i>plano-concave</i> depending on the curvature of the other surface. A lens with one convex and one concave side is <i>convex-concave</i> or <i>meniscus</i>.</dd> <dt id="condensed_matter_physics"><dfn><b><a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">Condensed matter physics</a></b></dfn></dt><dd>is the field of physics that deals with the macroscopic and microscopic physical properties of matter. In particular it is concerned with the "condensed" phases that appear whenever the number of constituents in a system is extremely large and the interactions between the constituents are strong.</dd> <dt id="confidence_interval"><dfn><b><a href="/wiki/Confidence_interval" title="Confidence interval">Confidence interval</a></b></dfn></dt><dd>In <a href="/wiki/Frequentist_statistics" class="mw-redirect" title="Frequentist statistics">statistics</a>, a <i>confidence interval</i> or <i>compatibility interval</i> (<i>CI</i>) is a type of <a href="/wiki/Interval_estimate" class="mw-redirect" title="Interval estimate">interval estimate</a>, computed from the statistics of the observed data, that might contain the true value of an unknown <a href="/wiki/Population_parameter" class="mw-redirect" title="Population parameter">population parameter</a>. The interval has an associated <b>confidence level</b> that, loosely speaking, quantifies the level of confidence that the parameter lies in the interval. More strictly speaking, the <i>confidence level</i> represents the frequency (i.e. the proportion) of possible confidence intervals that contain the true value of the unknown population parameter. In other words, if confidence intervals are constructed using a given confidence level from an infinite number of independent sample statistics, the proportion of those intervals that contain the true value of the parameter will be equal to the confidence level.<sup id="cite_ref-CH_134-0" class="reference"><a href="#cite_note-CH-134"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KS_135-0" class="reference"><a href="#cite_note-KS-135"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Neyman_136-0" class="reference"><a href="#cite_note-Neyman-136"><span class="cite-bracket">[</span>136<span class="cite-bracket">]</span></a></sup></dd> <dt id="conjugate_acid"><dfn><b><a href="/wiki/Conjugate_acid" class="mw-redirect" title="Conjugate acid">Conjugate acid</a></b></dfn></dt><dd>A <i>conjugate acid</i>, within the <a href="/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory" title="Brønsted–Lowry acid–base theory">Brønsted–Lowry acid–base theory</a>, is a <a href="/wiki/Chemical_species" title="Chemical species">species</a> formed by the <a href="/wiki/Protonation" title="Protonation">reception of a proton</a> (<a href="/wiki/Hydron_(chemistry)" title="Hydron (chemistry)">H<sup>+</sup></a>) by a <a href="/wiki/Base_(chemistry)" title="Base (chemistry)">base</a>—in other words, it is a base with a <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> ion added to it. On the other hand, a <b>conjugate base</b> is what is left over after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a species formed by the <a href="/wiki/Deprotonation" title="Deprotonation">removal of a proton</a> from an acid.<sup id="cite_ref-Zumdahl,_Stephen_S._2007_137-0" class="reference"><a href="#cite_note-Zumdahl,_Stephen_S._2007-137"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> Because <a href="/wiki/Polyprotic_acid" class="mw-redirect" title="Polyprotic acid">some acids</a> are capable of releasing multiple protons, the conjugate base of an acid may itself be acidic.</dd> <dt id="conjugate_base"><dfn><b><a href="/wiki/Conjugate_base" class="mw-redirect" title="Conjugate base">Conjugate base</a></b></dfn></dt><dd>A <i>conjugate acid</i>, within the <a href="/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory" title="Brønsted–Lowry acid–base theory">Brønsted–Lowry acid–base theory</a>, is a <a href="/wiki/Chemical_species" title="Chemical species">species</a> formed by the <a href="/wiki/Protonation" title="Protonation">reception of a proton</a> (<a href="/wiki/Hydron_(chemistry)" title="Hydron (chemistry)">H<sup>+</sup></a>) by a <a href="/wiki/Base_(chemistry)" title="Base (chemistry)">base</a>—in other words, it is a base with a <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> ion added to it. On the other hand, a <i>conjugate base</i> is what is left over after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a species formed by the <a href="/wiki/Deprotonation" title="Deprotonation">removal of a proton</a> from an acid.<sup id="cite_ref-Zumdahl,_Stephen_S._2007_137-1" class="reference"><a href="#cite_note-Zumdahl,_Stephen_S._2007-137"><span class="cite-bracket">[</span>137<span class="cite-bracket">]</span></a></sup> Because <a href="/wiki/Polyprotic_acid" class="mw-redirect" title="Polyprotic acid">some acids</a> are capable of releasing multiple protons, the conjugate base of an acid may itself be acidic.</dd> <dt id="conservation_of_energy"><dfn><b><a href="/wiki/Conservation_of_energy" title="Conservation of energy">Conservation of energy</a></b></dfn></dt><dd>In physics and chemistry, the <i>law of conservation of energy</i> states that the total <a href="/wiki/Energy" title="Energy">energy</a> of an <a href="/wiki/Isolated_system" title="Isolated system">isolated system</a> remains constant; it is said to be <a href="/wiki/Conservation_law" title="Conservation law"><i>conserved</i></a> over time.<sup id="cite_ref-Feynman2Ch1S2_138-0" class="reference"><a href="#cite_note-Feynman2Ch1S2-138"><span class="cite-bracket">[</span>138<span class="cite-bracket">]</span></a></sup> This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.</dd> <dt id="conservation_of_mass"><dfn><b><a href="/wiki/Conservation_of_mass" title="Conservation of mass">Conservation of mass</a></b></dfn></dt><dd>The <i>law of conservation of mass</i> or <i>principle of mass conservation</i> states that for any <a href="/wiki/Closed_system" title="Closed system">system closed</a> to all transfers of <a href="/wiki/Matter" title="Matter">matter</a> and <a href="/wiki/Energy" title="Energy">energy</a>, the <a href="/wiki/Mass" title="Mass">mass</a> of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.</dd> <dt id="continuity_equation"><dfn><b><a href="/wiki/Continuity_equation" title="Continuity equation">Continuity equation</a></b></dfn></dt><dd>A <i>continuity equation</i> in physics is an <a href="/wiki/Equation" title="Equation">equation</a> that describes the transport of some quantity. It is particularly simple and powerful when applied to a <a href="/wiki/Conserved_quantity" title="Conserved quantity">conserved quantity</a>, but it can be generalized to apply to any <a href="/wiki/Intensive_and_extensive_properties" title="Intensive and extensive properties">extensive quantity</a>. Since <a href="/wiki/Mass" title="Mass">mass</a>, <a href="/wiki/Energy" title="Energy">energy</a>, <a href="/wiki/Momentum" title="Momentum">momentum</a>, <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a> and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.</dd> <dt id="continuum_mechanics"><dfn><b><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></b></dfn></dt><dd>is a branch of <a href="/wiki/Mechanics" title="Mechanics">mechanics</a> that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a> was the first to formulate such models in the 19th century.</dd> <dt id="control_engineering"><dfn><b><a href="/wiki/Control_engineering" title="Control engineering">Control engineering</a></b></dfn></dt><dd><i>Control engineering</i> or <i>control systems engineering</i> is an <a href="/wiki/Engineering" title="Engineering">engineering</a> discipline that applies <a href="/wiki/Automatic_control" class="mw-redirect" title="Automatic control">automatic control</a> theory to design systems with desired behaviors in <a href="/wiki/Control_theory" title="Control theory">control</a> environments.<sup id="cite_ref-Case_Western_Reserve_University_139-0" class="reference"><a href="#cite_note-Case_Western_Reserve_University-139"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> The discipline of controls overlaps and is usually taught along with <a href="/wiki/Electrical_engineering" title="Electrical engineering">electrical engineering</a> at many institutions around the world.<sup id="cite_ref-Case_Western_Reserve_University_139-1" class="reference"><a href="#cite_note-Case_Western_Reserve_University-139"><span class="cite-bracket">[</span>139<span class="cite-bracket">]</span></a></sup> .</dd> <dt id="convex_lens"><dfn><b><a href="/wiki/Convex_lens" class="mw-redirect" title="Convex lens">Convex lens</a></b></dfn></dt><dd>Lenses are classified by the curvature of the two optical surfaces. A lens is <i>biconvex</i> (or <i>double convex</i>, or just <i>convex</i>) if both surfaces are <a href="https://en.wiktionary.org/wiki/convex" class="extiw" title="wikt:convex">convex</a>. If both surfaces have the same radius of curvature, the lens is <i>equiconvex</i>. A lens with two concave surfaces is <i>biconcave</i> (or just <i>concave</i>). If one of the surfaces is flat, the lens is <i>plano-convex</i> or <i>plano-concave</i> depending on the curvature of the other surface. A lens with one convex and one concave side is <i>convex-concave</i> or <i>meniscus</i>.</dd> <dt id="corrosion"><dfn><b><a href="/wiki/Corrosion" title="Corrosion">Corrosion</a></b></dfn></dt><dd>is a <a href="/wiki/Erosion" title="Erosion">natural process</a>, which converts a refined metal to a more chemically-stable form, such as its <a href="/wiki/Oxide" title="Oxide">oxide</a>, <a href="/wiki/Hydroxide" title="Hydroxide">hydroxide</a>, or <a href="/wiki/Sulfide" title="Sulfide">sulfide</a>. It is the gradual destruction of materials (usually <a href="/wiki/Metal" title="Metal">metals</a>) by chemical and/or electrochemical reaction with their environment. <a href="/wiki/Corrosion_engineering" title="Corrosion engineering">Corrosion engineering</a> is the field dedicated to controlling and stopping corrosion.</dd> <dt id="cosmic_rays"><dfn><b><a href="/wiki/Cosmic_rays" class="mw-redirect" title="Cosmic rays">Cosmic rays</a></b></dfn></dt><dd><i>Cosmic rays</i> are <a href="/wiki/Ionizing_radiation" title="Ionizing radiation">high-energy radiation</a>, mainly originating outside the <a href="/wiki/Solar_System" title="Solar System">Solar System</a>.<sup id="cite_ref-140" class="reference"><a href="#cite_note-140"><span class="cite-bracket">[</span>140<span class="cite-bracket">]</span></a></sup></dd> <dt id="coulomb"><dfn><b><a href="/wiki/Coulomb" title="Coulomb">Coulomb</a></b></dfn></dt><dd>The <i>coulomb</i> (symbol: C) is the <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a> (SI) unit of <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>. It is the charge (symbol: <i>Q</i> or <i>q</i>) transported by a constant current of one <a href="/wiki/Ampere" title="Ampere">ampere</a> in one <a href="/wiki/Second" title="Second">second</a>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1~{\text{C}}=1~{\text{A}}\cdot 1~{\text{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>C</mtext> </mrow> <mo>=</mo> <mn>1</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>A</mtext> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1~{\text{C}}=1~{\text{A}}\cdot 1~{\text{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ce38f7e22cc71eacfca5893a60eab6523744dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.344ex; height:2.176ex;" alt="{\displaystyle 1~{\text{C}}=1~{\text{A}}\cdot 1~{\text{s}}}"></span></dd></dl> Thus, it is also the amount of excess charge on a <a href="/wiki/Capacitor" title="Capacitor">capacitor</a> of one <a href="/wiki/Farad" title="Farad">farad</a> charged to a potential difference of one <a href="/wiki/Volt" title="Volt">volt</a>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1~{\text{C}}=1~{\text{F}}\cdot 1~{\text{V}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>C</mtext> </mrow> <mo>=</mo> <mn>1</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>F</mtext> </mrow> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>V</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1~{\text{C}}=1~{\text{F}}\cdot 1~{\text{V}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68bb8a5b13c96fa0ac7cf6c50b57f1712f7b07fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.946ex; height:2.176ex;" alt="{\displaystyle 1~{\text{C}}=1~{\text{F}}\cdot 1~{\text{V}}}"></span></dd></dl> The coulomb is equivalent to the charge of approximately <span class="nowrap"><span data-sort-value="7018624200000000000♠"></span>6.242<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>18</sup></span> (<span class="nowrap"><span data-sort-value="6995103600000000000♠"></span>1.036<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−5</sup></span> <a href="/wiki/Mole_(unit)" title="Mole (unit)">mol</a>) <a href="/wiki/Proton" title="Proton">protons</a>, and −1 C is equivalent to the charge of approximately <span class="nowrap"><span data-sort-value="7018624200000000000♠"></span>6.242<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>18</sup></span> <a href="/wiki/Electron" title="Electron">electrons</a>. A <a href="/wiki/2019_revision_of_the_SI" title="2019 revision of the SI">new definition</a>, in terms of the <a href="/wiki/Elementary_charge" title="Elementary charge">elementary charge</a>, will take effect on 20 May 2019.<sup id="cite_ref-draft-resolution-A_141-0" class="reference"><a href="#cite_note-draft-resolution-A-141"><span class="cite-bracket">[</span>141<span class="cite-bracket">]</span></a></sup> The new definition defines the <a href="/wiki/Elementary_charge" title="Elementary charge">elementary charge</a> (the charge of the proton) as exactly <span class="nowrap"><span data-sort-value="6981160217663400000♠"></span>1.602<span style="margin-left:.25em;">176</span><span style="margin-left:.25em;">634</span><span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−19</sup></span> coulombs. This would implicitly define the coulomb as <style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac"><span class="num">1</span>⁄<span class="den"><span class="nowrap"><span data-sort-value="6999160217663400000♠"></span>0.160<span style="margin-left:.25em;">217</span><span style="margin-left:.25em;">6634</span></span></span></span><span style="margin:0 .15em 0 .25em">×</span>10<sup><span class="nowrap"><span data-sort-value="7001180000000000000♠"></span>18</span></sup> elementary charges.</dd> <dt id="coulomb's_law"><dfn><b><a href="/wiki/Coulomb%27s_law" title="Coulomb's law">Coulomb's law</a></b></dfn></dt><dd><i>Coulomb's law</i>, or <i>Coulomb's inverse-square law</i>, is a <a href="/wiki/Physical_law" class="mw-redirect" title="Physical law">law</a> of <a href="/wiki/Physics" title="Physics">physics</a> for quantifying Coulomb's force, or electrostatic force. Electrostatic force is the amount of force with which stationary, <a href="/wiki/Electric_charge" title="Electric charge">electrically charged</a> particles either repel, or attract each other. This force and the law for quantifying it, represent one of the most basic forms of force used in the physical sciences, and were an essential basis to the study and development of the theory and field of <a href="/wiki/Classical_electromagnetism" title="Classical electromagnetism">classical electromagnetism</a>. The law was first published in 1785 by French physicist <a href="/wiki/Charles-Augustin_de_Coulomb" title="Charles-Augustin de Coulomb">Charles-Augustin de Coulomb</a>.<sup id="cite_ref-142" class="reference"><a href="#cite_note-142"><span class="cite-bracket">[</span>142<span class="cite-bracket">]</span></a></sup> In its <a href="/wiki/Scalar_(physics)" title="Scalar (physics)">scalar</a> form, the law is: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=k_{e}{\frac {q_{1}q_{2}}{r^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=k_{e}{\frac {q_{1}q_{2}}{r^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25e791fb1cd6c2665dcfe63b7813009a800a6b66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.068ex; height:5.176ex;" alt="{\displaystyle F=k_{e}{\frac {q_{1}q_{2}}{r^{2}}}}"></span>,</dd></dl> where <i>k</i><sub><i>e</i></sub> is the <a href="/wiki/Coulomb_constant" class="mw-redirect" title="Coulomb constant">Coulomb constant</a> (<i>k</i><sub><i>e</i></sub> ≈ <span class="nowrap"><span data-sort-value="7009900000000000000♠"></span>9<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>9</sup> N⋅m<sup>2</sup>⋅C<sup>−2</sup></span>), <i>q</i><sub>1</sub> and <i>q</i><sub>2</sub> are the signed magnitudes of the charges, and the scalar <i>r</i> is the distance between the charges. The force of the interaction between the charges is attractive if the charges have opposite signs (i.e., <i>F</i> is negative) and repulsive if like-signed (i.e., <i>F</i> is positive). Being an <a href="/wiki/Inverse-square_law" title="Inverse-square law">inverse-square law</a>, the law is analogous to <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a>'s inverse-square <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">law of universal gravitation</a>. Coulomb's law can be used to derive <a href="/wiki/Gauss%27s_law" title="Gauss's law">Gauss's law</a>, and vice versa.</dd> <dt id="covalent_bond"><dfn><b><a href="/wiki/Covalent_bond" title="Covalent bond">Covalent bond</a></b></dfn></dt><dd>A <i>covalent bond</i>, also called a <i>molecular bond</i>, is a <a href="/wiki/Chemical_bond" title="Chemical bond">chemical bond</a> that involves the sharing of <a href="/wiki/Electron_pair" title="Electron pair">electron pairs</a> between <a href="/wiki/Atom" title="Atom">atoms</a>.</dd> <dt id="crookes_tube"><dfn><b><a href="/wiki/Crookes_tube" title="Crookes tube">Crookes tube</a></b></dfn></dt><dd>A type of vacuum tube that demonstrates cathode rays.</dd> <dt id="cryogenics"><dfn><b><a href="/wiki/Cryogenics" title="Cryogenics">Cryogenics</a></b></dfn></dt><dd>The science of low temperatures.</dd> <dt id="crystallization"><dfn><b><a href="/wiki/Crystallization" title="Crystallization">Crystallization</a></b></dfn></dt><dd><i>Crystallization</i> is the (natural or artificial) process by which a solid forms, where the atoms or molecules are highly organized into a structure known as a <a href="/wiki/Crystal" title="Crystal">crystal</a>. Some of the ways by which crystals form are <a href="/wiki/Precipitation_(chemistry)" title="Precipitation (chemistry)">precipitating</a> from a <a href="/wiki/Solution_(chemistry)" title="Solution (chemistry)">solution</a>, <a href="/wiki/Freezing" title="Freezing">freezing</a>, or more rarely <a href="/wiki/Deposition_(physics)" class="mw-redirect" title="Deposition (physics)">deposition</a> directly from a <a href="/wiki/Gas" title="Gas">gas</a>. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation.</dd> <dt id="crystallography"><dfn><b><a href="/wiki/Crystallography" title="Crystallography">Crystallography</a></b></dfn></dt><dd>The study of crystals.</dd> <dt id="curvilinear_motion"><dfn><b><a href="/wiki/Curvilinear_motion" title="Curvilinear motion">Curvilinear motion</a></b></dfn></dt><dd>describes the motion of a moving particle that conforms to a known or fixed curve. The study of such motion involves the use of two co-ordinate systems, the first being planar motion and the latter being cylindrical motion.</dd> <dt id="cyclotron"><dfn><b><a href="/wiki/Cyclotron" title="Cyclotron">Cyclotron</a></b></dfn></dt><dd>A <i>cyclotron</i> is a type of <a href="/wiki/Particle_accelerator" title="Particle accelerator">particle accelerator</a> invented by <a href="/wiki/Ernest_O._Lawrence" class="mw-redirect" title="Ernest O. Lawrence">Ernest O. Lawrence</a> in 1929–1930 at the <a href="/wiki/University_of_California,_Berkeley" title="University of California, Berkeley">University of California, Berkeley</a>,<sup id="cite_ref-143" class="reference"><a href="#cite_note-143"><span class="cite-bracket">[</span>143<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">[</span>144<span class="cite-bracket">]</span></a></sup> and patented in 1932.<sup id="cite_ref-Patent1948384_145-0" class="reference"><a href="#cite_note-Patent1948384-145"><span class="cite-bracket">[</span>145<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Lawrence_146-0" class="reference"><a href="#cite_note-Lawrence-146"><span class="cite-bracket">[</span>146<span class="cite-bracket">]</span></a></sup> A cyclotron accelerates <a href="/wiki/Charged_particle" title="Charged particle">charged particles</a> outwards from the center along a spiral path.<sup id="cite_ref-Nave_147-0" class="reference"><a href="#cite_note-Nave-147"><span class="cite-bracket">[</span>147<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Close_148-0" class="reference"><a href="#cite_note-Close-148"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup> The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying (<a href="/wiki/Radio_frequency" title="Radio frequency">radio frequency</a>) electric field. Lawrence was awarded the 1939 <a href="/wiki/Nobel_prize_in_physics" class="mw-redirect" title="Nobel prize in physics">Nobel prize in physics</a> for this invention.<sup id="cite_ref-Close_148-1" class="reference"><a href="#cite_note-Close-148"><span class="cite-bracket">[</span>148<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">[</span>149<span class="cite-bracket">]</span></a></sup></dd> </dl> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="D">D</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=4" title="Edit section: D"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="dalton's_law"><dfn><b><a href="/wiki/Dalton%27s_law" title="Dalton's law">Dalton's law</a></b></dfn></dt><dd>In <a href="/wiki/Chemistry" title="Chemistry">chemistry</a> and <a href="/wiki/Physics" title="Physics">physics</a>, <i>Dalton's law</i> (also called <i>Dalton's law of partial pressures</i>) states that in a mixture of non-reacting gases, the total <a href="/wiki/Pressure" title="Pressure">pressure</a> exerted is equal to the sum of the <a href="/wiki/Partial_pressure" title="Partial pressure">partial pressures</a> of the individual gases.<sup id="cite_ref-Silberberg_150-0" class="reference"><a href="#cite_note-Silberberg-150"><span class="cite-bracket">[</span>150<span class="cite-bracket">]</span></a></sup></dd> <dt id="damped_vibration"><dfn><b><a href="/wiki/Damped_vibration" class="mw-redirect" title="Damped vibration">Damped vibration</a></b></dfn></dt><dd>Any vibration with a force acting against it to lessen the vibration over time.</dd> <dt id="darcy–weisbach_equation"><dfn><b><a href="/wiki/Darcy%E2%80%93Weisbach_equation" title="Darcy–Weisbach equation">Darcy–Weisbach equation</a></b></dfn></dt><dd>An equation used in fluid mechanics to find the pressure change cause by friction within a pipe or conduit.</dd> <dt id="dc_motor"><dfn><b><a href="/wiki/DC_motor" title="DC motor">DC motor</a></b></dfn></dt><dd>An electrical motor driven by direct current.</dd> <dt id="decibel"><dfn><b><a href="/wiki/Decibel" title="Decibel">Decibel</a></b></dfn></dt><dd>A logarithmic unit of ratios.</dd> <dt id="definite_integral"><dfn><b><a href="/wiki/Definite_integral" class="mw-redirect" title="Definite integral">Definite integral</a></b></dfn></dt><dd>The integral of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> between an upper and lower <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a>.<sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">[</span>151<span class="cite-bracket">]</span></a></sup></dd> <dt id="deflection"><dfn><b><a href="/wiki/Deflection_(engineering)" title="Deflection (engineering)">Deflection</a></b></dfn></dt><dd>is the degree to which a structural element is displaced under a <a href="/wiki/Force" title="Force">load</a>. It may refer to an angle or a distance.</dd> <dt id="deformation_(engineering)"><dfn><b><a href="/wiki/Deformation_(engineering)" title="Deformation (engineering)">Deformation (engineering)</a></b></dfn></dt><dd>In <a href="/wiki/Materials_science" title="Materials science">materials science</a>, <i>deformation</i> refers to any changes in the shape or size of an object due to <ul><li>an applied <a href="/wiki/Force_(physics)" class="mw-redirect" title="Force (physics)">force</a> (the deformation energy in this case is transferred through work) or</li> <li>a change in temperature (the deformation energy in this case is transferred through heat).</li></ul> The first case can be a result of <a href="/wiki/Tensile_strength" class="mw-redirect" title="Tensile strength">tensile</a> (pulling) forces, <a href="/wiki/Compressive_strength" title="Compressive strength">compressive</a> (pushing) forces, <a href="/wiki/Simple_shear" title="Simple shear">shear</a>, <a href="/wiki/Bending" title="Bending">bending</a>, or <a href="/wiki/Torsion_(mechanics)" title="Torsion (mechanics)">torsion</a> (twisting). In the second case, the most significant factor, which is determined by the temperature, is the mobility of the structural defects such as grain boundaries, point vacancies, line and screw dislocations, stacking faults and twins in both crystalline and non-crystalline solids. The movement or displacement of such mobile defects is thermally activated, and thus limited by the rate of atomic diffusion.<sup id="cite_ref-Dav_152-0" class="reference"><a href="#cite_note-Dav-152"><span class="cite-bracket">[</span>152<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Zar_153-0" class="reference"><a href="#cite_note-Zar-153"><span class="cite-bracket">[</span>153<span class="cite-bracket">]</span></a></sup></dd> <dt id="deformation_(mechanics)"><dfn><b><a href="/wiki/Deformation_(mechanics)" class="mw-redirect" title="Deformation (mechanics)">Deformation (mechanics)</a></b></dfn></dt><dd><i>Deformation</i> in <a href="/wiki/Continuum_mechanics" title="Continuum mechanics">continuum mechanics</a> is the transformation of a body from a <i>reference</i> configuration to a <i>current</i> configuration.<sup id="cite_ref-154" class="reference"><a href="#cite_note-154"><span class="cite-bracket">[</span>154<span class="cite-bracket">]</span></a></sup> A configuration is a set containing the positions of all particles of the body. A deformation may be caused by <a href="/wiki/Structural_load" title="Structural load">external loads</a>,<sup id="cite_ref-wu_155-0" class="reference"><a href="#cite_note-wu-155"><span class="cite-bracket">[</span>155<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Body_force" title="Body force">body forces</a> (such as <a href="/wiki/Gravity" title="Gravity">gravity</a> or <a href="/wiki/Electromagnetic_force" class="mw-redirect" title="Electromagnetic force">electromagnetic forces</a>), or changes in temperature, moisture content, or chemical reactions, etc.</dd> <dt id="degrees_of_freedom"><dfn><b><a href="/wiki/Degrees_of_freedom_(mechanics)" title="Degrees of freedom (mechanics)">Degrees of freedom</a></b></dfn></dt><dd>The number of parameters required to define the motion of a dynamical system.</dd> <dt id="delta_robot"><dfn><b><a href="/wiki/Delta_robot" title="Delta robot">Delta robot</a></b></dfn></dt><dd>A tripod linkage, used to construct fast-acting manipulators with a wide range of movement.</dd> <dt id="delta-wye_transformer"><dfn><b><a href="/wiki/Delta-wye_transformer" title="Delta-wye transformer">Delta-wye transformer</a></b></dfn></dt><dd>A type of transformer used in three-phase power systems.</dd> <dt id="de_moivre–laplace_theorem"><dfn><b><a href="/wiki/De_Moivre%E2%80%93Laplace_theorem" title="De Moivre–Laplace theorem">De Moivre–Laplace theorem</a></b></dfn></dt><dd>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, the <i>de Moivre–Laplace theorem</i>, which is a special case of the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>, states that the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> may be used as an approximation to the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a> under certain conditions. In particular, the theorem shows that the <a href="/wiki/Probability_mass_function" title="Probability mass function">probability mass function</a> of the random number of "successes" observed in a series of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a> <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trials</a>, each having probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> of success (a binomial distribution with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> trials), <a href="/wiki/Convergence_in_distribution" class="mw-redirect" title="Convergence in distribution">converges</a> to the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of the normal distribution with mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d6eb41e0e5e136f594b1a703d2f371d9a5e0c27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.009ex;" alt="{\displaystyle np}"></span> and standard deviation<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {np(1-p)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {np(1-p)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0dd05a843589c56e7181d231480f1c1c34e2980" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.869ex; height:4.843ex;" alt="{\displaystyle {\sqrt {np(1-p)}}}"></span>, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> grows large, assuming <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is not <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>.</dd> <dt id="density"><dfn><b><a href="/wiki/Density" title="Density">Density</a></b></dfn></dt><dd>The <i>density</i>, or more precisely, the <i>volumetric mass density</i>, of a substance is its <a href="/wiki/Mass" title="Mass">mass</a> per unit <a href="/wiki/Volume" title="Volume">volume</a>. The symbol most often used for density is <i>ρ</i> (the lower case Greek letter <a href="/wiki/Rho_(letter)" class="mw-redirect" title="Rho (letter)">rho</a>), although the Latin letter <i>D</i> can also be used. Mathematically, density is defined as mass divided by volume:<sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">[</span>156<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho ={\frac {m}{V}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>V</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho ={\frac {m}{V}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f63465553e3f944d6ef79f90f992a02cf29c7f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.177ex; height:4.843ex;" alt="{\displaystyle \rho ={\frac {m}{V}}}"></span></dd></dl> where <i>ρ</i> is the density, <i>m</i> is the mass, and <i>V</i> is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its <a href="/wiki/Weight" title="Weight">weight</a> per unit <a href="/wiki/Volume" title="Volume">volume</a>,<sup id="cite_ref-157" class="reference"><a href="#cite_note-157"><span class="cite-bracket">[</span>157<span class="cite-bracket">]</span></a></sup> although this is scientifically inaccurate – this quantity is more specifically called <a href="/wiki/Specific_weight" title="Specific weight">specific weight</a>.</dd> <dt id="derivative"><dfn><b><a href="/wiki/Derivative" title="Derivative">Derivative</a></b></dfn></dt><dd>The <i>derivative</i> of a <a href="/wiki/Function_of_a_real_variable" title="Function of a real variable">function of a real variable</a> measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of <a href="/wiki/Calculus" title="Calculus">calculus</a>. For example, the derivative of the position of a moving object with respect to <a href="/wiki/Time" title="Time">time</a> is the object's <a href="/wiki/Velocity" title="Velocity">velocity</a>: this measures how quickly the position of the object changes when time advances.</dd> <dt id="design_engineering"><dfn><b><a href="/wiki/Design_engineering" class="mw-redirect" title="Design engineering">Design engineering</a></b></dfn></dt><dd>.</dd> <dt id="dew_point"><dfn><b><a href="/wiki/Dew_point" title="Dew point">Dew point</a></b></dfn></dt><dd>The pressure and temperature at which air is holding the maximum possible humidity.</dd> <dt id="diamagnetism"><dfn><b><a href="/wiki/Diamagnetism" title="Diamagnetism">Diamagnetism</a></b></dfn></dt><dd><i>Diamagnetic</i> materials are repelled by a <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>; an applied magnetic field creates an <a href="/wiki/Induced_magnetic_field" class="mw-redirect" title="Induced magnetic field">induced magnetic field</a> in them in the opposite direction, causing a repulsive force. In contrast, <a href="/wiki/Paramagnetic" class="mw-redirect" title="Paramagnetic">paramagnetic</a> and <a href="/wiki/Ferromagnetic" class="mw-redirect" title="Ferromagnetic">ferromagnetic</a> materials are attracted by a magnetic field. <i>Diamagnetism</i> is a <a href="/wiki/Quantum_mechanical" class="mw-redirect" title="Quantum mechanical">quantum mechanical</a> effect that occurs in all materials; when it is the only contribution to the magnetism, the material is called diamagnetic. In paramagnetic and ferromagnetic substances the weak diamagnetic force is overcome by the attractive force of <a href="/wiki/Magnetic_dipole" title="Magnetic dipole">magnetic dipoles</a> in the material. The <a href="/wiki/Permeability_(electromagnetism)" title="Permeability (electromagnetism)">magnetic permeability</a> of diamagnetic materials is less than μ<sub>0</sub>, the permeability of vacuum. In most materials diamagnetism is a weak effect which can only be detected by sensitive laboratory instruments, but a <a href="/wiki/Superconductivity" title="Superconductivity">superconductor</a> acts as a strong diamagnet because it repels a magnetic field entirely from its interior.</dd> <dt id="dielectric"><dfn><b><a href="/wiki/Dielectric" title="Dielectric">Dielectric</a></b></dfn></dt><dd>An insulator, a material that does not permit free flow of electricity.</dd> <dt id="differential_pressure"><dfn><b><a href="/wiki/Pressure_measurement#Absolute,_gauge_and_differential_pressures_—_zero_reference" title="Pressure measurement">Differential pressure</a></b></dfn></dt><dd>.</dd> <dt id="differential_pulley"><dfn><b><a href="/wiki/Differential_pulley" title="Differential pulley">Differential pulley</a></b></dfn></dt><dd>A <i>differential pulley</i>, also called <i>Weston differential pulley</i>, or colloquially <i>chain fall</i>, is used to manually lift very heavy objects like <a href="/wiki/Internal_combustion_engine" title="Internal combustion engine">car engines</a>. It is operated by pulling upon the slack section of a continuous chain that wraps around pulleys. The relative size of two connected pulleys determines the maximum weight that can be lifted by hand. The load will remain in place (and not lower under the force of <a href="/wiki/Gravity" title="Gravity">gravity</a>) until the chain is pulled.<sup id="cite_ref-158" class="reference"><a href="#cite_note-158"><span class="cite-bracket">[</span>158<span class="cite-bracket">]</span></a></sup></dd> <dt id="differential_signaling"><dfn><b><a href="/wiki/Differential_signaling" class="mw-redirect" title="Differential signaling">Differential signaling</a></b></dfn></dt><dd>is a method for electrically transmitting <a href="/wiki/Information" title="Information">information</a> using two complementary <a href="/wiki/Signal_(electrical_engineering)" class="mw-redirect" title="Signal (electrical engineering)">signals</a>.</dd> <dt id="diffusion"><dfn><b><a href="/wiki/Diffusion" title="Diffusion">Diffusion</a></b></dfn></dt><dd>Is the net movement of molecules or atoms from a region of higher concentration (or high chemical potential) to a region of lower concentration (or low chemical potential).</dd> <dt id="dimensional_analysis"><dfn><b><a href="/wiki/Dimensional_analysis" title="Dimensional analysis">Dimensional analysis</a></b></dfn></dt><dd>is the analysis of the relationships between different <a href="/wiki/Physical_quantities" class="mw-redirect" title="Physical quantities">physical quantities</a> by identifying their <a href="/wiki/Base_quantity" class="mw-redirect" title="Base quantity">base quantities</a> (such as <a href="/wiki/Length" title="Length">length</a>, <a href="/wiki/Mass" title="Mass">mass</a>, <a href="/wiki/Time" title="Time">time</a>, and <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>) and <a href="/wiki/Units_of_measure" class="mw-redirect" title="Units of measure">units of measure</a> (such as miles vs. kilometers, or pounds vs. kilograms) and tracking these dimensions as calculations or comparisons are performed. The <a href="/wiki/Conversion_of_units" title="Conversion of units">conversion of units</a> from one dimensional unit to another is often somewhat complex. Dimensional analysis, or more specifically the <i>factor-label method</i>, also known as the <i>unit-factor method</i>, is a widely used technique for such conversions using the rules of <a href="/wiki/Algebra" title="Algebra">algebra</a>.<sup id="cite_ref-159" class="reference"><a href="#cite_note-159"><span class="cite-bracket">[</span>159<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-160" class="reference"><a href="#cite_note-160"><span class="cite-bracket">[</span>160<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">[</span>161<span class="cite-bracket">]</span></a></sup></dd> <dt id="direct_integration_of_a_beam"><dfn><b><a href="/wiki/Direct_integration_of_a_beam" title="Direct integration of a beam">Direct integration of a beam</a></b></dfn></dt><dd><i>Direct integration</i> is a <a href="/wiki/Structural_analysis" title="Structural analysis">structural analysis</a> method for measuring internal shear, internal moment, rotation, and deflection of a beam. For a beam with an applied weight <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/504b9ce86ec0b1d4267109ee950497126f04713c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.803ex; height:2.843ex;" alt="{\displaystyle w(x)}"></span>, taking downward to be positive, the internal <a href="/wiki/Shear_force" title="Shear force">shear force</a> is given by taking the negative integral of the weight: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(x)=-\int w(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mo>∫<!-- ∫ --></mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(x)=-\int w(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aaf0b48b8b7a78b9715d84ee2473fc16c4a08d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.536ex; height:5.676ex;" alt="{\displaystyle V(x)=-\int w(x)\,dx}"></span></dd></dl> The internal moment M(x) is the integral of the internal shear: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(x)=\int V(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(x)=\int V(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88963c49c5aac719a8fb35d392a47609dfd3b31f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.119ex; height:5.676ex;" alt="{\displaystyle M(x)=\int V(x)\,dx}"></span>=<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\int [\int w(x)\ \,dx]dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">[</mo> <mo>∫<!-- ∫ --></mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo stretchy="false">]</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\int [\int w(x)\ \,dx]dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc2865cc539fa377e073ac70205596e4e785d03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.125ex; height:5.676ex;" alt="{\displaystyle -\int [\int w(x)\ \,dx]dx}"></span></dd></dl> The <a href="/wiki/Angle_of_rotation" class="mw-redirect" title="Angle of rotation">angle of rotation</a> from the horizontal, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>, is the integral of the internal moment divided by the product of the <a href="/wiki/Young%27s_modulus" title="Young's modulus">Young's modulus</a> and the <a href="/wiki/Second_moment_of_area" title="Second moment of area">area moment of inertia</a>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta (x)={\frac {1}{EI}}\int M(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>E</mi> <mi>I</mi> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta (x)={\frac {1}{EI}}\int M(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/529972a7bafc84d90945c54a057be0045d348257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.593ex; height:5.676ex;" alt="{\displaystyle \theta (x)={\frac {1}{EI}}\int M(x)\,dx}"></span></dd></dl> Integrating the angle of rotation obtains the vertical displacement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu (x)=\int \theta (x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu (x)=\int \theta (x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc79a711c2fc733e1f9067bacb9205e0b455ae89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.825ex; height:5.676ex;" alt="{\displaystyle \nu (x)=\int \theta (x)dx}"></span>.</dd></dl></dd></dl> <dt id="dispersion"><dfn><b><a href="/wiki/Dispersion_(optics)" title="Dispersion (optics)">Dispersion</a></b></dfn></dt><dd>In <a href="/wiki/Optics" title="Optics">optics</a>, <i>dispersion</i> is the phenomenon in which the <a href="/wiki/Phase_velocity" title="Phase velocity">phase velocity</a> of a wave depends on its frequency.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">[</span>162<span class="cite-bracket">]</span></a></sup> Media having this common property may be termed <i>dispersive media</i>. Sometimes the term <i>chromatic dispersion</i> is used for specificity. Although the term is used in the field of optics to describe <a href="/wiki/Light" title="Light">light</a> and other <a href="/wiki/Electromagnetic_wave" class="mw-redirect" title="Electromagnetic wave">electromagnetic waves</a>, dispersion in the same sense can apply to any sort of wave motion such as <a href="/wiki/Acoustic_dispersion" title="Acoustic dispersion">acoustic dispersion</a> in the case of sound and seismic waves, in <a href="/wiki/Gravity_wave" title="Gravity wave">gravity waves</a> (ocean waves), and for telecommunication signals along <a href="/wiki/Transmission_line" title="Transmission line">transmission lines</a> (such as <a href="/wiki/Coaxial_cable" title="Coaxial cable">coaxial cable</a>) or <a href="/wiki/Optical_fiber" title="Optical fiber">optical fiber</a>.</dd> <dt id="displacement_(fluid)"><dfn><b><a href="/wiki/Displacement_(fluid)" title="Displacement (fluid)">Displacement (fluid)</a></b></dfn></dt><dd>In <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid mechanics</a>, <i>displacement</i> occurs when an object is immersed in a <a href="/wiki/Fluid" title="Fluid">fluid</a>, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced (the volume of the immersed object will be exactly equal to the volume of the displaced fluid).</dd> <dt id="displacement_(vector)"><dfn><b><a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">Displacement (vector)</a></b></dfn></dt><dd>is a <a href="/wiki/Euclidean_vector" title="Euclidean vector">vector</a> whose length is the shortest <a href="/wiki/Distance" title="Distance">distance</a> from the initial to the final <a href="/wiki/Position_(vector)" class="mw-redirect" title="Position (vector)">position</a> of a point P.<sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">[</span>163<span class="cite-bracket">]</span></a></sup> It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point. A displacement may be identified with the <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a> that maps the initial position to the final position.</dd> <dt id="distance"><dfn><b><a href="/wiki/Distance" title="Distance">Distance</a></b></dfn></dt><dd>is a numerical <a href="/wiki/Measurement" title="Measurement">measurement</a> of how far apart objects are.</dd> <dt id="doppler_effect"><dfn><b><a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a></b></dfn></dt><dd>The <i>Doppler effect</i> (or the <i>Doppler shift</i>) is the change in <a href="/wiki/Frequency" title="Frequency">frequency</a> or <a href="/wiki/Wavelength" title="Wavelength">wavelength</a> of a <a href="/wiki/Wave" title="Wave">wave</a> in relation to an observer who is moving relative to the wave source.<sup id="cite_ref-Giordano_164-0" class="reference"><a href="#cite_note-Giordano-164"><span class="cite-bracket">[</span>164<span class="cite-bracket">]</span></a></sup> It is named after the Austrian physicist <a href="/wiki/Christian_Doppler" title="Christian Doppler">Christian Doppler</a>, who described the phenomenon in 1842.</dd> <dt id="dose–response_relationship"><dfn><b><a href="/wiki/Dose%E2%80%93response_relationship" title="Dose–response relationship">Dose–response relationship</a></b></dfn></dt><dd>The dose–response relationship, or exposure–response relationship, describes the magnitude of the <a href="/wiki/Stimulus%E2%80%93response_model" title="Stimulus–response model">response</a> of an <a href="/wiki/Organism" title="Organism">organism</a>, as a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> of exposure (or <a href="/wiki/Dose_(biochemistry)" title="Dose (biochemistry)">doses</a>) to a <a href="/wiki/Stimulus_(physiology)" title="Stimulus (physiology)">stimulus</a> or <a href="/wiki/Stressor" title="Stressor">stressor</a> (usually a <a href="/wiki/Chemical" class="mw-redirect" title="Chemical">chemical</a>) after a certain exposure time.<sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">[</span>165<span class="cite-bracket">]</span></a></sup> Dose–response relationships can be described by dose–response curves. A stimulus response function or stimulus response curve is defined more broadly as the response from any type of stimulus, not limited to chemicals.</dd> <dt id="drag"><dfn><b><a href="/wiki/Drag_(physics)" title="Drag (physics)">Drag</a></b></dfn></dt><dd>In <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, <i>drag</i> (sometimes called <i>air resistance</i>, a type of <a href="/wiki/Friction" title="Friction">friction</a>, or <i>fluid resistance</i>, another type of friction or fluid friction) is a <a href="/wiki/Force" title="Force">force</a> acting opposite to the relative motion of any object moving with respect to a surrounding fluid.<sup id="cite_ref-166" class="reference"><a href="#cite_note-166"><span class="cite-bracket">[</span>166<span class="cite-bracket">]</span></a></sup> This can exist between two fluid layers (or surfaces) or a fluid and a <a href="/wiki/Solid" title="Solid">solid</a> surface. Unlike other resistive forces, such as dry <a href="/wiki/Friction" title="Friction">friction</a>, which are nearly independent of velocity, drag forces depend on velocity.<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">[</span>167<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-NASAdrag_168-0" class="reference"><a href="#cite_note-NASAdrag-168"><span class="cite-bracket">[</span>168<span class="cite-bracket">]</span></a></sup> Drag force is proportional to the velocity for a <a href="/wiki/Laminar_flow" title="Laminar flow">laminar flow</a> and the squared velocity for a <a href="/wiki/Turbulent_flow" class="mw-redirect" title="Turbulent flow">turbulent flow</a>. Even though the ultimate cause of a drag is viscous friction, the turbulent drag is independent of <a href="/wiki/Viscosity" title="Viscosity">viscosity</a>.<sup id="cite_ref-169" class="reference"><a href="#cite_note-169"><span class="cite-bracket">[</span>169<span class="cite-bracket">]</span></a></sup> Drag forces always decrease fluid velocity relative to the solid object in the fluid's <a href="/wiki/Pathline" class="mw-redirect" title="Pathline">path</a>.</dd> <dt id="drift_current"><dfn><b><a href="/wiki/Drift_current" title="Drift current">Drift current</a></b></dfn></dt><dd>In <a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">condensed matter physics</a> and <a href="/wiki/Electrochemistry" title="Electrochemistry">electrochemistry</a>, <i>drift current</i> is the <a href="/wiki/Electric_current" title="Electric current">electric current</a>, or movement of <a href="/wiki/Charge_carrier" title="Charge carrier">charge carriers</a>, which is due to the applied <a href="/wiki/Electric_field" title="Electric field">electric field</a>, often stated as the <a href="/wiki/Electromotive_force" title="Electromotive force">electromotive force</a> over a given distance. When an electric field is applied across a semiconductor material, a current is produced due to the flow of charge carriers.</dd> <dt id="ductility"><dfn><b><a href="/wiki/Ductility" title="Ductility">Ductility</a></b></dfn></dt><dd>is a measure of a material's ability to undergo significant plastic deformation before rupture, which may be expressed as percent elongation or percent area reduction from a tensile test.</dd> <dt id="dynamics"><dfn><b><a href="/wiki/Dynamics_(mechanics)" class="mw-redirect" title="Dynamics (mechanics)">Dynamics</a></b></dfn></dt><dd>is the <a href="/wiki/Branch_(academia)#Physics" class="mw-redirect" title="Branch (academia)">branch</a> of <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> concerned with the study of <a href="/wiki/Force_(physics)" class="mw-redirect" title="Force (physics)">forces</a> and their effects on <a href="/wiki/Motion_(physics)" class="mw-redirect" title="Motion (physics)">motion</a>. <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> defined the fundamental <a href="/wiki/Physical_law" class="mw-redirect" title="Physical law">physical laws</a> which govern dynamics in physics, especially his <a href="/wiki/Second_law_of_motion" class="mw-redirect" title="Second law of motion">second law of motion</a>.</dd> <dt id="dyne"><dfn><b><a href="/wiki/Dyne" title="Dyne">Dyne</a></b></dfn></dt><dd>is a derived <a href="/wiki/Units_of_measurement" class="mw-redirect" title="Units of measurement">unit</a> of <a href="/wiki/Force_(physics)" class="mw-redirect" title="Force (physics)">force</a> specified in the <a href="/wiki/CGS" class="mw-redirect" title="CGS">centimetre–gram–second (CGS) system of units</a>, a predecessor of the modern <a href="/wiki/International_System_of_Units" title="International System of Units">SI</a>.</dd> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="E">E</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=5" title="Edit section: E"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="economics"><dfn><b><a href="/wiki/Economics" title="Economics">Economics</a></b></dfn></dt><dd>The scientific study of the production, distribution and consumption of goods.</dd> <dt id="effusion"><dfn><b><a href="/wiki/Effusion" title="Effusion">Effusion</a></b></dfn></dt><dd>In physics and chemistry, effusion is the process in which a gas escapes from a container through a hole of diameter considerably smaller than the <a href="/wiki/Mean_free_path" title="Mean free path">mean free path</a> of the molecules.<sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">[</span>170<span class="cite-bracket">]</span></a></sup></dd> <dt id="elastic_modulus"><dfn><b><a href="/wiki/Elastic_modulus" title="Elastic modulus">Elastic modulus</a></b></dfn></dt><dd>The amount a material will deform per unit force.</dd> <dt id="elasticity"><dfn><b><a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">Elasticity</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will <a href="/wiki/Deformation_(engineering)" title="Deformation (engineering)">deform</a> when adequate <a href="/wiki/Structural_load" title="Structural load">forces</a> are applied to them. If the material is elastic, the object will return to its initial shape and size when these forces are removed.</dd> <dt id="electric_charge"><dfn><b><a href="/wiki/Electric_charge" title="Electric charge">Electric charge</a></b></dfn></dt><dd>is the <a href="/wiki/Physical_property" title="Physical property">physical property</a> of <a href="/wiki/Matter" title="Matter">matter</a> that causes it to experience a <a href="/wiki/Force" title="Force">force</a> when placed in an <a href="/wiki/Electromagnetic_field" title="Electromagnetic field">electromagnetic field</a>. There are two types of electric charges; <i>positive</i> and <i>negative</i> (commonly carried by <a href="/wiki/Proton" title="Proton">protons</a> and <a href="/wiki/Electron" title="Electron">electrons</a> respectively). Like charges repel and unlike attract. An object with an absence of net charge is referred to as <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="neutral"></span><span id="neutral"></span><span class="vanchor-text">neutral</span></span></i>. Early knowledge of how charged substances interact is now called <a href="/wiki/Classical_electrodynamics" class="mw-redirect" title="Classical electrodynamics">classical electrodynamics</a>, and is still accurate for problems that do not require consideration of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum effects</a>.</dd> <dt id="electric_circuit"><dfn><b><a href="/wiki/Electric_circuit" class="mw-redirect" title="Electric circuit">Electric circuit</a></b></dfn></dt><dd>is an electrical network consisting of a closed loop, giving a return path for the current.</dd> <dt id="electric_current"><dfn><b><a href="/wiki/Electric_current" title="Electric current">Electric current</a></b></dfn></dt><dd>is a flow of <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>.<sup id="cite_ref-horowitz_171-0" class="reference"><a href="#cite_note-horowitz-171"><span class="cite-bracket">[</span>171<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 2">: 2 </span></sup> In <a href="/wiki/Electric_circuit" class="mw-redirect" title="Electric circuit">electric circuits</a> this charge is often carried by moving <a href="/wiki/Electron" title="Electron">electrons</a> in a <a href="/wiki/Wire" title="Wire">wire</a>. It can also be carried by <a href="/wiki/Ion" title="Ion">ions</a> in an <a href="/wiki/Electrolyte#Electrochemistry" title="Electrolyte">electrolyte</a>, or by both ions and electrons such as in an ionised gas (<a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasma</a>).<sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">[</span>172<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/International_System_of_Units" title="International System of Units">SI</a> unit for measuring an electric current is the <a href="/wiki/Ampere" title="Ampere">ampere</a>, which is the flow of electric charge across a surface at the rate of one <a href="/wiki/Coulomb" title="Coulomb">coulomb</a> per second. Electric current is measured using a device called an <a href="/wiki/Ammeter" title="Ammeter">ammeter</a>.<sup id="cite_ref-learn-physics-today_173-0" class="reference"><a href="#cite_note-learn-physics-today-173"><span class="cite-bracket">[</span>173<span class="cite-bracket">]</span></a></sup></dd> <dt id="electric_displacement_field"><dfn><b><a href="/wiki/Electric_displacement_field" title="Electric displacement field">Electric displacement field</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, the <i>electric displacement field</i>, denoted by <i>D</i>, is a <a href="/wiki/Vector_field" title="Vector field">vector field</a> that appears in <a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a>. It accounts for the effects of <a href="/wiki/Charge_density#Free,_bound_and_total_charge" title="Charge density">free and bound charge</a> within materials. <i>D</i> stands for "displacement", as in the related concept of <a href="/wiki/Displacement_current" title="Displacement current">displacement current</a> in <a href="/wiki/Dielectric" title="Dielectric">dielectrics</a>. In <a href="/wiki/Free_space" class="mw-redirect" title="Free space">free space</a>, the electric displacement field is equivalent to <a href="/wiki/Flux#Electric_flux" title="Flux">flux density</a>, a concept that lends understanding to <a href="/wiki/Gauss%27s_law" title="Gauss's law">Gauss's law</a>. In the <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a> (SI), it is expressed in units of coulomb per meter squared (C⋅m<sup>−2</sup>).</dd> <dt id="electric_generator"><dfn><b><a href="/wiki/Electric_generator" title="Electric generator">Electric generator</a></b></dfn></dt><dd>In <a href="/wiki/Electricity_generation" title="Electricity generation">electricity generation</a>, a <i>generator</i>, also called <i>electric generator</i>, <i>electrical generator</i>, and <i>electromagnetic generator</i> is a device that converts motive power (<a href="/wiki/Mechanical_energy" title="Mechanical energy">mechanical energy</a>) into <a href="/wiki/Electrical_power" class="mw-redirect" title="Electrical power">electrical power</a> for use in an external <a href="/wiki/Electrical_circuit" class="mw-redirect" title="Electrical circuit">circuit</a>. Sources of mechanical energy include <a href="/wiki/Steam_turbine" title="Steam turbine">steam turbines</a>, <a href="/wiki/Gas_turbine" title="Gas turbine">gas turbines</a>, <a href="/wiki/Water_turbine" title="Water turbine">water turbines</a>, <a href="/wiki/Internal_combustion_engine" title="Internal combustion engine">internal combustion engines</a> and even hand <a href="/wiki/Crank_(mechanism)" title="Crank (mechanism)">cranks</a>.</dd> <dt id="electric_field"><dfn><b><a href="/wiki/Electric_field" title="Electric field">Electric field</a></b></dfn></dt><dd>surrounds an <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>, and exerts force on other charges in the field, attracting or repelling them.<sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">[</span>174<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-175" class="reference"><a href="#cite_note-175"><span class="cite-bracket">[</span>175<span class="cite-bracket">]</span></a></sup> Electric field is sometimes abbreviated as <b>E-field</b>.</dd> <dt id="electric_field_gradient"><dfn><b><a href="/wiki/Electric_field_gradient" title="Electric field gradient">Electric field gradient</a></b></dfn></dt><dd>In <a href="/wiki/Atomic_physics" title="Atomic physics">atomic</a>, <a href="/wiki/Molecular_physics" title="Molecular physics">molecular</a>, and <a href="/wiki/Solid-state_physics" title="Solid-state physics">solid-state physics</a>, the <i>electric field gradient</i> (<i>EFG</i>) measures the rate of change of the <a href="/wiki/Electric_field" title="Electric field">electric field</a> at an <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">atomic nucleus</a> generated by the <a href="/wiki/Electron" title="Electron">electronic</a> <a href="/wiki/Charge_distribution" class="mw-redirect" title="Charge distribution">charge distribution</a> and the other nuclei.</dd> <dt id="electric_motor"><dfn><b><a href="/wiki/Electric_motor" title="Electric motor">Electric motor</a></b></dfn></dt><dd>is an <a href="/wiki/Electric_machine" title="Electric machine">electrical machine</a> that converts <a href="/wiki/Electrical_energy" title="Electrical energy">electrical energy</a> into <a href="/wiki/Mechanical_energy" title="Mechanical energy">mechanical energy</a>. Most electric motors operate through the interaction between the motor's <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> and <a href="/wiki/Electrical_conductor" title="Electrical conductor">winding currents</a> to generate force in the form of <a href="/wiki/Rotation" title="Rotation">rotation</a>. Electric motors can be powered by <a href="/wiki/Direct_current" title="Direct current">direct current</a> (DC) sources, such as from batteries, motor vehicles or rectifiers, or by <a href="/wiki/Alternating_current" title="Alternating current">alternating current</a> (AC) sources, such as a power grid, <a href="/wiki/Inverter_(electrical)" class="mw-redirect" title="Inverter (electrical)">inverters</a> or electrical generators. An <a href="/wiki/Electric_generator" title="Electric generator">electric generator</a> is mechanically identical to an electric motor, but operates in the reverse direction, accepting mechanical energy (such as from flowing water) and converting this mechanical energy into electrical energy.</dd> <dt id="electric_potential"><dfn><b><a href="/wiki/Electric_potential" title="Electric potential">Electric potential</a></b></dfn></dt><dd>(Also called the <i>electric field potential</i>, potential drop or the <i>electrostatic potential</i>) is the amount of <a href="/wiki/Work_(physics)" title="Work (physics)">work</a> needed to move a unit of <a href="/wiki/Electric_charge" title="Electric charge">positive charge</a> from a reference point to a specific point inside the field without producing an acceleration. Typically, the reference point is the <a href="/wiki/Earth_(electricity)" class="mw-redirect" title="Earth (electricity)">Earth</a> or a point at <a href="/wiki/Infinity" title="Infinity">infinity</a>, although any point beyond the influence of the electric field charge can be used.</dd> <dt id="electrical_potential_energy"><dfn><b><a href="/wiki/Electrical_potential_energy" class="mw-redirect" title="Electrical potential energy">Electrical potential energy</a></b></dfn></dt><dd>Electric potential energy, or electrostatic potential energy, is a <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a> (measured in <a href="/wiki/Joule" title="Joule">joules</a>) that results from <a href="/wiki/Conservative_force" title="Conservative force">conservative</a> <a href="/wiki/Coulomb_force" class="mw-redirect" title="Coulomb force">Coulomb forces</a> and is associated with the configuration of a particular set of point <a href="/wiki/Electric_charge" title="Electric charge">charges</a> within a defined <a href="/wiki/Physical_system" title="Physical system">system</a>. An <i>object</i> may have electric potential energy by virtue of two key elements: its own electric charge and its relative position to other electrically charged <i>objects</i>. The term "electric potential energy" is used to describe the potential energy in systems with <a href="/wiki/Time-variant_system" title="Time-variant system">time-variant</a> <a href="/wiki/Electric_field" title="Electric field">electric fields</a>, while the term "electrostatic potential energy" is used to describe the potential energy in systems with <a href="/wiki/Time-invariant_system" title="Time-invariant system">time-invariant</a> electric fields.</dd> <dt id="electric_power"><dfn><b><a href="/wiki/Electric_power" title="Electric power">Electric power</a></b></dfn></dt><dd>is the rate, per unit time, at which <a href="/wiki/Electrical_energy" title="Electrical energy">electrical energy</a> is transferred by an <a href="/wiki/Electric_circuit" class="mw-redirect" title="Electric circuit">electric circuit</a>. The <a href="/wiki/SI" class="mw-redirect" title="SI">SI</a> unit of <a href="/wiki/Power_(physics)" title="Power (physics)">power</a> is the <a href="/wiki/Watt" title="Watt">watt</a>, one <a href="/wiki/Joule" title="Joule">joule</a> per <a href="/wiki/Second" title="Second">second</a>.</dd> <dt id="electrical_engineering"><dfn><b><a href="/wiki/Electrical_engineering" title="Electrical engineering">Electrical engineering</a></b></dfn></dt><dd>is a technical discipline concerned with the study, design and application of equipment, devices and systems which use <a href="/wiki/Electricity" title="Electricity">electricity</a>, <a href="/wiki/Electronics" title="Electronics">electronics</a>, and <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a>. It emerged as an identified activity in the latter half of the 19th century after <a href="/wiki/Commercialization" title="Commercialization">commercialization</a> of the <a href="/wiki/Electric_telegraph" class="mw-redirect" title="Electric telegraph">electric telegraph</a>, the <a href="/wiki/Telephone" title="Telephone">telephone</a>, and <a href="/wiki/Electrical_power" class="mw-redirect" title="Electrical power">electrical power</a> generation, distribution and use. .</dd> <dt id="electrical_conductance"><dfn><b><a href="/wiki/Electrical_resistance_and_conductance" title="Electrical resistance and conductance">Electrical conductance</a></b></dfn></dt><dd>The electrical resistance of an object is a measure of its opposition to the flow of electric current. The inverse quantity is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="electrical_conductance"></span><span id="CONDUCTANCE"></span><span class="vanchor-text">electrical conductance</span></span>, and is the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with the notion of mechanical <a href="/wiki/Friction" title="Friction">friction</a>. The <a href="/wiki/International_System_of_Units" title="International System of Units">SI</a> unit of electrical resistance is the <a href="/wiki/Ohm" title="Ohm">ohm</a> (<a href="/wiki/Omega" title="Omega">Ω</a>), while electrical conductance is measured in <a href="/wiki/Siemens_(unit)" title="Siemens (unit)">siemens</a> (S).</dd> <dt id="electrical_conductor"><dfn><b><a href="/wiki/Electrical_conductor" title="Electrical conductor">Electrical conductor</a></b></dfn></dt><dd>is an object or type of material that allows the flow of charge (<a href="/wiki/Electrical_current" class="mw-redirect" title="Electrical current">electrical current</a>) in one or more directions. Materials made of metal are common electrical conductors. Electrical current is generated by the flow of negatively charged electrons, positively charged holes, and positive or negative ions in some cases.</dd> <dt id="electrical_impedance"><dfn><b><a href="/wiki/Electrical_impedance" title="Electrical impedance">Electrical impedance</a></b></dfn></dt><dd>is the measure of the opposition that a <a href="/wiki/Electrical_circuit" class="mw-redirect" title="Electrical circuit">circuit</a> presents to a <a href="/wiki/Electric_current" title="Electric current">current</a> when a <a href="/wiki/Voltage" title="Voltage">voltage</a> is applied. The term <i>complex impedance</i> may be used interchangeably.</dd> <dt id="electrical_insulator"><dfn><b><a href="/wiki/Electrical_insulator" class="mw-redirect" title="Electrical insulator">Electrical insulator</a></b></dfn></dt><dd>is a material whose internal <a href="/wiki/Electric_charge" title="Electric charge">electric charges</a> do not flow freely; very little <a href="/wiki/Electric_current" title="Electric current">electric current</a> will flow through it under the influence of an <a href="/wiki/Electric_field" title="Electric field">electric field</a>. This contrasts with other materials, <a href="/wiki/Semiconductor" title="Semiconductor">semiconductors</a> and <a href="/wiki/Electrical_conductor" title="Electrical conductor">conductors</a>, which conduct electric current more easily. The property that distinguishes an insulator is its <a href="/wiki/Resistivity" class="mw-redirect" title="Resistivity">resistivity</a>; insulators have higher resistivity than semiconductors or conductors.</dd> <dt id="electrical_network"><dfn><b><a href="/wiki/Electrical_network" title="Electrical network">Electrical network</a></b></dfn></dt><dd>is an interconnection of <a href="/wiki/Electronic_component" title="Electronic component">electrical components</a> (e.g., <a href="/wiki/Battery_(electricity)" class="mw-redirect" title="Battery (electricity)">batteries</a>, <a href="/wiki/Resistor" title="Resistor">resistors</a>, <a href="/wiki/Inductor" title="Inductor">inductors</a>, <a href="/wiki/Capacitor" title="Capacitor">capacitors</a>, <a href="/wiki/Switch" title="Switch">switches</a>, <a href="/wiki/Transistor" title="Transistor">transistors</a>) or a model of such an interconnection, consisting of <a href="/wiki/Electrical_element" title="Electrical element">electrical elements</a> (e.g., <a href="/wiki/Voltage_source" title="Voltage source">voltage sources</a>, <a href="/wiki/Current_source" title="Current source">current sources</a>, <a href="/wiki/Electrical_resistance_and_conductance" title="Electrical resistance and conductance">resistances</a>, <a href="/wiki/Inductance" title="Inductance">inductances</a>, <a href="/wiki/Capacitance" title="Capacitance">capacitances</a>). An electrical circuit is a network consisting of a closed loop, giving a return path for the current. <a href="/wiki/Linear_circuit" title="Linear circuit">Linear</a> electrical networks, a special type consisting only of sources (voltage or current), linear lumped elements (resistors, capacitors, inductors), and linear distributed elements (transmission lines), have the property that signals are <a href="/wiki/Superposition_principle" title="Superposition principle">linearly superimposable</a>. They are thus more easily analyzed, using powerful <a href="/wiki/Frequency_domain" title="Frequency domain">frequency domain</a> methods such as <a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transforms</a>, to determine <a href="/wiki/Direct_current" title="Direct current">DC response</a>, <a href="/wiki/Alternating_current" title="Alternating current">AC response</a>, and <a href="/wiki/Transient_response" title="Transient response">transient response</a>.</dd> <dt id="electrical_resistance"><dfn><b><a href="/wiki/Electrical_resistance_and_conductance" title="Electrical resistance and conductance">Electrical resistance</a></b></dfn></dt><dd>The electrical resistance of an object is a measure of its opposition to the flow of electric current. The inverse quantity is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="electrical_conductance"></span><span id="CONDUCTANCE"></span><span class="vanchor-text">electrical conductance</span></span>, and is the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with the notion of mechanical <a href="/wiki/Friction" title="Friction">friction</a>. The <a href="/wiki/International_System_of_Units" title="International System of Units">SI</a> unit of electrical resistance is the <a href="/wiki/Ohm" title="Ohm">ohm</a> (<a href="/wiki/Omega" title="Omega">Ω</a>), while electrical conductance is measured in <a href="/wiki/Siemens_(unit)" title="Siemens (unit)">siemens</a> (S).</dd> <dt id="electricity"><dfn><b><a href="/wiki/Electricity" title="Electricity">Electricity</a></b></dfn></dt><dd>Is the set of <a href="/wiki/Physics" title="Physics">physical</a> <a href="/wiki/Phenomenon" title="Phenomenon">phenomena</a> associated with the presence and <a href="/wiki/Motion" title="Motion">motion</a> of <a href="/wiki/Matter" title="Matter">matter</a> that has a property of <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a>. Electricity is related to <a href="/wiki/Magnetism" title="Magnetism">magnetism</a>, both being part of the phenomenon of <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a>, as described by <a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a>. Various common phenomena are related to electricity, including <a href="/wiki/Lightning" title="Lightning">lightning</a>, <a href="/wiki/Static_electricity" title="Static electricity">static electricity</a>, <a href="/wiki/Electric_heating" title="Electric heating">electric heating</a>, and <a href="/wiki/Electric_discharge" title="Electric discharge">electric discharges</a>.</dd> <dt id="electrodynamics"><dfn><b><a href="/wiki/Electrodynamics" class="mw-redirect" title="Electrodynamics">Electrodynamics</a></b></dfn></dt><dd>In physics, the phenomena associated with moving <a href="/wiki/Electric_charge" title="Electric charge">electric charges</a>, and their <a href="/wiki/Electromagnetism" title="Electromagnetism">interaction</a> with <a href="/wiki/Electric" class="mw-redirect" title="Electric">electric</a> and <a href="/wiki/Magnetic" class="mw-redirect" title="Magnetic">magnetic</a> fields; the study of these phenomena.<sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">[</span>176<span class="cite-bracket">]</span></a></sup></dd> <dt id="electromagnet"><dfn><b><a href="/wiki/Electromagnet" title="Electromagnet">Electromagnet</a></b></dfn></dt><dd>is a type of <a href="/wiki/Magnet" title="Magnet">magnet</a> in which the <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> is produced by an <a href="/wiki/Electric_current" title="Electric current">electric current</a>. Electromagnets usually consist of wire wound into a <a href="/wiki/Electromagnetic_coil" title="Electromagnetic coil">coil</a>. A current through the wire creates a magnetic field which is concentrated in the hole, denoting the centre of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a <a href="/wiki/Magnetic_core" title="Magnetic core">magnetic core</a> made from a <a href="/wiki/Ferromagnetic" class="mw-redirect" title="Ferromagnetic">ferromagnetic</a> or <a href="/wiki/Ferrimagnetic" class="mw-redirect" title="Ferrimagnetic">ferrimagnetic</a> material such as <a href="/wiki/Iron" title="Iron">iron</a>; the magnetic core concentrates the <a href="/wiki/Magnetic_flux" title="Magnetic flux">magnetic flux</a> and makes a more powerful magnet.</dd> <dt id="electromagnetic_field"><dfn><b><a href="/wiki/Electromagnetic_field" title="Electromagnetic field">Electromagnetic field</a></b></dfn></dt><dd>An electromagnetic field (also <i>EM field</i>) is a classical (i.e. non-quantum) <a href="/wiki/Field_(physics)" title="Field (physics)">field</a> produced by accelerating <a href="/wiki/Electric_charge" title="Electric charge">electric charges</a>.<sup id="cite_ref-177" class="reference"><a href="#cite_note-177"><span class="cite-bracket">[</span>177<span class="cite-bracket">]</span></a></sup> It is the field described by <a href="/wiki/Classical_electrodynamics" class="mw-redirect" title="Classical electrodynamics">classical electrodynamics</a> and is the classical counterpart to the <a href="/wiki/Electromagnetic_field_tensor" class="mw-redirect" title="Electromagnetic field tensor">quantized electromagnetic field tensor</a> in <a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">quantum electrodynamics</a>. The electromagnetic field propagates at the speed of light (in fact, this field can be identified <i>as</i> light) and interacts with charges and currents. Its <a href="/wiki/Electromagnetic_field_tensor" class="mw-redirect" title="Electromagnetic field tensor">quantum counterpart</a> is one of the four <a href="/wiki/Fundamental_force" class="mw-redirect" title="Fundamental force">fundamental forces</a> of nature (the others are <a href="/wiki/Gravitation" class="mw-redirect" title="Gravitation">gravitation</a>, <a href="/wiki/Weak_interaction" title="Weak interaction">weak interaction</a> and <a href="/wiki/Strong_interaction" title="Strong interaction">strong interaction</a>.)</dd> <dt id="electromagnetic_radiation"><dfn><b><a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">Electromagnetic radiation</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, electromagnetic radiation (<i>EM radiation</i> or <i>EMR</i>) refers to the waves (or their <a href="/wiki/Quantum" title="Quantum">quanta</a>, <a href="/wiki/Photon" title="Photon">photons</a>) of the <a href="/wiki/Electromagnetic_field" title="Electromagnetic field">electromagnetic field</a>, propagating (radiating) through space, carrying electromagnetic <a href="/wiki/Radiant_energy" title="Radiant energy">radiant energy</a>.<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">[</span>178<span class="cite-bracket">]</span></a></sup> It includes <a href="/wiki/Radio_wave" title="Radio wave">radio waves</a>, <a href="/wiki/Microwave" title="Microwave">microwaves</a>, <a href="/wiki/Infrared" title="Infrared">infrared</a>, <a href="/wiki/Light" title="Light">(visible) light</a>, <a href="/wiki/Ultraviolet" title="Ultraviolet">ultraviolet</a>, <a href="/wiki/X-ray" title="X-ray">X-rays</a>, and <a href="/wiki/Gamma_ray" title="Gamma ray">gamma rays</a>.<sup id="cite_ref-179" class="reference"><a href="#cite_note-179"><span class="cite-bracket">[</span>179<span class="cite-bracket">]</span></a></sup></dd> <dt id="electromechanics"><dfn><b><a href="/wiki/Electromechanics" title="Electromechanics">Electromechanics</a></b></dfn></dt><dd>Electromechanics<sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">[</span>180<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-181" class="reference"><a href="#cite_note-181"><span class="cite-bracket">[</span>181<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-182" class="reference"><a href="#cite_note-182"><span class="cite-bracket">[</span>182<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">[</span>183<span class="cite-bracket">]</span></a></sup> combines processes and procedures drawn from <a href="/wiki/Electrical_engineering" title="Electrical engineering">electrical engineering</a> and <a href="/wiki/Mechanical_engineering" title="Mechanical engineering">mechanical engineering</a>. Electromechanics focuses on the interaction of electrical and mechanical systems as a whole and how the two systems interact with each other. This process is especially prominent in systems such as those of DC or AC rotating electrical machines which can be designed and operated to generate power from a mechanical process (<a href="/wiki/Electric_generator" title="Electric generator">generator</a>) or used to power a mechanical effect (<a href="/wiki/Electric_motor" title="Electric motor">motor</a>). Electrical engineering in this context also encompasses <a href="/wiki/Electronic_engineering" title="Electronic engineering">electronics engineering</a>.</dd> <dt id="electron"><dfn><b><a href="/wiki/Electron" title="Electron">Electron</a></b></dfn></dt><dd>is a <a href="/wiki/Subatomic_particle" title="Subatomic particle">subatomic particle</a>, symbol <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>e<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> or <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>β<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span>, whose <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a> is negative one <a href="/wiki/Elementary_charge" title="Elementary charge">elementary charge</a>.<sup id="cite_ref-184" class="reference"><a href="#cite_note-184"><span class="cite-bracket">[</span>184<span class="cite-bracket">]</span></a></sup> Electrons belong to the first <a href="/wiki/Generation_(particle_physics)" title="Generation (particle physics)">generation</a> of the <a href="/wiki/Lepton" title="Lepton">lepton</a> particle family,<sup id="cite_ref-curtis74_185-0" class="reference"><a href="#cite_note-curtis74-185"><span class="cite-bracket">[</span>185<span class="cite-bracket">]</span></a></sup> and are generally thought to be <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particles</a> because they have no known components or substructure.<sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">[</span>186<span class="cite-bracket">]</span></a></sup> The electron has a <a href="/wiki/Invariant_mass" title="Invariant mass">mass</a> that is approximately <a href="/wiki/Proton-to-electron_mass_ratio" title="Proton-to-electron mass ratio">1/1836</a> that of the <a href="/wiki/Proton" title="Proton">proton</a>.<sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">[</span>187<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanical</a> properties of the electron include an intrinsic <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a> (<a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>) of a half-integer value, expressed in units of the <a href="/wiki/Reduced_Planck_constant" class="mw-redirect" title="Reduced Planck constant">reduced Planck constant</a>, <i>ħ</i>. Being <a href="/wiki/Fermion" title="Fermion">fermions</a>, no two electrons can occupy the same <a href="/wiki/Quantum_state" title="Quantum state">quantum state</a>, in accordance with the <a href="/wiki/Pauli_exclusion_principle" title="Pauli exclusion principle">Pauli exclusion principle</a>.<sup id="cite_ref-curtis74_185-1" class="reference"><a href="#cite_note-curtis74-185"><span class="cite-bracket">[</span>185<span class="cite-bracket">]</span></a></sup> Like all elementary particles, electrons exhibit properties of <a href="/wiki/Wave-particle_duality" class="mw-redirect" title="Wave-particle duality">both particles and waves</a>: they can collide with other particles and can be <a href="/wiki/Electron_diffraction" title="Electron diffraction">diffracted</a> like light. The <a href="#Quantum_properties">wave properties of electrons</a> are easier to observe with experiments than those of other particles like <a href="/wiki/Neutron" title="Neutron">neutrons</a> and protons because electrons have a lower mass and hence a longer <a href="/wiki/De_Broglie_wavelength" class="mw-redirect" title="De Broglie wavelength">de Broglie wavelength</a> for a given energy.</dd> <dt id="electronvolt"><dfn><b><a href="/wiki/Electronvolt" title="Electronvolt">Electronvolt</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, an electronvolt (symbol eV, also written <i>electron-volt</i> and <i>electron volt</i>) is the amount of <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic energy</a> gained by a single <a href="/wiki/Electron" title="Electron">electron</a> accelerating from rest through an <a href="/wiki/Voltage" title="Voltage">electric potential difference</a> of one <a href="/wiki/Volt" title="Volt">volt</a> in vacuum. When used as a <a href="/wiki/Units_of_energy" title="Units of energy">unit of energy</a>, the numerical value of 1 eV in <a href="/wiki/Joule" title="Joule">joules</a> (symbol J) is equivalent to the numerical value of the charge of an electron in <a href="/wiki/Coulomb" title="Coulomb">coulombs</a> (symbol C). Under the <a href="/wiki/2019_revision_of_the_SI" title="2019 revision of the SI">2019 revision of the SI</a>, this sets 1 eV equal to the exact value <span class="nowrap"><span data-sort-value="6981160217663400000♠"></span>1.602<span style="margin-left:.25em;">176</span><span style="margin-left:.25em;">634</span><span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−19</sup> J</span>.<sup id="cite_ref-physconst-eV_188-0" class="reference"><a href="#cite_note-physconst-eV-188"><span class="cite-bracket">[</span>188<span class="cite-bracket">]</span></a></sup></dd> <dt id="electron_pair"><dfn><b><a href="/wiki/Electron_pair" title="Electron pair">Electron pair</a></b></dfn></dt><dd>In <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, an electron pair, or <i>Lewis pair</i>, consists of two <a href="/wiki/Electron" title="Electron">electrons</a> that occupy the same <a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbital</a> but have opposite <a href="/wiki/Spin_(physics)" title="Spin (physics)">spins</a>. <a href="/wiki/Gilbert_N._Lewis" title="Gilbert N. Lewis">Gilbert N. Lewis</a> introduced the concepts of both the electron pair and the covalent bond in a landmark paper he published in 1916.<sup id="cite_ref-189" class="reference"><a href="#cite_note-189"><span class="cite-bracket">[</span>189<span class="cite-bracket">]</span></a></sup></dd> <dt id="electronegativity"><dfn><b><a href="/wiki/Electronegativity" title="Electronegativity">Electronegativity</a></b></dfn></dt><dd>Symbolized as <span class="nounderlines"><i><a href="/wiki/Chi_(letter)" title="Chi (letter)">χ</a></i></span>, is the measurement of the tendency of an <a href="/wiki/Atom" title="Atom">atom</a> to attract a shared pair of <a href="/wiki/Electron" title="Electron">electrons</a> (or <a href="/wiki/Electron_density" title="Electron density">electron density</a>).<sup id="cite_ref-definition_190-0" class="reference"><a href="#cite_note-definition-190"><span class="cite-bracket">[</span>190<span class="cite-bracket">]</span></a></sup> An atom's electronegativity is affected by both its <a href="/wiki/Atomic_number" title="Atomic number">atomic number</a> and the distance at which its <a href="/wiki/Valence_electrons" class="mw-redirect" title="Valence electrons">valence electrons</a> reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons.</dd> <dt id="electronics"><dfn><b><a href="/wiki/Electronics" title="Electronics">Electronics</a></b></dfn></dt><dd>Comprises the physics, engineering, technology and applications that deal with the emission, flow and control of <a href="/wiki/Electron" title="Electron">electrons</a> in <a href="/wiki/Vacuum" title="Vacuum">vacuum</a> and <a href="/wiki/Matter" title="Matter">matter</a>.<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">[</span>191<span class="cite-bracket">]</span></a></sup> It uses active devices to control electron flow by <a href="/wiki/Amplifier" title="Amplifier">amplification</a> and <a href="/wiki/Rectifier" title="Rectifier">rectification</a>, which distinguishes it from classical <a href="/wiki/Electrical_engineering" title="Electrical engineering">electrical engineering</a> which uses passive effects such as <a href="/wiki/Electrical_resistance_and_conductance" title="Electrical resistance and conductance">resistance</a>, <a href="/wiki/Capacitance" title="Capacitance">capacitance</a>, and <a href="/wiki/Inductance" title="Inductance">inductance</a> to control <a href="/wiki/Electric_current" title="Electric current">current</a> flow.</dd> <dt id="elemental_analysis"><dfn><b><a href="/wiki/Elemental_analysis" title="Elemental analysis">Elemental analysis</a></b></dfn></dt><dd>Is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, <a href="/wiki/Minerals" class="mw-redirect" title="Minerals">minerals</a>, <a href="/wiki/Chemical_compound" title="Chemical compound">chemical compounds</a>) is analyzed for its <a href="/wiki/Chemical_element" title="Chemical element">elemental</a> and sometimes <a href="/wiki/Isotope" title="Isotope">isotopic</a> composition.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2019)">citation needed</span></a></i>]</sup> Elemental analysis can be qualitative (determining what elements are present), and it can be quantitative (determining how much of each are present). Elemental analysis falls within the ambit of <a href="/wiki/Analytical_chemistry" title="Analytical chemistry">analytical chemistry</a>, the set of instruments involved in deciphering the chemical nature of our world.</dd> <dt id="endothermic_process"><dfn><b><a href="/wiki/Endothermic_process" title="Endothermic process">Endothermic process</a></b></dfn></dt><dd>Is any process with an increase in the <a href="/wiki/Enthalpy" title="Enthalpy">enthalpy</a> <i>H</i> (or <a href="/wiki/Internal_energy" title="Internal energy">internal energy</a> <i>U</i>) of the system.<sup id="cite_ref-Oxtoby8th_192-0" class="reference"><a href="#cite_note-Oxtoby8th-192"><span class="cite-bracket">[</span>192<span class="cite-bracket">]</span></a></sup> In such a process, a closed system usually absorbs <a href="/wiki/Thermal_energy" title="Thermal energy">thermal energy</a> from its surroundings, which is <a href="/wiki/Heat" title="Heat">heat</a> transfer into the system. It may be a chemical process, such as dissolving ammonium nitrate in water, or a physical process, such as the melting of ice cubes.</dd> <dt id="energy"><dfn><b><a href="/wiki/Energy" title="Energy">Energy</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, energy is the <a href="/wiki/Physical_quantity" title="Physical quantity">quantitative</a> <a href="/wiki/Physical_property" title="Physical property">property</a> that must be <a href="#Energy_transfer">transferred</a> to an <a href="/wiki/Physical_body" class="mw-redirect" title="Physical body">object</a> in order to perform <a href="/wiki/Work_(thermodynamics)" title="Work (thermodynamics)">work</a> on, or to <a href="/wiki/Heat" title="Heat">heat</a>, the object.<sup id="cite_ref-193" class="reference"><a href="#cite_note-193"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup> Energy is a <a href="/wiki/Conservation_law" title="Conservation law">conserved quantity</a>; the law of <a href="/wiki/Conservation_of_energy" title="Conservation of energy">conservation of energy</a> states that energy can be <a href="/wiki/Energy_transformation" title="Energy transformation">converted</a> in form, but not created or destroyed. The <a href="/wiki/International_System_of_Units" title="International System of Units">SI unit</a> of energy is the <a href="/wiki/Joule" title="Joule">joule</a>, which is the energy transferred to an object by the <a href="/wiki/Work_(physics)" title="Work (physics)">work</a> of moving it a distance of 1 <a href="/wiki/Metre" title="Metre">metre</a> against a <a href="/wiki/Force" title="Force">force</a> of 1 <a href="/wiki/Newton_(unit)" title="Newton (unit)">newton</a>.</dd> <dt id="engine"><dfn><b><a href="/wiki/Engine" title="Engine">Engine</a></b></dfn></dt><dd>An engine or <i>motor</i> is a <a href="/wiki/Machine" title="Machine">machine</a> designed to convert one form of <a href="/wiki/Energy" title="Energy">energy</a> into <a href="/wiki/Motion_(physics)" class="mw-redirect" title="Motion (physics)">mechanical energy</a>.<sup id="cite_ref-194" class="reference"><a href="#cite_note-194"><span class="cite-bracket">[</span>193<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">[</span>194<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Heat_engine" title="Heat engine">Heat engines</a> convert <a href="/wiki/Heat" title="Heat">heat</a> into work via various thermodynamic processes. The <a href="/wiki/Internal_combustion_engine" title="Internal combustion engine">internal combustion engine</a> is perhaps the most common example of a heat engine, in which heat from the <a href="/wiki/Combustion" title="Combustion">combustion</a> of a <a href="/wiki/Fuel" title="Fuel">fuel</a> causes rapid pressurisation of the gaseous combustion products in the combustion chamber, causing them to expand and drive a <a href="/wiki/Piston" title="Piston">piston</a>, which turns a <a href="/wiki/Crankshaft" title="Crankshaft">crankshaft</a>. <a href="/wiki/Electric_motor" title="Electric motor">Electric motors</a> convert electrical energy into <a href="/wiki/Machine_(mechanical)" class="mw-redirect" title="Machine (mechanical)">mechanical</a> motion, <a href="/wiki/Pneumatic_motor" title="Pneumatic motor">pneumatic motors</a> use <a href="/wiki/Compressed_air" title="Compressed air">compressed air</a>, and <a href="/wiki/Clockwork_motor" class="mw-redirect" title="Clockwork motor">clockwork motors</a> in <a href="/wiki/Wind-up_toy" title="Wind-up toy">wind-up toys</a> use <a href="/wiki/Elastic_energy" title="Elastic energy">elastic energy</a>. In biological systems, <a href="/wiki/Molecular_motor" title="Molecular motor">molecular motors</a>, like <a href="/wiki/Myosin" title="Myosin">myosins</a> in <a href="/wiki/Muscle" title="Muscle">muscles</a>, use <a href="/wiki/Chemical_energy" title="Chemical energy">chemical energy</a> to create forces and ultimately motion.</dd> <dt id="engineering"><dfn><b><a href="/wiki/Engineering" title="Engineering">Engineering</a></b></dfn></dt><dd>Is the use of <a href="/wiki/Scientific_method" title="Scientific method">scientific principles</a> to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings.<sup id="cite_ref-196" class="reference"><a href="#cite_note-196"><span class="cite-bracket">[</span>195<span class="cite-bracket">]</span></a></sup> The discipline of engineering encompasses a broad range of more specialized <a href="/wiki/List_of_engineering_branches" title="List of engineering branches">fields of engineering</a>, each with a more specific emphasis on particular areas of <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a>, <a href="/wiki/Applied_science" title="Applied science">applied science</a>, and types of application. The term <i>engineering</i> is derived from the <a href="/wiki/Latin" title="Latin">Latin</a> <i>ingenium</i>, meaning "cleverness" and <i>ingeniare</i>, meaning "to contrive, devise".<sup id="cite_ref-197" class="reference"><a href="#cite_note-197"><span class="cite-bracket">[</span>196<span class="cite-bracket">]</span></a></sup></dd> <dt id="engineering_economics"><dfn><b><a href="/wiki/Engineering_economics" title="Engineering economics">Engineering economics</a></b></dfn></dt><dd>Engineering economics, previously known as <i>engineering economy</i>, is a subset of <a href="/wiki/Economics" title="Economics">economics</a> concerned with the use and "...application of economic principles"<sup id="cite_ref-Dharmaraj2009_198-0" class="reference"><a href="#cite_note-Dharmaraj2009-198"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup> in the analysis of engineering decisions.<sup id="cite_ref-Morris1960_199-0" class="reference"><a href="#cite_note-Morris1960-199"><span class="cite-bracket">[</span>198<span class="cite-bracket">]</span></a></sup> As a discipline, it is focused on the branch of economics known as <a href="/wiki/Microeconomics" title="Microeconomics">microeconomics</a> in that it studies the behavior of individuals and firms in making decisions regarding the allocation of limited resources. Thus, it focuses on the decision making process, its context and environment.<sup id="cite_ref-Dharmaraj2009_198-1" class="reference"><a href="#cite_note-Dharmaraj2009-198"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup> It is pragmatic by nature, integrating economic theory with engineering practice.<sup id="cite_ref-Dharmaraj2009_198-2" class="reference"><a href="#cite_note-Dharmaraj2009-198"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup> But, it is also a simplified application of microeconomic theory in that it assumes elements such as price determination, competition and demand/supply to be fixed inputs from other sources.<sup id="cite_ref-Dharmaraj2009_198-3" class="reference"><a href="#cite_note-Dharmaraj2009-198"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup> As a discipline though, it is closely related to others such as <a href="/wiki/Statistics" title="Statistics">statistics</a>, <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> and <a href="/wiki/Cost_accounting" title="Cost accounting">cost accounting</a>.<sup id="cite_ref-Dharmaraj2009_198-4" class="reference"><a href="#cite_note-Dharmaraj2009-198"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup> It draws upon the logical framework of economics but adds to that the analytical power of mathematics and statistics.<sup id="cite_ref-Dharmaraj2009_198-5" class="reference"><a href="#cite_note-Dharmaraj2009-198"><span class="cite-bracket">[</span>197<span class="cite-bracket">]</span></a></sup></dd> <dt id="engineering_ethics"><dfn><b><a href="/wiki/Engineering_ethics" title="Engineering ethics">Engineering ethics</a></b></dfn></dt><dd>Is the field of system of moral principles that apply to the practice of <a href="/wiki/Engineering" title="Engineering">engineering</a>. The field examines and sets the obligations by <a href="/wiki/Engineer" title="Engineer">engineers</a> to <a href="/wiki/Society" title="Society">society</a>, to their clients, and to the profession. As a scholarly discipline, it is closely related to subjects such as the <a href="/wiki/Philosophy_of_science" title="Philosophy of science">philosophy of science</a>, the <a href="/wiki/Philosophy_of_engineering" title="Philosophy of engineering">philosophy of engineering</a>, and the <a href="/wiki/Ethics_of_technology" title="Ethics of technology">ethics of technology</a>.</dd> <dt id="environmental_engineering"><dfn><b><a href="/wiki/Environmental_engineering" title="Environmental engineering">Environmental engineering</a></b></dfn></dt><dd>Is a job type that is a professional engineering <a href="/wiki/Discipline" title="Discipline">discipline</a> and takes from broad <a href="/wiki/Science" title="Science">scientific</a> topics like <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, <a href="/wiki/Biology" title="Biology">biology</a>, <a href="/wiki/Ecology" title="Ecology">ecology</a>, <a href="/wiki/Geology" title="Geology">geology</a>, <a href="/wiki/Hydraulics" title="Hydraulics">hydraulics</a>, <a href="/wiki/Hydrology" title="Hydrology">hydrology</a>, <a href="/wiki/Microbiology" title="Microbiology">microbiology</a>, and mathematics to create solutions that will protect and also improve the health of living organisms and improve the quality of the environment.<sup id="cite_ref-200" class="reference"><a href="#cite_note-200"><span class="cite-bracket">[</span>199<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-201" class="reference"><a href="#cite_note-201"><span class="cite-bracket">[</span>200<span class="cite-bracket">]</span></a></sup> Environmental engineering is a sub-discipline of <a href="/wiki/Civil_engineering" title="Civil engineering">civil engineering</a> and <a href="/wiki/Chemical_engineering" title="Chemical engineering">chemical engineering</a>.</dd> <dt id="engineering_physics"><dfn><b><a href="/wiki/Engineering_physics" title="Engineering physics">Engineering physics</a></b></dfn></dt><dd>Or <i>engineering science</i>, refers to the study of the combined disciplines of <a href="/wiki/Physics" title="Physics">physics</a>, <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, <a href="/wiki/Biology" title="Biology">biology</a>, and <a href="/wiki/Engineering" title="Engineering">engineering</a>, particularly computer, nuclear, electrical, electronic, aerospace, materials or mechanical engineering. By focusing on the <a href="/wiki/Scientific_method" title="Scientific method">scientific method</a> as a rigorous basis, it seeks ways to apply, design, and develop new solutions in engineering.<sup id="cite_ref-202" class="reference"><a href="#cite_note-202"><span class="cite-bracket">[</span>201<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-203" class="reference"><a href="#cite_note-203"><span class="cite-bracket">[</span>202<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-204" class="reference"><a href="#cite_note-204"><span class="cite-bracket">[</span>203<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-205" class="reference"><a href="#cite_note-205"><span class="cite-bracket">[</span>204<span class="cite-bracket">]</span></a></sup></dd> <dt id="enzyme"><dfn><b><a href="/wiki/Enzyme" title="Enzyme">Enzyme</a></b></dfn></dt><dd>Enzymes are <a href="/wiki/Protein" title="Protein">proteins</a> that act as <a href="/wiki/Biological" class="mw-redirect" title="Biological">biological</a> <a href="/wiki/Catalyst" class="mw-redirect" title="Catalyst">catalysts</a> (biocatalysts). Catalysts accelerate <a href="/wiki/Chemical_reactions" class="mw-redirect" title="Chemical reactions">chemical reactions</a>. The molecules upon which enzymes may act are called <a href="/wiki/Substrate_(chemistry)" title="Substrate (chemistry)">substrates</a>, and the enzyme converts the substrates into different molecules known as <a href="/wiki/Product_(chemistry)" title="Product (chemistry)">products</a>. Almost all <a href="/wiki/Metabolism" title="Metabolism">metabolic processes</a> in the <a href="/wiki/Cell_(biology)" title="Cell (biology)">cell</a> need <a href="/wiki/Enzyme_catalysis" title="Enzyme catalysis">enzyme catalysis</a> in order to occur at rates fast enough to sustain life.<sup id="cite_ref-Stryer_2002_206-0" class="reference"><a href="#cite_note-Stryer_2002-206"><span class="cite-bracket">[</span>205<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 8.1">: 8.1 </span></sup></dd> <dt id="escape_velocity"><dfn><b><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a></b></dfn></dt><dd>The minimum velocity at which an object can escape a gravitation field.</dd> <dt id="estimator"><dfn><b><a href="/wiki/Estimator" title="Estimator">Estimator</a></b></dfn></dt><dd>In <a href="/wiki/Statistics" title="Statistics">statistics</a>, an estimator is a rule for calculating an estimate of a given quantity based on <a href="/wiki/Sample_(statistics)" class="mw-redirect" title="Sample (statistics)">observed data</a>: thus the rule (the estimator), the quantity of interest (the <a href="/wiki/Estimand" title="Estimand">estimand</a>) and its result (the estimate) are distinguished.<sup id="cite_ref-207" class="reference"><a href="#cite_note-207"><span class="cite-bracket">[</span>206<span class="cite-bracket">]</span></a></sup> For example, the <a href="/wiki/Sample_mean" class="mw-redirect" title="Sample mean">sample mean</a> is a commonly used estimator of the <a href="/wiki/Population_mean" class="mw-redirect" title="Population mean">population mean</a>. There are <a href="/wiki/Point_estimator" class="mw-redirect" title="Point estimator">point</a> and <a href="/wiki/Interval_estimator" class="mw-redirect" title="Interval estimator">interval estimators</a>. The <a href="/wiki/Point_estimator" class="mw-redirect" title="Point estimator">point estimators</a> yield single-valued results, although this includes the possibility of single vector-valued results and results that can be expressed as a single function. This is in contrast to an <a href="/wiki/Interval_estimator" class="mw-redirect" title="Interval estimator">interval estimator</a>, where the result would be a range of plausible values (or vectors or functions).</dd> <dt id="euler–bernoulli_beam_theory"><dfn><b><a href="/wiki/Euler%E2%80%93Bernoulli_beam_theory" title="Euler–Bernoulli beam theory">Euler–Bernoulli beam theory</a></b></dfn></dt><dd>Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory)<sup id="cite_ref-Timoshenko_208-0" class="reference"><a href="#cite_note-Timoshenko-208"><span class="cite-bracket">[</span>207<span class="cite-bracket">]</span></a></sup> is a simplification of the <a href="/wiki/Linear_elasticity" title="Linear elasticity">linear theory of elasticity</a> which provides a means of calculating the load-carrying and <a href="/wiki/Deflection_(engineering)" title="Deflection (engineering)">deflection</a> characteristics of <a href="/wiki/Beam_(structure)" title="Beam (structure)">beams</a>. It covers the case for small deflections of a <a href="/wiki/Beam_(structure)" title="Beam (structure)">beam</a> that are subjected to lateral loads only. It is thus a special case of <a href="/wiki/Timoshenko_beam_theory" class="mw-redirect" title="Timoshenko beam theory">Timoshenko beam theory</a>. It was first enunciated circa 1750,<sup id="cite_ref-Truesdell_209-0" class="reference"><a href="#cite_note-Truesdell-209"><span class="cite-bracket">[</span>208<span class="cite-bracket">]</span></a></sup> but was not applied on a large scale until the development of the <a href="/wiki/Eiffel_Tower" title="Eiffel Tower">Eiffel Tower</a> and the <a href="/wiki/Ferris_wheel" title="Ferris wheel">Ferris wheel</a> in the late 19th century. Following these successful demonstrations, it quickly became a cornerstone of engineering and an enabler of the <a href="/wiki/Second_Industrial_Revolution" title="Second Industrial Revolution">Second Industrial Revolution</a>. Additional <a href="/wiki/Mathematical_models" class="mw-redirect" title="Mathematical models">mathematical models</a> have been developed such as <a href="/wiki/Plate_theory" title="Plate theory">plate theory</a>, but the simplicity of beam theory makes it an important tool in the sciences, especially <a href="/wiki/Structural_engineering" title="Structural engineering">structural</a> and <a href="/wiki/Mechanical_engineering" title="Mechanical engineering">mechanical engineering</a>.</dd> <dt id="exothermic_process"><dfn><b><a href="/wiki/Exothermic_process" title="Exothermic process">Exothermic process</a></b></dfn></dt><dd>In <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, the term exothermic process (exo- : "outside") describes a process or reaction that releases <a href="/wiki/Energy" title="Energy">energy</a> from the system to its surroundings, usually in the form of <a href="/wiki/Heat" title="Heat">heat</a>, but also in a form of <a href="/wiki/Light" title="Light">light</a> (e.g. a spark, flame, or flash), <a href="/wiki/Electricity" title="Electricity">electricity</a> (e.g. a battery), or <a href="/wiki/Sound" title="Sound">sound</a> (e.g. explosion heard when burning hydrogen). Its etymology stems from the Greek prefix <i>έξω</i> (exō, which means "outwards") and the Greek word <i>θερμικός</i> (thermikόs, which means "thermal").<sup id="cite_ref-210" class="reference"><a href="#cite_note-210"><span class="cite-bracket">[</span>209<span class="cite-bracket">]</span></a></sup></dd> </dl> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="F">F</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=6" title="Edit section: F"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="factor_of_safety"><dfn><b><a href="/wiki/Factor_of_safety" title="Factor of safety">Factor of safety</a></b></dfn></dt><dd>(<b>FoS</b>), also known as (and used interchangeably with) <b>safety factor</b> (<b>SF</b>), expresses how much stronger a system is than it needs to be for an intended load.</dd> <dt id="falling_bodies"><dfn><b><a href="/wiki/Falling_bodies" class="mw-redirect" title="Falling bodies">Falling bodies</a></b></dfn></dt><dd>.</dd> <dt id="farad"><dfn><b><a href="/wiki/Farad" title="Farad">Farad</a></b></dfn></dt><dd><sup id="cite_ref-211" class="reference"><a href="#cite_note-211"><span class="cite-bracket">[</span>210<span class="cite-bracket">]</span></a></sup> The farad (symbol: F) is the <a href="/wiki/SI_derived_unit" title="SI derived unit">SI derived unit</a> of electrical <a href="/wiki/Capacitance" title="Capacitance">capacitance</a>, the ability of a body to store an electrical charge. It is named after the English physicist <a href="/wiki/Michael_Faraday" title="Michael Faraday">Michael Faraday</a>.</dd> <dt id="faraday_constant"><dfn><b><a href="/wiki/Faraday_constant" title="Faraday constant">Faraday constant</a></b></dfn></dt><dd>Denoted by the symbol <span class="texhtml"><i>F</i></span> and sometimes stylized as ℱ, is named after <a href="/wiki/Michael_Faraday" title="Michael Faraday">Michael Faraday</a>. In <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, this constant represents the magnitude of <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a> per <a href="/wiki/Mole_(unit)" title="Mole (unit)">mole</a> of <a href="/wiki/Electron" title="Electron">electrons</a>.<sup id="cite_ref-212" class="reference"><a href="#cite_note-212"><span class="cite-bracket">[</span>211<span class="cite-bracket">]</span></a></sup> It has the value <dl><dd><span class="nowrap"><span data-sort-value="7004964853321200000♠"></span>9.648<span style="margin-left:.25em;">533</span><span style="margin-left:.25em;">212</span>...<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>4</sup></span> C mol<sup>−1</sup>.<sup id="cite_ref-physconst-F_213-0" class="reference"><a href="#cite_note-physconst-F-213"><span class="cite-bracket">[</span>212<span class="cite-bracket">]</span></a></sup></dd></dl> This constant has a simple relation to two other physical constants: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\,=\,eN_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mi>e</mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\,=\,eN_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ced93fa01419f1337dbefdf08f636eb32350e089" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.028ex; height:2.509ex;" alt="{\displaystyle F\,=\,eN_{A}}"></span></dd></dl> where <dl><dd><i>e</i> = <span class="nowrap"><span data-sort-value="6981160217663400000♠"></span>1.602<span style="margin-left:.25em;">176</span><span style="margin-left:.25em;">634</span><span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−19</sup> C</span></dd> <dt><sup id="cite_ref-physconst-e_214-0" class="reference"><a href="#cite_note-physconst-e-214"><span class="cite-bracket">[</span>213<span class="cite-bracket">]</span></a></sup></dt> <dd><i>N</i><sub>A</sub> = <span class="nowrap"><span data-sort-value="7023602214076000000♠"></span>6.022<span style="margin-left:.25em;">140</span><span style="margin-left:.25em;">76</span><span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>23</sup> mol<sup>−1</sup></span>.<sup id="cite_ref-physconst-NA_215-0" class="reference"><a href="#cite_note-physconst-NA-215"><span class="cite-bracket">[</span>214<span class="cite-bracket">]</span></a></sup></dd></dl> Both of these values have exact defined values, and hence <i>F</i> has a known exact value. <i>N</i><sub>A</sub> is the <a href="/wiki/Avogadro_constant" title="Avogadro constant">Avogadro constant</a> (the ratio of the number of particles, <i>N</i>, which is unitless, to the amount of substance, <i>n</i>, in units of moles), and <i>e</i> is the <a href="/wiki/Elementary_charge" title="Elementary charge">elementary charge</a> or the magnitude of the charge of an electron. This relation holds because the amount of charge of a mole of electrons is equal to the amount of charge in <i>one</i> electron multiplied by the number of electrons in a mole.</dd> <dt id="fermat's_principle"><dfn><b><a href="/wiki/Fermat%27s_principle" title="Fermat's principle">Fermat's principle</a></b></dfn></dt><dd>In <a href="/wiki/Optics" title="Optics">optics</a>, Fermat's principle, or the <i>principle of least time</i>, named after French mathematician <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a>, is the principle that the path taken between two points by a ray of light is the path that can be traversed in the least time. This principle is sometimes taken as the definition of a ray of light.<sup id="cite_ref-216" class="reference"><a href="#cite_note-216"><span class="cite-bracket">[</span>215<span class="cite-bracket">]</span></a></sup> However, this version of the principle is not general; a more modern statement of the principle is that rays of light traverse the path of stationary optical length with respect to variations of the path.<sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">[</span>216<span class="cite-bracket">]</span></a></sup> In other words, a ray of light prefers the path such that there are other paths, arbitrarily nearby on either side, along which the ray would take almost exactly the same time to traverse.</dd> <dt id="fick's_laws_of_diffusion"><dfn><b><a href="/wiki/Fick%27s_laws_of_diffusion" title="Fick's laws of diffusion">Fick's laws of diffusion</a></b></dfn></dt><dd>Describe <a href="/wiki/Diffusion" title="Diffusion">diffusion</a> and were derived by <a href="/wiki/Adolf_Fick" class="mw-redirect" title="Adolf Fick">Adolf Fick</a> in 1855. They can be used to solve for the <a href="/wiki/Mass_diffusivity" title="Mass diffusivity">diffusion coefficient</a>, <span class="texhtml mvar" style="font-style:italic;">D</span>. Fick's first law can be used to derive his second law which in turn is identical to the <a href="/wiki/Diffusion_equation" title="Diffusion equation">diffusion equation</a>.</dd> <dt id="finite_element_method"><dfn><b><a href="/wiki/Finite_element_method" title="Finite element method">Finite element method</a></b></dfn></dt><dd>(FEM), is the most widely used method for solving problems of engineering and <a href="/wiki/Mathematical_models" class="mw-redirect" title="Mathematical models">mathematical models</a>. Typical problem areas of interest include the traditional fields of <a href="/wiki/Structural_analysis" title="Structural analysis">structural analysis</a>, <a href="/wiki/Heat_transfer" title="Heat transfer">heat transfer</a>, <a href="/wiki/Fluid_flow" class="mw-redirect" title="Fluid flow">fluid flow</a>, mass transport, and <a href="/wiki/Electromagnetic_potential" class="mw-redirect" title="Electromagnetic potential">electromagnetic potential</a>. The FEM is a particular <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical method</a> for solving <a href="/wiki/Partial_differential_equations" class="mw-redirect" title="Partial differential equations">partial differential equations</a> in two or three space variables (i.e., some <a href="/wiki/Boundary_value_problem" title="Boundary value problem">boundary value problems</a>). To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space <a href="/wiki/Discretization" title="Discretization">discretization</a> in the space dimensions, which is implemented by the construction of a <a href="/wiki/Types_of_mesh" title="Types of mesh">mesh</a> of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of <a href="/wiki/Algebraic_equation" title="Algebraic equation">algebraic equations</a>. The method approximates the unknown function over the domain.<sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">[</span>217<span class="cite-bracket">]</span></a></sup> The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. The FEM then uses <a href="/wiki/Variational_methods" class="mw-redirect" title="Variational methods">variational methods</a> from the <a href="/wiki/Calculus_of_variations" title="Calculus of variations">calculus of variations</a> to approximate a solution by minimizing an associated error function.</dd> <dt id="first"><dfn><b><a href="/wiki/For_Inspiration_and_Recognition_of_Science_and_Technology" title="For Inspiration and Recognition of Science and Technology">FIRST</a></b></dfn></dt><dd>For Inspiration and Recognition of Science and Technology – is an organization founded by inventor Dean Kamen in 1989 to develop ways to inspire students in engineering and technology fields.</dd> <dt id="fission"><dfn><b><a href="/wiki/Nuclear_fission" title="Nuclear fission">Fission</a></b></dfn></dt><dd>In <a href="/wiki/Nuclear_physics" title="Nuclear physics">nuclear physics</a> and <a href="/wiki/Nuclear_chemistry" title="Nuclear chemistry">nuclear chemistry</a>, nuclear fission is a <a href="/wiki/Nuclear_reaction" title="Nuclear reaction">nuclear reaction</a> or a <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a> process in which the <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a> of an <a href="/wiki/Atom" title="Atom">atom</a> splits into two or more smaller, lighter <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nuclei</a>. The fission process often produces <a href="/wiki/Gamma_ray" title="Gamma ray">gamma</a> <a href="/wiki/Photon" title="Photon">photons</a>, and releases a very large amount of <a href="/wiki/Energy" title="Energy">energy</a> even by the energetic standards of <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a>.</dd> <dt id="flow_velocity"><dfn><b><a href="/wiki/Flow_velocity" title="Flow velocity">Flow velocity</a></b></dfn></dt><dd>In <a href="/wiki/Continuum_mechanics" title="Continuum mechanics">continuum mechanics</a> the flow velocity in <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, also macroscopic velocity<sup id="cite_ref-219" class="reference"><a href="#cite_note-219"><span class="cite-bracket">[</span>218<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-220" class="reference"><a href="#cite_note-220"><span class="cite-bracket">[</span>219<span class="cite-bracket">]</span></a></sup> in <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a>, or drift velocity in <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a>, is a <a href="/wiki/Vector_field" title="Vector field">vector field</a> used to mathematically describe the motion of a continuum. The length of the flow velocity vector is the flow speed and is a scalar. It is also called velocity field; when evaluated along a <a href="/wiki/Line_(geometry)" title="Line (geometry)">line</a>, it is called a velocity profile (as in, e.g., <a href="/wiki/Law_of_the_wall" title="Law of the wall">law of the wall</a>).</dd> <dt id="fluid"><dfn><b><a href="/wiki/Fluid" title="Fluid">Fluid</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, a fluid is a substance that continually <a href="/wiki/Deformation_(mechanics)" class="mw-redirect" title="Deformation (mechanics)">deforms</a> (flows) under an applied <a href="/wiki/Shear_stress" title="Shear stress">shear stress</a>, or external force. Fluids are a <a href="/wiki/Phase_(matter)" title="Phase (matter)">phase</a> of <a href="/wiki/Matter" title="Matter">matter</a> and include <a href="/wiki/Liquid" title="Liquid">liquids</a>, <a href="/wiki/Gas" title="Gas">gases</a>, and <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasmas</a>. They are <a href="/wiki/Matter" title="Matter">substances</a> with zero <a href="/wiki/Shear_modulus" title="Shear modulus">shear modulus</a>, or, in simpler terms, substances which cannot resist any <a href="/wiki/Shear_force" title="Shear force">shear force</a> applied to them.</dd> <dt id="fluid_dynamics"><dfn><b><a href="/wiki/Fluid_dynamics" title="Fluid dynamics">Fluid dynamics</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Engineering" title="Engineering">engineering</a>, fluid dynamics is a subdiscipline of <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid mechanics</a> that describes the flow of <a href="/wiki/Fluid" title="Fluid">fluids</a>—<a href="/wiki/Liquid" title="Liquid">liquids</a> and <a href="/wiki/Gas" title="Gas">gases</a>. It has several subdisciplines, including <a href="/wiki/Aerodynamics" title="Aerodynamics">aerodynamics</a> (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion).</dd> <dt id="fluid_mechanics"><dfn><b><a href="/wiki/Fluid_mechanics" title="Fluid mechanics">Fluid mechanics</a></b></dfn></dt><dd>Is the branch of <a href="/wiki/Physics" title="Physics">physics</a> concerned with the mechanics of <a href="/wiki/Fluid" title="Fluid">fluids</a> (<a href="/wiki/Liquid" title="Liquid">liquids</a>, <a href="/wiki/Gas" title="Gas">gases</a>, and <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasmas</a>) and the <a href="/wiki/Force" title="Force">forces</a> on them.<sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">[</span>220<span class="cite-bracket">]</span></a></sup> It has applications in a wide range of disciplines, including <a href="/wiki/Mechanical_engineering" title="Mechanical engineering">mechanical</a>, <a href="/wiki/Civil_engineering" title="Civil engineering">civil</a>, <a href="/wiki/Chemical_engineering" title="Chemical engineering">chemical</a> and <a href="/wiki/Biomedical_engineering" title="Biomedical engineering">biomedical engineering</a>, <a href="/wiki/Geophysics" title="Geophysics">geophysics</a>, <a href="/wiki/Oceanography" title="Oceanography">oceanography</a>, <a href="/wiki/Meteorology" title="Meteorology">meteorology</a>, <a href="/wiki/Astrophysics" title="Astrophysics">astrophysics</a>, and <a href="/wiki/Biology" title="Biology">biology</a>.</dd> <dt id="fluid_statics"><dfn><b><a href="/wiki/Fluid_statics" class="mw-redirect" title="Fluid statics">Fluid statics</a></b></dfn></dt><dd>Fluid statics, or <i>hydrostatics</i>, is the branch of <a href="/wiki/Fluid_mechanics" title="Fluid mechanics">fluid mechanics</a> that studies "<a href="/wiki/Fluid" title="Fluid">fluids</a> at rest and the pressure in a fluid or exerted by a fluid on an immersed body".<sup id="cite_ref-MW_dictionary_def_222-0" class="reference"><a href="#cite_note-MW_dictionary_def-222"><span class="cite-bracket">[</span>221<span class="cite-bracket">]</span></a></sup></dd> <dt id="flywheel"><dfn><b><a href="/wiki/Flywheel" title="Flywheel">Flywheel</a></b></dfn></dt><dd>Is a mechanical device specifically designed to use the conservation of <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a> so as to efficiently store <a href="/wiki/Rotational_energy" title="Rotational energy">rotational energy</a>; a form of kinetic energy proportional to the product of its <a href="/wiki/Moment_of_inertia" title="Moment of inertia">moment of inertia</a> and the square of its <a href="/wiki/Rotational_speed" class="mw-redirect" title="Rotational speed">rotational speed</a>. In particular, if we assume the flywheel's moment of inertia to be constant (i.e., a flywheel with fixed mass and <a href="/wiki/Second_moment_of_area" title="Second moment of area">second moment of area</a> revolving about some fixed axis) then the stored (rotational) energy is directly associated with the square of its rotational speed.</dd> <dt id="focus"><dfn><b><a href="/wiki/Focus_(optics)" title="Focus (optics)">Focus</a></b></dfn></dt><dd>In <a href="/wiki/Geometrical_optics" title="Geometrical optics">geometrical optics</a>, a focus, also called an <i>image point</i>, is the point where <a href="/wiki/Ray_(optics)" title="Ray (optics)">light rays</a> originating from a point on the object <a href="/wiki/Vergence_(optics)" title="Vergence (optics)">converge</a>.<sup id="cite_ref-223" class="reference"><a href="#cite_note-223"><span class="cite-bracket">[</span>222<span class="cite-bracket">]</span></a></sup> Although the focus is conceptually a point, physically the focus has a spatial extent, called the <a href="/wiki/Circle_of_confusion" title="Circle of confusion">blur circle</a>. This non-ideal focusing may be caused by <a href="/wiki/Optical_aberration" title="Optical aberration">aberrations</a> of the imaging optics. In the absence of significant aberrations, the smallest possible blur circle is the <a href="/wiki/Airy_disc" class="mw-redirect" title="Airy disc">Airy disc</a>, which is caused by <a href="/wiki/Diffraction" title="Diffraction">diffraction</a> from the optical system's <a href="/wiki/Aperture" title="Aperture">aperture</a>. Aberrations tend worsen as the aperture diameter increases, while the Airy circle is smallest for large apertures.</dd> <dt id="foot-pound"><dfn><b><a href="/wiki/Foot-pound" class="mw-redirect" title="Foot-pound">Foot-pound</a></b></dfn></dt><dd>The foot-pound force (symbol: ft⋅lbf,<sup id="cite_ref-224" class="reference"><a href="#cite_note-224"><span class="cite-bracket">[</span>223<span class="cite-bracket">]</span></a></sup> ft⋅lb<sub>f</sub>,<sup id="cite_ref-isbn_978-0135018583_225-0" class="reference"><a href="#cite_note-isbn_978-0135018583-225"><span class="cite-bracket">[</span>224<span class="cite-bracket">]</span></a></sup> or ft⋅lb <sup id="cite_ref-226" class="reference"><a href="#cite_note-226"><span class="cite-bracket">[</span>225<span class="cite-bracket">]</span></a></sup>) is a unit of <a href="/wiki/Mechanical_work" class="mw-redirect" title="Mechanical work">work</a> or <a href="/wiki/Energy" title="Energy">energy</a> in the <a href="/wiki/English_Engineering_Units" title="English Engineering Units">engineering</a> and <a href="/wiki/Foot%E2%80%93pound%E2%80%93second_system#force" class="mw-redirect" title="Foot–pound–second system">gravitational</a> systems in <a href="/wiki/United_States_customary_units" title="United States customary units">United States customary</a> and <a href="/wiki/Imperial_units" title="Imperial units">imperial</a> units of measure. It is the energy transferred upon applying a <a href="/wiki/Force" title="Force">force</a> of one <a href="/wiki/Pound-force" class="mw-redirect" title="Pound-force">pound-force</a> (lbf) through a linear <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a> of one <a href="/wiki/Foot_(unit)" title="Foot (unit)">foot</a>. The corresponding <a href="/wiki/SI" class="mw-redirect" title="SI">SI</a> unit is the <a href="/wiki/Joule" title="Joule">joule</a>.</dd> <dt id="fracture_toughness"><dfn><b><a href="/wiki/Fracture_toughness" title="Fracture toughness">Fracture toughness</a></b></dfn></dt><dd>In <a href="/wiki/Materials_science" title="Materials science">materials science</a>, fracture toughness is the critical <a href="/wiki/Stress_intensity_factor" title="Stress intensity factor">stress intensity factor</a> of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having <a href="/wiki/Plane_stress" title="Plane stress">plane stress</a> conditions and thick components having <a href="/wiki/Plane_strain" class="mw-redirect" title="Plane strain">plane strain</a> conditions. Plane strain conditions give the lowest fracture toughness value which is a <a href="/wiki/Material_properties" class="mw-redirect" title="Material properties">material property</a>. The critical value of stress intensity factor in <a href="/wiki/Fracture_mechanics" title="Fracture mechanics">mode I</a> loading measured under plane strain conditions is known as the <i>plane strain fracture toughness</i>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{Ic}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Ic</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{Ic}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b469c971fd06c5030a221e6165f400027cd3ade6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.529ex; height:2.509ex;" alt="{\displaystyle K_{\text{Ic}}}"></span>.<sup id="cite_ref-suresh04_227-0" class="reference"><a href="#cite_note-suresh04-227"><span class="cite-bracket">[</span>226<span class="cite-bracket">]</span></a></sup> When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb07a739cf7df8034e9002448287ab23a46410ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.935ex; height:2.509ex;" alt="{\displaystyle K_{\text{c}}}"></span>. Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.</dd> <dt id="fraunhofer_lines"><dfn><b><a href="/wiki/Fraunhofer_lines" title="Fraunhofer lines">Fraunhofer lines</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Optics" title="Optics">optics</a>, the Fraunhofer lines are a set of <a href="/wiki/Spectral_line" title="Spectral line">spectral absorption lines</a> named after the German physicist <a href="/wiki/Joseph_von_Fraunhofer" title="Joseph von Fraunhofer">Joseph von Fraunhofer</a> (1787–1826). The lines were originally observed as dark features (<a href="/wiki/Absorption_line" class="mw-redirect" title="Absorption line">absorption lines</a>) in the <a href="/wiki/Optical_spectrum" class="mw-redirect" title="Optical spectrum">optical spectrum</a> of the <a href="/wiki/Sun" title="Sun">Sun</a>.</dd> <dt id="free_fall"><dfn><b><a href="/wiki/Free_fall" title="Free fall">Free fall</a></b></dfn></dt><dd>In <a href="/wiki/Classical_mechanics" title="Classical mechanics">Newtonian physics</a>, free fall is any motion of a <a href="/wiki/Physical_body" class="mw-redirect" title="Physical body">body</a> where <a href="/wiki/Gravity" title="Gravity">gravity</a> is the only <a href="/wiki/Force" title="Force">force</a> acting upon it. In the context of <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, where gravitation is reduced to a <a href="/wiki/Space-time_curvature" class="mw-redirect" title="Space-time curvature">space-time curvature</a>, a body in free fall has no force acting on it.</dd> <dt id="frequency_modulation"><dfn><b><a href="/wiki/Frequency_modulation" title="Frequency modulation">Frequency modulation</a></b></dfn></dt><dd>Frequency modulation (FM) is the encoding of <a href="/wiki/Information" title="Information">information</a> in a <a href="/wiki/Carrier_wave" title="Carrier wave">carrier wave</a> by varying the <a href="/wiki/Instantaneous_frequency" class="mw-redirect" title="Instantaneous frequency">instantaneous frequency</a> of the wave. The technology is used in <a href="/wiki/Telecommunications" title="Telecommunications">telecommunications</a>, <a href="/wiki/Radio_broadcasting" title="Radio broadcasting">radio broadcasting</a>, <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>, and <a href="/wiki/Run-length_limited#FM:_.280.2C1.29_RLL" title="Run-length limited">computing</a>.</dd> <dt id="freezing_point"><dfn><b><a href="/wiki/Freezing_point" class="mw-redirect" title="Freezing point">Freezing point</a></b></dfn></dt><dd>The <i>melting point</i> (or, rarely, <i>liquefaction point</i>) of a substance is the <a href="/wiki/Temperature" title="Temperature">temperature</a> at which it changes <a href="/wiki/State_of_matter" title="State of matter">state</a> from <a href="/wiki/Solid" title="Solid">solid</a> to <a href="/wiki/Liquid" title="Liquid">liquid</a>. At the melting point the solid and liquid phase exist in <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">equilibrium</a>. The melting point of a substance depends on <a href="/wiki/Pressure" title="Pressure">pressure</a> and is usually specified at a <a href="/wiki/Standard_temperature_and_pressure" title="Standard temperature and pressure">standard pressure</a> such as 1 <a href="/wiki/Atmosphere_(unit)" class="mw-redirect" title="Atmosphere (unit)">atmosphere</a> or 100 <a href="/wiki/Pascal_(unit)" title="Pascal (unit)">kPa</a>. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the <i>freezing point</i> or <i>crystallization point</i>. Because of the ability of substances to <a href="/wiki/Supercooling" title="Supercooling">supercool</a>, the freezing point can easily appear to be below its actual value. When the "characteristic freezing point" of a substance is determined, in fact the actual methodology is almost always "the principle of observing the disappearance rather than the formation of ice, that is, the <a href="#Melting_point_measurements">melting point</a>.<sup id="cite_ref-228" class="reference"><a href="#cite_note-228"><span class="cite-bracket">[</span>227<span class="cite-bracket">]</span></a></sup></dd> <dt id="friction"><dfn><b><a href="/wiki/Friction" title="Friction">Friction</a></b></dfn></dt><dd>Is the <a href="/wiki/Force" title="Force">force</a> resisting the relative motion of solid surfaces, fluid layers, and material elements <a href="/wiki/Sliding_(motion)" title="Sliding (motion)">sliding</a> against each other.<sup id="cite_ref-229" class="reference"><a href="#cite_note-229"><span class="cite-bracket">[</span>228<span class="cite-bracket">]</span></a></sup> There are several types of friction: <ul><li><i>Dry friction</i> is a force that opposes the relative lateral motion of two solid surfaces in contact. Dry friction is subdivided into <i>static friction</i> ("<a href="/wiki/Stiction" title="Stiction">stiction</a>") between non-moving surfaces, and <i>kinetic friction</i> between moving surfaces. With the exception of atomic or molecular friction, dry friction generally arises from the interaction of surface features, known as <a href="/wiki/Asperity_(materials_science)" title="Asperity (materials science)">asperities</a> (see Figure 1).</li> <li><i>Fluid friction</i> describes the friction between layers of a <a href="/wiki/Viscous" class="mw-redirect" title="Viscous">viscous</a> fluid that are moving relative to each other.<sup id="cite_ref-Beer_230-0" class="reference"><a href="#cite_note-Beer-230"><span class="cite-bracket">[</span>229<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Meriam_231-0" class="reference"><a href="#cite_note-Meriam-231"><span class="cite-bracket">[</span>230<span class="cite-bracket">]</span></a></sup></li> <li><i>Lubricated friction</i> is a case of fluid friction where a <a href="/wiki/Lubricant" title="Lubricant">lubricant</a> fluid separates two solid surfaces.<sup id="cite_ref-Ruina_232-0" class="reference"><a href="#cite_note-Ruina-232"><span class="cite-bracket">[</span>231<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Hibbeler_233-0" class="reference"><a href="#cite_note-Hibbeler-233"><span class="cite-bracket">[</span>232<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Soutas-Little_234-0" class="reference"><a href="#cite_note-Soutas-Little-234"><span class="cite-bracket">[</span>233<span class="cite-bracket">]</span></a></sup></li> <li><i>Skin friction</i> is a component of <a href="/wiki/Drag_(physics)" title="Drag (physics)">drag</a>, the force resisting the motion of a fluid across the surface of a body.</li> <li><i>Internal friction</i> is the force resisting motion between the elements making up a solid material while it undergoes <a href="/wiki/Deformation_(mechanics)" class="mw-redirect" title="Deformation (mechanics)">deformation</a>.<sup id="cite_ref-Meriam_231-1" class="reference"><a href="#cite_note-Meriam-231"><span class="cite-bracket">[</span>230<span class="cite-bracket">]</span></a></sup></li></ul></dd> <dt id="function"><dfn><b><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a></b></dfn></dt><dd>In mathematics, a function<sup id="cite_ref-235" class="reference"><a href="#cite_note-235"><span class="cite-bracket">[</span>note 2<span class="cite-bracket">]</span></a></sup> is a <a href="/wiki/Binary_relation" title="Binary relation">binary relation</a> between two <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a> that associates every element of the first set to exactly one element of the second set. Typical examples are functions from <a href="/wiki/Integer" title="Integer">integers</a> to integers, or from the <a href="/wiki/Real_number" title="Real number">real numbers</a> to real numbers.</dd> <dt id="fundamental_frequency"><dfn><b><a href="/wiki/Fundamental_frequency" title="Fundamental frequency">Fundamental frequency</a></b></dfn></dt><dd>The fundamental frequency, often referred to simply as the <i>fundamental</i>, is defined as the lowest <a href="/wiki/Frequency" title="Frequency">frequency</a> of a <a href="/wiki/Periodic_signal" class="mw-redirect" title="Periodic signal">periodic</a> <a href="/wiki/Waveform" title="Waveform">waveform</a>. In music, the fundamental is the musical <a href="/wiki/Pitch_(music)" title="Pitch (music)">pitch</a> of a note that is perceived as the lowest <a href="/wiki/Harmonic_series_(music)#Partial" title="Harmonic series (music)">partial</a> present. In terms of a superposition of <a href="/wiki/Sine_wave" title="Sine wave">sinusoids</a>, the fundamental frequency is the lowest frequency sinusoidal in the sum of harmonically related frequencies, or the frequency of the difference between adjacent frequencies. In some contexts, the fundamental is usually abbreviated as <b><var style="padding-right: 1px;">f</var><sub>0</sub></b>, indicating the lowest frequency <a href="/wiki/Zero-based_numbering" title="Zero-based numbering">counting from zero</a>.<sup id="cite_ref-236" class="reference"><a href="#cite_note-236"><span class="cite-bracket">[</span>234<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-237" class="reference"><a href="#cite_note-237"><span class="cite-bracket">[</span>235<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-238" class="reference"><a href="#cite_note-238"><span class="cite-bracket">[</span>236<span class="cite-bracket">]</span></a></sup> In other contexts, it is more common to abbreviate it as <b><var style="padding-right: 1px;">f</var><sub>1</sub></b>, the first <a href="/wiki/Harmonic" title="Harmonic">harmonic</a>.<sup id="cite_ref-239" class="reference"><a href="#cite_note-239"><span class="cite-bracket">[</span>237<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-240" class="reference"><a href="#cite_note-240"><span class="cite-bracket">[</span>238<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-241" class="reference"><a href="#cite_note-241"><span class="cite-bracket">[</span>239<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-242" class="reference"><a href="#cite_note-242"><span class="cite-bracket">[</span>240<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-243" class="reference"><a href="#cite_note-243"><span class="cite-bracket">[</span>241<span class="cite-bracket">]</span></a></sup> (The second harmonic is then <var style="padding-right: 1px;">f</var><sub>2</sub>=2⋅<var style="padding-right: 1px;">f</var><sub>1</sub>, etc. In this context, the zeroth harmonic would be 0 <a href="/wiki/Hertz" title="Hertz">Hz</a>.)</dd> <dt id="fundamental_interaction"><dfn><b><a href="/wiki/Fundamental_interaction" title="Fundamental interaction">Fundamental interaction</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, the fundamental interactions, also known as <i>fundamental forces</i>, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the <a href="/wiki/Gravity" title="Gravity">gravitational</a> and <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetic</a> interactions, which produce significant long-range forces whose effects can be seen directly in everyday life, and the <a href="/wiki/Strong_interaction" title="Strong interaction">strong</a> and <a href="/wiki/Weak_interaction" title="Weak interaction">weak interactions</a>, which produce forces at <a href="/wiki/Subatomic_scale" title="Subatomic scale">minuscule, subatomic distances</a> and govern nuclear interactions. Some scientists hypothesize that a <a href="/wiki/Fifth_force" title="Fifth force">fifth force</a> might exist, but these hypotheses remain speculative.<sup id="cite_ref-Fackler_244-0" class="reference"><a href="#cite_note-Fackler-244"><span class="cite-bracket">[</span>242<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Weisstein_245-0" class="reference"><a href="#cite_note-Weisstein-245"><span class="cite-bracket">[</span>243<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Franklin_246-0" class="reference"><a href="#cite_note-Franklin-246"><span class="cite-bracket">[</span>244<span class="cite-bracket">]</span></a></sup></dd> <dt id="fundamental_theorem_of_calculus"><dfn><b><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a></b></dfn></dt><dd>Is a <a href="/wiki/Theorem" title="Theorem">theorem</a> that links the concept of <a href="/wiki/Derivative" title="Derivative">differentiating</a> a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> with the concept of <a href="/wiki/Integral" title="Integral">integrating</a> a function.</dd> <dt id="fundamentals_of_engineering_examination_(us)"><dfn><b><a href="/wiki/Fundamentals_of_Engineering_Examination" class="mw-redirect" title="Fundamentals of Engineering Examination">Fundamentals of Engineering Examination (US)</a></b></dfn></dt><dd>The Fundamentals of Engineering (FE) exam, also referred to as the <i>Engineer in Training</i> (<i>EIT</i>) <i>exam</i>, and formerly in some states as the <i>Engineering Intern</i> (<i>EI</i>) <i>exam</i>, is the first of two examinations that <a href="/wiki/Engineer" title="Engineer">engineers</a> must pass in order to be licensed as a <a href="/wiki/Professional_Engineer" class="mw-redirect" title="Professional Engineer">Professional Engineer</a> in the <a href="/wiki/United_States" title="United States">United States</a>. The second examination is <a href="/wiki/Principles_and_Practice_of_Engineering_Examination" class="mw-redirect" title="Principles and Practice of Engineering Examination">Principles and Practice of Engineering Examination</a>. The FE <a href="/wiki/Exam" title="Exam">exam</a> is open to anyone with a <a href="/wiki/Academic_degree" title="Academic degree">degree</a> in engineering or a related field, or currently enrolled in the last year of an <a href="/wiki/Accreditation_Board_for_Engineering_and_Technology" class="mw-redirect" title="Accreditation Board for Engineering and Technology">ABET</a>-accredited engineering degree program. Some state licensure boards permit students to take it prior to their final year, and numerous states allow those who have never attended an approved program to take the exam if they have a state-determined number of years of work experience in engineering. Some states allow those with ABET-accredited "Engineering Technology" or "ETAC" degrees to take the examination. The state of <a href="/wiki/Michigan" title="Michigan">Michigan</a> has no admission pre-requisites for the FE.<sup id="cite_ref-247" class="reference"><a href="#cite_note-247"><span class="cite-bracket">[</span>245<span class="cite-bracket">]</span></a></sup> The exam is administered by the <a href="/wiki/National_Council_of_Examiners_for_Engineering_and_Surveying" title="National Council of Examiners for Engineering and Surveying">National Council of Examiners for Engineering and Surveying</a> (NCEES).</dd> </dl> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="G">G</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=7" title="Edit section: G"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="galvanic_cell"><dfn><b><a href="/wiki/Galvanic_cell" title="Galvanic cell">Galvanic cell</a></b></dfn></dt><dd>A galvanic cell or voltaic cell, named after <a href="/wiki/Luigi_Galvani" title="Luigi Galvani">Luigi Galvani</a> or <a href="/wiki/Alessandro_Volta" title="Alessandro Volta">Alessandro Volta</a>, respectively, is an <a href="/wiki/Electrochemical_cell" title="Electrochemical cell">electrochemical cell</a> that derives electrical energy from spontaneous <a href="/wiki/Redox" title="Redox">redox</a> reactions taking place within the cell. It generally consists of two different metals immersed in electrolytes, or of individual half-cells with different metals and their ions in solution connected by a <a href="/wiki/Salt_bridge" title="Salt bridge">salt bridge</a> or separated by a porous membrane. Volta was the inventor of the <a href="/wiki/Voltaic_pile" title="Voltaic pile">voltaic pile</a>, the first <a href="/wiki/Battery_(electricity)" class="mw-redirect" title="Battery (electricity)">electrical battery</a>. In common usage, the word "battery" has come to include a single galvanic cell, but a battery properly consists of multiple cells.<sup id="cite_ref-248" class="reference"><a href="#cite_note-248"><span class="cite-bracket">[</span>246<span class="cite-bracket">]</span></a></sup></dd> <dt id="gamma_rays"><dfn><b><a href="/wiki/Gamma_rays" class="mw-redirect" title="Gamma rays">Gamma rays</a></b></dfn></dt><dd>A gamma ray, or gamma radiation (symbol γ or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>), is a penetrating form of <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic radiation</a> arising from the <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a> of <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">atomic nuclei</a>. It consists of the shortest wavelength electromagnetic waves and so imparts the highest <a href="/wiki/Photon_energy" title="Photon energy">photon energy</a>.</dd> <dt id="gas"><dfn><b><a href="/wiki/Gas" title="Gas">Gas</a></b></dfn></dt><dd>Is one of the <a href="/wiki/State_of_matter" title="State of matter">four fundamental states of matter</a> (the others being <a href="/wiki/Solid" title="Solid">solid</a>, <a href="/wiki/Liquid" title="Liquid">liquid</a>, and <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasma</a>). A pure gas may be made up of individual <a href="/wiki/Atoms" class="mw-redirect" title="Atoms">atoms</a> (e.g. a <a href="/wiki/Noble_gas" title="Noble gas">noble gas</a> like <a href="/wiki/Neon" title="Neon">neon</a>), <a href="/wiki/Chemical_element" title="Chemical element">elemental</a> molecules made from one type of atom (e.g. <a href="/wiki/Oxygen" title="Oxygen">oxygen</a>), or <a href="/wiki/Chemical_compound" title="Chemical compound">compound</a> molecules made from a variety of atoms (e.g. <a href="/wiki/Carbon_dioxide" title="Carbon dioxide">carbon dioxide</a>). A gas <a href="/wiki/Mixture" title="Mixture">mixture</a>, such as <a href="/wiki/Earth%27s_atmosphere" class="mw-redirect" title="Earth's atmosphere">air</a>, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles.</dd> <dt id="gauge_pressure"><dfn><b><a href="/wiki/Pressure_measurement#Absolute,_gauge_and_differential_pressures_—_zero_reference" title="Pressure measurement">Gauge pressure</a></b></dfn></dt><dd>Is zero-referenced against ambient air pressure, so it is equal to absolute pressure minus atmospheric pressure.</dd> <dt id="geiger_counter"><dfn><b><a href="/wiki/Geiger_counter" title="Geiger counter">Geiger counter</a></b></dfn></dt><dd>Is an instrument used for detecting and measuring <a href="/wiki/Ionizing_radiation" title="Ionizing radiation">ionizing radiation</a>. Also known as a <i>Geiger–Muller counter</i> (or <i>Geiger–Müller counter</i>), it is widely used in applications such as radiation <a href="/wiki/Dosimetry" title="Dosimetry">dosimetry</a>, <a href="/wiki/Radiological_protection" class="mw-redirect" title="Radiological protection">radiological protection</a>, <a href="/wiki/Experimental_physics" title="Experimental physics">experimental physics</a>, and the <a href="/wiki/Nuclear_industry" class="mw-redirect" title="Nuclear industry">nuclear industry</a>.</dd> <dt id="general_relativity"><dfn><b><a href="/wiki/General_relativity" title="General relativity">General relativity</a></b></dfn></dt><dd>General relativity, also known as the <i>general theory of relativity</i>, is the <a href="/wiki/Differential_geometry" title="Differential geometry">geometric</a> <a href="/wiki/Scientific_theory" title="Scientific theory">theory</a> of <a href="/wiki/Gravitation" class="mw-redirect" title="Gravitation">gravitation</a> published by <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> in 1915 and is the current description of gravitation in <a href="/wiki/Modern_physics" title="Modern physics">modern physics</a>. General <a href="/wiki/Theory_of_relativity" title="Theory of relativity">relativity</a> generalizes <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> and refines <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">Newton's law of universal gravitation</a>, providing a unified description of gravity as a geometric property of <a href="/wiki/Space" title="Space">space</a> and <a href="/wiki/Time_in_physics" title="Time in physics">time</a> or <a href="/wiki/Four-dimensional" class="mw-redirect" title="Four-dimensional">four-dimensional</a> <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>. In particular, the <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="[[curvature]]_of_spacetime"></span><span id="Spacetime_curvature"></span><span id="curvature_of_spacetime"></span><span class="vanchor-text"><a href="/wiki/Curvature" title="Curvature">curvature</a> of spacetime</span></span></i> is directly related to the <a href="/wiki/Energy" title="Energy">energy</a> and <a href="/wiki/Momentum" title="Momentum">momentum</a> of whatever <a href="/wiki/Matter" title="Matter">matter</a> and <a href="/wiki/Radiation" title="Radiation">radiation</a> are present. The relation is specified by the <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a>, a system of <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a>.</dd> <dt id="geometric_mean"><dfn><b><a href="/wiki/Geometric_mean" title="Geometric mean">Geometric mean</a></b></dfn></dt><dd>In mathematics, the geometric mean is a <a href="/wiki/Mean" title="Mean">mean</a> or <a href="/wiki/Average" title="Average">average</a>, which indicates the <a href="/wiki/Central_tendency" title="Central tendency">central tendency</a> or typical value of a set of numbers by using the product of their values (as opposed to the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a> which uses their sum). The geometric mean is defined as the <a href="/wiki/Nth_root" title="Nth root"><span class="texhtml"><i>n</i></span>th root</a> of the <a href="/wiki/Product_(mathematics)" title="Product (mathematics)">product</a> of <span class="texhtml mvar" style="font-style:italic;">n</span> numbers, i.e., for a set of numbers <span class="texhtml"><i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i></span>, the geometric mean is defined as <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\prod _{i=1}^{n}x_{i}\right)^{\frac {1}{n}}={\sqrt[{n}]{x_{1}x_{2}\cdots x_{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\prod _{i=1}^{n}x_{i}\right)^{\frac {1}{n}}={\sqrt[{n}]{x_{1}x_{2}\cdots x_{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/026cae6801f672b9858d55935ec7397183dc3a36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.884ex; height:8.676ex;" alt="{\displaystyle \left(\prod _{i=1}^{n}x_{i}\right)^{\frac {1}{n}}={\sqrt[{n}]{x_{1}x_{2}\cdots x_{n}}}}"></span></dd></dl></dd></dl> <dt id="geometry"><dfn><b><a href="/wiki/Geometry" title="Geometry">Geometry</a></b></dfn></dt><dd>Is, with <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a>, one of the oldest branches of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>. It is concerned with properties of space that are related with distance, shape, size, and relative position of figures.<sup id="cite_ref-Risi2015_249-0" class="reference"><a href="#cite_note-Risi2015-249"><span class="cite-bracket">[</span>247<span class="cite-bracket">]</span></a></sup> A mathematician who works in the field of geometry is called a <a href="/wiki/List_of_geometers" title="List of geometers">geometer</a>.</dd> <dt id="geophysics"><dfn><b><a href="/wiki/Geophysics" title="Geophysics">Geophysics</a></b></dfn></dt><dd>Is a subject of <a href="/wiki/Natural_science" title="Natural science">natural science</a> concerned with the physical processes and <a href="/wiki/Physical_property" title="Physical property">physical properties</a> of the <a href="/wiki/Earth" title="Earth">Earth</a> and its surrounding space environment, and the use of quantitative methods for their analysis. The term <i>geophysics</i> sometimes refers only to geological applications: Earth's <a href="/wiki/Figure_of_the_Earth" title="Figure of the Earth">shape</a>; its <a href="/wiki/Gravitational" class="mw-redirect" title="Gravitational">gravitational</a> and <a href="/wiki/Earth%27s_magnetic_field" title="Earth's magnetic field">magnetic fields</a>; its <a href="/wiki/Structure_of_the_Earth" class="mw-redirect" title="Structure of the Earth">internal structure</a> and <a href="/wiki/Earth#Chemical_composition" title="Earth">composition</a>; its <a href="/wiki/Geodynamics" title="Geodynamics">dynamics</a> and their surface expression in <a href="/wiki/Plate_tectonics" title="Plate tectonics">plate tectonics</a>, the generation of <a href="/wiki/Magma" title="Magma">magmas</a>, <a href="/wiki/Volcanism" title="Volcanism">volcanism</a> and rock formation.<sup id="cite_ref-Sheriff1991_250-0" class="reference"><a href="#cite_note-Sheriff1991-250"><span class="cite-bracket">[</span>248<span class="cite-bracket">]</span></a></sup> However, modern geophysics organizations and pure scientists use a broader definition that includes the <a href="/wiki/Water_cycle" title="Water cycle">water cycle</a> including snow and ice; <a href="/wiki/Geophysical_fluid_dynamics" title="Geophysical fluid dynamics">fluid dynamics</a> of the oceans and the <a href="/wiki/Atmosphere" title="Atmosphere">atmosphere</a>; <a href="/wiki/Atmospheric_electricity" title="Atmospheric electricity">electricity</a> and <a href="/wiki/Magnetism" title="Magnetism">magnetism</a> in the <a href="/wiki/Ionosphere" title="Ionosphere">ionosphere</a> and <a href="/wiki/Magnetosphere" title="Magnetosphere">magnetosphere</a> and solar–terrestrial relations; and analogous problems associated with the <a href="/wiki/Moon" title="Moon">Moon</a> and other planets.<sup id="cite_ref-Sheriff1991_250-1" class="reference"><a href="#cite_note-Sheriff1991-250"><span class="cite-bracket">[</span>248<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-IUGG_251-0" class="reference"><a href="#cite_note-IUGG-251"><span class="cite-bracket">[</span>249<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AGUscience_252-0" class="reference"><a href="#cite_note-AGUscience-252"><span class="cite-bracket">[</span>250<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Gutenberg_(1929)_253-0" class="reference"><a href="#cite_note-Gutenberg_(1929)-253"><span class="cite-bracket">[</span>251<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Runcorn_254-0" class="reference"><a href="#cite_note-Runcorn-254"><span class="cite-bracket">[</span>252<span class="cite-bracket">]</span></a></sup></dd> <dt id="geotechnical_engineering"><dfn><b><a href="/wiki/Geotechnical_engineering" title="Geotechnical engineering">Geotechnical engineering</a></b></dfn></dt><dd>Also known as <i>geotechnics</i>, is the branch of <a href="/wiki/Civil_engineering" title="Civil engineering">civil engineering</a> concerned with the engineering behavior of <a href="/wiki/Earth_materials" title="Earth materials">earth materials</a>. It uses the principles and methods of <a href="/wiki/Soil_mechanics" title="Soil mechanics">soil mechanics</a> and <a href="/wiki/Rock_mechanics" title="Rock mechanics">rock mechanics</a> for the solution of <a href="/wiki/Engineering" title="Engineering">engineering</a> problems and the design of engineering works. It also relies on knowledge of <a href="/wiki/Geology" title="Geology">geology</a>, <a href="/wiki/Hydrology" title="Hydrology">hydrology</a>, <a href="/wiki/Geophysics" title="Geophysics">geophysics</a>, and other related sciences.</dd> <dt id="gluon"><dfn><b><a href="/wiki/Gluon" title="Gluon">Gluon</a></b></dfn></dt><dd>Is an <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particle</a> that acts as the exchange particle (or <a href="/wiki/Gauge_boson" title="Gauge boson">gauge boson</a>) for the <a href="/wiki/Strong_interaction" title="Strong interaction">strong force</a> between <a href="/wiki/Quark" title="Quark">quarks</a>. It is analogous to the exchange of <a href="/wiki/Photon" title="Photon">photons</a> in the <a href="/wiki/Electromagnetic_force" class="mw-redirect" title="Electromagnetic force">electromagnetic force</a> between two <a href="/wiki/Charged_particle" title="Charged particle">charged particles</a>.<sup id="cite_ref-HyperPhysics_255-0" class="reference"><a href="#cite_note-HyperPhysics-255"><span class="cite-bracket">[</span>253<span class="cite-bracket">]</span></a></sup> In layman's terms, they "glue" quarks together, forming <a href="/wiki/Hadron" title="Hadron">hadrons</a> such as <a href="/wiki/Proton" title="Proton">protons</a> and <a href="/wiki/Neutron" title="Neutron">neutrons</a>. In technical terms, gluons are <a href="/wiki/Vector_boson" title="Vector boson">vector</a> <a href="/wiki/Gauge_boson" title="Gauge boson">gauge bosons</a> that mediate <a href="/wiki/Strong_interaction" title="Strong interaction">strong interactions</a> of <a href="/wiki/Quark" title="Quark">quarks</a> in <a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">quantum chromodynamics</a> (QCD). Gluons themselves carry the <a href="/wiki/Color_charge" title="Color charge">color charge</a> of the strong interaction. This is unlike the <a href="/wiki/Photon" title="Photon">photon</a>, which mediates the <a href="/wiki/Electromagnetic_force" class="mw-redirect" title="Electromagnetic force">electromagnetic interaction</a> but lacks an electric charge. Gluons therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than <a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">quantum electrodynamics</a> (QED).</dd> <dt id="graham's_law"><dfn><b><a href="/wiki/Graham%27s_law" title="Graham's law">Graham's law</a></b></dfn></dt><dd><i>Graham's law of effusion</i> (also called <i>Graham's law of <a href="/wiki/Diffusion" title="Diffusion">diffusion</a></i>) was formulated by Scottish physical chemist <a href="/wiki/Thomas_Graham_(chemist)" title="Thomas Graham (chemist)">Thomas Graham</a> in 1848.<sup id="cite_ref-LM_256-0" class="reference"><a href="#cite_note-LM-256"><span class="cite-bracket">[</span>254<span class="cite-bracket">]</span></a></sup> Graham found experimentally that the rate of <a href="/wiki/Effusion" title="Effusion">effusion</a> of a gas is inversely proportional to the square root of the mass of its particles.<sup id="cite_ref-LM_256-1" class="reference"><a href="#cite_note-LM-256"><span class="cite-bracket">[</span>254<span class="cite-bracket">]</span></a></sup> This formula can be written as: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{\mbox{Rate}}_{1} \over {\mbox{Rate}}_{2}}={\sqrt {M_{2} \over M_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>Rate</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>Rate</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{\mbox{Rate}}_{1} \over {\mbox{Rate}}_{2}}={\sqrt {M_{2} \over M_{1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99cbdb381383a611adf8944270a9dc8222fded4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:16.267ex; height:7.509ex;" alt="{\displaystyle {{\mbox{Rate}}_{1} \over {\mbox{Rate}}_{2}}={\sqrt {M_{2} \over M_{1}}}}"></span>,</dd></dl> where: <dl><dd>Rate<sub>1</sub> is the rate of effusion for the first gas. (volume or number of moles per unit time).</dd> <dd>Rate<sub>2</sub> is the rate of effusion for the second gas.</dd> <dd><i>M<sub>1</sub></i> is the <a href="/wiki/Molar_mass" title="Molar mass">molar mass</a> of gas 1</dd> <dd><i>M<sub>2</sub></i> is the molar mass of gas 2.</dd></dl></dd> <dt id="gravitational_constant"><dfn><b><a href="/wiki/Gravitational_constant" title="Gravitational constant">Gravitational constant</a></b></dfn></dt><dd>The gravitational constant (also known as the <i>universal gravitational constant</i>, the <i>Newtonian constant of gravitation</i>, or the <i>Cavendish gravitational constant</i>),<sup id="cite_ref-257" class="reference"><a href="#cite_note-257"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> denoted by the letter <span class="texhtml"><i>G</i></span>, is an <a href="/wiki/Empirical" class="mw-redirect" title="Empirical">empirical</a> <a href="/wiki/Physical_constant" title="Physical constant">physical constant</a> involved in the calculation of <a href="/wiki/Gravitational" class="mw-redirect" title="Gravitational">gravitational</a> effects in <a href="/wiki/Sir_Isaac_Newton" class="mw-redirect" title="Sir Isaac Newton">Sir Isaac Newton</a>'s <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">law of universal gravitation</a> and in <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>'s <a href="/wiki/General_relativity" title="General relativity">general theory of relativity</a>.</dd> <dt id="gravitational_energy"><dfn><b><a href="/wiki/Gravitational_energy" title="Gravitational energy">Gravitational energy</a></b></dfn></dt><dd>Gravitational energy or <i>gravitational potential energy</i> is the <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a> a <a href="/wiki/Mass" title="Mass">massive</a> object has in relation to another massive object due to <a href="/wiki/Gravity" title="Gravity">gravity</a>. It is the potential energy associated with the <a href="/wiki/Gravitational_field" title="Gravitational field">gravitational field</a>, which is released (converted into <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic energy</a>) when the objects <a href="/wiki/Free_fall" title="Free fall">fall</a> towards each other. Gravitational potential energy increases when two objects are brought further apart. For two pairwise interacting point particles, the gravitational potential energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is given by <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=-{\frac {GMm}{R}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mi>M</mi> <mi>m</mi> </mrow> <mi>R</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=-{\frac {GMm}{R}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c18b53ca3899c54fe634d5407f5915c85826c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.481ex; height:5.509ex;" alt="{\displaystyle U=-{\frac {GMm}{R}},}"></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> are the masses of the two particles, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the distance between them, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a>.<sup id="cite_ref-gpe_258-0" class="reference"><a href="#cite_note-gpe-258"><span class="cite-bracket">[</span>255<span class="cite-bracket">]</span></a></sup> Close to the Earth's surface, the gravitational field is approximately constant, and the gravitational potential energy of an object reduces to <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=mgh}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mi>m</mi> <mi>g</mi> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=mgh}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2630448f947077ab71ede5b40839f03d3d906272" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.376ex; height:2.509ex;" alt="{\displaystyle U=mgh}"></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is the object's mass, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g=GM_{E}/R_{E}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>=</mo> <mi>G</mi> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g=GM_{E}/R_{E}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c77fb628002234551519b130f5b8b78dc6959330" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.197ex; height:3.176ex;" alt="{\displaystyle g=GM_{E}/R_{E}^{2}}"></span> is the <a href="/wiki/Gravity_of_Earth" title="Gravity of Earth">gravity of Earth</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> is the height of the object's <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a> above a chosen reference level.<sup id="cite_ref-gpe_258-1" class="reference"><a href="#cite_note-gpe-258"><span class="cite-bracket">[</span>255<span class="cite-bracket">]</span></a></sup></dd> <dt id="gravitational_field"><dfn><b><a href="/wiki/Gravitational_field" title="Gravitational field">Gravitational field</a></b></dfn></dt><dd>In <a href="/wiki/Physics" title="Physics">physics</a>, a gravitational field is a <a href="/wiki/Scientific_model" class="mw-redirect" title="Scientific model">model</a> used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body.<sup id="cite_ref-259" class="reference"><a href="#cite_note-259"><span class="cite-bracket">[</span>256<span class="cite-bracket">]</span></a></sup> Thus, a gravitational <a href="/wiki/Field_(physics)" title="Field (physics)">field</a> is used to explain <a href="/wiki/Gravity" title="Gravity">gravitational</a> phenomena, and is measured in <a href="/wiki/Newton_(unit)" title="Newton (unit)">newtons</a> per <a href="/wiki/Kilogram" title="Kilogram">kilogram</a> (N/kg). In its original concept, <a href="/wiki/Gravity" title="Gravity">gravity</a> was a <a href="/wiki/Force" title="Force">force</a> between point <a href="/wiki/Mass" title="Mass">masses</a>. Following <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a>, <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a> attempted to model gravity as some kind of <a href="/wiki/Radiation" title="Radiation">radiation</a> field or <a href="/wiki/Fluid" title="Fluid">fluid</a>, and since the 19th century, explanations for gravity have usually been taught in terms of a field model, rather than a point attraction. In a field model, rather than two particles attracting each other, the particles distort <a href="/wiki/Spacetime" title="Spacetime">spacetime</a> via their mass, and this distortion is what is perceived and measured as a "force".<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2020)">citation needed</span></a></i>]</sup> In such a model one states that matter moves in certain ways in response to the curvature of spacetime,<sup id="cite_ref-260" class="reference"><a href="#cite_note-260"><span class="cite-bracket">[</span>257<span class="cite-bracket">]</span></a></sup> and that there is either <i>no gravitational force</i>,<sup id="cite_ref-261" class="reference"><a href="#cite_note-261"><span class="cite-bracket">[</span>258<span class="cite-bracket">]</span></a></sup> or that gravity is a <a href="/wiki/Fictitious_force" title="Fictitious force">fictitious force</a>.<sup id="cite_ref-262" class="reference"><a href="#cite_note-262"><span class="cite-bracket">[</span>259<span class="cite-bracket">]</span></a></sup> Gravity is distinguished from other forces by its obedience to the <a href="/wiki/Equivalence_principle" title="Equivalence principle">equivalence principle</a>.</dd> <dt id="gravitational_potential"><dfn><b><a href="/wiki/Gravitational_potential" title="Gravitational potential">Gravitational potential</a></b></dfn></dt><dd>In <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, the gravitational potential at a location is equal to the <a href="/wiki/Work_(physics)" title="Work (physics)">work</a> (<a href="/wiki/Energy" title="Energy">energy</a> transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is <a href="/wiki/Analogous" class="mw-redirect" title="Analogous">analogous</a> to the <a href="/wiki/Electric_potential" title="Electric potential">electric potential</a> with <a href="/wiki/Mass" title="Mass">mass</a> playing the role of <a href="/wiki/Charge_(physics)" title="Charge (physics)">charge</a>. The reference location, where the potential is zero, is by convention <a href="/wiki/Infinitely" class="mw-redirect" title="Infinitely">infinitely</a> far away from any mass, resulting in a negative potential at any <a href="https://en.wiktionary.org/wiki/finite" class="extiw" title="wikt:finite">finite</a> distance. In mathematics, the gravitational potential is also known as the <a href="/wiki/Newtonian_potential" title="Newtonian potential">Newtonian potential</a> and is fundamental in the study of <a href="/wiki/Potential_theory" title="Potential theory">potential theory</a>. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies.<sup id="cite_ref-263" class="reference"><a href="#cite_note-263"><span class="cite-bracket">[</span>260<span class="cite-bracket">]</span></a></sup></dd> <dt id="gravitational_wave"><dfn><b><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational wave</a></b></dfn></dt><dd>Gravitational waves are disturbances in the curvature of <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>, generated by accelerated masses, that <a href="/wiki/Wave_propagation" class="mw-redirect" title="Wave propagation">propagate as waves</a> outward from their source at the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a>. They were proposed by <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> in 1905<sup id="cite_ref-264" class="reference"><a href="#cite_note-264"><span class="cite-bracket">[</span>261<span class="cite-bracket">]</span></a></sup> and subsequently <a href="#History">predicted in 1916</a><sup id="cite_ref-265" class="reference"><a href="#cite_note-265"><span class="cite-bracket">[</span>262<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Gravitationswellen_266-0" class="reference"><a href="#cite_note-Gravitationswellen-266"><span class="cite-bracket">[</span>263<span class="cite-bracket">]</span></a></sup> by <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> on the basis of his <a href="/wiki/General_relativity" title="General relativity">general theory of relativity</a>.<sup id="cite_ref-267" class="reference"><a href="#cite_note-267"><span class="cite-bracket">[</span>264<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-268" class="reference"><a href="#cite_note-268"><span class="cite-bracket">[</span>265<span class="cite-bracket">]</span></a></sup> Gravitational waves transport energy as <i>gravitational radiation</i>, a form of <a href="/wiki/Radiant_energy" title="Radiant energy">radiant energy</a> similar to <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic radiation</a>.<sup id="cite_ref-269" class="reference"><a href="#cite_note-269"><span class="cite-bracket">[</span>266<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">Newton's law of universal gravitation</a>, part of <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed) – showing one of the ways the methods of classical physics are unable to explain phenomena associated with relativity.</dd> <dt id="gravity"><dfn><b><a href="/wiki/Gravity" title="Gravity">Gravity</a></b></dfn></dt><dd>Or <i>gravitation</i>, is a <a href="/wiki/List_of_natural_phenomena" title="List of natural phenomena">natural phenomenon</a> by which all things with <a href="/wiki/Mass" title="Mass">mass</a> or <a href="/wiki/Energy" title="Energy">energy</a>—including <a href="/wiki/Planet" title="Planet">planets</a>, <a href="/wiki/Star" title="Star">stars</a>, <a href="/wiki/Galaxy" title="Galaxy">galaxies</a>, and even <a href="/wiki/Light" title="Light">light</a><sup id="cite_ref-Comins_270-0" class="reference"><a href="#cite_note-Comins-270"><span class="cite-bracket">[</span>267<span class="cite-bracket">]</span></a></sup>—are brought toward (or <i>gravitate</i> toward) one another. On <a href="/wiki/Earth" title="Earth">Earth</a>, gravity gives <a href="/wiki/Weight" title="Weight">weight</a> to <a href="/wiki/Physical_body" class="mw-redirect" title="Physical body">physical objects</a>, and the <a href="/wiki/Moon" title="Moon">Moon</a>'s <a href="/wiki/Gravitation_of_the_Moon" title="Gravitation of the Moon">gravity</a> causes the ocean <a href="/wiki/Tide" title="Tide">tides</a>. The gravitational attraction of the original gaseous matter present in the <a href="/wiki/Universe" title="Universe">Universe</a> caused it to begin <a href="/wiki/Coalescence_(physics)" title="Coalescence (physics)">coalescing</a> and <a href="/wiki/Star_formation" title="Star formation">forming stars</a> and caused the stars to group together into galaxies, so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker as objects get further away.</dd> <dt id="ground_state"><dfn><b><a href="/wiki/Ground_state" title="Ground state">Ground state</a></b></dfn></dt><dd>The ground state of a <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum-mechanical</a> system is its lowest-<a href="/wiki/Energy" title="Energy">energy</a> <a href="/wiki/Stationary_state" title="Stationary state">state</a>; the energy of the ground state is known as the <a href="/wiki/Zero-point_energy" title="Zero-point energy">zero-point energy</a> of the system. An <a href="/wiki/Excited_state" title="Excited state">excited state</a> is any state with energy greater than the ground state. In <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, the ground state is usually called the <a href="/wiki/Vacuum_state" class="mw-redirect" title="Vacuum state">vacuum state</a> or the <a href="/wiki/Vacuum#The_quantum-mechanical_vacuum" title="Vacuum">vacuum</a>.</dd> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="H">H</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=8" title="Edit section: H"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="half-life"><dfn><b><a href="/wiki/Half-life" title="Half-life">Half-life</a></b></dfn></dt><dd>The period at which one-half of a quantity of an unstable isotope has decayed into other elements; the time at which half of a substance has diffused out of or otherwise reacted in a system.</dd> <dt id="haptic"><dfn><b><a href="/wiki/Haptic_technology" title="Haptic technology">Haptic</a></b></dfn></dt><dd>Tactile feedback technology using the operator's sense of touch. Also sometimes applied to robot <a href="#Manipulator">manipulators</a> with their own touch sensitivity.</dd> <dt id="hardness"><dfn><b><a href="/wiki/Hardness" title="Hardness">Hardness</a></b></dfn></dt><dd>Is a measure of the resistance to localized <a href="/wiki/Plastic_deformation" class="mw-redirect" title="Plastic deformation">plastic deformation</a> induced by either mechanical <a href="/wiki/Indentation_hardness" title="Indentation hardness">indentation</a> or <a href="/wiki/Abrasion_(mechanical)" title="Abrasion (mechanical)">abrasion</a>. Some materials (e.g. <a href="/wiki/Metal" title="Metal">metals</a>) are harder than others (e.g. <a href="/wiki/Plastic" title="Plastic">plastics</a>, <a href="/wiki/Wood" title="Wood">wood</a>). Macroscopic hardness is generally characterized by strong <a href="/wiki/Intermolecular_bond" class="mw-redirect" title="Intermolecular bond">intermolecular bonds</a>, but the behavior of solid materials under force is complex; therefore, there are different measurements of hardness: <i>scratch hardness</i>, <i>indentation hardness</i>, and <i>rebound hardness</i>. Hardness is dependent on <a href="/wiki/Ductility" title="Ductility">ductility</a>, <a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">elastic</a> <a href="/wiki/Stiffness" title="Stiffness">stiffness</a>, <a href="/wiki/Plasticity_(physics)" title="Plasticity (physics)">plasticity</a>, <a href="/wiki/Deformation_(mechanics)" class="mw-redirect" title="Deformation (mechanics)">strain</a>, <a href="/wiki/Strength_of_materials" title="Strength of materials">strength</a>, <a href="/wiki/Toughness" title="Toughness">toughness</a>, <a href="/wiki/Viscoelasticity" title="Viscoelasticity">viscoelasticity</a>, and <a href="/wiki/Viscosity" title="Viscosity">viscosity</a>.</dd> <dt id="harmonic_mean"><dfn><b><a href="/wiki/Harmonic_mean" title="Harmonic mean">Harmonic mean</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the harmonic mean (sometimes called the subcontrary mean) is one of several kinds of <a href="/wiki/Average" title="Average">average</a>, and in particular, one of the <a href="/wiki/Pythagorean_means" title="Pythagorean means">Pythagorean means</a>. Typically, it is appropriate for situations when the average of <a href="/wiki/Rate_(mathematics)" title="Rate (mathematics)">rates</a> is desired. The harmonic mean can be expressed as the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">reciprocal</a> of the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a> of the reciprocals of the given set of observations. As a simple example, the harmonic mean of 1, 4, and 4 is <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {1^{-1}+4^{-1}+4^{-1}}{3}}\right)^{-1}={\frac {3}{{\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{4}}}}={\frac {3}{1.5}}=2\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>1.5</mn> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {1^{-1}+4^{-1}+4^{-1}}{3}}\right)^{-1}={\frac {3}{{\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{4}}}}={\frac {3}{1.5}}=2\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca5906ddf61080e790c0d4df33f47e12da7d019" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:49.548ex; height:7.676ex;" alt="{\displaystyle \left({\frac {1^{-1}+4^{-1}+4^{-1}}{3}}\right)^{-1}={\frac {3}{{\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{4}}}}={\frac {3}{1.5}}=2\,.}"></span></dd></dl></dd></dl> <dt id="heat"><dfn><b><a href="/wiki/Heat" title="Heat">Heat</a></b></dfn></dt><dd>In <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, heat is <a href="/wiki/Energy" title="Energy">energy</a> in transfer to or from a thermodynamic system, by mechanisms other than <a href="/wiki/Work_(thermodynamics)" title="Work (thermodynamics)">thermodynamic work</a> or <a href="/wiki/Mass_transfer" title="Mass transfer">transfer of matter</a>.<sup id="cite_ref-271" class="reference"><a href="#cite_note-271"><span class="cite-bracket">[</span>268<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-272" class="reference"><a href="#cite_note-272"><span class="cite-bracket">[</span>269<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-273" class="reference"><a href="#cite_note-273"><span class="cite-bracket">[</span>270<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-274" class="reference"><a href="#cite_note-274"><span class="cite-bracket">[</span>271<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-275" class="reference"><a href="#cite_note-275"><span class="cite-bracket">[</span>272<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-276" class="reference"><a href="#cite_note-276"><span class="cite-bracket">[</span>273<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-277" class="reference"><a href="#cite_note-277"><span class="cite-bracket">[</span>274<span class="cite-bracket">]</span></a></sup></dd> <dt id="heat_transfer"><dfn><b><a href="/wiki/Heat_transfer" title="Heat transfer">Heat transfer</a></b></dfn></dt><dd>Is a discipline of <a href="/wiki/Thermal_engineering" title="Thermal engineering">thermal engineering</a> that concerns the generation, use, conversion, and exchange of <a href="/wiki/Thermal_energy" title="Thermal energy">thermal energy</a> (<a href="/wiki/Heat" title="Heat">heat</a>) between physical systems. Heat transfer is classified into various mechanisms, such as <a href="/wiki/Thermal_conduction" title="Thermal conduction">thermal conduction</a>, <a href="/wiki/Convection_(heat_transfer)" title="Convection (heat transfer)">thermal convection</a>, <a href="/wiki/Thermal_radiation" title="Thermal radiation">thermal radiation</a>, and transfer of energy by <a href="/wiki/Phase_changes" class="mw-redirect" title="Phase changes">phase changes</a>. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.</dd> <dt id="helmholtz_free_energy"><dfn><b><a href="/wiki/Helmholtz_free_energy" title="Helmholtz free energy">Helmholtz free energy</a></b></dfn></dt><dd>In <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, the Helmholtz free energy (or Helmholtz energy) is a <a href="/wiki/Thermodynamic_potential" title="Thermodynamic potential">thermodynamic potential</a> that measures the useful <a href="/wiki/Work_(thermodynamics)" title="Work (thermodynamics)">work</a> obtainable from a <a href="/wiki/Closed_system" title="Closed system">closed</a> <a href="/wiki/Thermodynamic_system" title="Thermodynamic system">thermodynamic system</a> at a constant <a href="/wiki/Temperature" title="Temperature">temperature</a> and <a href="/wiki/Volume" title="Volume">volume</a> (<a href="/wiki/Isothermal_process" title="Isothermal process">isothermal</a>, <a href="/wiki/Isochoric_process" title="Isochoric process">isochoric</a>). The negative of the change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which volume is held constant. If the volume were not held constant, part of this work would be performed as boundary work. This makes the Helmholtz energy useful for systems held at constant volume. Furthermore, at constant temperature, the Helmholtz free energy is minimized at equilibrium.</dd> <dt id="henderson–hasselbalch_equation"><dfn><b><a href="/wiki/Henderson%E2%80%93Hasselbalch_equation" title="Henderson–Hasselbalch equation">Henderson–Hasselbalch equation</a></b></dfn></dt><dd>In <a href="/wiki/Chemistry" title="Chemistry">chemistry</a> and <a href="/wiki/Biochemistry" title="Biochemistry">biochemistry</a>, the Henderson–Hasselbalch equation <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {pH}}={\ce {p}}K_{{\ce {a}}}+\log _{10}\left({\frac {[{\ce {Base}}]}{[{\ce {Acid}}]}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>pH</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>a</mtext> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Base</mtext> </mrow> <mo stretchy="false">]</mo> </mrow> <mrow> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Acid</mtext> </mrow> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {pH}}={\ce {p}}K_{{\ce {a}}}+\log _{10}\left({\frac {[{\ce {Base}}]}{[{\ce {Acid}}]}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/092fb635dc84d06b9de5a2622a393f10057d5a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.45ex; height:6.509ex;" alt="{\displaystyle {\ce {pH}}={\ce {p}}K_{{\ce {a}}}+\log _{10}\left({\frac {[{\ce {Base}}]}{[{\ce {Acid}}]}}\right)}"></span></dd></dl> can be used to estimate the <a href="/wiki/PH" title="PH">pH</a> of a <a href="/wiki/Buffer_solution" title="Buffer solution">buffer solution</a>. The numerical value of the <a href="/wiki/Acid_dissociation_constant" title="Acid dissociation constant">acid dissociation constant</a>, <i>K</i><sub>a</sub>, of the acid is known or assumed. The pH is calculated for given values of the concentrations of the acid, HA and of a salt, MA, of its conjugate base, A<sup>−</sup>; for example, the solution may contain <a href="/wiki/Acetic_acid" title="Acetic acid">acetic acid</a> and <a href="/wiki/Sodium_acetate" title="Sodium acetate">sodium acetate</a>.</dd> <dt id="henry's_law"><dfn><b><a href="/wiki/Henry%27s_law" title="Henry's law">Henry's law</a></b></dfn></dt><dd>In physical <a href="/wiki/Chemistry" title="Chemistry">chemistry</a>, Henry's law is a <a href="/wiki/Gas_laws" title="Gas laws">gas law</a> that states that the amount of dissolved gas in a liquid is proportional to its <a href="/wiki/Partial_pressure" title="Partial pressure">partial pressure</a> above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist <a href="/wiki/William_Henry_(chemist)" title="William Henry (chemist)">William Henry</a>, who studied the topic in the early 19th century.</dd> <dt id="'''hertz_'''"><dfn><b><a href="/wiki/Hertz" title="Hertz">Hertz</a> </b></dfn></dt><dd>The SI unit of frequency, one cycle per second.</dd> <dt id="hexapod"><dfn><b><a href="/wiki/Stewart_platform" title="Stewart platform">Hexapod</a></b></dfn></dt><dd>(platform) – a movable platform using six <a href="#Linear_actuator">linear actuators</a>. Often used in <a href="/wiki/Flight_simulator" title="Flight simulator">flight simulators</a> they also have applications as a robotic manipulator.</dd> <dt id="hexapod"><dfn><b><a href="/wiki/Hexapod_(robotics)" title="Hexapod (robotics)">Hexapod</a></b></dfn></dt><dd>(walker) – a six-legged walking robot, using a simple <a href="/wiki/Hexapoda" title="Hexapoda">insect-like</a> locomotion.</dd> <dt id="hoist"><dfn><b><a href="/wiki/Hoist_(device)" title="Hoist (device)">Hoist</a></b></dfn></dt><dd>Is a device used for lifting or lowering a load by means of a drum or lift-wheel around which rope or chain wraps. It may be manually operated, electrically or <a href="/wiki/Pneumatically" class="mw-redirect" title="Pneumatically">pneumatically</a> driven and may use chain, fiber or wire <a href="/wiki/Rope" title="Rope">rope</a> as its lifting medium. The most familiar form is an <a href="/wiki/Elevator" title="Elevator">elevator</a>, the car of which is raised and lowered by a hoist mechanism. Most hoists couple to their loads using a <a href="/wiki/Lifting_hook" title="Lifting hook">lifting hook</a>. Today, there are a few governing bodies for the North American overhead hoist industry which include the Hoist Manufactures Institute (<a rel="nofollow" class="external text" href="https://mhi.org/hmi">HMI</a>), ASME, and the Occupational Safety and Health Administration (<a rel="nofollow" class="external text" href="https://osha.gov">OSHA</a>). HMI is a product counsel of the Material Handling Industry of America consisting of hoist manufacturers promoting safe use of their products.</dd> <dt id="horsepower"><dfn><b><a href="/wiki/Horsepower" title="Horsepower">Horsepower</a></b></dfn></dt><dd>In measurement systems that use feet, the unit of power.</dd> <dt id="hot_working"><dfn><b><a href="/wiki/Hot_working" title="Hot working">Hot working</a></b></dfn></dt><dd>Or <i>hot forming</i>, any metal-working procedure (such as forging, rolling, extruding, etc.) carried out above the metal's recrystallization temperature.</dd> <dt id="huygens–fresnel_principle"><dfn><b><a href="/wiki/Huygens%E2%80%93Fresnel_principle" title="Huygens–Fresnel principle">Huygens–Fresnel principle</a></b></dfn></dt><dd>The Huygens–Fresnel principle (named after <a href="/wiki/Netherlands" title="Netherlands">Dutch</a> <a href="/wiki/Physicist" title="Physicist">physicist</a> <a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Christiaan Huygens</a> and <a href="/wiki/France" title="France">French</a> physicist <a href="/wiki/Augustin-Jean_Fresnel" title="Augustin-Jean Fresnel">Augustin-Jean Fresnel</a>) is a method of analysis applied to problems of <a href="/wiki/Wave_propagation" class="mw-redirect" title="Wave propagation">wave propagation</a> both in the <a href="/wiki/Far-field_diffraction_pattern" class="mw-redirect" title="Far-field diffraction pattern">far-field limit</a> and in near-field <a href="/wiki/Diffraction" title="Diffraction">diffraction</a> and also <a href="/wiki/Reflection_(physics)" title="Reflection (physics)">reflection</a>. It states that every point on a <a href="/wiki/Wavefront" title="Wavefront">wavefront</a> is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere.<sup id="cite_ref-MathPages_278-0" class="reference"><a href="#cite_note-MathPages-278"><span class="cite-bracket">[</span>275<span class="cite-bracket">]</span></a></sup> The sum of these spherical wavelets forms the wavefront.</dd> <dt id="hydraulics"><dfn><b><a href="/wiki/Hydraulics" title="Hydraulics">Hydraulics</a></b></dfn></dt><dd>The study of fluid flow, or the generation of mechanical force and movement by liquid under pressure.</dd> <dt id="hydrocarbon"><dfn><b><a href="/wiki/Hydrocarbon" title="Hydrocarbon">Hydrocarbon</a></b></dfn></dt><dd>A compound containing hydrogen and carbon atoms only; petroleum is made of hydrocarbons.</dd> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="I">I</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=9" title="Edit section: I"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="ice_point"><dfn><b><a href="/wiki/Ice_point" class="mw-redirect" title="Ice point">Ice point</a></b></dfn></dt><dd>The <a href="/wiki/Freezing_point" class="mw-redirect" title="Freezing point">freezing point</a> of pure <a href="/wiki/Water" title="Water">water</a> at one <a href="/wiki/Atmosphere" title="Atmosphere">atmosphere</a>; 0°C (32°F).<sup id="cite_ref-279" class="reference"><a href="#cite_note-279"><span class="cite-bracket">[</span>276<span class="cite-bracket">]</span></a></sup></dd> <dt id="ideal_gas"><dfn><b><a href="/wiki/Ideal_gas" title="Ideal gas">Ideal gas</a></b></dfn></dt><dd>A model for gases that ignores intermolecular forces. Most gases are approximately ideal at some high temperature and low pressure.</dd> <dt id="ideal_gas_constant"><dfn><b><a href="/wiki/Ideal_gas_constant" class="mw-redirect" title="Ideal gas constant">Ideal gas constant</a></b></dfn></dt><dd>The constant in the gas law that relates pressure, volume and temperature.</dd> <dt id="ideal_gas_law"><dfn><b><a href="/wiki/Ideal_gas_law" title="Ideal gas law">Ideal gas law</a></b></dfn></dt><dd>Also called the general gas equation, is the <a href="/wiki/Equation_of_state" title="Equation of state">equation of state</a> of a hypothetical <a href="/wiki/Ideal_gas" title="Ideal gas">ideal gas</a>. It is a good approximation of the behavior of many <a href="/wiki/Gas" title="Gas">gases</a> under many conditions, although it has several limitations. It was first stated by <a href="/wiki/Beno%C3%AEt_Paul_%C3%89mile_Clapeyron" class="mw-redirect" title="Benoît Paul Émile Clapeyron">Benoît Paul Émile Clapeyron</a> in 1834 as a combination of the empirical <a href="/wiki/Boyle%27s_law" title="Boyle's law">Boyle's law</a>, <a href="/wiki/Charles%27s_law" title="Charles's law">Charles's law</a>, <a href="/wiki/Avogadro%27s_law" title="Avogadro's law">Avogadro's law</a>, and <a href="/wiki/Gay-Lussac%27s_law" title="Gay-Lussac's law">Gay-Lussac's law</a>.<sup id="cite_ref-280" class="reference"><a href="#cite_note-280"><span class="cite-bracket">[</span>277<span class="cite-bracket">]</span></a></sup> The ideal gas law is often written in an empirical form: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV=nRT}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mo>=</mo> <mi>n</mi> <mi>R</mi> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV=nRT}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/934032db2ac1f12624f85a90eeba651dcf4af377" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.426ex; height:2.176ex;" alt="{\displaystyle PV=nRT}"></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> are the <a href="/wiki/Pressure" title="Pressure">pressure</a>, <a href="/wiki/Volume" title="Volume">volume</a> and <a href="/wiki/Thermodynamic_temperature" title="Thermodynamic temperature">temperature</a>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is the <a href="/wiki/Amount_of_substance" title="Amount of substance">amount of substance</a>; and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the <a href="/wiki/Ideal_gas_constant" class="mw-redirect" title="Ideal gas constant">ideal gas constant</a>. It is the same for all gases. It can also be derived from the microscopic <a href="/wiki/Kinetic_theory_of_gases" title="Kinetic theory of gases">kinetic theory</a>, as was achieved (apparently independently) by <a href="/wiki/August_Kr%C3%B6nig" title="August Krönig">August Krönig</a> in 1856<sup id="cite_ref-281" class="reference"><a href="#cite_note-281"><span class="cite-bracket">[</span>278<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Rudolf_Clausius" title="Rudolf Clausius">Rudolf Clausius</a> in 1857.<sup id="cite_ref-282" class="reference"><a href="#cite_note-282"><span class="cite-bracket">[</span>279<span class="cite-bracket">]</span></a></sup></dd> <dt id="identity"><dfn><b><a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">Identity</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an identity is an <a href="/wiki/Equality_(mathematics)" title="Equality (mathematics)">equality</a> relating one mathematical expression <i>A</i> to another mathematical expression <i>B</i>, such that <i>A</i> and <i>B</i> (which might contain some <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a>) produce the same value for all values of the variables within a certain range of validity.<sup id="cite_ref-:2_283-0" class="reference"><a href="#cite_note-:2-283"><span class="cite-bracket">[</span>280<span class="cite-bracket">]</span></a></sup> In other words, <i>A</i> = <i>B</i> is an identity if <i>A</i> and <i>B</i> define the same <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a>, and an identity is an equality between functions that are differently defined. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/088a0cbbeff707c1e8629fedd307923f5fe9d0e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.436ex; height:3.176ex;" alt="{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos ^{2}\theta +\sin ^{2}\theta =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos ^{2}\theta +\sin ^{2}\theta =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9333418071b0b0662ba53f8983fe1cbb613ad005" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.132ex; height:2.843ex;" alt="{\displaystyle \cos ^{2}\theta +\sin ^{2}\theta =1}"></span> are identities.<sup id="cite_ref-:2_283-1" class="reference"><a href="#cite_note-:2-283"><span class="cite-bracket">[</span>280<span class="cite-bracket">]</span></a></sup> Identities are sometimes indicated by the <a href="/wiki/Triple_bar" title="Triple bar">triple bar</a> symbol <span class="texhtml">≡</span> instead of <span class="texhtml">=</span>, the <a href="/wiki/Equals_sign" title="Equals sign">equals sign</a>.<sup id="cite_ref-284" class="reference"><a href="#cite_note-284"><span class="cite-bracket">[</span>281<span class="cite-bracket">]</span></a></sup></dd> <dt id="impedance_(electrical)"><dfn><b><a href="/wiki/Electrical_impedance" title="Electrical impedance">Impedance (electrical)</a></b></dfn></dt><dd>In <a href="/wiki/Electrical_engineering" title="Electrical engineering">electrical engineering</a>, electrical impedance is the measure of the opposition that a <a href="/wiki/Electrical_circuit" class="mw-redirect" title="Electrical circuit">circuit</a> presents to a <a href="/wiki/Electric_current" title="Electric current">current</a> when a <a href="/wiki/Voltage" title="Voltage">voltage</a> is applied.</dd> <dt id="inclined_plane"><dfn><b><a href="/wiki/Inclined_plane" title="Inclined plane">Inclined plane</a></b></dfn></dt><dd>Also known as a <i>ramp</i>, is a flat supporting surface tilted at an angle, with one end higher than the other, used as an aid for raising or lowering a load.<sup id="cite_ref-Cole_285-0" class="reference"><a href="#cite_note-Cole-285"><span class="cite-bracket">[</span>282<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-286" class="reference"><a href="#cite_note-286"><span class="cite-bracket">[</span>283<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Edinformatics_287-0" class="reference"><a href="#cite_note-Edinformatics-287"><span class="cite-bracket">[</span>284<span class="cite-bracket">]</span></a></sup> The inclined plane is one of the six classical <a href="/wiki/Simple_machine" title="Simple machine">simple machines</a> defined by Renaissance scientists. Inclined planes are widely used to move heavy loads over vertical obstacles; examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade.<sup id="cite_ref-Edinformatics_287-1" class="reference"><a href="#cite_note-Edinformatics-287"><span class="cite-bracket">[</span>284<span class="cite-bracket">]</span></a></sup></dd> <dt id="indefinite_integral"><dfn><b><a href="/wiki/Indefinite_integral" class="mw-redirect" title="Indefinite integral">Indefinite integral</a></b></dfn></dt><dd>A <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> whose <a href="/wiki/Derivative" title="Derivative">derivative</a> is a given function; an <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a>.<sup id="cite_ref-288" class="reference"><a href="#cite_note-288"><span class="cite-bracket">[</span>285<span class="cite-bracket">]</span></a></sup></dd><dt id="inductance"><dfn><b><a href="/wiki/Inductance" title="Inductance">Inductance</a></b></dfn></dt><dd>In <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> and <a href="/wiki/Electronics" title="Electronics">electronics</a>, inductance is the tendency of an <a href="/wiki/Electrical_conductor" title="Electrical conductor">electrical conductor</a> to oppose a change in the <a href="/wiki/Electric_current" title="Electric current">electric current</a> flowing through it. The flow of electric current creates a <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> around the conductor. The field strength depends on the magnitude of the current, and follows any changes in current. From <a href="/wiki/Faraday%27s_law_of_induction" title="Faraday's law of induction">Faraday's law of induction</a>, any change in magnetic field through a circuit induces an <a href="/wiki/Electromotive_force" title="Electromotive force">electromotive force</a> (EMF) (<a href="/wiki/Voltage" title="Voltage">voltage</a>) in the conductors, a process known as <a href="/wiki/Electromagnetic_induction" title="Electromagnetic induction">electromagnetic induction</a>. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by <a href="/wiki/Lenz%27s_law" title="Lenz's law">Lenz's law</a>, and the voltage is called <i><a href="/wiki/Back_EMF" class="mw-redirect" title="Back EMF">back EMF</a></i>. Inductance is defined as the ratio of the induced voltage to the rate of change of current causing it. It is a proportionality factor that depends on the geometry of circuit conductors and the <a href="/wiki/Magnetic_permeability" class="mw-redirect" title="Magnetic permeability">magnetic permeability</a> of nearby materials.<sup id="cite_ref-289" class="reference"><a href="#cite_note-289"><span class="cite-bracket">[</span>286<span class="cite-bracket">]</span></a></sup> An <a href="/wiki/Electronic_component" title="Electronic component">electronic component</a> designed to add inductance to a circuit is called an <a href="/wiki/Inductor" title="Inductor">inductor</a>. It typically consists of a <a href="/wiki/Electromagnetic_coil" title="Electromagnetic coil">coil</a> or helix of wire.</dd> <dt id="inductor"><dfn><b><a href="/wiki/Inductor" title="Inductor">Inductor</a></b></dfn></dt><dd>An inductor, also called a coil, choke, or reactor, is a <a href="/wiki/Incremental_passivity" class="mw-redirect" title="Incremental passivity">passive</a> two-terminal <a href="/wiki/Electronic_component" title="Electronic component">electrical component</a> that stores energy in a <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> when <a href="/wiki/Electric_current" title="Electric current">electric current</a> flows through it.<sup id="cite_ref-290" class="reference"><a href="#cite_note-290"><span class="cite-bracket">[</span>287<span class="cite-bracket">]</span></a></sup> An inductor typically consists of an insulated wire wound into a <a href="/wiki/Electromagnetic_coil" title="Electromagnetic coil">coil</a>.</dd> <dt id="industrial_engineering"><dfn><b><a href="/wiki/Industrial_engineering" title="Industrial engineering">Industrial engineering</a></b></dfn></dt><dd>Is an engineering profession that is concerned with the optimization of complex <a href="/wiki/Process_(engineering)" title="Process (engineering)">processes</a>, <a href="/wiki/System" title="System">systems</a>, or <a href="/wiki/Organizations" class="mw-redirect" title="Organizations">organizations</a> by developing, improving and implementing integrated systems of people, money, knowledge, information and equipment. Industrial engineers use specialized <a href="/wiki/Knowledge" title="Knowledge">knowledge</a> and <a href="/wiki/Skills" class="mw-redirect" title="Skills">skills</a> in the mathematical, physical and <a href="/wiki/Social_sciences" class="mw-redirect" title="Social sciences">social sciences</a>, together with the <a href="/wiki/Principles" class="mw-redirect" title="Principles">principles</a> and methods of <a href="/wiki/Engineering_analysis" title="Engineering analysis">engineering analysis</a> and design, to specify, predict, and evaluate the results obtained from systems and processes.<sup id="cite_ref-291" class="reference"><a href="#cite_note-291"><span class="cite-bracket">[</span>288<span class="cite-bracket">]</span></a></sup> From these results, they are able to create new <a href="/wiki/Systems" class="mw-redirect" title="Systems">systems</a>, processes or situations for the useful coordination of <a href="/wiki/Wage_labour" title="Wage labour">labour</a>, <a href="/wiki/Materials" class="mw-redirect" title="Materials">materials</a> and <a href="/wiki/Machines" class="mw-redirect" title="Machines">machines</a> and also improve the <a href="/wiki/Quality_(business)" title="Quality (business)">quality</a> and <a href="/wiki/Productivity" title="Productivity">productivity</a> of systems, physical or social.<sup id="cite_ref-292" class="reference"><a href="#cite_note-292"><span class="cite-bracket">[</span>289<span class="cite-bracket">]</span></a></sup></dd> <dt id="inertia"><dfn><b><a href="/wiki/Inertia" title="Inertia">Inertia</a></b></dfn></dt><dd>Is the resistance of any physical <a href="/wiki/Physical_body" class="mw-redirect" title="Physical body">object</a> to any change in its <a href="/wiki/Velocity" title="Velocity">velocity</a>. This includes changes to the object's <a href="/wiki/Speed" title="Speed">speed</a>, or <a href="/wiki/Relative_direction" class="mw-redirect" title="Relative direction">direction</a> of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed, when no <a href="/wiki/Force" title="Force">forces</a> act upon them.</dd> <dt id="infrasound"><dfn><b><a href="/wiki/Infrasound" title="Infrasound">Infrasound</a></b></dfn></dt><dd>Infrasound, sometimes referred to as <i>low-frequency sound</i>, describes sound waves with a frequency below the lower limit of audibility (generally 20 Hz). Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the <a href="/wiki/Sound_pressure" title="Sound pressure">sound pressure</a> must be sufficiently high. The ear is the primary organ for sensing low sound, but at higher intensities it is possible to feel infrasound vibrations in various parts of the body.</dd> <dt id="integral"><dfn><b><a href="/wiki/Integral" title="Integral">Integral</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> data. The process of finding integrals is called <i>integration</i>. Along with <a href="/wiki/Derivative" title="Derivative">differentiation</a>, integration is a fundamental operation of calculus,<sup id="cite_ref-293" class="reference"><a href="#cite_note-293"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> and serves as a tool to solve problems in mathematics and <a href="/wiki/Physics" title="Physics">physics</a> involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others.</dd> <dt id="integral_transform"><dfn><b><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an integral transform maps a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> from its original <a href="/wiki/Function_space" title="Function space">function space</a> into another function space via <a href="/wiki/Integral" title="Integral">integration</a>, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the <i>inverse transform</i>.</dd> <dt id="international_system_of_units"><dfn><b><a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a></b></dfn></dt><dd>The International System of Units (SI, abbreviated from the <a href="/wiki/French_language" title="French language">French</a> <i><span title="French-language text"><i lang="fr">Système international (d'unités)</i></span></i>) is the modern form of the <a href="/wiki/Metric_system" title="Metric system">metric system</a>. It is the only <a href="/wiki/System_of_measurement" class="mw-redirect" title="System of measurement">system of measurement</a> with an official status in nearly every country in the world. It comprises a <a href="/wiki/Coherence_(units_of_measurement)" title="Coherence (units of measurement)">coherent</a> system of <a href="/wiki/Units_of_measurement" class="mw-redirect" title="Units of measurement">units of measurement</a> starting with seven <a href="/wiki/SI_base_unit" title="SI base unit">base units</a>, which are the <a href="/wiki/Second" title="Second">second</a> (the unit of <a href="/wiki/Time" title="Time">time</a> with the symbol s), <a href="/wiki/Metre" title="Metre">metre</a> (<a href="/wiki/Length" title="Length">length</a>, m), <a href="/wiki/Kilogram" title="Kilogram">kilogram</a> (<a href="/wiki/Mass" title="Mass">mass</a>, kg), <a href="/wiki/Ampere" title="Ampere">ampere</a> (<a href="/wiki/Electric_current" title="Electric current">electric current</a>, A), <a href="/wiki/Kelvin" title="Kelvin">kelvin</a> (<a href="/wiki/Thermodynamic_temperature" title="Thermodynamic temperature">thermodynamic temperature</a>, K), <a href="/wiki/Mole_(unit)" title="Mole (unit)">mole</a> (<a href="/wiki/Amount_of_substance" title="Amount of substance">amount of substance</a>, mol), and <a href="/wiki/Candela" title="Candela">candela</a> (<a href="/wiki/Luminous_intensity" title="Luminous intensity">luminous intensity</a>, cd). The system allows for an unlimited number of additional units, called <a href="/wiki/SI_derived_unit" title="SI derived unit">derived units</a>, which can always be represented as products of powers of the base units.<sup id="cite_ref-294" class="reference"><a href="#cite_note-294"><span class="cite-bracket">[</span>Note 1<span class="cite-bracket">]</span></a></sup> Twenty-two derived units have been provided with special names and symbols.<sup id="cite_ref-295" class="reference"><a href="#cite_note-295"><span class="cite-bracket">[</span>Note 2<span class="cite-bracket">]</span></a></sup> The seven base units and the 22 derived units with special names and symbols may be used in combination to express other derived units,<sup id="cite_ref-296" class="reference"><a href="#cite_note-296"><span class="cite-bracket">[</span>Note 3<span class="cite-bracket">]</span></a></sup> which are adopted to facilitate measurement of diverse quantities. The SI system also provides twenty <a href="/wiki/Metric_prefix" title="Metric prefix">prefixes</a> to the unit names and unit symbols that may be used when specifying power-of-ten (i.e. decimal) multiples and sub-multiples of SI units. The SI is intended to be an evolving system; units and prefixes are created and unit definitions are modified through international agreement as the technology of <a href="/wiki/Measurement" title="Measurement">measurement</a> progresses and the precision of measurements improves.</dd> <dt id="interval_estimation"><dfn><b><a href="/wiki/Interval_estimation" title="Interval estimation">Interval estimation</a></b></dfn></dt><dd>In <a href="/wiki/Statistics" title="Statistics">statistics</a>, interval estimation is the use of <a href="/wiki/Sample_(statistics)" class="mw-redirect" title="Sample (statistics)">sample data</a> to calculate an <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> of possible values of an unknown <a href="/wiki/Population_parameter" class="mw-redirect" title="Population parameter">population parameter</a>; this is in contrast to <a href="/wiki/Point_estimation" title="Point estimation">point estimation</a>, which gives a single value. <a href="/wiki/Jerzy_Neyman" title="Jerzy Neyman">Jerzy Neyman</a> (1937) identified interval estimation ("estimation by interval") as distinct from <a href="/wiki/Point_estimation" title="Point estimation">point estimation</a> ("estimation by unique estimate"). In doing so, he recognized that then-recent work quoting results in the form of an <a href="/wiki/Estimator" title="Estimator">estimate</a> plus-or-minus a <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> indicated that interval estimation was actually the problem <a href="/wiki/Statisticians" class="mw-redirect" title="Statisticians">statisticians</a> really had in mind.</dd> <dt id="inorganic_chemistry"><dfn><b><a href="/wiki/Inorganic_chemistry" title="Inorganic chemistry">Inorganic chemistry</a></b></dfn></dt><dd>Deals with <a href="/wiki/Chemical_synthesis" title="Chemical synthesis">synthesis</a> and behavior of <a href="/wiki/Inorganic_compound" title="Inorganic compound">inorganic</a> and <a href="/wiki/Organometallic_chemistry" title="Organometallic chemistry">organometallic</a> compounds. This field covers <a href="/wiki/Chemical_compound" title="Chemical compound">chemical compounds</a> that are not carbon-based, which are the subjects of <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic chemistry</a>. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of <a href="/wiki/Organometallic_chemistry" title="Organometallic chemistry">organometallic chemistry</a>. It has applications in every aspect of the chemical industry, including <a href="/wiki/Catalysis" title="Catalysis">catalysis</a>, <a href="/wiki/Materials_science" title="Materials science">materials science</a>, <a href="/wiki/Pigment" title="Pigment">pigments</a>, <a href="/wiki/Surfactant" title="Surfactant">surfactants</a>, <a href="/wiki/Coating" title="Coating">coatings</a>, <a href="/wiki/Pharmaceutical_drug" class="mw-redirect" title="Pharmaceutical drug">medications</a>, <a href="/wiki/Fuel" title="Fuel">fuels</a>, and <a href="/wiki/Agriculture" title="Agriculture">agriculture</a>.<sup id="cite_ref-297" class="reference"><a href="#cite_note-297"><span class="cite-bracket">[</span>290<span class="cite-bracket">]</span></a></sup></dd><dt id="ion"><dfn><b><a href="/wiki/Ion" title="Ion">Ion</a></b></dfn></dt><dd>Is a <a href="/wiki/Particle" title="Particle">particle</a>, <a href="/wiki/Atom" title="Atom">atom</a> or <a href="/wiki/Molecule" title="Molecule">molecule</a> with a net <a href="/wiki/Electric_charge" title="Electric charge">electrical charge</a>. The charge of the electron is considered negative by convention. The negative charge of an ion is equal and opposite to charged proton(s) considered positive by convention. The net charge of an ion is non-zero due to its total number of <a href="/wiki/Electron" title="Electron">electrons</a> being unequal to its total number of <a href="/wiki/Proton" title="Proton">protons</a>.</dd> <dt id="ionic_bonding"><dfn><b><a href="/wiki/Ionic_bonding" title="Ionic bonding">Ionic bonding</a></b></dfn></dt><dd>Is a type of <a href="/wiki/Chemical_bond" title="Chemical bond">chemical bonding</a> that involves the <a href="/wiki/Coulomb%27s_law" title="Coulomb's law">electrostatic attraction</a> between oppositely charged <a href="/wiki/Ion" title="Ion">ions</a>, or between two <a href="/wiki/Atoms" class="mw-redirect" title="Atoms">atoms</a> with sharply different <a href="/wiki/Electronegativities" class="mw-redirect" title="Electronegativities">electronegativities</a>,<sup id="cite_ref-298" class="reference"><a href="#cite_note-298"><span class="cite-bracket">[</span>291<span class="cite-bracket">]</span></a></sup> and is the primary interaction occurring in <a href="/wiki/Ionic_compound" class="mw-redirect" title="Ionic compound">ionic compounds</a>. It is one of the main types of bonding along with <a href="/wiki/Covalent_bond" title="Covalent bond">covalent bonding</a> and <a href="/wiki/Metallic_bonding" title="Metallic bonding">metallic bonding</a>. Ions are atoms (or groups of atoms) with an electrostatic charge. Atoms that gain electrons make negatively charged ions (called <a href="/wiki/Anion" class="mw-redirect" title="Anion">anions</a>). Atoms that lose electrons make positively charged ions (called <a href="/wiki/Cations" class="mw-redirect" title="Cations">cations</a>). This transfer of electrons is known as <i>electrovalence</i> in contrast to <a href="/wiki/Covalent_bond" title="Covalent bond">covalence</a>. In the simplest case, the cation is a <a href="/wiki/Metal" title="Metal">metal</a> atom and the anion is a <a href="/wiki/Nonmetal_(chemistry)" class="mw-redirect" title="Nonmetal (chemistry)">nonmetal</a> atom, but these ions can be of a more complex nature, e.g. <a href="/wiki/Polyatomic_ions" class="mw-redirect" title="Polyatomic ions">molecular ions</a> like <span class="chemf nowrap">NH<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span> or <span class="chemf nowrap">SO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>. In simpler words, an ionic bond results from the transfer of electrons from a <a href="/wiki/Metal" title="Metal">metal</a> to a <a href="/wiki/Non-metal" class="mw-redirect" title="Non-metal">non-metal</a> in order to obtain a full valence shell for both atoms.</dd> <dt id="ionization"><dfn><b><a href="/wiki/Ionization" title="Ionization">Ionization</a></b></dfn></dt><dd>Ionization or <i>ionisation</i> is the process by which an <a href="/wiki/Atom" title="Atom">atom</a> or a <a href="/wiki/Molecule" title="Molecule">molecule</a> acquires a negative or positive <a href="/wiki/Electric_charge" title="Electric charge">charge</a> by gaining or losing <a href="/wiki/Electron" title="Electron">electrons</a>, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an <a href="/wiki/Ion" title="Ion">ion</a>. Ionization can result from the loss of an electron after collisions with <a href="/wiki/Subatomic_particle" title="Subatomic particle">subatomic particles</a>, collisions with other atoms, molecules and ions, or through the interaction with <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic radiation</a>. <a href="/wiki/Heterolytic_bond_cleavage" class="mw-redirect" title="Heterolytic bond cleavage">Heterolytic bond cleavage</a> and heterolytic <a href="/wiki/Substitution_reaction" title="Substitution reaction">substitution reactions</a> can result in the formation of ion pairs. Ionization can occur through radioactive decay by the <a href="/wiki/Internal_conversion" title="Internal conversion">internal conversion</a> process, in which an excited nucleus transfers its energy to one of the <a href="/wiki/Inner-shell_electrons" class="mw-redirect" title="Inner-shell electrons">inner-shell electrons</a> causing it to be ejected.</dd> <dt id="isotope"><dfn><b><a href="/wiki/Isotope" title="Isotope">Isotope</a></b></dfn></dt><dd>Isotopes are variants of a particular <a href="/wiki/Chemical_element" title="Chemical element">chemical element</a> which differ in <a href="/wiki/Neutron_number" title="Neutron number">neutron number</a>, and consequently in <a href="/wiki/Nucleon_number" class="mw-redirect" title="Nucleon number">nucleon number</a>. All isotopes of a given element have the same number of <a href="/wiki/Proton" title="Proton">protons</a> but different numbers of <a href="/wiki/Neutrons" class="mw-redirect" title="Neutrons">neutrons</a> in each <a href="/wiki/Atom" title="Atom">atom</a>.<sup id="cite_ref-299" class="reference"><a href="#cite_note-299"><span class="cite-bracket">[</span>292<span class="cite-bracket">]</span></a></sup></dd> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> </dl> <div class="mw-heading mw-heading2"><h2 id="J">J</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=10" title="Edit section: J"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="j/psi_meson"><dfn><b><a href="/wiki/J/psi_meson" title="J/psi meson">J/psi meson</a></b></dfn></dt><dd>The <b><span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>J/ψ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span></b> (<b>J/psi</b>) <b>meson</b> <span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="/dʒ/: 'j' in 'jam'">dʒ</span><span title="/eɪ/: 'a' in 'face'">eɪ</span></span><span class="wrap"> </span><span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="'s' in 'sigh'">s</span><span title="/aɪ/: 'i' in 'tide'">aɪ</span></span><span class="wrap"> </span><span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="'m' in 'my'">m</span><span title="/iː/: 'ee' in 'fleece'">iː</span><span title="'z' in 'zoom'">z</span><span title="/ɒ/: 'o' in 'body'">ɒ</span><span title="'n' in 'nigh'">n</span></span>/</a></span></span> or <b>psion</b><sup id="cite_ref-300" class="reference"><a href="#cite_note-300"><span class="cite-bracket">[</span>293<span class="cite-bracket">]</span></a></sup> is a <a href="/wiki/Subatomic_particle" title="Subatomic particle">subatomic particle</a>, a <a href="/wiki/Flavour_(particle_physics)" title="Flavour (particle physics)">flavor</a>-neutral <a href="/wiki/Meson" title="Meson">meson</a> consisting of a <a href="/wiki/Charm_quark" title="Charm quark">charm quark</a> and a charm <a href="/wiki/Antiparticle" title="Antiparticle">antiquark</a>. Mesons formed by a <a href="/wiki/Bound_state" title="Bound state">bound state</a> of a charm quark and a charm anti-quark are generally known as "<a href="/wiki/Charmonium" class="mw-redirect" title="Charmonium">charmonium</a>". The <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>J/ψ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> is the most common form of charmonium, due to its <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> of 1 and its low <a href="/wiki/Rest_mass" class="mw-redirect" title="Rest mass">rest mass</a>. The <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>J/ψ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> has a rest mass of <span class="nowrap"><span data-sort-value="7000309690000000000♠"></span>3.0969 <a href="/wiki/Electronvolt#Mass" title="Electronvolt">GeV/<i>c</i><sup>2</sup></a></span>, just above that of the <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>η<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">c</sub></span></span></span> (<span class="nowrap"><span data-sort-value="7000298360000000000♠"></span>2.9836 <a href="/wiki/Electronvolt#Mass" title="Electronvolt">GeV/<i>c</i><sup>2</sup></a></span>), and a <a href="/wiki/Mean_lifetime" class="mw-redirect" title="Mean lifetime">mean lifetime</a> of <span class="nowrap"><span data-sort-value="6979720000000000000♠"></span>7.2<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−21</sup> <a href="/wiki/Second" title="Second">s</a></span>. This lifetime was about a thousand times longer than expected.<sup id="cite_ref-301" class="reference"><a href="#cite_note-301"><span class="cite-bracket">[</span>294<span class="cite-bracket">]</span></a></sup></dd> <dt id="joule"><dfn><b><a href="/wiki/Joule" title="Joule">Joule</a></b></dfn></dt><dd>The SI unit of energy. The joule, (symbol: J), is a <a href="/wiki/SI_derived_unit" title="SI derived unit">derived unit</a> of <a href="/wiki/Energy" title="Energy">energy</a> in the <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a>.<sup id="cite_ref-302" class="reference"><a href="#cite_note-302"><span class="cite-bracket">[</span>295<span class="cite-bracket">]</span></a></sup> It is equal to the energy transferred to (or <a href="/wiki/Work_(physics)" title="Work (physics)">work</a> done on) an object when a <a href="/wiki/Force" title="Force">force</a> of one <a href="/wiki/Newton_(unit)" title="Newton (unit)">newton</a> acts on that object in the direction of the object's motion through a distance of one <a href="/wiki/Metre" title="Metre">metre</a> (1 newton-metre or N⋅m). It is also the energy dissipated as heat when an electric <a href="/wiki/Current_(electricity)" class="mw-redirect" title="Current (electricity)">current</a> of one <a href="/wiki/Ampere" title="Ampere">ampere</a> passes through a <a href="/wiki/Electrical_resistance_and_conductance" title="Electrical resistance and conductance">resistance</a> of one <a href="/wiki/Ohm" title="Ohm">ohm</a> for one second. It is named after the English physicist <a href="/wiki/James_Prescott_Joule" title="James Prescott Joule">James Prescott Joule</a> (1818–1889).<sup id="cite_ref-303" class="reference"><a href="#cite_note-303"><span class="cite-bracket">[</span>296<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-304" class="reference"><a href="#cite_note-304"><span class="cite-bracket">[</span>297<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-305" class="reference"><a href="#cite_note-305"><span class="cite-bracket">[</span>298<span class="cite-bracket">]</span></a></sup></dd> <dt id="joule_heating"><dfn><b><a href="/wiki/Joule_heating" title="Joule heating">Joule heating</a></b></dfn></dt><dd>Also known as resistive, resistance, or Ohmic heating, is the process by which the passage of an <a href="/wiki/Electric_current" title="Electric current">electric current</a> through a <a href="/wiki/Conductor_(material)" class="mw-redirect" title="Conductor (material)">conductor</a> produces <a href="/wiki/Heat" title="Heat">heat</a>.</dd> </dl> <div class="mw-heading mw-heading2"><h2 id="K">K</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=11" title="Edit section: K"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="kalman_filter"><dfn><b><a href="/wiki/Kalman_filter" title="Kalman filter">Kalman filter</a></b></dfn></dt><dd>In statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The Kalman filter has numerous applications in technology.</dd> <dt id="kelvin"><dfn><b><a href="/wiki/Kelvin" title="Kelvin">Kelvin</a></b></dfn></dt><dd>Is an <a href="/wiki/Absolute_scale" title="Absolute scale">absolute</a> <a href="/wiki/Thermodynamic_temperature" title="Thermodynamic temperature">thermodynamic temperature</a> <a href="/wiki/Scale_of_temperature" title="Scale of temperature">scale</a> using as its null point <a href="/wiki/Absolute_zero" title="Absolute zero">absolute zero</a>, the temperature at which all <a href="/wiki/Kinetic_theory_of_gases" title="Kinetic theory of gases">thermal motion</a> ceases in the classical description of <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>. The kelvin (symbol: K) is the <a href="/wiki/SI_base_unit" title="SI base unit">base unit</a> of <a href="/wiki/Temperature" title="Temperature">temperature</a> in the <a href="/wiki/International_System_of_Units" title="International System of Units">International System of Units</a> (SI).</dd> <dt id="kelvin–planck_statement"><dfn><b><a href="/wiki/Kelvin%E2%80%93Planck_statement" class="mw-redirect" title="Kelvin–Planck statement">Kelvin–Planck statement</a></b></dfn></dt><dd>(Or the <i>Heat Engine Statement</i>), of the <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a> states that <i>it is impossible to devise a <a href="/wiki/Thermodynamic_cycle" title="Thermodynamic cycle">cyclically</a> operating heat engine, the effect of which is to absorb <a href="/wiki/Energy" title="Energy">energy</a> in the form of heat from a single <a href="/wiki/Heat_reservoir" class="mw-redirect" title="Heat reservoir">thermal reservoir</a> and to deliver an equivalent amount of <a href="/wiki/Work_(physics)" title="Work (physics)">work</a></i>.<sup id="cite_ref-Rao_306-0" class="reference"><a href="#cite_note-Rao-306"><span class="cite-bracket">[</span>299<span class="cite-bracket">]</span></a></sup> This implies that it is impossible to build a <a href="/wiki/Heat_engine" title="Heat engine">heat engine</a> that has 100% <a href="/wiki/Thermal_efficiency" title="Thermal efficiency">thermal efficiency</a>.<sup id="cite_ref-Young&Freedman_307-0" class="reference"><a href="#cite_note-Young&Freedman-307"><span class="cite-bracket">[</span>300<span class="cite-bracket">]</span></a></sup></dd> <dt id="kinematics"><dfn><b><a href="/wiki/Kinematics" title="Kinematics">Kinematics</a></b></dfn></dt><dd>Is a branch of <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> that describes the <a href="/wiki/Motion_(physics)" class="mw-redirect" title="Motion (physics)">motion</a> of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that caused the motion.<sup id="cite_ref-Whittaker_308-0" class="reference"><a href="#cite_note-Whittaker-308"><span class="cite-bracket">[</span>301<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Beggs_309-0" class="reference"><a href="#cite_note-Beggs-309"><span class="cite-bracket">[</span>302<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wright_310-0" class="reference"><a href="#cite_note-Wright-310"><span class="cite-bracket">[</span>303<span class="cite-bracket">]</span></a></sup></dd> </dl> <div class="mw-heading mw-heading2"><h2 id="L">L</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=12" title="Edit section: L"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1228772891"> <dl class="glossary"> <dt id="laminar_flow"><dfn><b><a href="/wiki/Laminar_flow" title="Laminar flow">Laminar flow</a></b></dfn></dt><dd>In <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing.<sup id="cite_ref-311" class="reference"><a href="#cite_note-311"><span class="cite-bracket">[</span>304<span class="cite-bracket">]</span></a></sup> At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like <a href="/wiki/Playing_card" title="Playing card">playing cards</a>. There are no cross-currents perpendicular to the direction of flow, nor <a href="/wiki/Eddies" class="mw-redirect" title="Eddies">eddies</a> or swirls of fluids.<sup id="cite_ref-Geankoplis,_Christie_John_2003_312-0" class="reference"><a href="#cite_note-Geankoplis,_Christie_John_2003-312"><span class="cite-bracket">[</span>305<span class="cite-bracket">]</span></a></sup> In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface.<sup id="cite_ref-313" class="reference"><a href="#cite_note-313"><span class="cite-bracket">[</span>306<span class="cite-bracket">]</span></a></sup> Laminar flow is a flow regime characterized by high <a href="/wiki/Momentum_diffusion" title="Momentum diffusion">momentum diffusion</a> and low momentum <a href="/wiki/Convection" title="Convection">convection</a>.</dd> <dt id="laplace_transform"><dfn><b><a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the Laplace transform, named after its inventor <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="'l' in 'lie'">l</span><span title="/ə/: 'a' in 'about'">ə</span><span title="/ˈ/: primary stress follows">ˈ</span><span title="'p' in 'pie'">p</span><span title="'l' in 'lie'">l</span><span title="/ɑː/: 'a' in 'father'">ɑː</span><span title="'s' in 'sigh'">s</span></span>/</a></span></span>), is an <a href="/wiki/Integral_transform" title="Integral transform">integral transform</a> that converts a function of a real variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> (often time) to a function of a <a href="/wiki/Complex_analysis" title="Complex analysis">complex variable</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> (<a href="/wiki/Complex_frequency" class="mw-redirect" title="Complex frequency">complex frequency</a>). The transform has many applications in science and engineering because it is a tool for solving <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a>. In particular, it transforms differential equations into algebraic equations and <a href="/wiki/Convolution" title="Convolution">convolution</a> into multiplication.<sup id="cite_ref-314" class="reference"><a href="#cite_note-314"><span class="cite-bracket">[</span>307<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-315" class="reference"><a href="#cite_note-315"><span class="cite-bracket">[</span>308<span class="cite-bracket">]</span></a></sup></dd> <dt id="lc_circuit"><dfn><b><a href="/wiki/LC_circuit" title="LC circuit">LC circuit</a></b></dfn></dt><dd>A circuit consisting entirely of inductors (L) and capacitors (C).</dd> <dt id="le_chatelier's_principle"><dfn><b><a href="/wiki/Le_Chatelier%27s_principle" title="Le Chatelier's principle">Le Chatelier's principle</a></b></dfn></dt><dd>Le Chatelier's principle, also called <i>Chatelier's principle</i>, is a principle of <a href="/wiki/Chemistry" title="Chemistry">chemistry</a> used to predict the effect of a change in conditions on <a href="/wiki/Chemical_equilibrium" title="Chemical equilibrium">chemical equilibria</a>. The principle is named after French chemist <a href="/wiki/Henry_Louis_Le_Chatelier" title="Henry Louis Le Chatelier">Henry Louis Le Chatelier</a>, and sometimes also credited to <a href="/wiki/Karl_Ferdinand_Braun" title="Karl Ferdinand Braun">Karl Ferdinand Braun</a>, who discovered it independently. It can be stated as: <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>When any system at equilibrium for a long period of time is subjected to a change in <a href="/wiki/Concentration" title="Concentration">concentration</a>, <a href="/wiki/Temperature" title="Temperature">temperature</a>, <a href="/wiki/Volume" title="Volume">volume</a>, or <a href="/wiki/Pressure" title="Pressure">pressure</a>, (1) the system changes to a new equilibrium, and (2) this change partly counteracts the applied change.</p></blockquote> <p>It is common to treat the principle as a more general observation of <a href="/wiki/System" title="System">systems</a>,<sup id="cite_ref-Systemantics_316-0" class="reference"><a href="#cite_note-Systemantics-316"><span class="cite-bracket">[</span>309<span class="cite-bracket">]</span></a></sup> such as </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>When a settled system is disturbed, it will adjust to diminish the change that has been made to it</p></blockquote> <p>or, "roughly stated",<sup id="cite_ref-Systemantics_316-1" class="reference"><a href="#cite_note-Systemantics-316"><span class="cite-bracket">[</span>309<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>Any change in <a href="/wiki/Status_quo" title="Status quo">status quo</a> prompts an opposing reaction in the responding system.</p></blockquote></dd> <dt id="lenz's_law"><dfn><b><a href="/wiki/Lenz%27s_law" title="Lenz's law">Lenz's law</a></b></dfn></dt><dd>Lenz's law, named after the physicist <a href="/wiki/Emil_Lenz" title="Emil Lenz">Emil Lenz</a> who formulated it in 1834,<sup id="cite_ref-317" class="reference"><a href="#cite_note-317"><span class="cite-bracket">[</span>310<span class="cite-bracket">]</span></a></sup> states that the direction of the <a href="/wiki/Electric_current" title="Electric current">electric current</a> which is <a href="/wiki/Electromagnetic_induction" title="Electromagnetic induction">induced</a> in a <a href="/wiki/Electrical_conductor" title="Electrical conductor">conductor</a> by a changing <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> is such that the magnetic field created by the induced current opposes the initial changing magnetic field. It is a <a href="/wiki/Scientific_law" title="Scientific law">qualitative law</a> that specifies the direction of induced current, but states nothing about its magnitude. Lenz's law explains the direction of many effects in <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a>, such as the direction of voltage induced in an <a href="/wiki/Inductor" title="Inductor">inductor</a> or <a href="/wiki/Electromagnetic_coil" title="Electromagnetic coil">wire loop</a> by a changing current, or the drag force of <a href="/wiki/Eddy_current" title="Eddy current">eddy currents</a> exerted on moving objects in a magnetic field. Lenz's law may be seen as analogous to <a href="/wiki/Newton%27s_laws_of_motion#Newton's_third_law" title="Newton's laws of motion">Newton's third law</a> in <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>.<sup id="cite_ref-Electromagnetics_explained:_a_handbook_for_wireless/RF,_EMC,_and_high-speed_electronics_318-0" class="reference"><a href="#cite_note-Electromagnetics_explained:_a_handbook_for_wireless/RF,_EMC,_and_high-speed_electronics-318"><span class="cite-bracket">[</span>311<span class="cite-bracket">]</span></a></sup></dd> <dt id="lepton"><dfn><b><a href="/wiki/Lepton" title="Lepton">Lepton</a></b></dfn></dt><dd>In <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a>, a lepton is an <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particle</a> of <a href="/wiki/Half-integer_spin" class="mw-redirect" title="Half-integer spin">half-integer spin</a> (<a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">2</span></span>) that does not undergo <a href="/wiki/Strong_interaction" title="Strong interaction">strong interactions</a>.<sup id="cite_ref-319" class="reference"><a href="#cite_note-319"><span class="cite-bracket">[</span>312<span class="cite-bracket">]</span></a></sup> Two main classes of leptons exist: <a href="/wiki/Electric_charge" title="Electric charge">charged</a> leptons (also known as the <a href="/wiki/Electron" title="Electron">electron</a>-like leptons), and neutral leptons (better known as <a href="/wiki/Neutrino" title="Neutrino">neutrinos</a>). Charged leptons can combine with other particles to form various <a href="/wiki/Composite_particle" class="mw-redirect" title="Composite particle">composite particles</a> such as <a href="/wiki/Atom" title="Atom">atoms</a> and <a href="/wiki/Positronium" title="Positronium">positronium</a>, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the <a href="/wiki/Electron" title="Electron">electron</a>.</dd> <dt id="lever"><dfn><b><a href="/wiki/Lever" title="Lever">Lever</a></b></dfn></dt><dd>Is a <a href="/wiki/Simple_machine" title="Simple machine">simple machine</a> consisting of a <a href="/wiki/Beam_(structure)" title="Beam (structure)">beam</a> or rigid rod pivoted at a fixed <a href="/wiki/Hinge" title="Hinge">hinge</a>, or <i><a href="https://en.wiktionary.org/wiki/fulcrum" class="extiw" title="wikt:fulcrum">fulcrum</a></i>. A lever is a rigid body capable of rotating on a point on itself. On the basis of the locations of fulcrum, load and effort, the lever is divided into <a href="/wiki/Lever#Classes_of_levers" title="Lever">three types</a>. Also, <a href="/wiki/Leverage_(mechanics)" class="mw-redirect" title="Leverage (mechanics)">leverage</a> is mechanical advantage gained in a system. It is one of the six <a href="/wiki/Simple_machine" title="Simple machine">simple machines</a> identified by Renaissance scientists. A lever amplifies an input force to provide a greater output force, which is said to provide <i>leverage</i>. The ratio of the output force to the input force is the <a href="/wiki/Mechanical_advantage" title="Mechanical advantage">mechanical advantage</a> of the lever. As such, the lever is a <a href="/wiki/Mechanical_advantage_device" title="Mechanical advantage device">mechanical advantage device</a>, trading off force against movement.</dd> <dt id="l'hôpital's_rule"><dfn><b><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's rule</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, more specifically <a href="/wiki/Calculus" title="Calculus">calculus</a>, L'Hôpital's rule or L'Hospital's rule (<style data-mw-deduplicate="TemplateStyles:r1177148991">.mw-parser-output .IPA-label-small{font-size:85%}.mw-parser-output .references .IPA-label-small,.mw-parser-output .infobox .IPA-label-small,.mw-parser-output .navbox .IPA-label-small{font-size:100%}</style><span class="IPA-label IPA-label-small">French:</span> <span class="IPA nowrap" lang="fr-Latn-fonipa"><a href="/wiki/Help:IPA/French" title="Help:IPA/French">[lopital]</a></span>, <span class="rt-commentedText nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1177148991"><span class="IPA-label IPA-label-small">English: </span><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˌ/: secondary stress follows">ˌ</span><span title="'l' in 'lie'">l</span><span title="/oʊ/: 'o' in 'code'">oʊ</span><span title="'p' in 'pie'">p</span><span title="/iː/: 'ee' in 'fleece'">iː</span><span title="/ˈ/: primary stress follows">ˈ</span><span title="'t' in 'tie'">t</span><span title="/ɑː/: 'a' in 'father'">ɑː</span><span title="'l' in 'lie'">l</span></span>/</a></span></span>, <a href="/wiki/Help:Pronunciation_respelling_key" title="Help:Pronunciation respelling key"><i title="English pronunciation respelling">loh-pee-<span style="font-size:90%">TAHL</span></i></a>) provides a technique to evaluate <a href="/wiki/Limit_of_a_function" title="Limit of a function">limits</a> of <a href="/wiki/Indeterminate_form" title="Indeterminate form">indeterminate forms</a>. Application (or repeated application) of the rule often converts an indeterminate form to an expression that can be easily evaluated by substitution. The rule is named after the 17th-century <a href="/wiki/France" title="France">French</a> <a href="/wiki/Mathematician" title="Mathematician">mathematician</a> <a href="/wiki/Guillaume_de_l%27H%C3%B4pital" title="Guillaume de l'Hôpital">Guillaume de l'Hôpital</a>. Although the rule is often attributed to L'Hôpital, the theorem was first introduced to him in 1694 by the Swiss mathematician <a href="/wiki/Johann_Bernoulli" title="Johann Bernoulli">Johann Bernoulli</a>. L'Hôpital's rule states that for functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> which are <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable</a> on an open <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">interval</a> <span class="texhtml mvar" style="font-style:italic;">I</span> except possibly at a point <span class="texhtml mvar" style="font-style:italic;">c</span> contained in <span class="texhtml mvar" style="font-style:italic;">I</span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or}}\pm \infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> or</mtext> </mrow> <mo>±<!-- ± --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or}}\pm \infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6392475f397d12f9e10045ecb9b00d1a00ffaa8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.862ex; height:3.843ex;" alt="{\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or}}\pm \infty ,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g'(x)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g'(x)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f022fde7dae42ed7a4bf38125e329293ac4d5ce5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.203ex; height:3.009ex;" alt="{\displaystyle g'(x)\neq 0}"></span> for all <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">I</span> with <span class="texhtml"><i>x</i> ≠ <i>c</i></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to c}{\frac {f'(x)}{g'(x)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to c}{\frac {f'(x)}{g'(x)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9186ac40d31fd1b92d69283a5a91702a30dbc034" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:9.663ex; height:6.509ex;" alt="{\displaystyle \lim _{x\to c}{\frac {f'(x)}{g'(x)}}}"></span> exists, then <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d7785840386a94cc10bf59bffa7fe39cc946c43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.344ex; height:6.509ex;" alt="{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}.}"></span></dd></dl> The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit that can be evaluated directly.</dd> <dt id="light"><dfn><b><a href="/wiki/Light" title="Light">Light</a></b></dfn></dt><dd>Light or <i>visible light</i> is <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic radiation</a> within the portion of the <a href="/wiki/Electromagnetic_spectrum" title="Electromagnetic spectrum">electromagnetic spectrum</a> that can be <a href="/wiki/Visual_perception" title="Visual perception">perceived</a> by the <a href="/wiki/Human_eye" title="Human eye">human eye</a>.<sup id="cite_ref-320" class="reference"><a href="#cite_note-320"><span class="cite-bracket">[</span>313<span class="cite-bracket">]</span></a></sup> Visible light is usually defined as having <a href="/wiki/Wavelength" title="Wavelength">wavelengths</a> in the range of 400–700 <a href="/wiki/Nanometre" title="Nanometre">nm</a>, between the <a href="/wiki/Infrared" title="Infrared">infrared</a> (with longer wavelengths) and the <a href="/wiki/Ultraviolet" title="Ultraviolet">ultraviolet</a> (with shorter wavelengths).<sup id="cite_ref-Pal2001_321-0" class="reference"><a href="#cite_note-Pal2001-321"><span class="cite-bracket">[</span>314<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BuserImbert1992_322-0" class="reference"><a href="#cite_note-BuserImbert1992-322"><span class="cite-bracket">[</span>315<span class="cite-bracket">]</span></a></sup> This wavelength means a <a href="/wiki/Frequency" title="Frequency">frequency</a> range of roughly 430–750 <a href="/wiki/Terahertz_(unit)" class="mw-redirect" title="Terahertz (unit)">terahertz</a> (THz).</dd> <dt id="linear_actuator"><dfn><b><a href="/wiki/Linear_actuator" title="Linear actuator">Linear actuator</a></b></dfn></dt><dd>Is an <a href="/wiki/Actuator" title="Actuator">actuator</a> that creates motion in a straight line, in contrast to the circular motion of a conventional <a href="/wiki/Electric_motor" title="Electric motor">electric motor</a>. Linear actuators are used in machine tools and industrial machinery, in computer <a href="/wiki/Peripheral" title="Peripheral">peripherals</a> such as disk drives and printers, in <a href="/wiki/Valve" title="Valve">valves</a> and <a href="/wiki/Damper_(flow)" title="Damper (flow)">dampers</a>, and in many other places where linear motion is required. <a href="/wiki/Hydraulics" title="Hydraulics">Hydraulic</a> or <a href="/wiki/Pneumatics" title="Pneumatics">pneumatic</a> cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.</dd> <dt id="linear_algebra"><dfn><b><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></b></dfn></dt><dd>The mathematics of equations where the unknowns are only in the first power.</dd> <dt id="linear_elasticity"><dfn><b><a href="/wiki/Linear_elasticity" title="Linear elasticity">Linear elasticity</a></b></dfn></dt><dd>Is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general <a href="/wiki/Finite_strain_theory" title="Finite strain theory">nonlinear theory of elasticity</a> and a branch of <a href="/wiki/Continuum_mechanics" title="Continuum mechanics">continuum mechanics</a>.</dd> <dt id="liquid"><dfn><b><a href="/wiki/Liquid" title="Liquid">Liquid</a></b></dfn></dt><dd>A liquid is a nearly <a href="/wiki/Compressibility" title="Compressibility">incompressible</a> <a href="/wiki/Fluid" title="Fluid">fluid</a> that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of <a href="/wiki/State_of_matter#Four_fundamental_states" title="State of matter">the four fundamental states of matter</a> (the others being <a href="/wiki/Solid" title="Solid">solid</a>, <a href="/wiki/Gas" title="Gas">gas</a>, and <a href="/wiki/Plasma_(physics)" title="Plasma (physics)">plasma</a>), and is the only state with a definite volume but no fixed shape. A liquid is made up of tiny vibrating particles of matter, such as atoms, held together by <a href="/wiki/Intermolecular_bonds" class="mw-redirect" title="Intermolecular bonds">intermolecular bonds</a>. Like a gas, a liquid is <a href="/wiki/Fluid" title="Fluid">able to flow</a> and take the shape of a container. Most liquids resist compression, although others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly constant density. A distinctive property of the liquid state is <a href="/wiki/Surface_tension" title="Surface tension">surface tension</a>, leading to <a href="/wiki/Wetting" title="Wetting">wetting</a> phenomena. <a href="/wiki/Water" title="Water">Water</a> is, by far, the most common liquid on Earth.</dd> <dt id="logarithm"><dfn><b><a href="/wiki/Logarithm" title="Logarithm">Logarithm</a></b></dfn></dt><dd>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the logarithm is the <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a> to <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a>. That means the logarithm of a given number <span class="texhtml mvar" style="font-style:italic;">x</span> is the <a href="/wiki/Exponent" class="mw-redirect" title="Exponent">exponent</a> to which another fixed number, the <i><a href="/wiki/Base_(exponentiation)" title="Base (exponentiation)">base</a></i> <span class="texhtml mvar" style="font-style:italic;">b</span>, must be raised, to produce that number <span class="texhtml mvar" style="font-style:italic;">x</span>. In the simplest case, the logarithm counts the number of occurrences of the same factor in repeated multiplication; e.g., since <span class="texhtml">1000 = 10 × 10 × 10 = 10<sup>3</sup></span>, the "logarithm base <span class="texhtml">10</span>" of <span class="texhtml">1000</span> is <span class="texhtml">3</span>, or <span class="texhtml">log<sub>10</sub>(1000) = 3</span>. The logarithm of <span class="texhtml mvar" style="font-style:italic;">x</span> to <i>base</i> <span class="texhtml mvar" style="font-style:italic;">b</span> is denoted as <span class="texhtml">log<sub><i>b</i></sub>(<i>x</i>)</span>, or without parentheses, <span class="texhtml">log<sub><i>b</i></sub> <i>x</i></span>, or even without the explicit base, <span class="texhtml">log <i>x</i></span>, when no confusion is possible, or when the base does not matter such as in <a href="/wiki/Big_O_notation" title="Big O notation">big O notation</a>. More generally, exponentiation allows any positive <a href="/wiki/Real_number" title="Real number">real number</a> as base to be raised to any real power, always producing a positive result, so <span class="texhtml">log<sub><i>b</i></sub>(<i>x</i>)</span> for any two positive real numbers <span class="texhtml mvar" style="font-style:italic;">b</span> and <span class="texhtml mvar" style="font-style:italic;">x</span>, where <span class="texhtml mvar" style="font-style:italic;">b</span> is not equal to <span class="texhtml">1</span>, is always a unique real number <span class="texhtml mvar" style="font-style:italic;">y</span>. More explicitly, the defining relation between exponentiation and logarithm is: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}(x)=y\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}(x)=y\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adfd9d11b0d2ff14a5c64f68275a2901b756f803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.883ex; height:2.843ex;" alt="{\displaystyle \log _{b}(x)=y\ }"></span> exactly if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ b^{y}=x\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ b^{y}=x\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f32b0cf29adae1037b3c58b06d1b8276cbe2c5d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.636ex; height:2.343ex;" alt="{\displaystyle \ b^{y}=x\ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>x</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01cc492e026f73caf6c9d8f1fea14ea949e7c7a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.171ex; height:2.176ex;" alt="{\displaystyle \ x>0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ b>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>b</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ b>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d33e0264aecbc089dd90c64414a04fe1d1cef836" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.839ex; height:2.176ex;" alt="{\displaystyle \ b>0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ b\neq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>b</mi> <mo>≠<!-- ≠ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ b\neq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eaff444e7f29b091a65904e36abeb1f50b6ac3cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.839ex; height:2.676ex;" alt="{\displaystyle \ b\neq 1}"></span>.</dd></dl> For example, <span class="texhtml">log<sub>2</sub> 64=6</span>, as <span class="texhtml">2<sup>6</sup>=64</span>. The logarithm base <span class="texhtml">10</span> (that is <span class="texhtml"><i>b</i>=10</span>) is called the decimal or <a href="/wiki/Common_logarithm" title="Common logarithm">common logarithm</a> and is commonly used in science and engineering. The <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> has the <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">number <span class="texhtml mvar" style="font-style:italic;">e</span></a> (that is <span class="texhtml"><i>b</i> ≈ 2.718</span>) as its base; its use is widespread in mathematics and <a href="/wiki/Physics" title="Physics">physics</a>, because of its simpler <a href="/wiki/Integral" title="Integral">integral</a> and <a href="/wiki/Derivative" title="Derivative">derivative</a>. The <a href="/wiki/Binary_logarithm" title="Binary logarithm">binary logarithm</a> uses base <span class="texhtml">2</span> (that is <span class="texhtml"><i>b</i>=2</span>) and is frequently used in <a href="/wiki/Computer_science" title="Computer science">computer science</a>. Logarithms are examples of <a href="/wiki/Concave_function" title="Concave function">concave functions</a>.</dd> <dt id="logarithmic_identities"><dfn><b><a href="/wiki/Identity_(mathematics)#Logarithmic_identities" title="Identity (mathematics)">Logarithmic identities</a></b></dfn></dt><dd>Several important formulas, sometimes called logarithmic identities or <i>log laws</i>, relate logarithms to one another.<sup id="cite_ref-323" class="reference"><a href="#cite_note-323"><span class="cite-bracket">[</span>316<span class="cite-bracket">]</span></a></sup></dd> <dt id="logarithmic_mean_temperature_difference"><dfn><b><a href="/wiki/Logarithmic_mean_temperature_difference" title="Logarithmic mean temperature difference">Logarithmic mean temperature difference</a></b></dfn></dt><dd>(Also known as log mean temperature difference, LMTD) is used to determine the temperature driving force for <a href="/wiki/Heat_transfer" title="Heat transfer">heat transfer</a> in flow systems, most notably in <a href="/wiki/Heat_exchanger" title="Heat exchanger">heat exchangers</a>. The LMTD is a <a href="/wiki/Logarithmic_average" class="mw-redirect" title="Logarithmic average">logarithmic average</a> of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger. For a given heat exchanger with constant area and heat transfer coefficient, the larger the LMTD, the more heat is transferred. The use of the LMTD arises straightforwardly from the analysis of a heat exchanger with constant flow rate and fluid thermal properties.</dd> <dt id="lumped_capacitance_model"><dfn><b><a href="/wiki/Lumped_element_model#Thermal_systems" class="mw-redirect" title="Lumped element model">Lumped capacitance model</a></b></dfn></dt><dd>A lumped-capacitance model, also called <i>lumped system analysis</i>,<sup id="cite_ref-324" class="reference"><a href="#cite_note-324"><span class="cite-bracket">[</span>317<span class="cite-bracket">]</span></a></sup> reduces a <a href="/wiki/Thermal_system" class="mw-redirect" title="Thermal system">thermal system</a> to a number of discrete "lumps" and assumes that the <a href="/wiki/Temperature" title="Temperature">temperature</a> difference inside each lump is negligible. This approximation is useful to simplify otherwise complex <a href="/wiki/Differential_equation" title="Differential equation">differential</a> heat equations. It was developed as a mathematical analog of <a href="/wiki/Electrical_capacitance" class="mw-redirect" title="Electrical capacitance">electrical capacitance</a>, although it also includes thermal analogs of <a href="/wiki/Electrical_resistance" class="mw-redirect" title="Electrical resistance">electrical resistance</a> as well.</dd> <dt id="lumped_element_model"><dfn><b><a href="/wiki/Lumped_element_model" class="mw-redirect" title="Lumped element model">Lumped element model</a></b></dfn></dt><dd>The lumped-element model (also called <i>lumped-parameter model</i>, or <i>lumped-component model</i>) simplifies the description of the behaviour of spatially distributed physical systems into a <a href="/wiki/Topology_(electrical_circuits)" class="mw-redirect" title="Topology (electrical circuits)">topology</a> consisting of discrete entities that approximate the behaviour of the distributed system under certain assumptions. It is useful in <a href="/wiki/Electrical_network" title="Electrical network">electrical systems</a> (including <a href="/wiki/Electronics" title="Electronics">electronics</a>), mechanical <a href="/wiki/Multibody_system" title="Multibody system">multibody systems</a>, <a href="/wiki/Heat_transfer" title="Heat transfer">heat transfer</a>, <a href="/wiki/Acoustics" title="Acoustics">acoustics</a>, etc. Mathematically speaking, the simplification reduces the <a href="/wiki/State_space_(controls)" class="mw-redirect" title="State space (controls)">state space</a> of the system to a <a href="/wiki/Counting_number" class="mw-redirect" title="Counting number">finite</a> <a href="/wiki/Dimension" title="Dimension">dimension</a>, and the <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> (PDEs) of the continuous (infinite-dimensional) time and space model of the physical system into <a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary differential equations</a> (ODEs) with a finite number of parameters.</dd> </dl> <div class="noprint" style="text-align:center;"><div role="navigation" id="toc" class="toc plainlinks" aria-labelledby="tocheading" style="margin-left:auto;margin-right:auto; text-align:left;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><div class="hlist"> <div id="toctitle" class="toctitle" style="text-align:center;display:inline-block;"><span id="tocheading" style="font-weight:bold;">Contents: </span></div> <div style="margin:auto; display:inline-block;"> <ul><li><a href="#A">A</a></li> <li><a href="#B">B</a></li> <li><a href="#C">C</a></li> <li><a href="#D">D</a></li> <li><a href="#E">E</a></li> <li><a href="#F">F</a></li> <li><a href="#G">G</a></li> <li><a href="#H">H</a></li> <li><a href="#I">I</a></li> <li><a href="#J">J</a></li> <li><a href="#K">K</a></li> <li><a href="#L">L</a></li> <li><a href="#M-Z">M-Z</a></li> <li><a href="#See_also">See also</a></li> <li><a href="#References">References</a></li> <li><a href="#External_links">External links</a></li></ul> </div></div></div></div> <div class="mw-heading mw-heading2"><h2 id="M–Z"><span id="M.E2.80.93Z"></span>M–Z</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=13" title="Edit section: M–Z"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Glossary_of_engineering:_M%E2%80%93Z" title="Glossary of engineering: M–Z">Glossary of engineering: M–Z</a></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=14" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li> <li><a href="/wiki/National_Council_of_Examiners_for_Engineering_and_Surveying" title="National Council of Examiners for Engineering and Surveying">National Council of Examiners for Engineering and Surveying</a></li> <li><a href="/wiki/Fundamentals_of_Engineering_Examination" class="mw-redirect" title="Fundamentals of Engineering Examination">Fundamentals of Engineering Examination</a></li> <li><a href="/wiki/Principles_and_Practice_of_Engineering_Examination" class="mw-redirect" title="Principles and Practice of Engineering Examination">Principles and Practice of Engineering Examination</a></li> <li><a href="/wiki/Graduate_Aptitude_Test_in_Engineering" title="Graduate Aptitude Test in Engineering">Graduate Aptitude Test in Engineering</a></li> <li><a href="/wiki/Glossary_of_aerospace_engineering" title="Glossary of aerospace engineering">Glossary of aerospace engineering</a></li> <li><a href="/wiki/Glossary_of_civil_engineering" title="Glossary of civil engineering">Glossary of civil engineering</a></li> <li><a href="/wiki/Glossary_of_electrical_and_electronics_engineering" title="Glossary of electrical and electronics engineering">Glossary of electrical and electronics engineering</a></li> <li><a href="/wiki/Glossary_of_mechanical_engineering" title="Glossary of mechanical engineering">Glossary of mechanical engineering</a></li> <li><a href="/wiki/Glossary_of_structural_engineering" title="Glossary of structural engineering">Glossary of structural engineering</a></li> <li><a href="/wiki/Glossary_of_architecture" title="Glossary of architecture">Glossary of architecture</a></li> <li><a href="/wiki/Glossary_of_areas_of_mathematics" title="Glossary of areas of mathematics">Glossary of areas of mathematics</a></li> <li><a href="/wiki/Glossary_of_artificial_intelligence" title="Glossary of artificial intelligence">Glossary of artificial intelligence</a></li> <li><a href="/wiki/Glossary_of_astronomy" title="Glossary of astronomy">Glossary of astronomy</a></li> <li><a href="/wiki/Glossary_of_biology" title="Glossary of biology">Glossary of biology</a></li> <li><a href="/wiki/Glossary_of_calculus" title="Glossary of calculus">Glossary of calculus</a></li> <li><a href="/wiki/Glossary_of_chemistry_terms" title="Glossary of chemistry terms">Glossary of chemistry</a></li> <li><a href="/wiki/Glossary_of_ecology" title="Glossary of ecology">Glossary of ecology</a></li> <li><a href="/wiki/Glossary_of_economics" title="Glossary of economics">Glossary of economics</a></li> <li><a href="/wiki/Glossary_of_physics" title="Glossary of physics">Glossary of physics</a></li> <li><a href="/wiki/Glossary_of_probability_and_statistics" title="Glossary of probability and statistics">Glossary of probability and statistics</a></li> <li><a href="/wiki/List_of_established_military_terms#Engineering" title="List of established military terms">List of established military terms § Engineering</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=15" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-193"><span class="mw-cite-backlink"><b><a href="#cite_ref-193">^</a></b></span> <span class="reference-text">The <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a> imposes limitations on the capacity of a system to transfer energy by performing work, since some of the system's energy might necessarily be <em><a href="/wiki/Waste_heat" title="Waste heat">consumed</a></em> in the form of <a href="/wiki/Heat" title="Heat">heat</a> instead. See e.g. <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLehrman1973" class="citation journal cs1">Lehrman, Robert L. (1973). "Energy Is Not The Ability To Do Work". <i>The Physics Teacher</i>. <b>11</b> (1): 15–18. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973PhTea..11...15L">1973PhTea..11...15L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.2349846">10.1119/1.2349846</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-921X">0031-921X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Physics+Teacher&rft.atitle=Energy+Is+Not+The+Ability+To+Do+Work&rft.volume=11&rft.issue=1&rft.pages=15-18&rft.date=1973&rft.issn=0031-921X&rft_id=info%3Adoi%2F10.1119%2F1.2349846&rft_id=info%3Abibcode%2F1973PhTea..11...15L&rft.aulast=Lehrman&rft.aufirst=Robert+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-235"><span class="mw-cite-backlink"><b><a href="#cite_ref-235">^</a></b></span> <span class="reference-text">The words <b>map</b>, <b>mapping</b>, <b>transformation</b>, <b>correspondence</b>, and <b>operator</b> are often used synonymously. <a href="#CITEREFHalmos1970">Halmos 1970</a>, p. 30.</span> </li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-257"><span class="mw-cite-backlink"><b><a href="#cite_ref-257">^</a></b></span> <span class="reference-text">"Newtonian constant of gravitation" is the name introduced for <i>G</i> by Boys (1894). Use of the term by T.E. Stern (1928) was misquoted as "Newton's constant of gravitation" in <i>Pure Science Reviewed for Profound and Unsophisticated Students</i> (1930), in what is apparently the first use of that term. Use of "Newton's constant" (without specifying "gravitation" or "gravity") is more recent, as "Newton's constant" was also used for the <a href="/wiki/Heat_transfer_coefficient" title="Heat transfer coefficient">heat transfer coefficient</a> in <a href="/wiki/Newton%27s_law_of_cooling" title="Newton's law of cooling">Newton's law of cooling</a>, but has by now become quite common, e.g. Calmet et al, <i>Quantum Black Holes</i> (2013), p. 93; P. de Aquino, <i>Beyond Standard Model Phenomenology at the LHC</i> (2013), p. 3. The name "Cavendish gravitational constant", sometimes "Newton–Cavendish gravitational constant", appears to have been common in the 1970s to 1980s, especially in (translations from) Soviet-era Russian literature, e.g. Sagitov (1970 [1969]), <i>Soviet Physics: Uspekhi</i> 30 (1987), Issues 1–6, p. 342 [etc.]. "Cavendish constant" and "Cavendish gravitational constant" is also used in Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, "Gravitation", (1973), 1126f. Colloquial use of "Big G", as opposed to "<a href="/wiki/Little_g" class="mw-redirect" title="Little g">little g</a>" for gravitational acceleration dates to the 1960s (R.W. Fairbridge, <i>The encyclopedia of atmospheric sciences and astrogeology</i>, 1967, p. 436; note use of "Big G's" vs. "little g's" as early as the 1940s of the <a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a> <i>G</i><sub><i>μν</i></sub> vs. the <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a> <i>g</i><sub><i>μν</i></sub>, <i>Scientific, medical, and technical books published in the United States of America: a selected list of titles in print with annotations: supplement of books published 1945–1948</i>, Committee on American Scientific and Technical Bibliography National Research Council, 1950, p. 26).</span> </li> <li id="cite_note-293"><span class="mw-cite-backlink"><b><a href="#cite_ref-293">^</a></b></span> <span class="reference-text">Integral calculus is a very well established mathematical discipline for which there are many sources. See <a href="#CITEREFApostol1967">Apostol 1967</a> and <a href="#CITEREFAntonBivensDavis2016">Anton, Bivens & Davis 2016</a>, for example.</span> </li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-lower-alpha"> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-lower-alpha"> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-lower-alpha"> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-294"><span class="mw-cite-backlink"><b><a href="#cite_ref-294">^</a></b></span> <span class="reference-text">For example, the SI unit of <a href="/wiki/Velocity" title="Velocity">velocity</a> is the metre per second, m⋅s<sup>−1</sup>; of <a href="/wiki/Acceleration" title="Acceleration">acceleration</a> is the metre per second squared, m⋅s<sup>−2</sup>; etc.</span> </li> <li id="cite_note-295"><span class="mw-cite-backlink"><b><a href="#cite_ref-295">^</a></b></span> <span class="reference-text">For example the <a href="/wiki/Newton_(unit)" title="Newton (unit)">newton</a> (N), the unit of <a href="/wiki/Force" title="Force">force</a>, equivalent to kg⋅m⋅s<sup>−2</sup>; the <a href="/wiki/Joule" title="Joule">joule</a> (J), the unit of <a href="/wiki/Energy" title="Energy">energy</a>, equivalent to kg⋅m<sup>2</sup>⋅s<sup>−2</sup>, etc. The most recently named derived unit, the <a href="/wiki/Katal" title="Katal">katal</a>, was defined in 1999.</span> </li> <li id="cite_note-296"><span class="mw-cite-backlink"><b><a href="#cite_ref-296">^</a></b></span> <span class="reference-text">For example, the recommended unit for the <a href="/wiki/Electric_field" title="Electric field">electric field strength</a> is the volt per metre, V/m, where the <a href="/wiki/Volt" title="Volt">volt</a> is the derived unit for <a href="/wiki/Voltage" title="Voltage">electric potential difference</a>. The volt per metre is equal to kg⋅m⋅s<sup>−3</sup>⋅A<sup>−1</sup> when expressed in terms of base units.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=16" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">[<a rel="nofollow" class="external free" href="https://goldbook.iupac.org/terms/view/A00022">https://goldbook.iupac.org/terms/view/A00022</a> IUPAC Gold Book – absolute electrode potential</span> </li> <li id="cite_note-sib2115-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-sib2115_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141007053944/http://www.bipm.org/en/publications/si-brochure/kelvin.html">"Unit of thermodynamic temperature (kelvin)"</a>. <i>SI Brochure, 8th edition</i>. Bureau International des Poids et Mesures. 13 March 2010 [1967]. Section 2.1.1.5. Archived from <a rel="nofollow" class="external text" href="http://www.bipm.org/en/publications/si-brochure/kelvin.html">the original</a> on 7 October 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">20 June</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=SI+Brochure%2C+8th+edition&rft.atitle=Unit+of+thermodynamic+temperature+%28kelvin%29&rft.pages=Section+2.1.1.5&rft.date=2010-03-13&rft_id=http%3A%2F%2Fwww.bipm.org%2Fen%2Fpublications%2Fsi-brochure%2Fkelvin.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span> <b>Note</b>: The triple point of water is 0.01 °C, not 0 °C; thus 0 K is −273.15 °C, not −273.16 °C.</span> </li> <li id="cite_note-arora-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-arora_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArora2001" class="citation book cs1">Arora, C. P. (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w8GhW3J8RHIC&pg=PA43"><i>Thermodynamics</i></a>. Tata McGraw-Hill. Table 2.4 page 43. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-462014-4" title="Special:BookSources/978-0-07-462014-4"><bdi>978-0-07-462014-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thermodynamics&rft.pages=Table+2.4+page+43&rft.pub=Tata+McGraw-Hill&rft.date=2001&rft.isbn=978-0-07-462014-4&rft.aulast=Arora&rft.aufirst=C.+P.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw8GhW3J8RHIC%26pg%3DPA43&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZielinski2008" class="citation web cs1">Zielinski, Sarah (1 January 2008). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130401180715/http://www.smithsonianmag.com/science-nature/absolute-zero-200801.html">"Absolute Zero"</a>. Smithsonian Institution. Archived from <a rel="nofollow" class="external text" href="http://www.smithsonianmag.com/science-nature/absolute-zero-200801.html">the original</a> on 2013-04-01<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-01-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Absolute+Zero&rft.pub=Smithsonian+Institution&rft.date=2008-01-01&rft.aulast=Zielinski&rft.aufirst=Sarah&rft_id=http%3A%2F%2Fwww.smithsonianmag.com%2Fscience-nature%2Fabsolute-zero-200801.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-GoldBook-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-GoldBook_5-0">^</a></b></span> <span class="reference-text"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a>, <i><a href="/wiki/IUPAC_books#Gold_Book" class="mw-redirect" title="IUPAC books">Compendium of Chemical Terminology</a></i>, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "<a rel="nofollow" class="external text" href="https://goldbook.iupac.org/terms/view/A00028.html">Absorbance</a>". <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.A00028">10.1351/goldbook.A00028</a></span> </li> <li id="cite_note-IUPAC_acid-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-IUPAC_acid_6-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://goldbook.iupac.org/A00071.html">IUPAC Gold Book – acid</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnowles1980" class="citation journal cs1">Knowles, J. R. (1980). "Enzyme-catalyzed phosphoryl transfer reactions". <i>Annu. Rev. Biochem</i>. <b>49</b>: 877–919. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.bi.49.070180.004305">10.1146/annurev.bi.49.070180.004305</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6250450">6250450</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annu.+Rev.+Biochem.&rft.atitle=Enzyme-catalyzed+phosphoryl+transfer+reactions&rft.volume=49&rft.pages=877-919&rft.date=1980&rft_id=info%3Adoi%2F10.1146%2Fannurev.bi.49.070180.004305&rft_id=info%3Apmid%2F6250450&rft.aulast=Knowles&rft.aufirst=J.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-WEF-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-WEF_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160327011438/http://www.wefnet.org/mopnew/Operation_of_Municipal_Wastewater_Treatment_Plants/Chapter%2020.173-20.188%20Revised_6th%20Edition.pdf">"Aerobic Diestion"</a> <span class="cs1-format">(PDF)</span>. Water Environment Federation. Archived from <a rel="nofollow" class="external text" href="http://www.wefnet.org/mopnew/Operation_of_Municipal_Wastewater_Treatment_Plants/Chapter%2020.173-20.188%20Revised_6th%20Edition.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 27 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Aerobic+Diestion&rft.pub=Water+Environment+Federation&rft_id=http%3A%2F%2Fwww.wefnet.org%2Fmopnew%2FOperation_of_Municipal_Wastewater_Treatment_Plants%2FChapter%252020.173-20.188%2520Revised_6th%2520Edition.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Handbook-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Handbook_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.wastewaterhandbook.com/webpg/th_sludge_82aerobic_digestion.htm">"Handbook Biological Wastewater Treatment - Design of Activated Sludge Systems"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">19 March</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Handbook+Biological+Wastewater+Treatment+-+Design+of+Activated+Sludge+Systems&rft_id=http%3A%2F%2Fwww.wastewaterhandbook.com%2Fwebpg%2Fth_sludge_82aerobic_digestion.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><i>Encyclopedia of Aerospace Engineering</i>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>, 2010. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-75440-5" title="Special:BookSources/978-0-470-75440-5">978-0-470-75440-5</a>.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=4nxMduNT8-gC&dq=afocal&pg=PA379">Daniel Malacara, Zacarias Malacara, Handbook of optical design. Page 379</a></span> </li> <li id="cite_note-goldbook-alkanes-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-goldbook-alkanes_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="http://goldbook.iupac.org/A00222.html">"Alkanes"</a>. <i>IUPAC Gold Book - alkanes</i>. <a href="/wiki/IUPAC" class="mw-redirect" title="IUPAC">IUPAC</a>. March 27, 2017. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.A00222">10.1351/goldbook.A00222</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-9678550-9-7" title="Special:BookSources/978-0-9678550-9-7"><bdi>978-0-9678550-9-7</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-08-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Alkanes&rft.btitle=IUPAC+Gold+Book+-+alkanes&rft.pub=IUPAC&rft.date=2017-03-27&rft_id=info%3Adoi%2F10.1351%2Fgoldbook.A00222&rft.isbn=978-0-9678550-9-7&rft_id=http%3A%2F%2Fgoldbook.iupac.org%2FA00222.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Wade-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wade_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWade2006" class="citation book cs1">Wade, L.G. (2006). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/organicchemistry00wade_388"><i>Organic Chemistry</i></a></span> (6th ed.). Pearson <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a>. p. <a rel="nofollow" class="external text" href="https://archive.org/details/organicchemistry00wade_388/page/n321">279</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4058-5345-3" title="Special:BookSources/978-1-4058-5345-3"><bdi>978-1-4058-5345-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Organic+Chemistry&rft.pages=279&rft.edition=6th&rft.pub=Pearson+Prentice+Hall&rft.date=2006&rft.isbn=978-1-4058-5345-3&rft.aulast=Wade&rft.aufirst=L.G.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Forganicchemistry00wade_388&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.britannica.com/EBchecked/topic/15818/alkyne">Alkyne</a>. Encyclopædia Britannica</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Callister, W. D. "Materials Science and Engineering: An Introduction" 2007, 7th edition, John Wiley and Sons, Inc. New York, Section 4.3 and Chapter 9.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="http://dictionary.reference.com/browse/amino">"Amino"</a>. <i>Dictionary.com</i>. 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">3 July</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Amino&rft.btitle=Dictionary.com&rft.date=2015&rft_id=http%3A%2F%2Fdictionary.reference.com%2Fbrowse%2Famino&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://dictionary.cambridge.org/us/dictionary/british/amino-acid">"amino acid"</a>. <i>Cambridge Dictionaries Online</i>. Cambridge University Press. 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">3 July</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=amino+acid&rft.btitle=Cambridge+Dictionaries+Online&rft.pub=Cambridge+University+Press&rft.date=2015&rft_id=https%3A%2F%2Fdictionary.cambridge.org%2Fus%2Fdictionary%2Fbritish%2Famino-acid&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="http://www.thefreedictionary.com/amino">"amino"</a>. <i>FreeDictionary.com</i>. Farlex. 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">3 July</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=amino&rft.btitle=FreeDictionary.com&rft.pub=Farlex&rft.date=2015&rft_id=http%3A%2F%2Fwww.thefreedictionary.com%2Famino&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagnerMusso1983" class="citation journal cs1">Wagner I, Musso H (November 1983). "New Naturally Occurring Amino Acids". <i><a href="/wiki/Angewandte_Chemie_International_Edition_in_English" class="mw-redirect" title="Angewandte Chemie International Edition in English">Angewandte Chemie International Edition in English</a></i>. <b>22</b> (11): 816–28. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fanie.198308161">10.1002/anie.198308161</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Angewandte+Chemie+International+Edition+in+English&rft.atitle=New+Naturally+Occurring+Amino+Acids&rft.volume=22&rft.issue=11&rft.pages=816-28&rft.date=1983-11&rft_id=info%3Adoi%2F10.1002%2Fanie.198308161&rft.aulast=Wagner&rft.aufirst=I&rft.au=Musso%2C+H&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Paywall" title="closed access publication – behind paywall"><img alt="Closed access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Closed_Access_logo_transparent.svg/9px-Closed_Access_logo_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Closed_Access_logo_transparent.svg/14px-Closed_Access_logo_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Closed_Access_logo_transparent.svg/18px-Closed_Access_logo_transparent.svg.png 2x" data-file-width="640" data-file-height="1000" /></a></span></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a>, <i><a href="/wiki/IUPAC_books#Gold_Book" class="mw-redirect" title="IUPAC books">Compendium of Chemical Terminology</a></i>, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "<a rel="nofollow" class="external text" href="https://goldbook.iupac.org/terms/view/A00306.html">amphoteric</a>". <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.A00306">10.1351/goldbook.A00306</a></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnopp,_KonradBagemihl,_Frederick1996" class="citation book cs1"><a href="/wiki/Konrad_Knopp" title="Konrad Knopp">Knopp, Konrad</a>; Bagemihl, Frederick (1996). <i>Theory of Functions Parts I and II</i>. Dover Publications. p. 3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-69219-7" title="Special:BookSources/978-0-486-69219-7"><bdi>978-0-486-69219-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theory+of+Functions+Parts+I+and+II&rft.pages=3&rft.pub=Dover+Publications&rft.date=1996&rft.isbn=978-0-486-69219-7&rft.au=Knopp%2C+Konrad&rft.au=Bagemihl%2C+Frederick&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-nnfcc-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-nnfcc_22-0">^</a></b></span> <span class="reference-text"><a href="/wiki/National_Non-Food_Crops_Centre" class="mw-redirect" title="National Non-Food Crops Centre">National Non-Food Crops Centre</a>. <a rel="nofollow" class="external text" href="http://www.nnfcc.co.uk/publications/nnfcc-renewable-fuels-and-energy-factsheet-anaerobic-digestion">"NNFCC Renewable Fuels and Energy Factsheet: Anaerobic Digestion"</a>, Retrieved on 2011-11-22</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120222015414/http://theory.uwinnipeg.ca/physics/circ/node3.html">"Angular Velocity and Acceleration"</a>. Theory.uwinnipeg.ca. Archived from <a rel="nofollow" class="external text" href="http://theory.uwinnipeg.ca/physics/circ/node3.html">the original</a> on 2012-02-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-04-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Angular+Velocity+and+Acceleration&rft.pub=Theory.uwinnipeg.ca&rft_id=http%3A%2F%2Ftheory.uwinnipeg.ca%2Fphysics%2Fcirc%2Fnode3.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUniversity_of_Colorado_Boulder2013" class="citation web cs1"><a href="/wiki/University_of_Colorado_Boulder" title="University of Colorado Boulder">University of Colorado Boulder</a> (November 21, 2013). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210513000709/http://ruby.colorado.edu/~smyth/G101-2.html">"Atoms and Elements, Isotopes and Ions"</a>. colorado.edu. Archived from <a rel="nofollow" class="external text" href="http://ruby.colorado.edu/~smyth/G101-2.html">the original</a> on May 13, 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">November 4,</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Atoms+and+Elements%2C+Isotopes+and+Ions&rft.pub=colorado.edu&rft.date=2013-11-21&rft.au=University+of+Colorado+Boulder&rft_id=http%3A%2F%2Fruby.colorado.edu%2F~smyth%2FG101-2.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.lbl.gov/abc/Antimatter.html">"Antimatter"</a>. <a href="/wiki/Lawrence_Berkeley_National_Laboratory" title="Lawrence Berkeley National Laboratory">Lawrence Berkeley National Laboratory</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080823180515/http://www.lbl.gov/abc/Antimatter.html">Archived</a> from the original on 23 August 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">3 September</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Antimatter&rft.pub=Lawrence+Berkeley+National+Laboratory&rft_id=http%3A%2F%2Fwww.lbl.gov%2Fabc%2FAntimatter.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Particleadventure.org-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Particleadventure.org_26-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://particleadventure.org/eedd.html">"The Standard Model – Particle decays and annihilations"</a>. <i>The Particle Adventure: The Fundamentals of Matter and Force</i>. <a href="/wiki/Lawrence_Berkeley_National_Laboratory" title="Lawrence Berkeley National Laboratory">Lawrence Berkeley National Laboratory</a><span class="reference-accessdate">. Retrieved <span class="nowrap">17 October</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Particle+Adventure%3A+The+Fundamentals+of+Matter+and+Force&rft.atitle=The+Standard+Model+%E2%80%93+Particle+decays+and+annihilations&rft_id=http%3A%2F%2Fparticleadventure.org%2Feedd.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/RFC_(identifier)" class="mw-redirect" title="RFC (identifier)">RFC</a> <a rel="nofollow" class="external text" href="https://datatracker.ietf.org/doc/html/rfc4949">4949</a></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170630094708/https://atmae.site-ym.com/?page=AboutATMAE">"ATMAE Venn Diagram"</a>. Archived from <a rel="nofollow" class="external text" href="https://atmae.site-ym.com/?page=AboutATMAE">the original</a> on 2017-06-30<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-11-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=ATMAE+Venn+Diagram&rft_id=https%3A%2F%2Fatmae.site-ym.com%2F%3Fpage%3DAboutATMAE&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.khanacademy.org/science/physics/fluids/buoyant-force-and-archimedes-principle/a/buoyant-force-and-archimedes-principle-article">"What is buoyant force?"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=What+is+buoyant+force%3F&rft_id=https%3A%2F%2Fwww.khanacademy.org%2Fscience%2Fphysics%2Ffluids%2Fbuoyant-force-and-archimedes-principle%2Fa%2Fbuoyant-force-and-archimedes-principle-article&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-acottLaw-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-acottLaw_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAcott,_Chris1999" class="citation journal cs1">Acott, Chris (1999). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110727224657/http://archive.rubicon-foundation.org/5990">"The diving "Law-ers": A brief resume of their lives"</a>. <i><a href="/wiki/South_Pacific_Underwater_Medicine_Society_Journal" class="mw-redirect" title="South Pacific Underwater Medicine Society Journal">South Pacific Underwater Medicine Society Journal</a></i>. <b>29</b> (1). <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0813-1988">0813-1988</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/16986801">16986801</a>. Archived from the original on 2011-07-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2009-06-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=South+Pacific+Underwater+Medicine+Society+Journal&rft.atitle=The+diving+%22Law-ers%22%3A+A+brief+resume+of+their+lives.&rft.volume=29&rft.issue=1&rft.date=1999&rft_id=info%3Aoclcnum%2F16986801&rft.issn=0813-1988&rft.au=Acott%2C+Chris&rft_id=http%3A%2F%2Farchive.rubicon-foundation.org%2F5990&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: unfit URL (<a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">link</a>)</span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobs1994" class="citation book cs1">Jacobs, Harold R. (1994). <i>Mathematics: A Human Endeavor</i> (Third ed.). <a href="/wiki/W._H._Freeman" class="mw-redirect" title="W. H. Freeman">W. H. Freeman</a>. p. 547. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-2426-1" title="Special:BookSources/978-0-7167-2426-1"><bdi>978-0-7167-2426-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics%3A+A+Human+Endeavor&rft.pages=547&rft.edition=Third&rft.pub=W.+H.+Freeman&rft.date=1994&rft.isbn=978-0-7167-2426-1&rft.aulast=Jacobs&rft.aufirst=Harold+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a>, <i><a href="/wiki/IUPAC_books#Gold_Book" class="mw-redirect" title="IUPAC books">Compendium of Chemical Terminology</a></i>, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "<a rel="nofollow" class="external text" href="https://goldbook.iupac.org/terms/view/A00435.html">arenes</a>". <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.A00435">10.1351/goldbook.A00435</a></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://diss.kib.ki.se/2003/91-7349-549-2/thesis.pdf">Mechanisms of Activation of the Aryl Hydrocarbon Receptor</a> by Maria Backlund, Institute of Environmental Medicine, Karolinska Institutet.</span> </li> <li id="cite_note-Arrhenius96-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Arrhenius96_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArrhenius1889" class="citation journal cs1">Arrhenius, S.A. (1889). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1448930">"Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte"</a>. <i><a href="/wiki/Z._Phys._Chem." class="mw-redirect" title="Z. Phys. Chem.">Z. Phys. Chem.</a></i> <b>4</b>: 96–116. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzpch-1889-0408">10.1515/zpch-1889-0408</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:202553486">202553486</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Z.+Phys.+Chem.&rft.atitle=%C3%9Cber+die+Dissociationsw%C3%A4rme+und+den+Einflu%C3%9F+der+Temperatur+auf+den+Dissociationsgrad+der+Elektrolyte&rft.volume=4&rft.pages=96-116&rft.date=1889&rft_id=info%3Adoi%2F10.1515%2Fzpch-1889-0408&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A202553486%23id-name%3DS2CID&rft.aulast=Arrhenius&rft.aufirst=S.A.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1448930&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Arrhenius226-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Arrhenius226_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArrhenius1889" class="citation journal cs1">Arrhenius, S.A. (1889). "Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren". <i><a href="/wiki/Ibid." title="Ibid.">ibid.</a></i> <b>4</b>: 226–248.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ibid.&rft.atitle=%C3%9Cber+die+Reaktionsgeschwindigkeit+bei+der+Inversion+von+Rohrzucker+durch+S%C3%A4uren&rft.volume=4&rft.pages=226-248&rft.date=1889&rft.aulast=Arrhenius&rft.aufirst=S.A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Laidler42-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Laidler42_36-0">^</a></b></span> <span class="reference-text"><a href="/wiki/Keith_J._Laidler" title="Keith J. Laidler">Laidler, K. J.</a> (1987) <i>Chemical Kinetics</i>, Third Edition, Harper & Row, p.42</span> </li> <li id="cite_note-Connors-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Connors_37-0">^</a></b></span> <span class="reference-text">Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers <i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=nHux3YED1HsC">Chemical Kinetics: The Study of Reaction Rates in Solution</a></i> at <a href="/wiki/Google_Books" title="Google Books">Google Books</a></span> </li> <li id="cite_note-FOOTNOTEPooleMackworthGoebel1998[httppeoplecsubcca~poolecich1pdf_p._1]-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPooleMackworthGoebel1998[httppeoplecsubcca~poolecich1pdf_p._1]_38-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPooleMackworthGoebel1998">Poole, Mackworth & Goebel 1998</a>, <a rel="nofollow" class="external text" href="http://people.cs.ubc.ca/~poole/ci/ch1.pdf">p. 1</a>.</span> </li> <li id="cite_note-FOOTNOTERussellNorvig200355-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERussellNorvig200355_39-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRussellNorvig2003">Russell & Norvig 2003</a>, p. 55.</span> </li> <li id="cite_note-Definition_of_AI-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Definition_of_AI_40-0">^</a></b></span> <span class="reference-text">Definition of AI as the study of <a href="/wiki/Intelligent_agents" class="mw-redirect" title="Intelligent agents">intelligent agents</a>: <ul><li><a href="#CITEREFPooleMackworthGoebel1998">Poole, Mackworth & Goebel (1998)</a>, which provides the version that is used in this article. These authors use the term "computational intelligence" as a synonym for artificial intelligence.<sup id="cite_ref-FOOTNOTEPooleMackworthGoebel1998[httppeoplecsubcca~poolecich1pdf_p._1]_38-0" class="reference"><a href="#cite_note-FOOTNOTEPooleMackworthGoebel1998[httppeoplecsubcca~poolecich1pdf_p._1]-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></li> <li><a href="#CITEREFRussellNorvig2003">Russell & Norvig (2003)</a> (who prefer the term "rational agent") and write "The whole-agent view is now widely accepted in the field".<sup id="cite_ref-FOOTNOTERussellNorvig200355_39-0" class="reference"><a href="#cite_note-FOOTNOTERussellNorvig200355-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li> <li><a href="#CITEREFNilsson1998">Nilsson 1998</a></li> <li><a href="#CITEREFLeggHutter2007">Legg & Hutter 2007</a></li></ul> </span></li> <li id="cite_note-FOOTNOTERussellNorvig20092-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERussellNorvig20092_41-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRussellNorvig2009">Russell & Norvig 2009</a>, p. 2.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOrchinMacomberPinhasWilson2005" class="citation book cs1">Orchin, Milton; Macomber, Roger S.; Pinhas, Allan; Wilson, R. Marshall (2005). <a rel="nofollow" class="external text" href="http://media.wiley.com/product_data/excerpt/81/04716802/0471680281.pdf"><i>Atomic Orbital Theory</i></a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Atomic+Orbital+Theory&rft.date=2005&rft.aulast=Orchin&rft.aufirst=Milton&rft.au=Macomber%2C+Roger+S.&rft.au=Pinhas%2C+Allan&rft.au=Wilson%2C+R.+Marshall&rft_id=http%3A%2F%2Fmedia.wiley.com%2Fproduct_data%2Fexcerpt%2F81%2F04716802%2F0471680281.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaintith2004" class="citation book cs1">Daintith, J. (2004). <i>Oxford Dictionary of Chemistry</i>. New York: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-860918-6" title="Special:BookSources/978-0-19-860918-6"><bdi>978-0-19-860918-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Oxford+Dictionary+of+Chemistry&rft.place=New+York&rft.pub=Oxford+University+Press&rft.date=2004&rft.isbn=978-0-19-860918-6&rft.aulast=Daintith&rft.aufirst=J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPilhofer2007" class="citation book cs1">Pilhofer, Michael (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CxcviUw4KX8C"><i>Music Theory for Dummies</i></a>. For Dummies. p. 97. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-16794-6" title="Special:BookSources/978-0-470-16794-6"><bdi>978-0-470-16794-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Music+Theory+for+Dummies&rft.pages=97&rft.pub=For+Dummies&rft.date=2007&rft.isbn=978-0-470-16794-6&rft.aulast=Pilhofer&rft.aufirst=Michael&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCxcviUw4KX8C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNichols_R2001" class="citation web cs1">Nichols R (Jul 2001). <a rel="nofollow" class="external text" href="https://www.thefabricator.com/TubePipeFabrication/TubePipeFabrication_Article.cfm?ID=237">"Quenching and tempering of welded carbon steel tubulars"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Quenching+and+tempering+of+welded+carbon+steel+tubulars&rft.date=2001-07&rft.au=Nichols+R&rft_id=http%3A%2F%2Fwww.thefabricator.com%2FTubePipeFabrication%2FTubePipeFabrication_Article.cfm%3FID%3D237&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Lambers-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lambers_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLambersTschumakMaierCanadinc2009" class="citation journal cs1">Lambers HG, Tschumak S, Maier HJ, Canadinc D (Apr 2009). "Role of Austenitization and Pre-Deformation on the Kinetics of the Isothermal Bainitic Transformation". <i>Metall. Mater. Trans. A</i>. <b>40</b> (6): 1355–1366. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009MMTA...40.1355L">2009MMTA...40.1355L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11661-009-9827-z">10.1007/s11661-009-9827-z</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:136882327">136882327</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Metall.+Mater.+Trans.+A&rft.atitle=Role+of+Austenitization+and+Pre-Deformation+on+the+Kinetics+of+the+Isothermal+Bainitic+Transformation&rft.volume=40&rft.issue=6&rft.pages=1355-1366&rft.date=2009-04&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A136882327%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs11661-009-9827-z&rft_id=info%3Abibcode%2F2009MMTA...40.1355L&rft.aulast=Lambers&rft.aufirst=HG&rft.au=Tschumak%2C+S&rft.au=Maier%2C+HJ&rft.au=Canadinc%2C+D&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-smnm-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-smnm_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://asmcommunity.asminternational.org/portal/site/www/AsmStore/ProductDetails/?vgnextoid=39c04ef322e18110VgnVCM100000701e010aRCRD">"Austenitization"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Austenitization&rft_id=http%3A%2F%2Fasmcommunity.asminternational.org%2Fportal%2Fsite%2Fwww%2FAsmStore%2FProductDetails%2F%3Fvgnextoid%3D39c04ef322e18110VgnVCM100000701e010aRCRD&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGroover2014" class="citation book cs1">Groover, Mikell (2014). <i>Fundamentals of Modern Manufacturing: Materials, Processes, and Systems</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Modern+Manufacturing%3A+Materials%2C+Processes%2C+and+Systems&rft.date=2014&rft.aulast=Groover&rft.aufirst=Mikell&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Rifkin_1995-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rifkin_1995_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRifkin,_Jeremy1995" class="citation book cs1">Rifkin, Jeremy (1995). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/endofwork00jere"><i>The End of Work: The Decline of the Global Labor Force and the Dawn of the Post-Market Era</i></a></span>. Putnam Publishing Group. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/endofwork00jere/page/66">66</a>, 75. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-87477-779-6" title="Special:BookSources/978-0-87477-779-6"><bdi>978-0-87477-779-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+End+of+Work%3A+The+Decline+of+the+Global+Labor+Force+and+the+Dawn+of+the+Post-Market+Era&rft.pages=66%2C+75&rft.pub=Putnam+Publishing+Group&rft.date=1995&rft.isbn=978-0-87477-779-6&rft.au=Rifkin%2C+Jeremy&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fendofwork00jere&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohll2009" class="citation book cs1">Johll, Matthew E. (2009). <i>Investigating chemistry: a forensic science perspective</i> (2nd ed.). New York: W. H. Freeman and Co. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4292-0989-2" title="Special:BookSources/978-1-4292-0989-2"><bdi>978-1-4292-0989-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/392223218">392223218</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Investigating+chemistry%3A+a+forensic+science+perspective&rft.place=New+York&rft.edition=2nd&rft.pub=W.+H.+Freeman+and+Co&rft.date=2009&rft_id=info%3Aoclcnum%2F392223218&rft.isbn=978-1-4292-0989-2&rft.aulast=Johll&rft.aufirst=Matthew+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Attaway-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Attaway_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAttaway1999" class="citation conference cs1">Attaway, Stephen W. (1999). <a rel="nofollow" class="external text" href="http://www.jrre.org/att_frict.pdf"><i>The Mechanics of Friction in Rope Rescue</i></a> <span class="cs1-format">(PDF)</span>. International Technical Rescue Symposium<span class="reference-accessdate">. Retrieved <span class="nowrap">February 1,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=The+Mechanics+of+Friction+in+Rope+Rescue&rft.date=1999&rft.aulast=Attaway&rft.aufirst=Stephen+W.&rft_id=http%3A%2F%2Fwww.jrre.org%2Fatt_frict.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Boresi-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boresi_52-0">^</a></b></span> <span class="reference-text">Boresi, A. P. and Schmidt, R. J. and Sidebottom, O. M., 1993, <b>Advanced mechanics of materials</b>, John Wiley and Sons, New York.</span> </li> <li id="cite_note-timo-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-timo_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGereTimoshenko1996" class="citation cs2">Gere, J.M.; Timoshenko, S.P. (1996), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mechanicsofmater00gere"><i>Mechanics of Materials:Fourth edition</i></a></span>, Nelson Engineering, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-534-93429-3" title="Special:BookSources/0-534-93429-3"><bdi>0-534-93429-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mechanics+of+Materials%3AFourth+edition&rft.pub=Nelson+Engineering&rft.date=1996&rft.isbn=0-534-93429-3&rft.aulast=Gere&rft.aufirst=J.M.&rft.au=Timoshenko%2C+S.P.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmechanicsofmater00gere&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-beer-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-beer_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeerJohnston1984" class="citation cs2">Beer, F.; Johnston, E.R. (1984), <i>Vector mechanics for engineers: statics</i>, McGraw Hill, pp. 62–76</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vector+mechanics+for+engineers%3A+statics&rft.pages=62-76&rft.pub=McGraw+Hill&rft.date=1984&rft.aulast=Beer&rft.aufirst=F.&rft.au=Johnston%2C+E.R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavidNgulubeDube2013" class="citation journal cs1">David, Rodreck; Ngulube, Patrick; Dube, Adock (16 July 2013). <a rel="nofollow" class="external text" href="https://sajim.co.za/index.php/sajim/article/download/540/639">"A cost–benefit analysis of document management strategies used at a financial institution in Zimbabwe: A case study"</a>. <i>SA Journal of Information Management</i>. <b>15</b> (2). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4102%2Fsajim.v15i2.540">10.4102/sajim.v15i2.540</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SA+Journal+of+Information+Management&rft.atitle=A+cost%E2%80%93benefit+analysis+of+document+management+strategies+used+at+a+financial+institution+in+Zimbabwe%3A+A+case+study&rft.volume=15&rft.issue=2&rft.date=2013-07-16&rft_id=info%3Adoi%2F10.4102%2Fsajim.v15i2.540&rft.aulast=David&rft.aufirst=Rodreck&rft.au=Ngulube%2C+Patrick&rft.au=Dube%2C+Adock&rft_id=https%3A%2F%2Fsajim.co.za%2Findex.php%2Fsajim%2Farticle%2Fdownload%2F540%2F639&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">Weisstein, Eric W. "Bernoulli Differential Equation." From MathWorld--A Wolfram Web Resource. <a rel="nofollow" class="external free" href="http://mathworld.wolfram.com/BernoulliDifferentialEquation.html">http://mathworld.wolfram.com/BernoulliDifferentialEquation.html</a></span> </li> <li id="cite_note-Clancy1975-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-Clancy1975_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClancy1975" class="citation book cs1"><a href="/wiki/Laurence_Joseph_Clancy" class="mw-redirect" title="Laurence Joseph Clancy">Clancy, L. J.</a> (1975). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zaNTAAAAMAAJ"><i>Aerodynamics</i></a>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-15837-1" title="Special:BookSources/978-0-470-15837-1"><bdi>978-0-470-15837-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Aerodynamics&rft.pub=Wiley&rft.date=1975&rft.isbn=978-0-470-15837-1&rft.aulast=Clancy&rft.aufirst=L.+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzaNTAAAAMAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Batchelor2000-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-Batchelor2000_58-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBatchelor2000" class="citation book cs1"><a href="/wiki/George_Batchelor" title="George Batchelor">Batchelor, G. K.</a> (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Rla7OihRvUgC&pg=PA156"><i>An Introduction to Fluid Dynamics</i></a>. Cambridge: University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-66396-0" title="Special:BookSources/978-0-521-66396-0"><bdi>978-0-521-66396-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Fluid+Dynamics&rft.place=Cambridge&rft.pub=University+Press&rft.date=2000&rft.isbn=978-0-521-66396-0&rft.aulast=Batchelor&rft.aufirst=G.+K.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRla7OihRvUgC%26pg%3DPA156&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.britannica.com/EBchecked/topic/658890/Hydrodynamica#tab=active~checked%2Citems~checked&title=Hydrodynamica%20–%20Britannica%20Online%20Encyclopedia">"Hydrodynamica"</a>. Britannica Online Encyclopedia<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-10-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Hydrodynamica&rft.pub=Britannica+Online+Encyclopedia&rft_id=http%3A%2F%2Fwww.britannica.com%2FEBchecked%2Ftopic%2F658890%2FHydrodynamica%23tab%3Dactive~checked%252Citems~checked%26title%3DHydrodynamica%2520%E2%80%93%2520Britannica%2520Online%2520Encyclopedia&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Anderson2016-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-Anderson2016_60-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnderson2016" class="citation cs2"><a href="/wiki/John_D._Anderson" title="John D. Anderson">Anderson, J.D.</a> (2016), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TQfYCwAAQBAJ&pg=PA2-1&q=Anderson">"Some reflections on the history of fluid dynamics"</a>, in Johnson, R.W. (ed.), <i>Handbook of fluid dynamics</i> (2nd ed.), CRC Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4398-4957-6" title="Special:BookSources/978-1-4398-4957-6"><bdi>978-1-4398-4957-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Some+reflections+on+the+history+of+fluid+dynamics&rft.btitle=Handbook+of+fluid+dynamics&rft.edition=2nd&rft.pub=CRC+Press&rft.date=2016&rft.isbn=978-1-4398-4957-6&rft.aulast=Anderson&rft.aufirst=J.D.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTQfYCwAAQBAJ%26pg%3DPA2-1%26q%3DAnderson&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarrigolFrisch2008" class="citation cs2">Darrigol, O.; Frisch, U. (2008), "From Newton's mechanics to Euler's equations", <i>Physica D: Nonlinear Phenomena</i>, <b>237</b> (14–17): 1855–1869, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PhyD..237.1855D">2008PhyD..237.1855D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physd.2007.08.003">10.1016/j.physd.2007.08.003</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physica+D%3A+Nonlinear+Phenomena&rft.atitle=From+Newton%27s+mechanics+to+Euler%27s+equations&rft.volume=237&rft.issue=14%E2%80%9317&rft.pages=1855-1869&rft.date=2008&rft_id=info%3Adoi%2F10.1016%2Fj.physd.2007.08.003&rft_id=info%3Abibcode%2F2008PhyD..237.1855D&rft.aulast=Darrigol&rft.aufirst=O.&rft.au=Frisch%2C+U.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawrence_Berkeley_National_Laboratory2000" class="citation web cs1">Lawrence Berkeley National Laboratory (9 August 2000). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200324112546/https://www2.lbl.gov/abc/wallchart/chapters/03/2.html">"Beta Decay"</a>. <i>Nuclear Wall Chart</i>. <a href="/wiki/United_States_Department_of_Energy" title="United States Department of Energy">United States Department of Energy</a>. Archived from <a rel="nofollow" class="external text" href="http://www.lbl.gov/abc/wallchart/chapters/03/2.html">the original</a> on 24 March 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">17 January</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Nuclear+Wall+Chart&rft.atitle=Beta+Decay&rft.date=2000-08-09&rft.au=Lawrence+Berkeley+National+Laboratory&rft_id=http%3A%2F%2Fwww.lbl.gov%2Fabc%2Fwallchart%2Fchapters%2F03%2F2.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnthonsen2000" class="citation book cs1">Anthonsen, Thorlief (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EkLlnS_h01IC&pg=PA18">"Reactions Catalyzed by Enzymes"</a>. In Adlercreutz, Patrick; Straathof, Adrie J. J. (eds.). <i>Applied Biocatalysis</i> (2nd ed.). Taylor & Francis. pp. 18–59. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-90-5823-024-9" title="Special:BookSources/978-90-5823-024-9"><bdi>978-90-5823-024-9</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">9 February</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Reactions+Catalyzed+by+Enzymes&rft.btitle=Applied+Biocatalysis&rft.pages=18-59&rft.edition=2nd&rft.pub=Taylor+%26+Francis&rft.date=2000&rft.isbn=978-90-5823-024-9&rft.aulast=Anthonsen&rft.aufirst=Thorlief&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEkLlnS_h01IC%26pg%3DPA18&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaber2011" class="citation book cs1">Faber, Kurt (2011). <i>Biotransformations in Organic Chemistry</i> (6th ed.). Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-17393-6" title="Special:BookSources/978-3-642-17393-6"><bdi>978-3-642-17393-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Biotransformations+in+Organic+Chemistry&rft.edition=6th&rft.pub=Springer&rft.date=2011&rft.isbn=978-3-642-17393-6&rft.aulast=Faber&rft.aufirst=Kurt&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (February 2013)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJayasingheSmallridge,_Andrew_J.Trewhella,_Maurie_A.1993" class="citation journal cs1">Jayasinghe, Leonard Y.; Smallridge, Andrew J.; Trewhella, Maurie A. (1993). "The yeast mediated reduction of ethyl acetoacetate in petroleum ether". <i>Tetrahedron Letters</i>. <b>34</b> (24): 3949–3950. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0040-4039%2800%2979272-0">10.1016/S0040-4039(00)79272-0</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Tetrahedron+Letters&rft.atitle=The+yeast+mediated+reduction+of+ethyl+acetoacetate+in+petroleum+ether&rft.volume=34&rft.issue=24&rft.pages=3949-3950&rft.date=1993&rft_id=info%3Adoi%2F10.1016%2FS0040-4039%2800%2979272-0&rft.aulast=Jayasinghe&rft.aufirst=Leonard+Y.&rft.au=Smallridge%2C+Andrew+J.&rft.au=Trewhella%2C+Maurie+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-EnderleBronzino2012-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-EnderleBronzino2012_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Denis_EnderleJoseph_D._Bronzino2012" class="citation book cs1">John Denis Enderle; Joseph D. Bronzino (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=twc-GLOtlOQC&pg=PP2"><i>Introduction to Biomedical Engineering</i></a>. Academic Press. pp. 16–. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-374979-6" title="Special:BookSources/978-0-12-374979-6"><bdi>978-0-12-374979-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Biomedical+Engineering&rft.pages=16-&rft.pub=Academic+Press&rft.date=2012&rft.isbn=978-0-12-374979-6&rft.au=John+Denis+Enderle&rft.au=Joseph+D.+Bronzino&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dtwc-GLOtlOQC%26pg%3DPP2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVincent2006" class="citation journal cs1">Vincent, Julian F. V.; et al. (22 August 2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664643">"Biomimetics: its practice and theory"</a>. <i>Journal of the Royal Society Interface</i>. <b>3</b> (9): 471–482. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsif.2006.0127">10.1098/rsif.2006.0127</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664643">1664643</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16849244">16849244</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Royal+Society+Interface&rft.atitle=Biomimetics%3A+its+practice+and+theory&rft.volume=3&rft.issue=9&rft.pages=471-482&rft.date=2006-08-22&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1664643%23id-name%3DPMC&rft_id=info%3Apmid%2F16849244&rft_id=info%3Adoi%2F10.1098%2Frsif.2006.0127&rft.aulast=Vincent&rft.aufirst=Julian+F.+V.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1664643&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/biophysics">"Biophysics | science"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-07-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Biophysics+%7C+science&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2Fbiophysics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhou2011" class="citation journal cs1">Zhou HX (March 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055214">"Q&A: What is biophysics?"</a>. <i>BMC Biology</i>. <b>9</b>: 13. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2F1741-7007-9-13">10.1186/1741-7007-9-13</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055214">3055214</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21371342">21371342</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BMC+Biology&rft.atitle=Q%26A%3A+What+is+biophysics%3F&rft.volume=9&rft.pages=13&rft.date=2011-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3055214%23id-name%3DPMC&rft_id=info%3Apmid%2F21371342&rft_id=info%3Adoi%2F10.1186%2F1741-7007-9-13&rft.aulast=Zhou&rft.aufirst=HX&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3055214&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.dictionary.com/browse/biophysics">"the definition of biophysics"</a>. <i>dictionary.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-07-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=dictionary.com&rft.atitle=the+definition+of+biophysics&rft_id=http%3A%2F%2Fwww.dictionary.com%2Fbrowse%2Fbiophysics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrederick_M._Steingress2001" class="citation book cs1">Frederick M. Steingress (2001). <i>Low Pressure Boilers</i> (4th ed.). American Technical Publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8269-4417-5" title="Special:BookSources/0-8269-4417-5"><bdi>0-8269-4417-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Low+Pressure+Boilers&rft.edition=4th&rft.pub=American+Technical+Publishers&rft.date=2001&rft.isbn=0-8269-4417-5&rft.au=Frederick+M.+Steingress&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrederick_M._Steingress,_Harold_J._Frost_and_Darryl_R._Walker2003" class="citation book cs1">Frederick M. Steingress, Harold J. Frost and Darryl R. Walker (2003). <i>High Pressure Boilers</i> (3rd ed.). American Technical Publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8269-4300-4" title="Special:BookSources/0-8269-4300-4"><bdi>0-8269-4300-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=High+Pressure+Boilers&rft.edition=3rd&rft.pub=American+Technical+Publishers&rft.date=2003&rft.isbn=0-8269-4300-4&rft.au=Frederick+M.+Steingress%2C+Harold+J.+Frost+and+Darryl+R.+Walker&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldberg,_David_E.1988" class="citation book cs1">Goldberg, David E. (1988). <i>3,000 Solved Problems in Chemistry</i> (1st ed.). McGraw-Hill. section 17.43, p. 321. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-023684-4" title="Special:BookSources/0-07-023684-4"><bdi>0-07-023684-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=3%2C000+Solved+Problems+in+Chemistry&rft.pages=section+17.43%2C+p.+321&rft.edition=1st&rft.pub=McGraw-Hill&rft.date=1988&rft.isbn=0-07-023684-4&rft.au=Goldberg%2C+David+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTheodore,_LouisDupont,_R._RyanGanesan,_Kumar1999" class="citation book cs1">Theodore, Louis; Dupont, R. Ryan; Ganesan, Kumar, eds. (1999). <i>Pollution Prevention: The Waste Management Approach to the 21st Century</i>. CRC Press. section 27, p. 15. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-56670-495-2" title="Special:BookSources/1-56670-495-2"><bdi>1-56670-495-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Pollution+Prevention%3A+The+Waste+Management+Approach+to+the+21st+Century&rft.pages=section+27%2C+p.+15&rft.pub=CRC+Press&rft.date=1999&rft.isbn=1-56670-495-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Feynman1Ch39-10-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman1Ch39-10_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_Feynman1970" class="citation book cs1">Richard Feynman (1970). <a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/I_39.html"><i>The Feynman Lectures on Physics Vol I</i></a>. Addison Wesley Longman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-02115-8" title="Special:BookSources/978-0-201-02115-8"><bdi>978-0-201-02115-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Feynman+Lectures+on+Physics+Vol+I&rft.pub=Addison+Wesley+Longman&rft.date=1970&rft.isbn=978-0-201-02115-8&rft.au=Richard+Feynman&rft_id=https%3A%2F%2Ffeynmanlectures.caltech.edu%2FI_39.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWells1990" class="citation book cs1">Wells, John C. (1990). <i>Longman pronunciation dictionary</i>. Harlow, England: Longman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-582-05383-0" title="Special:BookSources/978-0-582-05383-0"><bdi>978-0-582-05383-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Longman+pronunciation+dictionary&rft.place=Harlow%2C+England&rft.pub=Longman&rft.date=1990&rft.isbn=978-0-582-05383-0&rft.aulast=Wells&rft.aufirst=John+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span> entry "Boson"</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.collinsdictionary.com/dictionary/english/boson?showCookiePolicy=true">"boson"</a>. <i>Collins Dictionary</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Collins+Dictionary&rft.atitle=boson&rft_id=http%3A%2F%2Fwww.collinsdictionary.com%2Fdictionary%2Fenglish%2Fboson%3FshowCookiePolicy%3Dtrue&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-DarkMatter-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-DarkMatter_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarroll,_Sean2007" class="citation book cs1">Carroll, Sean (2007). <i>Guidebook</i>. Dark Matter, Dark Energy: The dark side of the universe. The Teaching Company. Part 2, p. 43. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59803-350-2" title="Special:BookSources/978-1-59803-350-2"><bdi>978-1-59803-350-2</bdi></a>. <q>... boson: A force-carrying particle, as opposed to a matter particle (fermion). Bosons can be piled on top of each other without limit. Examples include photons, gluons, gravitons, weak bosons, and the Higgs boson. The spin of a boson is always an integer, such as 0, 1, 2, and so on ...</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Guidebook&rft.series=Dark+Matter%2C+Dark+Energy%3A+The+dark+side+of+the+universe&rft.pages=Part-2%2C+p.-43&rft.pub=The+Teaching+Company&rft.date=2007&rft.isbn=978-1-59803-350-2&rft.au=Carroll%2C+Sean&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>Notes on Dirac's lecture </i>Developments in Atomic Theory<i> at Le Palais de la Découverte, 6 December 1945</i>. UKNATARCHI Dirac Papers. BW83/2/257889.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Notes+on+Dirac%27s+lecture+Developments+in+Atomic+Theory+at+Le+Palais+de+la+D%C3%A9couverte%2C+6+December+1945&rft.pub=UKNATARCHI+Dirac+Papers&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarmelo2009" class="citation book cs1">Farmelo, Graham (2009-08-25). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qsodmIGD0fMC&q=farmelo+graham+the+strangest+man"><i>The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom</i></a>. Basic Books. p. 331. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-465-01992-2" title="Special:BookSources/978-0-465-01992-2"><bdi>978-0-465-01992-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Strangest+Man%3A+The+Hidden+Life+of+Paul+Dirac%2C+Mystic+of+the+Atom&rft.pages=331&rft.pub=Basic+Books&rft.date=2009-08-25&rft.isbn=978-0-465-01992-2&rft.aulast=Farmelo&rft.aufirst=Graham&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DqsodmIGD0fMC%26q%3Dfarmelo%2Bgraham%2Bthe%2Bstrangest%2Bman&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-AP-20120710-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-AP-20120710_81-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaigle2012" class="citation news cs1">Daigle, Katy (10 July 2012). <a rel="nofollow" class="external text" href="http://apnews.excite.com/article/20120710/D9VU1DRG0.html">"India: Enough about Higgs, let's discuss the boson"</a>. <i><a href="/wiki/AP_News" class="mw-redirect" title="AP News">AP News</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=AP+News&rft.atitle=India%3A+Enough+about+Higgs%2C+let%27s+discuss+the+boson&rft.date=2012-07-10&rft.aulast=Daigle&rft.aufirst=Katy&rft_id=http%3A%2F%2Fapnews.excite.com%2Farticle%2F20120710%2FD9VU1DRG0.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-NYT-20120919-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-NYT-20120919_82-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBal2012" class="citation news cs1">Bal, Hartosh Singh (19 September 2012). <a rel="nofollow" class="external text" href="http://latitude.blogs.nytimes.com/2012/09/19/indians-clamor-for-credit-for-the-bose-in-boson/">"The Bose in the Boson"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a> blog</i><span class="reference-accessdate">. Retrieved <span class="nowrap">21 September</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times+blog&rft.atitle=The+Bose+in+the+Boson&rft.date=2012-09-19&rft.aulast=Bal&rft.aufirst=Hartosh+Singh&rft_id=http%3A%2F%2Flatitude.blogs.nytimes.com%2F2012%2F09%2F19%2Findians-clamor-for-credit-for-the-bose-in-boson%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/news/magazine-18708741">"Higgs boson: The poetry of subatomic particles"</a>. <i>BBC News</i>. 4 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">6 July</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BBC+News&rft.atitle=Higgs+boson%3A+The+poetry+of+subatomic+particles&rft.date=2012-07-04&rft_id=https%3A%2F%2Fwww.bbc.co.uk%2Fnews%2Fmagazine-18708741&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDraper1861" class="citation book cs1">Draper, John William (1861). <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_HKwS7QDh5eMC"><i>A Textbook on chemistry</i></a>. Harper & Bros. p. <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_HKwS7QDh5eMC/page/n60">46</a>. <q>draper, john william.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Textbook+on+chemistry&rft.pages=46&rft.pub=Harper+%26+Bros.&rft.date=1861&rft.aulast=Draper&rft.aufirst=John+William&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbub_gb_HKwS7QDh5eMC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">Levine, Ira. N (1978). "Physical Chemistry" University of Brooklyn: <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a></span> </li> <li id="cite_note-levine_1-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-levine_1_86-0">^</a></b></span> <span class="reference-text">Levine, Ira. N. (1978), p. 12 gives the original definition.</span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAroyoMüllerWondratschek2006" class="citation journal cs1">Aroyo, Mois I.; Müller, Ulrich; Wondratschek, Hans (2006). <a rel="nofollow" class="external text" href="https://archive.today/20130704032928/http://it.iucr.org/A1a/ch1o1v0001/sec1o1o1/">"Historical Introduction"</a>. <i>International Tables for Crystallography</i>. <b>A1</b> (1.1): 2–5. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.4170">10.1.1.471.4170</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2F97809553602060000537">10.1107/97809553602060000537</a>. Archived from <a rel="nofollow" class="external text" href="http://it.iucr.org/A1a/ch1o1v0001/sec1o1o1/">the original</a> on 2013-07-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-04-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Tables+for+Crystallography&rft.atitle=Historical+Introduction&rft.volume=A1&rft.issue=1.1&rft.pages=2-5&rft.date=2006&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.471.4170%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1107%2F97809553602060000537&rft.aulast=Aroyo&rft.aufirst=Mois+I.&rft.au=M%C3%BCller%2C+Ulrich&rft.au=Wondratschek%2C+Hans&rft_id=http%3A%2F%2Fit.iucr.org%2FA1a%2Fch1o1v0001%2Fsec1o1o1%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-R000000-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-R000000_88-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevineMichele_Boldrin2008" class="citation book cs1"><a href="/wiki/David_K._Levine" title="David K. Levine">Levine, David</a>; Michele Boldrin (2008-09-07). <a rel="nofollow" class="external text" href="http://www.dklevine.com/general/intellectual/againstfinal.htm"><i>Against Intellectual Monopoly</i></a>. Cambridge University Press. p. 312. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-87928-6" title="Special:BookSources/978-0-521-87928-6"><bdi>978-0-521-87928-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Against+Intellectual+Monopoly&rft.pages=312&rft.pub=Cambridge+University+Press&rft.date=2008-09-07&rft.isbn=978-0-521-87928-6&rft.aulast=Levine&rft.aufirst=David&rft.au=Michele+Boldrin&rft_id=http%3A%2F%2Fwww.dklevine.com%2Fgeneral%2Fintellectual%2Fagainstfinal.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text">Tapang, Bienvenido, and Lorelei Mendoza. <i>Introductory Economics.</i> University of the Philippines, Baguio.</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text">David Brewster (1815) <a rel="nofollow" class="external text" href="https://books.google.com/books?id=U-U_AAAAYAAJ&pg=PA125">"On the laws which regulate the polarisation of light by reflection from transparent bodies,"</a> <i>Philosophical Transactions of the Royal Society of London</i>, <b>105</b>: 125–159.</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLakhtakia1989" class="citation journal cs1">Lakhtakia, Akhlesh (June 1989). <a rel="nofollow" class="external text" href="http://www.esm.psu.edu/~axl4/lakhtakia/Documents/No087(ON).pdf">"Would Brewster recognize today's Brewster angle?"</a> <span class="cs1-format">(PDF)</span>. <i>Optics News</i>. <b>15</b> (6). OSA: 14–18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FON.15.6.000014">10.1364/ON.15.6.000014</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Optics+News&rft.atitle=Would+Brewster+recognize+today%27s+Brewster+angle%3F&rft.volume=15&rft.issue=6&rft.pages=14-18&rft.date=1989-06&rft_id=info%3Adoi%2F10.1364%2FON.15.6.000014&rft.aulast=Lakhtakia&rft.aufirst=Akhlesh&rft_id=http%3A%2F%2Fwww.esm.psu.edu%2F~axl4%2Flakhtakia%2FDocuments%2FNo087%28ON%29.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrönsted,_J._N.1923" class="citation journal cs1">Brönsted, J. N. (1923). "Einige Bemerkungen über den Begriff der Säuren und Basen" [Some observations about the concept of <a href="/wiki/Acids_and_bases" class="mw-redirect" title="Acids and bases">acids and bases</a>]. <i>Recueil des Travaux Chimiques des Pays-Bas</i>. <b>42</b> (8): 718–728. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Frecl.19230420815">10.1002/recl.19230420815</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Recueil+des+Travaux+Chimiques+des+Pays-Bas&rft.atitle=Einige+Bemerkungen+%C3%BCber+den+Begriff+der+S%C3%A4uren+und+Basen&rft.volume=42&rft.issue=8&rft.pages=718-728&rft.date=1923&rft_id=info%3Adoi%2F10.1002%2Frecl.19230420815&rft.au=Br%C3%B6nsted%2C+J.+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLowry,_T._M.1923" class="citation journal cs1">Lowry, T. M. (1923). <a rel="nofollow" class="external text" href="https://archive.org/stream/ost-chemistry-chemistryindustr01soci/chemistryindustr01soci#page/n65/mode/2up">"The uniqueness of hydrogen"</a>. <i>Journal of the Society of Chemical Industry</i>. <b>42</b> (3): 43–47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjctb.5000420302">10.1002/jctb.5000420302</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Society+of+Chemical+Industry&rft.atitle=The+uniqueness+of+hydrogen&rft.volume=42&rft.issue=3&rft.pages=43-47&rft.date=1923&rft_id=info%3Adoi%2F10.1002%2Fjctb.5000420302&rft.au=Lowry%2C+T.+M.&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fost-chemistry-chemistryindustr01soci%2Fchemistryindustr01soci%23page%2Fn65%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Feynman-41-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman-41_94-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynman1964" class="citation book cs1">Feynman, R. (1964). <a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/I_41.html">"The Brownian Movement"</a>. <i>The Feynman Lectures of Physics, Volume I</i>. pp. 41–1.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Brownian+Movement&rft.btitle=The+Feynman+Lectures+of+Physics%2C+Volume+I&rft.pages=41-1&rft.date=1964&rft.aulast=Feynman&rft.aufirst=R.&rft_id=https%3A%2F%2Ffeynmanlectures.caltech.edu%2FI_41.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/permot3.html">"Bulk Elastic Properties"</a>. <i>hyperphysics</i>. Georgia State University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=hyperphysics&rft.atitle=Bulk+Elastic+Properties&rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fpermot3.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CellMembranes.html">Kimball's Biology pages</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090125224255/http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CellMembranes.html">Archived</a> 2009-01-25 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, Cell Membranes</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSingleton_P1999" class="citation book cs1">Singleton P (1999). <i>Bacteria in Biology, Biotechnology and Medicine</i> (5th ed.). New York: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-98880-9" title="Special:BookSources/978-0-471-98880-9"><bdi>978-0-471-98880-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Bacteria+in+Biology%2C+Biotechnology+and+Medicine&rft.place=New+York&rft.edition=5th&rft.pub=Wiley&rft.date=1999&rft.isbn=978-0-471-98880-9&rft.au=Singleton+P&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-weik1961-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-weik1961_98-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeik,_Martin_H.1961" class="citation web cs1">Weik, Martin H. (1961). <a rel="nofollow" class="external text" href="http://ed-thelen.org/comp-hist/BRL61.html">"A Third Survey of Domestic Electronic Digital Computing Systems"</a>. <a href="/wiki/Ballistic_Research_Laboratory" title="Ballistic Research Laboratory">Ballistic Research Laboratory</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=A+Third+Survey+of+Domestic+Electronic+Digital+Computing+Systems&rft.pub=Ballistic+Research+Laboratory&rft.date=1961&rft.au=Weik%2C+Martin+H.&rft_id=http%3A%2F%2Fed-thelen.org%2Fcomp-hist%2FBRL61.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-kuck-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-kuck_99-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuck1978" class="citation book cs1">Kuck, David (1978). <i>Computers and Computations, Vol 1</i>. John Wiley & Sons, Inc. p. 12. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-02716-4" title="Special:BookSources/978-0-471-02716-4"><bdi>978-0-471-02716-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computers+and+Computations%2C+Vol+1&rft.pages=12&rft.pub=John+Wiley+%26+Sons%2C+Inc.&rft.date=1978&rft.isbn=978-0-471-02716-4&rft.aulast=Kuck&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-pmid17977464-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid17977464_100-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBornensAzimzadeh2007" class="citation book cs1">Bornens, M.; Azimzadeh, J. (2007). <a rel="nofollow" class="external text" href="https://archive.org/details/eukaryoticmembra00gasp">"Origin and Evolution of the Centrosome"</a>. <a rel="nofollow" class="external text" href="https://archive.org/details/eukaryoticmembra00gasp/page/119"><i>Eukaryotic Membranes and Cytoskeleton</i></a>. Advances in Experimental Medicine and Biology. Vol. 607. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/eukaryoticmembra00gasp/page/119">119–129</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-0-387-74021-8_10">10.1007/978-0-387-74021-8_10</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-74020-1" title="Special:BookSources/978-0-387-74020-1"><bdi>978-0-387-74020-1</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17977464">17977464</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Origin+and+Evolution+of+the+Centrosome&rft.btitle=Eukaryotic+Membranes+and+Cytoskeleton&rft.series=Advances+in+Experimental+Medicine+and+Biology&rft.pages=119-129&rft.date=2007&rft_id=info%3Apmid%2F17977464&rft_id=info%3Adoi%2F10.1007%2F978-0-387-74021-8_10&rft.isbn=978-0-387-74020-1&rft.aulast=Bornens&rft.aufirst=M.&rft.au=Azimzadeh%2C+J.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Feukaryoticmembra00gasp&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-pmid12224551-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid12224551_101-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmit2002" class="citation book cs1">Schmit (2002). <i>Acentrosomal microtubule nucleation in higher plants</i>. International Review of Cytology. Vol. 220. pp. 257–289. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0074-7696%2802%2920008-X">10.1016/S0074-7696(02)20008-X</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-364624-8" title="Special:BookSources/978-0-12-364624-8"><bdi>978-0-12-364624-8</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12224551">12224551</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Acentrosomal+microtubule+nucleation+in+higher+plants&rft.series=International+Review+of+Cytology&rft.pages=257-289&rft.date=2002&rft_id=info%3Apmid%2F12224551&rft_id=info%3Adoi%2F10.1016%2FS0074-7696%2802%2920008-X&rft.isbn=978-0-12-364624-8&rft.au=Schmit&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-pmid15473833-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid15473833_102-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaspersenWiney2004" class="citation journal cs1">Jaspersen, S. L.; Winey, M. (2004). "THE BUDDING YEAST SPINDLE POLE BODY: Structure, Duplication, and Function". <i>Annual Review of Cell and Developmental Biology</i>. <b>20</b> (1): 1–28. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.cellbio.20.022003.114106">10.1146/annurev.cellbio.20.022003.114106</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15473833">15473833</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annual+Review+of+Cell+and+Developmental+Biology&rft.atitle=THE+BUDDING+YEAST+SPINDLE+POLE+BODY%3A+Structure%2C+Duplication%2C+and+Function&rft.volume=20&rft.issue=1&rft.pages=1-28&rft.date=2004&rft_id=info%3Adoi%2F10.1146%2Fannurev.cellbio.20.022003.114106&rft_id=info%3Apmid%2F15473833&rft.aulast=Jaspersen&rft.aufirst=S.+L.&rft.au=Winey%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFullick1994" class="citation cs2">Fullick, P. (1994), <i>Physics</i>, Heinemann, pp. 141–142, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-435-57078-1" title="Special:BookSources/0-435-57078-1"><bdi>0-435-57078-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physics&rft.pages=141-142&rft.pub=Heinemann&rft.date=1994&rft.isbn=0-435-57078-1&rft.aulast=Fullick&rft.aufirst=P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Atkins-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-Atkins_104-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtkinsDe_Paula2006" class="citation book cs1">Atkins, Peter; De Paula, Julio (2006). <a rel="nofollow" class="external text" href="https://archive.org/details/atkinsphysicalch00pwat/page/200"><i>Atkins' Physical Chemistry</i></a> (8th ed.). W. H. Freeman. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/atkinsphysicalch00pwat/page/200">200–202</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-8759-4" title="Special:BookSources/978-0-7167-8759-4"><bdi>978-0-7167-8759-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Atkins%27+Physical+Chemistry&rft.pages=200-202&rft.edition=8th&rft.pub=W.+H.+Freeman&rft.date=2006&rft.isbn=978-0-7167-8759-4&rft.aulast=Atkins&rft.aufirst=Peter&rft.au=De+Paula%2C+Julio&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fatkinsphysicalch00pwat%2Fpage%2F200&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-aj-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-aj_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtkinsJones2008" class="citation book cs1">Atkins, Peter W.; Jones, Loretta (2008). <i>Chemical Principles: The Quest for Insight</i> (2nd ed.). W.H. Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-9903-0" title="Special:BookSources/978-0-7167-9903-0"><bdi>978-0-7167-9903-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Chemical+Principles%3A+The+Quest+for+Insight&rft.edition=2nd&rft.pub=W.H.+Freeman&rft.date=2008&rft.isbn=978-0-7167-9903-0&rft.aulast=Atkins&rft.aufirst=Peter+W.&rft.au=Jones%2C+Loretta&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a>, <i><a href="/wiki/IUPAC_books#Gold_Book" class="mw-redirect" title="IUPAC books">Compendium of Chemical Terminology</a></i>, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "<a rel="nofollow" class="external text" href="https://goldbook.iupac.org/terms/view/C01023.html">chemical equilibrium</a>". <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.C01023">10.1351/goldbook.C01023</a></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a>, <i><a href="/wiki/IUPAC_books#Gold_Book" class="mw-redirect" title="IUPAC books">Compendium of Chemical Terminology</a></i>, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "<a rel="nofollow" class="external text" href="https://goldbook.iupac.org/terms/view/C01033.html">chemical reaction</a>". <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.C01033">10.1351/goldbook.C01033</a></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20181003061822/http://chemweb.ucc.ie/what_is_chemistry.htm">"What is Chemistry?"</a>. Chemweb.ucc.ie. Archived from <a rel="nofollow" class="external text" href="http://chemweb.ucc.ie/what_is_chemistry.htm">the original</a> on 3 October 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">12 June</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=What+is+Chemistry%3F&rft.pub=Chemweb.ucc.ie&rft_id=http%3A%2F%2Fchemweb.ucc.ie%2Fwhat_is_chemistry.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/chemistry">"Definition of CHEMISTRY"</a>. <i>merriam-webster.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 August</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=merriam-webster.com&rft.atitle=Definition+of+CHEMISTRY&rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fchemistry&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://dictionary.reference.com/browse/Chemistry">"Definition of chemistry | Dictionary.com"</a>. <i>dictionary.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 August</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=dictionary.com&rft.atitle=Definition+of+chemistry+%7C+Dictionary.com&rft_id=http%3A%2F%2Fdictionary.reference.com%2Fbrowse%2FChemistry&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.acs.org/content/acs/en/education/whatischemistry/everywhere.html">"Chemistry Is Everywhere"</a>. <i><a href="/wiki/American_Chemical_Society" title="American Chemical Society">American Chemical Society</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=American+Chemical+Society&rft.atitle=Chemistry+Is+Everywhere&rft_id=https%3A%2F%2Fwww.acs.org%2Fcontent%2Facs%2Fen%2Feducation%2Fwhatischemistry%2Feverywhere.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-clausius-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-clausius_112-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClausius1850" class="citation journal cs1 cs1-prop-foreign-lang-source">Clausius, R. (1850). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k15164w/f518.image">"Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen"</a> [On the motive power of heat and the laws which can be deduced therefrom regarding the theory of heat]. <i>Annalen der Physik</i> (in German). <b>155</b> (4): 500–524. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1850AnP...155..500C">1850AnP...155..500C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.18501550403">10.1002/andp.18501550403</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fuc1.%24b242250">2027/uc1.$b242250</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=Ueber+die+bewegende+Kraft+der+W%C3%A4rme+und+die+Gesetze%2C+welche+sich+daraus+f%C3%BCr+die+W%C3%A4rmelehre+selbst+ableiten+lassen&rft.volume=155&rft.issue=4&rft.pages=500-524&rft.date=1850&rft_id=info%3Ahdl%2F2027%2Fuc1.%24b242250&rft_id=info%3Adoi%2F10.1002%2Fandp.18501550403&rft_id=info%3Abibcode%2F1850AnP...155..500C&rft.aulast=Clausius&rft.aufirst=R.&rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k15164w%2Ff518.image&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-clapeyron-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-clapeyron_113-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClapeyron1834" class="citation journal cs1 cs1-prop-foreign-lang-source">Clapeyron, M. C. (1834). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k4336791/f157">"Mémoire sur la puissance motrice de la chaleur"</a>. <i>Journal de l'École Polytechnique</i> (in French). <b>23</b>: 153–190. ark:/12148/bpt6k4336791/f157.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+de+l%27%C3%89cole+Polytechnique&rft.atitle=M%C3%A9moire+sur+la+puissance+motrice+de+la+chaleur&rft.volume=23&rft.pages=153-190&rft.date=1834&rft.aulast=Clapeyron&rft.aufirst=M.+C.&rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k4336791%2Ff157&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://scienceworld.wolfram.com/physics/ClausiusTheorem.html"><b>Clausius theorem</b></a> at <a href="/wiki/Wolfram_Research" title="Wolfram Research">Wolfram Research</a></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text">Finn, Colin B. P. <i>Thermal Physics</i>. 2nd ed., CRC Press, 1993.</span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text">Giancoli, Douglas C. <i>Physics: Principles with Applications</i>. 6th ed., Pearson/Prentice Hall, 2005.</span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text">Mortimer, R. G. <i>Physical Chemistry</i>. 3rd ed., p. 120, Academic Press, 2008.</span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130124080037/http://www.tetech.com/temodules/graphs/instructions.pdf">"Archived copy"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.tetech.com/temodules/graphs/instructions.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2013-01-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-10-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Archived+copy&rft_id=http%3A%2F%2Fwww.tetech.com%2Ftemodules%2Fgraphs%2Finstructions.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://us.grundfos.com/service-support/encyclopedia-search/cop-coefficient-ofperformance.html">"COP (Coefficient of performance)"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=COP+%28Coefficient+of+performance%29&rft_id=http%3A%2F%2Fus.grundfos.com%2Fservice-support%2Fencyclopedia-search%2Fcop-coefficient-ofperformance.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090107132318/http://www.tetech.com/temodules/graphs/HP-199-1.4-0.8.pdf">"Archived copy"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.tetech.com/temodules/graphs/HP-199-1.4-0.8.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2009-01-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-10-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Archived+copy&rft_id=http%3A%2F%2Fwww.tetech.com%2Ftemodules%2Fgraphs%2FHP-199-1.4-0.8.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text">colloquial meaning of burning is combustion accompanied by flames</span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNarayan2008" class="citation book cs1">Narayan, K. Lalit (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zXdivq93WIUC"><i>Computer Aided Design and Manufacturing</i></a>. New Delhi: Prentice Hall of India. p. 3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-203-3342-0" title="Special:BookSources/978-81-203-3342-0"><bdi>978-81-203-3342-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Aided+Design+and+Manufacturing&rft.place=New+Delhi&rft.pages=3&rft.pub=Prentice+Hall+of+India&rft.date=2008&rft.isbn=978-81-203-3342-0&rft.aulast=Narayan&rft.aufirst=K.+Lalit&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzXdivq93WIUC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNarayan2008" class="citation book cs1">Narayan, K. Lalit (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zXdivq93WIUC"><i>Computer Aided Design and Manufacturing</i></a>. New Delhi: Prentice Hall of India. p. 4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-203-3342-0" title="Special:BookSources/978-81-203-3342-0"><bdi>978-81-203-3342-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Aided+Design+and+Manufacturing&rft.place=New+Delhi&rft.pages=4&rft.pub=Prentice+Hall+of+India&rft.date=2008&rft.isbn=978-81-203-3342-0&rft.aulast=Narayan&rft.aufirst=K.+Lalit&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzXdivq93WIUC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuggal2000" class="citation book cs1">Duggal, Vijay (2000). <i>Cadd Primer: A General Guide to Computer Aided Design and Drafting-Cadd, CAD</i>. Mailmax Pub. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-9629165-9-5" title="Special:BookSources/978-0-9629165-9-5"><bdi>978-0-9629165-9-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Cadd+Primer%3A+A+General+Guide+to+Computer+Aided+Design+and+Drafting-Cadd%2C+CAD&rft.pub=Mailmax+Pub&rft.date=2000&rft.isbn=978-0-9629165-9-5&rft.aulast=Duggal&rft.aufirst=Vijay&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-ota-125"><span class="mw-cite-backlink">^ <a href="#cite_ref-ota_125-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ota_125-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFU.S._Congress,_Office_of_Technology_Assessment1984" class="citation book cs1"><a href="/wiki/U.S._Congress" class="mw-redirect" title="U.S. Congress">U.S. Congress</a>, <a href="/wiki/Office_of_Technology_Assessment" title="Office of Technology Assessment">Office of Technology Assessment</a> (1984). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LYdF5akRL6sC&pg=PA48"><i>Computerized manufacturing automation</i></a>. DIANE Publishing. p. 48. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4289-2364-5" title="Special:BookSources/978-1-4289-2364-5"><bdi>978-1-4289-2364-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computerized+manufacturing+automation&rft.pages=48&rft.pub=DIANE+Publishing&rft.date=1984&rft.isbn=978-1-4289-2364-5&rft.au=U.S.+Congress%2C+Office+of+Technology+Assessment&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLYdF5akRL6sC%26pg%3DPA48&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoskingAnderson1992" class="citation cs2">Hosking, Dian Marie; Anderson, Neil (1992), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TbwOAAAAQAAJ&pg=PA240"><i>Organizational change and innovation</i></a>, Taylor & Francis, p. 240, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-415-06314-2" title="Special:BookSources/978-0-415-06314-2"><bdi>978-0-415-06314-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Organizational+change+and+innovation&rft.pages=240&rft.pub=Taylor+%26+Francis&rft.date=1992&rft.isbn=978-0-415-06314-2&rft.aulast=Hosking&rft.aufirst=Dian+Marie&rft.au=Anderson%2C+Neil&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTbwOAAAAQAAJ%26pg%3DPA240&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-daintith-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-daintith_127-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaintith2004" class="citation book cs1">Daintith, John (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Hay6vTsGFAsC&pg=PA102"><i>A dictionary of computing</i></a> (5 ed.). Oxford University Press. p. 102. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-860877-6" title="Special:BookSources/978-0-19-860877-6"><bdi>978-0-19-860877-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+dictionary+of+computing&rft.pages=102&rft.edition=5&rft.pub=Oxford+University+Press&rft.date=2004&rft.isbn=978-0-19-860877-6&rft.aulast=Daintith&rft.aufirst=John&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHay6vTsGFAsC%26pg%3DPA102&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKreith1998" class="citation book cs1"><a href="/wiki/Frank_Kreith" title="Frank Kreith">Kreith, Frank</a> (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OpD226SXKisC&pg=PT1972"><i>The CRC handbook of mechanical engineering</i></a>. CRC Press. p. 15-1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8493-9418-8" title="Special:BookSources/978-0-8493-9418-8"><bdi>978-0-8493-9418-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+CRC+handbook+of+mechanical+engineering&rft.pages=15-1&rft.pub=CRC+Press&rft.date=1998&rft.isbn=978-0-8493-9418-8&rft.aulast=Kreith&rft.aufirst=Frank&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOpD226SXKisC%26pg%3DPT1972&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatthews2005" class="citation book cs1">Matthews, Clifford (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5W9Rqq3qP1QC"><i>Aeronautical engineer's data book</i></a> (2nd ed.). Butterworth-Heinemann. p. 229. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7506-5125-7" title="Special:BookSources/978-0-7506-5125-7"><bdi>978-0-7506-5125-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Aeronautical+engineer%27s+data+book&rft.pages=229&rft.edition=2nd&rft.pub=Butterworth-Heinemann&rft.date=2005&rft.isbn=978-0-7506-5125-7&rft.aulast=Matthews&rft.aufirst=Clifford&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5W9Rqq3qP1QC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPichlerMoreno-Díaz1992" class="citation book cs1">Pichler, Franz; Moreno-Díaz, Roberto (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xmHL8KONTXUC&pg=PA602"><i>Computer aided systems theory</i></a>. Springer. p. 602. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-55354-0" title="Special:BookSources/978-3-540-55354-0"><bdi>978-3-540-55354-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+aided+systems+theory&rft.pages=602&rft.pub=Springer&rft.date=1992&rft.isbn=978-3-540-55354-0&rft.aulast=Pichler&rft.aufirst=Franz&rft.au=Moreno-D%C3%ADaz%2C+Roberto&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxmHL8KONTXUC%26pg%3DPA602&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoothroydKnight2006" class="citation book cs1">Boothroyd, Geoffrey; Knight, Winston Anthony (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Y0cRCFalmekC&pg=PA401"><i>Fundamentals of machining and machine tools</i></a> (3rd ed.). CRC Press. p. 401. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-57444-659-3" title="Special:BookSources/978-1-57444-659-3"><bdi>978-1-57444-659-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+machining+and+machine+tools&rft.pages=401&rft.edition=3rd&rft.pub=CRC+Press&rft.date=2006&rft.isbn=978-1-57444-659-3&rft.aulast=Boothroyd&rft.aufirst=Geoffrey&rft.au=Knight%2C+Winston+Anthony&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DY0cRCFalmekC%26pg%3DPA401&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIEEE_Computer_SocietyACM2004" class="citation book cs1"><a href="/wiki/IEEE_Computer_Society" title="IEEE Computer Society">IEEE Computer Society</a>; <a href="/wiki/Association_for_Computing_Machinery" title="Association for Computing Machinery">ACM</a> (December 12, 2004). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190612130313/https://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf"><i>Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering</i></a> <span class="cs1-format">(PDF)</span>. p. iii. Archived from <a rel="nofollow" class="external text" href="http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf">the original</a> <span class="cs1-format">(PDF)</span> on June 12, 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">December 17,</span> 2012</span>. <q>Computer System engineering has traditionally been viewed as a combination of both electronic engineering (EE) and computer science (CS).</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Engineering+2004%3A+Curriculum+Guidelines+for+Undergraduate+Degree+Programs+in+Computer+Engineering&rft.pages=iii&rft.date=2004-12-12&rft.au=IEEE+Computer+Society&rft.au=ACM&rft_id=http%3A%2F%2Fwww.acm.org%2Feducation%2Feducation%2Fcurric_vols%2FCE-Final-Report.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://wordnetweb.princeton.edu/perl/webwn?s=computer%20scientist">"WordNet Search—3.1"</a>. Wordnetweb.princeton.edu<span class="reference-accessdate">. Retrieved <span class="nowrap">14 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=WordNet+Search%E2%80%943.1&rft.pub=Wordnetweb.princeton.edu&rft_id=http%3A%2F%2Fwordnetweb.princeton.edu%2Fperl%2Fwebwn%3Fs%3Dcomputer%2520scientist&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-CH-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-CH_134-0">^</a></b></span> <span class="reference-text">Cox D.R., Hinkley D.V. (1974) <i>Theoretical Statistics</i>, Chapman & Hall, p49, p209</span> </li> <li id="cite_note-KS-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-KS_135-0">^</a></b></span> <span class="reference-text">Kendall, M.G. and Stuart, D.G. (1973) <i>The Advanced Theory of Statistics</i>. Vol 2: Inference and Relationship, Griffin, London. Section 20.4</span> </li> <li id="cite_note-Neyman-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-Neyman_136-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeyman1937" class="citation journal cs1"><a href="/wiki/Jerzy_Neyman" title="Jerzy Neyman">Neyman, J.</a> (1937). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1937.0005">"Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability"</a>. <i><a href="/wiki/Philosophical_Transactions_of_the_Royal_Society_A" title="Philosophical Transactions of the Royal Society A">Philosophical Transactions of the Royal Society A</a></i>. <b>236</b> (767): 333–380. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1937RSPTA.236..333N">1937RSPTA.236..333N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1937.0005">10.1098/rsta.1937.0005</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/91337">91337</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+A&rft.atitle=Outline+of+a+Theory+of+Statistical+Estimation+Based+on+the+Classical+Theory+of+Probability&rft.volume=236&rft.issue=767&rft.pages=333-380&rft.date=1937&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F91337%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1098%2Frsta.1937.0005&rft_id=info%3Abibcode%2F1937RSPTA.236..333N&rft.aulast=Neyman&rft.aufirst=J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frsta.1937.0005&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Zumdahl,_Stephen_S._2007-137"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zumdahl,_Stephen_S._2007_137-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zumdahl,_Stephen_S._2007_137-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Zumdahl, Stephen S., & Zumdahl, Susan A. <i>Chemistry</i>. Houghton Mifflin, 2007, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-618-71370-0" title="Special:BookSources/0-618-71370-0">0-618-71370-0</a></span> </li> <li id="cite_note-Feynman2Ch1S2-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman2Ch1S2_138-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_Feynman1970" class="citation book cs1">Richard Feynman (1970). <a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/I_04.html"><i>The Feynman Lectures on Physics Vol I</i></a>. Addison Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-02115-8" title="Special:BookSources/978-0-201-02115-8"><bdi>978-0-201-02115-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Feynman+Lectures+on+Physics+Vol+I&rft.pub=Addison+Wesley&rft.date=1970&rft.isbn=978-0-201-02115-8&rft.au=Richard+Feynman&rft_id=https%3A%2F%2Ffeynmanlectures.caltech.edu%2FI_04.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Case_Western_Reserve_University-139"><span class="mw-cite-backlink">^ <a href="#cite_ref-Case_Western_Reserve_University_139-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Case_Western_Reserve_University_139-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://engineering.case.edu/eecs/node/213">"Systems & Control Engineering FAQ | Electrical Engineering and Computer Science"</a>. <i>engineering.case.edu</i>. Case Western Reserve University. 20 November 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=engineering.case.edu&rft.atitle=Systems+%26+Control+Engineering+FAQ+%7C+Electrical+Engineering+and+Computer+Science&rft.date=2015-11-20&rft_id=https%3A%2F%2Fengineering.case.edu%2Feecs%2Fnode%2F213&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-140">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSharma2008" class="citation book cs1">Sharma (2008). <i>Atomic And Nuclear Physics</i>. Pearson Education India. p. 478. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-317-1924-4" title="Special:BookSources/978-81-317-1924-4"><bdi>978-81-317-1924-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Atomic+And+Nuclear+Physics&rft.pages=478&rft.pub=Pearson+Education+India&rft.date=2008&rft.isbn=978-81-317-1924-4&rft.au=Sharma&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-draft-resolution-A-141"><span class="mw-cite-backlink"><b><a href="#cite_ref-draft-resolution-A_141-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180429025229/https://www.bipm.org/utils/en/pdf/CGPM/Draft-Resolution-A-EN.pdf"><i>Draft Resolution A "On the revision of the International System of units (SI)" to be submitted to the CGPM at its 26th meeting in November 2018.</i></a> <span class="cs1-format">(PDF)</span>, archived from <a rel="nofollow" class="external text" href="https://www.bipm.org/utils/en/pdf/CGPM/Draft-Resolution-A-EN.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2018-04-29<span class="reference-accessdate">, retrieved <span class="nowrap">2019-01-05</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Draft+Resolution+A+%22On+the+revision+of+the+International+System+of+units+%28SI%29%22+to+be+submitted+to+the+CGPM+at+its+26th+meeting+in+November+2018.&rft_id=https%3A%2F%2Fwww.bipm.org%2Futils%2Fen%2Fpdf%2FCGPM%2FDraft-Resolution-A-EN.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-142">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.reference.com/science/electrostatic-force-explained-e59fd6cfe9ce6a6">"How is electrostatic force explained?"</a>. <i>Reference*</i>. IAC Publishing, LLC. 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">January 5,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Reference%2A&rft.atitle=How+is+electrostatic+force+explained%3F&rft.date=2019&rft_id=https%3A%2F%2Fwww.reference.com%2Fscience%2Felectrostatic-force-explained-e59fd6cfe9ce6a6&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-143">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www2.lbl.gov/Science-Articles/Archive/early-years.html">"Ernest Lawrence's Cyclotron"</a>. <i>www2.lbl.gov</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-04-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www2.lbl.gov&rft.atitle=Ernest+Lawrence%27s+Cyclotron&rft_id=http%3A%2F%2Fwww2.lbl.gov%2FScience-Articles%2FArchive%2Fearly-years.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/1939/lawrence-bio.html">"Ernest Lawrence – Biographical"</a>. <i>nobelprize.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-04-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nobelprize.org&rft.atitle=Ernest+Lawrence+%E2%80%93+Biographical&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1939%2Flawrence-bio.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Patent1948384-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-Patent1948384_145-0">^</a></b></span> <span class="reference-text"><span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US1948384">U.S. patent 1,948,384</a></span> Lawrence, Ernest O. <i>Method and apparatus for the acceleration of ions</i>, filed: January 26, 1932, granted: February 20, 1934</span> </li> <li id="cite_note-Lawrence-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lawrence_146-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawrenceLivingston1932" class="citation journal cs1">Lawrence, Earnest O.; Livingston, M. Stanley (April 1, 1932). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.40.19">"The Production of High Speed Light Ions Without the Use of High Voltages"</a>. <i>Physical Review</i>. <b>40</b> (1). American Physical Society: 19–35. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932PhRv...40...19L">1932PhRv...40...19L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.40.19">10.1103/PhysRev.40.19</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=The+Production+of+High+Speed+Light+Ions+Without+the+Use+of+High+Voltages&rft.volume=40&rft.issue=1&rft.pages=19-35&rft.date=1932-04-01&rft_id=info%3Adoi%2F10.1103%2FPhysRev.40.19&rft_id=info%3Abibcode%2F1932PhRv...40...19L&rft.aulast=Lawrence&rft.aufirst=Earnest+O.&rft.au=Livingston%2C+M.+Stanley&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.40.19&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Nave-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nave_147-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNave2012" class="citation web cs1">Nave, C. R. (2012). <a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/cyclot.html">"Cyclotron"</a>. Dept. of Physics and Astronomy, Georgia State University<span class="reference-accessdate">. Retrieved <span class="nowrap">October 26,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Cyclotron&rft.pub=Dept.+of+Physics+and+Astronomy%2C+Georgia+State+University&rft.date=2012&rft.aulast=Nave&rft.aufirst=C.+R.&rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fmagnetic%2Fcyclot.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Close-148"><span class="mw-cite-backlink">^ <a href="#cite_ref-Close_148-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Close_148-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCloseCloseMarten2004" class="citation book cs1">Close, F. E.; Close, Frank; Marten, Michael; et al. (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PX87qqj5B2UC&pg=PA86"><i>The Particle Odyssey: A Journey to the Heart of Matter</i></a>. Oxford University Press. pp. 84–87. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-860943-8" title="Special:BookSources/978-0-19-860943-8"><bdi>978-0-19-860943-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Particle+Odyssey%3A+A+Journey+to+the+Heart+of+Matter&rft.pages=84-87&rft.pub=Oxford+University+Press&rft.date=2004&rft.isbn=978-0-19-860943-8&rft.aulast=Close&rft.aufirst=F.+E.&rft.au=Close%2C+Frank&rft.au=Marten%2C+Michael&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPX87qqj5B2UC%26pg%3DPA86&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/1939/lawrence-facts.html">"Ernest Lawrence - Facts"</a>. <i>nobelprize.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-04-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nobelprize.org&rft.atitle=Ernest+Lawrence+-+Facts&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1939%2Flawrence-facts.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Silberberg-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-Silberberg_150-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="1" class="citation book cs1">Silberberg, Martin S. (2009). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/chemistrymolecul00silb_143"><i>Chemistry: the molecular nature of matter and change</i></a></span> (5th ed.). Boston: McGraw-Hill. p. <a rel="nofollow" class="external text" href="https://archive.org/details/chemistrymolecul00silb_143/page/n234">206</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-304859-8" title="Special:BookSources/978-0-07-304859-8"><bdi>978-0-07-304859-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Chemistry%3A+the+molecular+nature+of+matter+and+change&rft.place=Boston&rft.pages=206&rft.edition=5th&rft.pub=McGraw-Hill&rft.date=2009&rft.isbn=978-0-07-304859-8&rft.aulast=Silberberg&rft.aufirst=Martin+S.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fchemistrymolecul00silb_143&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><a class="external text" href="https://en.wiktionary.org/wiki/definite_integral">Wiktionary</a></span> </li> <li id="cite_note-Dav-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dav_152-0">^</a></b></span> <span class="reference-text">Davidge, R.W. (1979) <i>Mechanical Behavior of Ceramics</i>, Cambridge Solid State Science Series, Eds. Clarke, D.R., et al.</span> </li> <li id="cite_note-Zar-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zar_153-0">^</a></b></span> <span class="reference-text">Zarzycki, J. (1991) <i>Glasses and the Vitreous State</i>, Cambridge Solid State Science Series, Eds. Clarke, D.R., et al.</span> </li> <li id="cite_note-154"><span class="mw-cite-backlink"><b><a href="#cite_ref-154">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTruesdellNoll2004" class="citation book cs1">Truesdell, C.; Noll, W. (2004). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/nonlinearfieldth00true_338"><i>The non-linear field theories of mechanics</i></a></span> (3rd ed.). Springer. p. <a rel="nofollow" class="external text" href="https://archive.org/details/nonlinearfieldth00true_338/page/n47">48</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+non-linear+field+theories+of+mechanics&rft.pages=48&rft.edition=3rd&rft.pub=Springer&rft.date=2004&rft.aulast=Truesdell&rft.aufirst=C.&rft.au=Noll%2C+W.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnonlinearfieldth00true_338&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-wu-155"><span class="mw-cite-backlink"><b><a href="#cite_ref-wu_155-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWu2005" class="citation book cs1">Wu, H.-C. (2005). <i>Continuum Mechanics and Plasticity</i>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58488-363-0" title="Special:BookSources/978-1-58488-363-0"><bdi>978-1-58488-363-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Continuum+Mechanics+and+Plasticity&rft.pub=CRC+Press&rft.date=2005&rft.isbn=978-1-58488-363-0&rft.aulast=Wu&rft.aufirst=H.-C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThe_National_Aeronautic_and_Atmospheric_Administration's_Glenn_Research_Center" class="citation web cs1"><i><a href="/wiki/National_Aeronautic_and_Space_Administration" class="mw-redirect" title="National Aeronautic and Space Administration">The National Aeronautic and Atmospheric Administration's</a></i> <i><a href="/wiki/Glenn_Research_Center" title="Glenn Research Center">Glenn Research Center</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130414132531/http://www.grc.nasa.gov/WWW/BGH/fluden.html">"Gas Density Glenn research Center"</a>. grc.nasa.gov. Archived from <a rel="nofollow" class="external text" href="https://www.grc.nasa.gov/WWW/BGH/fluden.html">the original</a> on April 14, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">March 31,</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Gas+Density+Glenn+research+Center&rft.pub=grc.nasa.gov&rft.au=%27%27The+National+Aeronautic+and+Atmospheric+Administration%27s%27%27+%27%27Glenn+Research+Center%27%27&rft_id=http%3A%2F%2Fwww.grc.nasa.gov%2FWWW%2FBGH%2Ffluden.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-157"><span class="mw-cite-backlink"><b><a href="#cite_ref-157">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100805010226/http://oilgasglossary.com/density.html">"Density definition in Oil Gas Glossary"</a>. Oilgasglossary.com. Archived from <a rel="nofollow" class="external text" href="http://oilgasglossary.com/density.html">the original</a> on August 5, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">September 14,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Density+definition+in+Oil+Gas+Glossary&rft.pub=Oilgasglossary.com&rft_id=http%3A%2F%2Foilgasglossary.com%2Fdensity.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-158"><span class="mw-cite-backlink"><b><a href="#cite_ref-158">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacauleyArdley1998" class="citation book cs1">Macauley, David; Ardley, Neil (1998). <a rel="nofollow" class="external text" href="https://archive.org/details/newwaythingswork00maca/page/56"><i>The New Way Things Work</i></a>. Boston, USA: Houghton Mifflin Company. p. <a rel="nofollow" class="external text" href="https://archive.org/details/newwaythingswork00maca/page/56">56</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-395-93847-8" title="Special:BookSources/978-0-395-93847-8"><bdi>978-0-395-93847-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+New+Way+Things+Work&rft.place=Boston%2C+USA&rft.pages=56&rft.pub=Houghton+Mifflin+Company&rft.date=1998&rft.isbn=978-0-395-93847-8&rft.aulast=Macauley&rft.aufirst=David&rft.au=Ardley%2C+Neil&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnewwaythingswork00maca%2Fpage%2F56&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-159"><span class="mw-cite-backlink"><b><a href="#cite_ref-159">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldberg2006" class="citation book cs1">Goldberg, David (2006). <i>Fundamentals of Chemistry</i> (5th ed.). McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-322104-5" title="Special:BookSources/978-0-07-322104-5"><bdi>978-0-07-322104-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Chemistry&rft.edition=5th&rft.pub=McGraw-Hill&rft.date=2006&rft.isbn=978-0-07-322104-5&rft.aulast=Goldberg&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-160"><span class="mw-cite-backlink"><b><a href="#cite_ref-160">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOgden1999" class="citation book cs1">Ogden, James (1999). <i>The Handbook of Chemical Engineering</i>. Research & Education Association. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-87891-982-6" title="Special:BookSources/978-0-87891-982-6"><bdi>978-0-87891-982-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Handbook+of+Chemical+Engineering&rft.pub=Research+%26+Education+Association&rft.date=1999&rft.isbn=978-0-87891-982-6&rft.aulast=Ogden&rft.aufirst=James&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.kentchemistry.com/links/Measurements/dimensionalanalysis.htm">"Dimensional Analysis or the Factor Label Method"</a>. <i>Mr Kent's Chemistry Page</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mr+Kent%27s+Chemistry+Page&rft.atitle=Dimensional+Analysis+or+the+Factor+Label+Method&rft_id=http%3A%2F%2Fwww.kentchemistry.com%2Flinks%2FMeasurements%2Fdimensionalanalysis.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBornWolf1999" class="citation book cs1"><a href="/wiki/Max_Born" title="Max Born">Born, Max</a>; Wolf, Emil (October 1999). <i><a href="/wiki/Principles_of_Optics" title="Principles of Optics">Principles of Optics</a></i>. Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/principlesoptics00born_100/page/n37">14</a>–24. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-64222-4" title="Special:BookSources/978-0-521-64222-4"><bdi>978-0-521-64222-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Optics&rft.place=Cambridge&rft.pages=14-24&rft.pub=Cambridge+University+Press&rft.date=1999-10&rft.isbn=978-0-521-64222-4&rft.aulast=Born&rft.aufirst=Max&rft.au=Wolf%2C+Emil&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTom_Henderson" class="citation web cs1">Tom Henderson. <a rel="nofollow" class="external text" href="http://www.physicsclassroom.com/Class/1DKin/U1L1c.cfm">"Describing Motion with Words"</a>. <i>The Physics Classroom</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2 January</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Physics+Classroom&rft.atitle=Describing+Motion+with+Words&rft.au=Tom+Henderson&rft_id=http%3A%2F%2Fwww.physicsclassroom.com%2FClass%2F1DKin%2FU1L1c.cfm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Giordano-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-Giordano_164-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiordano2009" class="citation book cs1">Giordano, Nicholas (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BwistUlpZ7cC&pg=PA424"><i>College Physics: Reasoning and Relationships</i></a>. Cengage Learning. pp. 421–424. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-534-42471-8" title="Special:BookSources/978-0-534-42471-8"><bdi>978-0-534-42471-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=College+Physics%3A+Reasoning+and+Relationships&rft.pages=421-424&rft.pub=Cengage+Learning&rft.date=2009&rft.isbn=978-0-534-42471-8&rft.aulast=Giordano&rft.aufirst=Nicholas&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBwistUlpZ7cC%26pg%3DPA424&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrumpHoelLangleyPeto1976" class="citation journal cs1">Crump, K. S.; Hoel, D. G.; Langley, C. H.; Peto, R. (1 September 1976). <a rel="nofollow" class="external text" href="http://cancerres.aacrjournals.org/content/36/9_Part_1/2973.long">"Fundamental Carcinogenic Processes and Their Implications for Low Dose Risk Assessment"</a>. <i>Cancer Research</i>. <b>36</b> (9 Part 1): 2973–2979. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/975067">975067</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cancer+Research&rft.atitle=Fundamental+Carcinogenic+Processes+and+Their+Implications+for+Low+Dose+Risk+Assessment&rft.volume=36&rft.issue=9+Part+1&rft.pages=2973-2979&rft.date=1976-09-01&rft_id=info%3Apmid%2F975067&rft.aulast=Crump&rft.aufirst=K.+S.&rft.au=Hoel%2C+D.+G.&rft.au=Langley%2C+C.+H.&rft.au=Peto%2C+R.&rft_id=http%3A%2F%2Fcancerres.aacrjournals.org%2Fcontent%2F36%2F9_Part_1%2F2973.long&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-166"><span class="mw-cite-backlink"><b><a href="#cite_ref-166">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.merriam-webster.com/dictionary/drag">"Definition of DRAG"</a>. <i>merriam-webster.com</i>. 15 March 2024.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=merriam-webster.com&rft.atitle=Definition+of+DRAG&rft.date=2024-03-15&rft_id=http%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fdrag&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text">French (1970), p. 211, Eq. 7-20</span> </li> <li id="cite_note-NASAdrag-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-NASAdrag_168-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100524003905/http://www.grc.nasa.gov/WWW/K-12/airplane/drag1.html">"What is Drag?"</a>. Archived from <a rel="nofollow" class="external text" href="https://www.grc.nasa.gov/WWW/k-12/airplane/drag1.html">the original</a> on 2010-05-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-02-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=What+is+Drag%3F&rft_id=http%3A%2F%2Fwww.grc.nasa.gov%2FWWW%2Fk-12%2Fairplane%2Fdrag1.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-169">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._Falkovich2011" class="citation book cs1">G. Falkovich (2011). <a rel="nofollow" class="external text" href="http://www.cambridge.org/gb/knowledge/isbn/item6173728/?site_locale=en_GB"><i>Fluid Mechanics (A short course for physicists)</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-00575-4" title="Special:BookSources/978-1-107-00575-4"><bdi>978-1-107-00575-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fluid+Mechanics+%28A+short+course+for+physicists%29&rft.pub=Cambridge+University+Press&rft.date=2011&rft.isbn=978-1-107-00575-4&rft.au=G.+Falkovich&rft_id=http%3A%2F%2Fwww.cambridge.org%2Fgb%2Fknowledge%2Fisbn%2Fitem6173728%2F%3Fsite_locale%3Den_GB&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text">K.J. Laidler and J.H. Meiser, Physical Chemistry, Benjamin/Cummings 1982, p.18. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8053-5682-7" title="Special:BookSources/0-8053-5682-7">0-8053-5682-7</a></span> </li> <li id="cite_note-horowitz-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-horowitz_171-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHorowitzHill2015" class="citation book cs1"><a href="/wiki/Paul_Horowitz_(scientist)" class="mw-redirect" title="Paul Horowitz (scientist)">Horowitz, Paul</a>; <a href="/wiki/Winfield_Hill" title="Winfield Hill">Hill, Winfield</a> (2015). <i>The art of electronics</i> (3rd ed.). <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-80926-9" title="Special:BookSources/978-0-521-80926-9"><bdi>978-0-521-80926-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+art+of+electronics&rft.edition=3rd&rft.pub=Cambridge+University+Press&rft.date=2015&rft.isbn=978-0-521-80926-9&rft.aulast=Horowitz&rft.aufirst=Paul&rft.au=Hill%2C+Winfield&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnthony_C._Fischer-Cripps2004" class="citation book cs1">Anthony C. Fischer-Cripps (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3SsYctmvZkoC&pg=PA13"><i>The electronics companion</i></a>. CRC Press. p. 13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7503-1012-3" title="Special:BookSources/978-0-7503-1012-3"><bdi>978-0-7503-1012-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+electronics+companion&rft.pages=13&rft.pub=CRC+Press&rft.date=2004&rft.isbn=978-0-7503-1012-3&rft.au=Anthony+C.+Fischer-Cripps&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3SsYctmvZkoC%26pg%3DPA13&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-learn-physics-today-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-learn-physics-today_173-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLakatos,_JohnOenoki,_KeijiJudez,_HectorOenoki,_Kazushi1998" class="citation web cs1">Lakatos, John; Oenoki, Keiji; Judez, Hector; Oenoki, Kazushi; Hyun Kyu Cho (March 1998). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090227065653/http://library.thinkquest.org/10796/ch13/ch13.htm">"Learn Physics Today!"</a>. Lima, Peru: Colegio Dr. Franklin D. Roosevelt. Archived from <a rel="nofollow" class="external text" href="http://library.thinkquest.org/10796/ch13/ch13.htm">the original</a> on 2009-02-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2009-03-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Learn+Physics+Today%21&rft.place=Lima%2C+Peru&rft.pub=Colegio+Dr.+Franklin+D.+Roosevelt&rft.date=1998-03&rft.au=Lakatos%2C+John&rft.au=Oenoki%2C+Keiji&rft.au=Judez%2C+Hector&rft.au=Oenoki%2C+Kazushi&rft.au=Hyun+Kyu+Cho&rft_id=http%3A%2F%2Flibrary.thinkquest.org%2F10796%2Fch13%2Fch13.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPurcellMorin2013" class="citation book cs1">Purcell, Edward M.; Morin, David J. (2013). <i>Electricity and Magnetism</i> (3rd ed.). New York: Cambridge University Press. pp. 14–20. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-01402-2" title="Special:BookSources/978-1-107-01402-2"><bdi>978-1-107-01402-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electricity+and+Magnetism&rft.place=New+York&rft.pages=14-20&rft.edition=3rd&rft.pub=Cambridge+University+Press&rft.date=2013&rft.isbn=978-1-107-01402-2&rft.aulast=Purcell&rft.aufirst=Edward+M.&rft.au=Morin%2C+David+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-175">^</a></b></span> <span class="reference-text">Browne, p 225: "... around every charge there is an aura that fills all space. This aura is the electric field due to the charge. The electric field is a vector field... and has a magnitude and direction."</span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text"><a class="external text" href="https://en.wiktionary.org/wiki/electrodynamics">Wiktionary</a></span> </li> <li id="cite_note-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-177">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_Feynman1970" class="citation book cs1">Richard Feynman (1970). <a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/II_01.html#Ch1-S2"><i>The Feynman Lectures on Physics Vol II</i></a>. Addison Wesley Longman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-02115-8" title="Special:BookSources/978-0-201-02115-8"><bdi>978-0-201-02115-8</bdi></a>. <q>A "field" is any physical quantity which takes on different values at different points in space.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Feynman+Lectures+on+Physics+Vol+II&rft.pub=Addison+Wesley+Longman&rft.date=1970&rft.isbn=978-0-201-02115-8&rft.au=Richard+Feynman&rft_id=https%3A%2F%2Ffeynmanlectures.caltech.edu%2FII_01.html%23Ch1-S2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text">*<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPurcell_and_Morin,_Harvard_University.2013" class="citation book cs1">Purcell and Morin, Harvard University. (2013). <i>Electricity and Magnetism, 820p</i> (3rd ed.). Cambridge University Press, New York. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-01402-2" title="Special:BookSources/978-1-107-01402-2"><bdi>978-1-107-01402-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electricity+and+Magnetism%2C+820p&rft.edition=3rd&rft.pub=Cambridge+University+Press%2C+New+York&rft.date=2013&rft.isbn=978-1-107-01402-2&rft.au=Purcell+and+Morin%2C+Harvard+University.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span> p 430: "These waves... require no medium to support their propagation. Traveling electromagnetic waves carry energy, and... the <i>Poynting</i> vector describes the energy flow...;" p 440: ... the electromagnetic wave must have the following properties: 1) The field pattern travels with speed c (speed of light); 2) At every point within the wave... the electric field strength E equals "c" times the magnetic field strength B; 3) The electric field and the magnetic field are perpendicular to one another and to the direction of travel, or propagation."</span> </li> <li id="cite_note-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-179">^</a></b></span> <span class="reference-text">* <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrowne,_Michael2013" class="citation book cs1">Browne, Michael (2013). <i>Physics for Engineering and Science, p427</i> (2nd ed.). McGraw Hill/Schaum, New York. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-161399-6" title="Special:BookSources/978-0-07-161399-6"><bdi>978-0-07-161399-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physics+for+Engineering+and+Science%2C+p427&rft.edition=2nd&rft.pub=McGraw+Hill%2FSchaum%2C+New+York.&rft.date=2013&rft.isbn=978-0-07-161399-6&rft.au=Browne%2C+Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span>; p319: "For historical reasons, different portions of the EM spectrum are given different names, although they are all the same kind of thing. Visible light constitutes a narrow range of the spectrum, from wavelengths of about 400–800 nm.... ;p 320 "An electromagnetic wave carries forward momentum... If the radiation is absorbed by a surface, the momentum drops to zero and a force is exerted on the surface... Thus the radiation pressure of an electromagnetic wave is (formula)."</span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=fbdAAAAAYAAJ">Course in Electro-mechanics</a>, for Students in Electrical Engineering, 1st Term of 3d Year, Columbia University, Adapted from Prof. F.E. Nipher's "Electricity and Magnetism". By <a href="/w/index.php?title=Fitzhugh_Townsend_(Scientist)&action=edit&redlink=1" class="new" title="Fitzhugh Townsend (Scientist) (page does not exist)">Fitzhugh Townsend</a>. 1901.</span> </li> <li id="cite_note-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-181">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSzolc_T.Konowrocki_R.Michajłow_M.Pregowska_A.2014" class="citation journal cs1">Szolc T.; <a href="/w/index.php?title=Robert_Konowrocki_(Scientist)&action=edit&redlink=1" class="new" title="Robert Konowrocki (Scientist) (page does not exist)">Konowrocki R.</a>; Michajłow M.; Pregowska A. (2014). "An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors". <i>Mechanical Systems and Signal Processing</i>. <b>49</b> (1–2): 118–134. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014MSSP...49..118S">2014MSSP...49..118S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ymssp.2014.04.004">10.1016/j.ymssp.2014.04.004</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mechanical+Systems+and+Signal+Processing&rft.atitle=An+investigation+of+the+dynamic+electromechanical+coupling+effects+in+machine+drive+systems+driven+by+asynchronous+motors&rft.volume=49&rft.issue=1%E2%80%932&rft.pages=118-134&rft.date=2014&rft_id=info%3Adoi%2F10.1016%2Fj.ymssp.2014.04.004&rft_id=info%3Abibcode%2F2014MSSP...49..118S&rft.au=Szolc+T.&rft.au=Konowrocki+R.&rft.au=Michaj%C5%82ow+M.&rft.au=Pregowska+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-182">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://archive.org/details/elementsofelectr00robi">The Elements of Electricity</a>, "Part V. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w47OAAAAMAAJ">Electro-Mechanics</a>." By <a href="/wiki/Wirt_Robinson" title="Wirt Robinson">Wirt Robinson</a>. John Wiley & sons, Incorporated, 1922.</span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKonowrocki_R.Szolc_T.Pochanke_A.Pregowska_A.2016" class="citation journal cs1 cs1-prop-long-vol"><a href="/w/index.php?title=Robert_Konowrocki_(Scientist)&action=edit&redlink=1" class="new" title="Robert Konowrocki (Scientist) (page does not exist)">Konowrocki R.</a>; Szolc T.; Pochanke A.; Pregowska A. (2016). "An influence of the stepping motor control and friction models on precise positioning of the complex mechanical system". <i>Mechanical Systems and Signal Processing</i>. 70–71. Mechanical Systems and Signal Processing, Vol. 70–71, pp. 397–413: 397–413. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016MSSP...70..397K">2016MSSP...70..397K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ymssp.2015.09.030">10.1016/j.ymssp.2015.09.030</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0888-3270">0888-3270</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mechanical+Systems+and+Signal+Processing&rft.atitle=An+influence+of+the+stepping+motor+control+and+friction+models+on+precise+positioning+of+the+complex+mechanical+system&rft.volume=70%E2%80%9371&rft.pages=397-413&rft.date=2016&rft.issn=0888-3270&rft_id=info%3Adoi%2F10.1016%2Fj.ymssp.2015.09.030&rft_id=info%3Abibcode%2F2016MSSP...70..397K&rft.au=Konowrocki+R.&rft.au=Szolc+T.&rft.au=Pochanke+A.&rft.au=Pregowska+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-184">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoff2010" class="citation web cs1">Coff, Jerry (10 September 2010). <a rel="nofollow" class="external text" href="http://www.universetoday.com/73323/what-is-an-electron/">"What Is An Electron"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">10 September</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=What+Is+An+Electron&rft.date=2010-09-10&rft.aulast=Coff&rft.aufirst=Jerry&rft_id=http%3A%2F%2Fwww.universetoday.com%2F73323%2Fwhat-is-an-electron%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-curtis74-185"><span class="mw-cite-backlink">^ <a href="#cite_ref-curtis74_185-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-curtis74_185-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurtis2003" class="citation book cs1">Curtis, L.J. (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=KmwCsuvxClAC&pg=PA74"><i>Atomic Structure and Lifetimes: A Conceptual Approach</i></a>. Cambridge University Press. p. 74. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-53635-6" title="Special:BookSources/978-0-521-53635-6"><bdi>978-0-521-53635-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Atomic+Structure+and+Lifetimes%3A+A+Conceptual+Approach&rft.pages=74&rft.pub=Cambridge+University+Press&rft.date=2003&rft.isbn=978-0-521-53635-6&rft.aulast=Curtis&rft.aufirst=L.J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKmwCsuvxClAC%26pg%3DPA74&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEichtenLanePeskin1983" class="citation journal cs1">Eichten, Estia J.; Lane, Kenneth D.; Peskin, Michael E. (1983-03-14). "New Tests for Quark and Lepton Substructure". <i>Physical Review Letters</i>. <b>50</b> (11). American Physical Society (APS): 811–814. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983PhRvL..50..811E">1983PhRvL..50..811E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevlett.50.811">10.1103/physrevlett.50.811</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a> <a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1446807">1446807</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119918703">119918703</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=New+Tests+for+Quark+and+Lepton+Substructure&rft.volume=50&rft.issue=11&rft.pages=811-814&rft.date=1983-03-14&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119918703%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1446807%23id-name%3DOSTI&rft_id=info%3Abibcode%2F1983PhRvL..50..811E&rft.issn=0031-9007&rft_id=info%3Adoi%2F10.1103%2Fphysrevlett.50.811&rft.aulast=Eichten&rft.aufirst=Estia+J.&rft.au=Lane%2C+Kenneth+D.&rft.au=Peskin%2C+Michael+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span> OSTI 1446807.</span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://physics.nist.gov/cgi-bin/cuu/Value?mpsme">"CODATA value: proton–electron mass ratio". 2006 CODATA recommended values. National Institute of Standards and Technology. Retrieved 18 July 2009.</a></span> </li> <li id="cite_note-physconst-eV-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-physconst-eV_188-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physics.nist.gov/cgi-bin/cuu/Value?evj">"2022 CODATA Value: electron volt"</a>. <i>The NIST Reference on Constants, Units, and Uncertainty</i>. <a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">NIST</a>. May 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-05-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+NIST+Reference+on+Constants%2C+Units%2C+and+Uncertainty&rft.atitle=2022+CODATA+Value%3A+electron+volt&rft.date=2024-05&rft_id=https%3A%2F%2Fphysics.nist.gov%2Fcgi-bin%2Fcuu%2FValue%3Fevj&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-189">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJean_Maruani1989" class="citation book cs1">Jean Maruani (1989). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=euM5z6aN6_0C&pg=PA73"><i>Molecules in Physics, Chemistry and Biology: v. 3: Electronic Structure and Chemical Reactivity</i></a>. Springer. p. 73. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-90-277-2598-1" title="Special:BookSources/978-90-277-2598-1"><bdi>978-90-277-2598-1</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Molecules+in+Physics%2C+Chemistry+and+Biology%3A+v.+3%3A+Electronic+Structure+and+Chemical+Reactivity&rft.pages=73&rft.pub=Springer&rft.date=1989&rft.isbn=978-90-277-2598-1&rft.au=Jean+Maruani&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DeuM5z6aN6_0C%26pg%3DPA73&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-definition-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-definition_190-0">^</a></b></span> <span class="reference-text"><a href="/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a>, <i><a href="/wiki/IUPAC_books#Gold_Book" class="mw-redirect" title="IUPAC books">Compendium of Chemical Terminology</a></i>, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "<a rel="nofollow" class="external text" href="https://goldbook.iupac.org/terms/view/E01990.html">Electronegativity</a>". <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.E01990">10.1351/goldbook.E01990</a></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/technology/electronics">"electronics | Devices, Facts, & History"</a>. <i>Encyclopædia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-09-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=electronics+%7C+Devices%2C+Facts%2C+%26+History&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=https%3A%2F%2Fwww.britannica.com%2Ftechnology%2Felectronics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Oxtoby8th-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-Oxtoby8th_192-0">^</a></b></span> <span class="reference-text">Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015).<i>Principles of Modern Chemistry</i>, Brooks Cole. p. 617. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-305-07911-3" title="Special:BookSources/978-1-305-07911-3">978-1-305-07911-3</a></span> </li> <li id="cite_note-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-194">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://dictionary.reference.com/browse/motor">"Motor"</a>. Dictionary.reference.com<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-05-09</span></span>. <q>a person or thing that imparts motion, esp. a contrivance, as a steam engine, that receives and modifies energy from some source in order to utilize it in driving machinery.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Motor&rft.pub=Dictionary.reference.com&rft_id=http%3A%2F%2Fdictionary.reference.com%2Fbrowse%2Fmotor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://dictionary.reference.com/browse/motor">Dictionary.com: (World heritage)</a> "3. any device that converts another form of energy into mechanical energy so as to produce motion"</span> </li> <li id="cite_note-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-196">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://dictionary.cambridge.org/dictionary/english/">"definition of "engineering"<span class="cs1-kern-right"></span>"</a>. <i>Cambridge Academic Content Dictionary</i>. Cambridge University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Cambridge+Academic+Content+Dictionary&rft.atitle=definition+of+%22engineering%22&rft_id=https%3A%2F%2Fdictionary.cambridge.org%2Fdictionary%2Fenglish%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-197">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.iaeng.org/about_IAENG.html">"About IAENG"</a>. <i>iaeng.org</i>. International Association of Engineers<span class="reference-accessdate">. Retrieved <span class="nowrap">December 17,</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=iaeng.org&rft.atitle=About+IAENG&rft_id=http%3A%2F%2Fwww.iaeng.org%2Fabout_IAENG.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Dharmaraj2009-198"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dharmaraj2009_198-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dharmaraj2009_198-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Dharmaraj2009_198-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Dharmaraj2009_198-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Dharmaraj2009_198-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Dharmaraj2009_198-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text">Dharmaraj, E.. Engineering Economics. Mumbai, IN: Himalaya Publishing House, 2009. ProQuest ebrary. Web. 9 November 2016.</span> </li> <li id="cite_note-Morris1960-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-Morris1960_199-0">^</a></b></span> <span class="reference-text">Morris, W. Thomas. (1960). Engineering economy: the analysis of management decisions. Homewood, Ill.: R. D. Irwin.</span> </li> <li id="cite_note-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-200">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20210224142618/https://www.aaees.org/careers/">"Careers in Environmental Engineering and Environmental Science"</a>. <i>American Academy of Environmental Engineers & Scientists</i>. Archived from <a rel="nofollow" class="external text" href="http://www.aaees.org/careers/">the original</a> on 2021-02-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-03-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=American+Academy+of+Environmental+Engineers+%26+Scientists&rft.atitle=Careers+in+Environmental+Engineering+and+Environmental+Science&rft_id=http%3A%2F%2Fwww.aaees.org%2Fcareers%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-201">^</a></b></span> <span class="reference-text">"Bureau of Labor Statistics, U.S. Department of Labor.U.S. Department of Labor, Occupational Outlook Handbook, 2010–11 Edition"</span> </li> <li id="cite_note-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-202">^</a></b></span> <span class="reference-text">"Major: Engineering Physics". The Princeton Review. 2017. p. 01. Retrieved June 4, 2017.</span> </li> <li id="cite_note-203"><span class="mw-cite-backlink"><b><a href="#cite_ref-203">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://engineeringphysics.princeton.edu/">"Introduction"</a> (online). Princeton University. Retrieved June 26, 2011.</span> </li> <li id="cite_note-204"><span class="mw-cite-backlink"><b><a href="#cite_ref-204">^</a></b></span> <span class="reference-text">Khare, P.; A. Swarup (2009-01-26). Engineering Physics: Fundamentals & Modern Applications (13th ed.). Jones & Bartlett Learning. pp. xiii–Preface. ISBN 978-0-7637-7374-8.</span> </li> <li id="cite_note-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-205">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.google.com/search?tbo=p&tbm=bks&q=Engineering+PhysicsEngineering">Physics</a> (online). Retrieved June 26, 2011.</span> </li> <li id="cite_note-Stryer_2002-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stryer_2002_206-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStryerBergTymoczko2002" class="citation book cs1">Stryer L, Berg JM, Tymoczko JL (2002). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/books/NBK21154/"><i>Biochemistry</i></a> (5th ed.). San Francisco: W.H. Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-4955-6" title="Special:BookSources/0-7167-4955-6"><bdi>0-7167-4955-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Biochemistry&rft.place=San+Francisco&rft.edition=5th&rft.pub=W.H.+Freeman&rft.date=2002&rft.isbn=0-7167-4955-6&rft.aulast=Stryer&rft.aufirst=L&rft.au=Berg%2C+JM&rft.au=Tymoczko%2C+JL&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbooks%2FNBK21154%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Open_access" title="open access publication – free to read"><img alt="Open access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/14px-Open_Access_logo_PLoS_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/18px-Open_Access_logo_PLoS_transparent.svg.png 2x" data-file-width="640" data-file-height="1000" /></a></span></span></span> </li> <li id="cite_note-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-207">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMostellerTukey1987" class="citation book cs1">Mosteller, F.; Tukey, J. W. (1987) [1968]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=C1guHWTlVVoC&pg=PA633">"Data Analysis, including Statistics"</a>. <i>The Collected Works of John W. Tukey: Philosophy and Principles of Data Analysis 1965–1986</i>. Vol. 4. CRC Press. pp. 601–720 [p. 633]. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-534-05101-4" title="Special:BookSources/0-534-05101-4"><bdi>0-534-05101-4</bdi></a> – via <a href="/wiki/Google_Books" title="Google Books">Google Books</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Data+Analysis%2C+including+Statistics&rft.btitle=The+Collected+Works+of+John+W.+Tukey%3A+Philosophy+and+Principles+of+Data+Analysis+1965%E2%80%931986&rft.pages=601-720+p.+633&rft.pub=CRC+Press&rft.date=1987&rft.isbn=0-534-05101-4&rft.aulast=Mosteller&rft.aufirst=F.&rft.au=Tukey%2C+J.+W.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DC1guHWTlVVoC%26pg%3DPA633&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Timoshenko-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-Timoshenko_208-0">^</a></b></span> <span class="reference-text">Timoshenko, S., (1953), <i>History of strength of materials</i>, McGraw-Hill New York</span> </li> <li id="cite_note-Truesdell-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-Truesdell_209-0">^</a></b></span> <span class="reference-text">Truesdell, C., (1960), <i>The rational mechanics of flexible or elastic bodies 1638–1788</i>, Venditioni Exponunt Orell Fussli Turici.</span> </li> <li id="cite_note-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-210">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.greek-language.gr/greekLang/modern_greek/tools/lexica/search.html?lq=%CE%B8%CE%B5%CF%81%CE%BC%CE%B9%CE%BA%CF%8C%CF%82&dq=">"Gate for the Greek language" on-line dictionary</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171205235500/http://www.greek-language.gr/greekLang/modern_greek/tools/lexica/search.html?lq=%CE%B8%CE%B5%CF%81%CE%BC%CE%B9%CE%BA%CF%8C%CF%82&dq=">Archived</a> 2017-12-05 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. greek-language.gr</span> </li> <li id="cite_note-211"><span class="mw-cite-backlink"><b><a href="#cite_ref-211">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.bipm.org/en/publications/si-brochure/">The International System of Units (SI)</a> (8th ed.). Bureau International des Poids et Mesures (International Committee for Weights and Measures). 2006. p. 144.</span> </li> <li id="cite_note-212"><span class="mw-cite-backlink"><b><a href="#cite_ref-212">^</a></b></span> <span class="reference-text">The term "magnitude" is used in the sense of "<a href="/wiki/Absolute_value" title="Absolute value">absolute value</a>": The charge of an electron is negative, but <i>F</i> is always defined to be positive.</span> </li> <li id="cite_note-physconst-F-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-physconst-F_213-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physics.nist.gov/cgi-bin/cuu/Value?f">"2022 CODATA Value: Faraday constant"</a>. <i>The NIST Reference on Constants, Units, and Uncertainty</i>. <a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">NIST</a>. May 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-05-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+NIST+Reference+on+Constants%2C+Units%2C+and+Uncertainty&rft.atitle=2022+CODATA+Value%3A+Faraday+constant&rft.date=2024-05&rft_id=https%3A%2F%2Fphysics.nist.gov%2Fcgi-bin%2Fcuu%2FValue%3Ff&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-physconst-e-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-physconst-e_214-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physics.nist.gov/cgi-bin/cuu/Value?e">"2022 CODATA Value: elementary charge"</a>. <i>The NIST Reference on Constants, Units, and Uncertainty</i>. <a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">NIST</a>. May 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-05-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+NIST+Reference+on+Constants%2C+Units%2C+and+Uncertainty&rft.atitle=2022+CODATA+Value%3A+elementary+charge&rft.date=2024-05&rft_id=https%3A%2F%2Fphysics.nist.gov%2Fcgi-bin%2Fcuu%2FValue%3Fe&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-physconst-NA-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-physconst-NA_215-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physics.nist.gov/cgi-bin/cuu/Value?na">"2022 CODATA Value: Avogadro constant"</a>. <i>The NIST Reference on Constants, Units, and Uncertainty</i>. <a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">NIST</a>. May 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-05-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+NIST+Reference+on+Constants%2C+Units%2C+and+Uncertainty&rft.atitle=2022+CODATA+Value%3A+Avogadro+constant&rft.date=2024-05&rft_id=https%3A%2F%2Fphysics.nist.gov%2Fcgi-bin%2Fcuu%2FValue%3Fna&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-216">^</a></b></span> <span class="reference-text"><a href="/wiki/Arthur_Schuster" title="Arthur Schuster">Arthur Schuster</a>, <i>An Introduction to the Theory of Optics</i>, London: Edward Arnold, 1904 <a rel="nofollow" class="external text" href="https://archive.org/details/anintroductiont02schugoog/page/n62">online</a>.</span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhatak2009" class="citation cs2">Ghatak, Ajoy (2009), <i>Optics</i> (4th ed.), McGraw-Hill Education, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-338048-3" title="Special:BookSources/978-0-07-338048-3"><bdi>978-0-07-338048-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Optics&rft.edition=4th&rft.pub=McGraw-Hill+Education&rft.date=2009&rft.isbn=978-0-07-338048-3&rft.aulast=Ghatak&rft.aufirst=Ajoy&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaryl_L._Logan2011" class="citation book cs1">Daryl L. Logan (2011). <i>A first course in the finite element method</i>. Cengage Learning. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-66825-1" title="Special:BookSources/978-0-495-66825-1"><bdi>978-0-495-66825-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+first+course+in+the+finite+element+method&rft.pub=Cengage+Learning&rft.date=2011&rft.isbn=978-0-495-66825-1&rft.au=Daryl+L.+Logan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-219"><span class="mw-cite-backlink"><b><a href="#cite_ref-219">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuderstadt,_James_J.Martin,_William_R.1979" class="citation book cs1">Duderstadt, James J.; Martin, William R. (1979). "Chapter 4:The derivation of continuum description from transport equations". In Wiley-Interscience Publications (ed.). <i>Transport theory</i>. New York. p. 218. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-04492-5" title="Special:BookSources/978-0-471-04492-5"><bdi>978-0-471-04492-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+4%3AThe+derivation+of+continuum+description+from+transport+equations&rft.btitle=Transport+theory&rft.place=New+York&rft.pages=218&rft.date=1979&rft.isbn=978-0-471-04492-5&rft.au=Duderstadt%2C+James+J.&rft.au=Martin%2C+William+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-220">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreidberg,_Jeffrey_P.2008" class="citation book cs1">Freidberg, Jeffrey P. (2008). "Chapter 10:A self-consistent two-fluid model". In Cambridge University Press (ed.). <i>Plasma Physics and Fusion Energy</i> (1 ed.). Cambridge. p. 225. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-73317-5" title="Special:BookSources/978-0-521-73317-5"><bdi>978-0-521-73317-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+10%3AA+self-consistent+two-fluid+model&rft.btitle=Plasma+Physics+and+Fusion+Energy&rft.place=Cambridge&rft.pages=225&rft.edition=1&rft.date=2008&rft.isbn=978-0-521-73317-5&rft.au=Freidberg%2C+Jeffrey+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text">White, Frank M. (2011). Fluid Mechanics (7th ed.). McGraw-Hill. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-352934-9" title="Special:BookSources/978-0-07-352934-9">978-0-07-352934-9</a>.</span> </li> <li id="cite_note-MW_dictionary_def-222"><span class="mw-cite-backlink"><b><a href="#cite_ref-MW_dictionary_def_222-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/hydrostatics">"Hydrostatics"</a>. <i>Merriam-Webster</i><span class="reference-accessdate">. Retrieved <span class="nowrap">11 September</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Merriam-Webster&rft.atitle=Hydrostatics&rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fhydrostatics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-223">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080302163401/http://www.charfac.umn.edu/glossary/f.html">"Standard Microscopy Terminology"</a>. <i>University of Minnesota Characterization Facility website</i>. Archived from <a rel="nofollow" class="external text" href="http://www.charfac.umn.edu/glossary/f.html">the original</a> on 2008-03-02<span class="reference-accessdate">. Retrieved <span class="nowrap">2006-04-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=University+of+Minnesota+Characterization+Facility+website&rft.atitle=Standard+Microscopy+Terminology&rft_id=http%3A%2F%2Fwww.charfac.umn.edu%2Fglossary%2Ff.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-224">^</a></b></span> <span class="reference-text">IEEE Std 260.1-2004, IEEE Standard Letter Symbols for Units of Measurement (SI Units, Customary Inch-Pound Units, and Certain Other Units)</span> </li> <li id="cite_note-isbn_978-0135018583-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-isbn_978-0135018583_225-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFletcherShoup1978" class="citation cs2">Fletcher, Leroy S.; Shoup, Terry E. (1978), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tyohAQAAIAAJ"><i>Introduction to Engineering</i></a>, Prentice-Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-501858-3" title="Special:BookSources/978-0-13-501858-3"><bdi>978-0-13-501858-3</bdi></a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/77024142">77024142</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Engineering&rft.pub=Prentice-Hall&rft.date=1978&rft_id=info%3Alccn%2F77024142&rft.isbn=978-0-13-501858-3&rft.aulast=Fletcher&rft.aufirst=Leroy+S.&rft.au=Shoup%2C+Terry+E.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtyohAQAAIAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><sup class="reference nowrap"><span title="Page / location: 257">: 257 </span></sup></span> </li> <li id="cite_note-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-226">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBudynasNisbett2014" class="citation book cs1">Budynas, Richard G.; Nisbett, J. Keith (2014-01-27). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180827142501/https://www.mheducation.com/highered/product/shigley-s-mechanical-engineering-design-budynas-nisbett/M0073398209.html"><i>Mechanical Engineering Design</i></a>. McGraw Hill Education. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-352928-8" title="Special:BookSources/978-0-07-352928-8"><bdi>978-0-07-352928-8</bdi></a>. Archived from <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="http://www.mheducation.com/highered/product/shigley-s-mechanical-engineering-design-budynas-nisbett/M0073398209.html">the original</a></span> on 2018-08-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2021-01-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mechanical+Engineering+Design&rft.pub=McGraw+Hill+Education&rft.date=2014-01-27&rft.isbn=978-0-07-352928-8&rft.aulast=Budynas&rft.aufirst=Richard+G.&rft.au=Nisbett%2C+J.+Keith&rft_id=http%3A%2F%2Fwww.mheducation.com%2Fhighered%2Fproduct%2Fshigley-s-mechanical-engineering-design-budynas-nisbett%2FM0073398209.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-suresh04-227"><span class="mw-cite-backlink"><b><a href="#cite_ref-suresh04_227-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuresh2004" class="citation book cs1">Suresh, S. (2004). <i>Fatigue of Materials</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-57046-6" title="Special:BookSources/978-0-521-57046-6"><bdi>978-0-521-57046-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fatigue+of+Materials&rft.pub=Cambridge+University+Press&rft.date=2004&rft.isbn=978-0-521-57046-6&rft.aulast=Suresh&rft.aufirst=S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-228">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamsay1949" class="citation journal cs1">Ramsay, J. A. (1 May 1949). <a rel="nofollow" class="external text" href="http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=15406812">"A New Method of Freezing-Point Determination for Small Quantities"</a>. <i>Journal of Experimental Biology</i>. <b>26</b> (1): 57–64. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1242%2Fjeb.26.1.57">10.1242/jeb.26.1.57</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15406812">15406812</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Experimental+Biology&rft.atitle=A+New+Method+of+Freezing-Point+Determination+for+Small+Quantities&rft.volume=26&rft.issue=1&rft.pages=57-64&rft.date=1949-05-01&rft_id=info%3Adoi%2F10.1242%2Fjeb.26.1.57&rft_id=info%3Apmid%2F15406812&rft.aulast=Ramsay&rft.aufirst=J.+A.&rft_id=http%3A%2F%2Fjeb.biologists.org%2Fcgi%2Fpmidlookup%3Fview%3Dlong%26pmid%3D15406812&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-229">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/friction">"friction"</a>. <i><a href="/wiki/Merriam-Webster" title="Merriam-Webster">Merriam-Webster.com Dictionary</a></i>. Merriam-Webster.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Merriam-Webster.com+Dictionary&rft.atitle=friction&rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Ffriction&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Beer-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-Beer_230-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeerJohnston1996" class="citation book cs1"><a href="/wiki/Ferdinand_Beer" class="mw-redirect" title="Ferdinand Beer">Beer, Ferdinand P.</a>; Johnston, E. Russel Jr. (1996). <i>Vector Mechanics for Engineers</i> (Sixth ed.). McGraw-Hill. p. 397. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-297688-5" title="Special:BookSources/978-0-07-297688-5"><bdi>978-0-07-297688-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vector+Mechanics+for+Engineers&rft.pages=397&rft.edition=Sixth&rft.pub=McGraw-Hill&rft.date=1996&rft.isbn=978-0-07-297688-5&rft.aulast=Beer&rft.aufirst=Ferdinand+P.&rft.au=Johnston%2C+E.+Russel+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Meriam-231"><span class="mw-cite-backlink">^ <a href="#cite_ref-Meriam_231-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Meriam_231-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeriamKraige2002" class="citation book cs1">Meriam, J. L.; Kraige, L. G. (2002). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/engineeringmech100meri"><i>Engineering Mechanics</i></a></span> (fifth ed.). John Wiley & Sons. p. <a rel="nofollow" class="external text" href="https://archive.org/details/engineeringmech100meri/page/328">328</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-60293-4" title="Special:BookSources/978-0-471-60293-4"><bdi>978-0-471-60293-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Engineering+Mechanics&rft.pages=328&rft.edition=fifth&rft.pub=John+Wiley+%26+Sons&rft.date=2002&rft.isbn=978-0-471-60293-4&rft.aulast=Meriam&rft.aufirst=J.+L.&rft.au=Kraige%2C+L.+G.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fengineeringmech100meri&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Ruina-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ruina_232-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRuinaPratap2002" class="citation book cs1">Ruina, Andy; Pratap, Rudra (2002). <a rel="nofollow" class="external text" href="http://ruina.tam.cornell.edu/Book/RuinaPratapNoProblems.pdf"><i>Introduction to Statics and Dynamics</i></a> <span class="cs1-format">(PDF)</span>. Oxford University Press. p. 713.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Statics+and+Dynamics&rft.pages=713&rft.pub=Oxford+University+Press&rft.date=2002&rft.aulast=Ruina&rft.aufirst=Andy&rft.au=Pratap%2C+Rudra&rft_id=http%3A%2F%2Fruina.tam.cornell.edu%2FBook%2FRuinaPratapNoProblems.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Hibbeler-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hibbeler_233-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHibbeler2007" class="citation book cs1">Hibbeler, R. C. (2007). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/studypack00rcsc"><i>Engineering Mechanics</i></a></span> (Eleventh ed.). Pearson, Prentice Hall. p. 393. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-127146-3" title="Special:BookSources/978-0-13-127146-3"><bdi>978-0-13-127146-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Engineering+Mechanics&rft.pages=393&rft.edition=Eleventh&rft.pub=Pearson%2C+Prentice+Hall&rft.date=2007&rft.isbn=978-0-13-127146-3&rft.aulast=Hibbeler&rft.aufirst=R.+C.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstudypack00rcsc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Soutas-Little-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-Soutas-Little_234-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSoutas-LittleInman2008" class="citation book cs1">Soutas-Little, Robert W.; Inman, Balint (2008). <i>Engineering Mechanics</i>. Thomson. p. 329. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-495-29610-2" title="Special:BookSources/978-0-495-29610-2"><bdi>978-0-495-29610-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Engineering+Mechanics&rft.pages=329&rft.pub=Thomson&rft.date=2008&rft.isbn=978-0-495-29610-2&rft.aulast=Soutas-Little&rft.aufirst=Robert+W.&rft.au=Inman%2C+Balint&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-236"><span class="mw-cite-backlink"><b><a href="#cite_ref-236">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130106050848/http://www.phon.ucl.ac.uk/home/johnm/sid/sidf.htm">"sidfn"</a>. Phon.UCL.ac.uk. Archived from <a rel="nofollow" class="external text" href="http://www.phon.ucl.ac.uk/home/johnm/sid/sidf.htm">the original</a> on 2013-01-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=sidfn&rft.pub=Phon.UCL.ac.uk&rft_id=http%3A%2F%2Fwww.phon.ucl.ac.uk%2Fhome%2Fjohnm%2Fsid%2Fsidf.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-237"><span class="mw-cite-backlink"><b><a href="#cite_ref-237">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLemmetty1999" class="citation web cs1">Lemmetty, Sami (1999). <a rel="nofollow" class="external text" href="http://www.acoustics.hut.fi/publications/files/theses/lemmetty_mst/chap3.html">"Phonetics and Theory of Speech Production"</a>. Acoustics.hut.fi<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Phonetics+and+Theory+of+Speech+Production&rft.pub=Acoustics.hut.fi&rft.date=1999&rft.aulast=Lemmetty&rft.aufirst=Sami&rft_id=http%3A%2F%2Fwww.acoustics.hut.fi%2Fpublications%2Ffiles%2Ftheses%2Flemmetty_mst%2Fchap3.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-238"><span class="mw-cite-backlink"><b><a href="#cite_ref-238">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180826153236/http://fourier.eng.hmc.edu/e101/lectures/Fundamental_Frequency.pdf">"Fundamental Frequency of Continuous Signals"</a> <span class="cs1-format">(PDF)</span>. Fourier.eng.hmc.edu. 2011. Archived from <a rel="nofollow" class="external text" href="http://fourier.eng.hmc.edu/e101/lectures/Fundamental_Frequency.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2018-08-26<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Fundamental+Frequency+of+Continuous+Signals&rft.pub=Fourier.eng.hmc.edu&rft.date=2011&rft_id=http%3A%2F%2Ffourier.eng.hmc.edu%2Fe101%2Flectures%2FFundamental_Frequency.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-239"><span class="mw-cite-backlink"><b><a href="#cite_ref-239">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140313133719/https://nchsdduncanapphysics.wikispaces.com/file/view/Standing+Waves+in+a+Tube+II.pdf">"Standing Wave in a Tube II – Finding the Fundamental Frequency"</a> <span class="cs1-format">(PDF)</span>. Nchsdduncanapphysics.wikispaces.com. Archived from <a rel="nofollow" class="external text" href="https://nchsdduncanapphysics.wikispaces.com/file/view/Standing+Waves+in+a+Tube+II.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-03-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Standing+Wave+in+a+Tube+II+%E2%80%93+Finding+the+Fundamental+Frequency&rft.pub=Nchsdduncanapphysics.wikispaces.com&rft_id=https%3A%2F%2Fnchsdduncanapphysics.wikispaces.com%2Ffile%2Fview%2FStanding%2BWaves%2Bin%2Ba%2BTube%2BII.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-240"><span class="mw-cite-backlink"><b><a href="#cite_ref-240">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20191215062640/https://csm.kennesaw.edu/physics/">"Physics: Standing Waves"</a>. Physics.Kennesaw.edu. Archived from <a rel="nofollow" class="external text" href="http://physics.kennesaw.edu/P11_standwaves3.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2019-12-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Physics%3A+Standing+Waves&rft.pub=Physics.Kennesaw.edu&rft_id=http%3A%2F%2Fphysics.kennesaw.edu%2FP11_standwaves3.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-241"><span class="mw-cite-backlink"><b><a href="#cite_ref-241">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPollock2005" class="citation web cs1">Pollock, Steven (2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140515180200/http://www.colorado.edu/physics/phys1240/phys1240_fa05/notes/lect24_Tu11_22_4up.pdf">"Phys 1240: Sound and Music"</a> <span class="cs1-format">(PDF)</span>. Colorado.edu. Archived from <a rel="nofollow" class="external text" href="http://www.colorado.edu/physics/phys1240/phys1240_fa05/notes/lect24_Tu11_22_4up.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-05-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Phys+1240%3A+Sound+and+Music&rft.pub=Colorado.edu&rft.date=2005&rft.aulast=Pollock&rft.aufirst=Steven&rft_id=http%3A%2F%2Fwww.colorado.edu%2Fphysics%2Fphys1240%2Fphys1240_fa05%2Fnotes%2Flect24_Tu11_22_4up.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-242"><span class="mw-cite-backlink"><b><a href="#cite_ref-242">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/waves/string.html">"Standing Waves on a String"</a>. Hyperphysics.phy-astr.gsu.edu<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-11-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Standing+Waves+on+a+String&rft.pub=Hyperphysics.phy-astr.gsu.edu&rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fwaves%2Fstring.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-243"><span class="mw-cite-backlink"><b><a href="#cite_ref-243">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20200409044223/https://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/technology/creating-musical-sounds/content-section-0">"Creating musical sounds"</a>. <i>OpenLearn</i>. Open University. Archived from <a rel="nofollow" class="external text" href="http://openlearn.open.ac.uk/mod/oucontent/view.php?id=397877&section=5.13.2">the original</a> on 2020-04-09<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-06-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=OpenLearn&rft.atitle=Creating+musical+sounds&rft_id=http%3A%2F%2Fopenlearn.open.ac.uk%2Fmod%2Foucontent%2Fview.php%3Fid%3D397877%26section%3D5.13.2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Fackler-244"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fackler_244-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFacklerTran1988" class="citation book cs1">Fackler, Orrin; Tran, J. Thanh Van (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ke32COxghksC&q=%22fifth+force%22f&pg=PR7"><i>5th Force Neutrino Physics</i></a>. Atlantica Séguier Frontières. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-2-86332-054-9" title="Special:BookSources/978-2-86332-054-9"><bdi>978-2-86332-054-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=5th+Force+Neutrino+Physics&rft.pub=Atlantica+S%C3%A9guier+Fronti%C3%A8res&rft.date=1988&rft.isbn=978-2-86332-054-9&rft.aulast=Fackler&rft.aufirst=Orrin&rft.au=Tran%2C+J.+Thanh+Van&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKe32COxghksC%26q%3D%2522fifth%2Bforce%2522f%26pg%3DPR7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Weisstein-245"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weisstein_245-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein2007" class="citation web cs1">Weisstein, Eric W. (2007). <a rel="nofollow" class="external text" href="http://scienceworld.wolfram.com/physics/FifthForce.html">"Fifth Force"</a>. <i>World of Science</i>. Wolfram Research<span class="reference-accessdate">. Retrieved <span class="nowrap">September 14,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=World+of+Science&rft.atitle=Fifth+Force&rft.date=2007&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=http%3A%2F%2Fscienceworld.wolfram.com%2Fphysics%2FFifthForce.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Franklin-246"><span class="mw-cite-backlink"><b><a href="#cite_ref-Franklin_246-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklinFischbach2016" class="citation book cs1">Franklin, Allan; Fischbach, Ephraim (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7giyCwAAQBAJ&q=%22fifth+force%22&pg=PA146"><i>The Rise and Fall of the Fifth Force: Discovery, Pursuit, and Justification in Modern Physics, 2nd Ed</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-28412-5" title="Special:BookSources/978-3-319-28412-5"><bdi>978-3-319-28412-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Rise+and+Fall+of+the+Fifth+Force%3A+Discovery%2C+Pursuit%2C+and+Justification+in+Modern+Physics%2C+2nd+Ed.&rft.pub=Springer&rft.date=2016&rft.isbn=978-3-319-28412-5&rft.aulast=Franklin&rft.aufirst=Allan&rft.au=Fischbach%2C+Ephraim&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7giyCwAAQBAJ%26q%3D%2522fifth%2Bforce%2522%26pg%3DPA146&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-247"><span class="mw-cite-backlink"><b><a href="#cite_ref-247">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.michigan.gov/lara/0,4601,7-154-35299_61343_35414_60647_35472-114639--,00.html">"Professional Engineers Examination"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Professional+Engineers+Examination&rft_id=http%3A%2F%2Fwww.michigan.gov%2Flara%2F0%2C4601%2C7-154-35299_61343_35414_60647_35472-114639--%2C00.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-248"><span class="mw-cite-backlink"><b><a href="#cite_ref-248">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.merriam-webster.com/dictionary/battery">"battery" (def. 4b)</a>, <i>Merriam-Webster Online Dictionary</i> (2008). Retrieved 6 August 2008.</span> </li> <li id="cite_note-Risi2015-249"><span class="mw-cite-backlink"><b><a href="#cite_ref-Risi2015_249-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVincenzo_De_Risi2015" class="citation book cs1">Vincenzo De Risi (31 January 2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1m11BgAAQBAJ&pg=PA1"><i>Mathematizing Space: The Objects of Geometry from Antiquity to the Early Modern Age</i></a>. Birkhäuser. pp. 1–. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-12102-4" title="Special:BookSources/978-3-319-12102-4"><bdi>978-3-319-12102-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematizing+Space%3A+The+Objects+of+Geometry+from+Antiquity+to+the+Early+Modern+Age&rft.pages=1-&rft.pub=Birkh%C3%A4user&rft.date=2015-01-31&rft.isbn=978-3-319-12102-4&rft.au=Vincenzo+De+Risi&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1m11BgAAQBAJ%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Sheriff1991-250"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sheriff1991_250-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sheriff1991_250-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFSheriff1991">Sheriff 1991</a></span> </li> <li id="cite_note-IUGG-251"><span class="mw-cite-backlink"><b><a href="#cite_ref-IUGG_251-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFIUGG2011">IUGG 2011</a></span> </li> <li id="cite_note-AGUscience-252"><span class="mw-cite-backlink"><b><a href="#cite_ref-AGUscience_252-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAGU2011">AGU 2011</a></span> </li> <li id="cite_note-Gutenberg_(1929)-253"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gutenberg_(1929)_253-0">^</a></b></span> <span class="reference-text">Gutenberg, B., 1929, Lehrbuch der Geophysik. Leipzig. Berlin (Gebruder Borntraeger).</span> </li> <li id="cite_note-Runcorn-254"><span class="mw-cite-backlink"><b><a href="#cite_ref-Runcorn_254-0">^</a></b></span> <span class="reference-text">Runcorn, S.K, (editor-in-chief), 1967, International dictionary of geophysics:. Pergamon, Oxford, 2 volumes, 1,728 pp., 730 fig</span> </li> <li id="cite_note-HyperPhysics-255"><span class="mw-cite-backlink"><b><a href="#cite_ref-HyperPhysics_255-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFC.R._Nave" class="citation web cs1">C.R. Nave. <a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/forces/color.html">"The Color Force"</a>. <i><a href="/wiki/HyperPhysics" title="HyperPhysics">HyperPhysics</a></i>. <a href="/wiki/Georgia_State_University" title="Georgia State University">Georgia State University</a>, Department of Physics<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-04-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=HyperPhysics&rft.atitle=The+Color+Force&rft.au=C.R.+Nave&rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fforces%2Fcolor.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-LM-256"><span class="mw-cite-backlink">^ <a href="#cite_ref-LM_256-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LM_256-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Keith_J._Laidler" title="Keith J. Laidler">Keith J. Laidler</a> and John M. Meiser, <i>Physical Chemistry</i> (Benjamin/Cummings 1982), pp. 18–19</span> </li> <li id="cite_note-gpe-258"><span class="mw-cite-backlink">^ <a href="#cite_ref-gpe_258-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-gpe_258-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/gpot.html">"Gravitational Potential Energy"</a>. <i>hyperphysics.phy-astr.gsu.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=hyperphysics.phy-astr.gsu.edu&rft.atitle=Gravitational+Potential+Energy&rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2Fgpot.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-259"><span class="mw-cite-backlink"><b><a href="#cite_ref-259">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynman1970" class="citation book cs1"><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman, Richard</a> (1970). <a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/I_07.html"><i>The Feynman Lectures on Physics</i></a>. Vol. I. Addison Wesley Longman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-201-02115-8" title="Special:BookSources/978-0-201-02115-8"><bdi>978-0-201-02115-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Feynman+Lectures+on+Physics&rft.pub=Addison+Wesley+Longman&rft.date=1970&rft.isbn=978-0-201-02115-8&rft.aulast=Feynman&rft.aufirst=Richard&rft_id=https%3A%2F%2Ffeynmanlectures.caltech.edu%2FI_07.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-260"><span class="mw-cite-backlink"><b><a href="#cite_ref-260">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeroch1981" class="citation book cs1">Geroch, Robert (1981). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UkxPpqHs0RkC&pg=PA181"><i>General Relativity from A to B</i></a>. <a href="/wiki/University_of_Chicago_Press" title="University of Chicago Press">University of Chicago Press</a>. p. 181. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-226-28864-2" title="Special:BookSources/978-0-226-28864-2"><bdi>978-0-226-28864-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=General+Relativity+from+A+to+B&rft.pages=181&rft.pub=University+of+Chicago+Press&rft.date=1981&rft.isbn=978-0-226-28864-2&rft.aulast=Geroch&rft.aufirst=Robert&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUkxPpqHs0RkC%26pg%3DPA181&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-261"><span class="mw-cite-backlink"><b><a href="#cite_ref-261">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrønHervik2007" class="citation book cs1">Grøn, Øyvind; Hervik, Sigbjørn (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IyJhCHAryuUC&pg=PA256"><i>Einstein's General Theory of Relativity: with Modern Applications in Cosmology</i></a>. Springer Japan. p. 256. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-69199-2" title="Special:BookSources/978-0-387-69199-2"><bdi>978-0-387-69199-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Einstein%27s+General+Theory+of+Relativity%3A+with+Modern+Applications+in+Cosmology&rft.pages=256&rft.pub=Springer+Japan&rft.date=2007&rft.isbn=978-0-387-69199-2&rft.aulast=Gr%C3%B8n&rft.aufirst=%C3%98yvind&rft.au=Hervik%2C+Sigbj%C3%B8rn&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIyJhCHAryuUC%26pg%3DPA256&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-262"><span class="mw-cite-backlink"><b><a href="#cite_ref-262">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFosterNightingale2006" class="citation book cs1">Foster, J.; Nightingale, J. D. (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wtoKZODmoVsC&pg=PA55"><i>A Short Course in General Relativity</i></a> (3 ed.). Springer Science & Business. p. 55. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-26078-5" title="Special:BookSources/978-0-387-26078-5"><bdi>978-0-387-26078-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Short+Course+in+General+Relativity&rft.pages=55&rft.edition=3&rft.pub=Springer+Science+%26+Business&rft.date=2006&rft.isbn=978-0-387-26078-5&rft.aulast=Foster&rft.aufirst=J.&rft.au=Nightingale%2C+J.+D.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwtoKZODmoVsC%26pg%3DPA55&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-263"><span class="mw-cite-backlink"><b><a href="#cite_ref-263">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSolivérez2016" class="citation book cs1">Solivérez, C.E. (2016). <i>Electrostatics and magnetostatics of polarized ellipsoidal bodies: the depolarization tensor method</i> (1st English ed.). Free Scientific Information. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-987-28304-0-3" title="Special:BookSources/978-987-28304-0-3"><bdi>978-987-28304-0-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electrostatics+and+magnetostatics+of+polarized+ellipsoidal+bodies%3A+the+depolarization+tensor+method&rft.edition=1st+English&rft.pub=Free+Scientific+Information&rft.date=2016&rft.isbn=978-987-28304-0-3&rft.aulast=Soliv%C3%A9rez&rft.aufirst=C.E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-264"><span class="mw-cite-backlink"><b><a href="#cite_ref-264">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1 cs1-prop-foreign-lang-source"><a rel="nofollow" class="external text" href="https://www.academie-sciences.fr/pdf/dossiers/Poincare/Poincare_pdf/Poincare_CR1905.pdf">"Sur la dynamique de l'électron - Note de Henri Poincaré publiée dans les Comptes rendus de l'Académie des sciences de la séance du 5 juin 1905 - Membres de l'Académie des sciences depuis sa création"</a> [On the dynamics of the electron - Note by Henri Poincaré published in the Reports of the Academy of Sciences of the session of June 5, 1905 - Members of the Academy of Sciences since its creation] <span class="cs1-format">(PDF)</span>. <i>academie-sciences.fr</i> (in French)<span class="reference-accessdate">. Retrieved <span class="nowrap">3 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=academie-sciences.fr&rft.atitle=Sur+la+dynamique+de+l%27%C3%A9lectron+-+Note+de+Henri+Poincar%C3%A9+publi%C3%A9e+dans+les+Comptes+rendus+de+l%27Acad%C3%A9mie+des+sciences+de+la+s%C3%A9ance+du+5+juin+1905+-+Membres+de+l%27Acad%C3%A9mie+des+sciences+depuis+sa+cr%C3%A9ation&rft_id=https%3A%2F%2Fwww.academie-sciences.fr%2Fpdf%2Fdossiers%2FPoincare%2FPoincare_pdf%2FPoincare_CR1905.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-265"><span class="mw-cite-backlink"><b><a href="#cite_ref-265">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein,_A1916" class="citation journal cs1 cs1-prop-long-vol">Einstein, A (June 1916). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160115224321/http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/sitzungsberichte">"Näherungsweise Integration der Feldgleichungen der Gravitation"</a>. <i><a href="/wiki/Prussian_Academy_of_Sciences" title="Prussian Academy of Sciences">Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin</a></i>. part 1: 688–696. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1916SPAW.......688E">1916SPAW.......688E</a>. Archived from <a rel="nofollow" class="external text" href="http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/sitzungsberichte">the original</a> on 2016-01-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-11-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sitzungsberichte+der+K%C3%B6niglich+Preussischen+Akademie+der+Wissenschaften+Berlin&rft.atitle=N%C3%A4herungsweise+Integration+der+Feldgleichungen+der+Gravitation&rft.volume=part+1&rft.pages=688-696&rft.date=1916-06&rft_id=info%3Abibcode%2F1916SPAW.......688E&rft.au=Einstein%2C+A&rft_id=http%3A%2F%2Feinstein-annalen.mpiwg-berlin.mpg.de%2Frelated_texts%2Fsitzungsberichte&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Gravitationswellen-266"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gravitationswellen_266-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein,_A1918" class="citation journal cs1 cs1-prop-long-vol">Einstein, A (1918). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160115224321/http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/sitzungsberichte">"Über Gravitationswellen"</a>. <i>Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin</i>. part 1: 154–167. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1918SPAW.......154E">1918SPAW.......154E</a>. Archived from <a rel="nofollow" class="external text" href="http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/sitzungsberichte">the original</a> on 2016-01-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-11-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sitzungsberichte+der+K%C3%B6niglich+Preussischen+Akademie+der+Wissenschaften+Berlin&rft.atitle=%C3%9Cber+Gravitationswellen&rft.volume=part+1&rft.pages=154-167&rft.date=1918&rft_id=info%3Abibcode%2F1918SPAW.......154E&rft.au=Einstein%2C+A&rft_id=http%3A%2F%2Feinstein-annalen.mpiwg-berlin.mpg.de%2Frelated_texts%2Fsitzungsberichte&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-267"><span class="mw-cite-backlink"><b><a href="#cite_ref-267">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFinley" class="citation web cs1">Finley, Dave. <a rel="nofollow" class="external text" href="http://phys.org/news/2013-04-einstein-gravity-theory-toughest-bizarre.html">"Einstein's gravity theory passes toughest test yet: Bizarre binary star system pushes study of relativity to new limits"</a>. Phys.Org.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Einstein%27s+gravity+theory+passes+toughest+test+yet%3A+Bizarre+binary+star+system+pushes+study+of+relativity+to+new+limits&rft.pub=Phys.Org&rft.aulast=Finley&rft.aufirst=Dave&rft_id=http%3A%2F%2Fphys.org%2Fnews%2F2013-04-einstein-gravity-theory-toughest-bizarre.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-268"><span class="mw-cite-backlink"><b><a href="#cite_ref-268">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.dpf99.library.ucla.edu/session14/barish1412.pdf">The Detection of Gravitational Waves using LIGO, B. Barish</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303205650/http://www.dpf99.library.ucla.edu/session14/barish1412.pdf">Archived</a> 2016-03-03 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-269"><span class="mw-cite-backlink"><b><a href="#cite_ref-269">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinsteinRosen1937" class="citation journal cs1">Einstein, Albert; <a href="/wiki/Nathan_Rosen" title="Nathan Rosen">Rosen, Nathan</a> (January 1937). "On gravitational waves". <i>Journal of the Franklin Institute</i>. <b>223</b> (1): 43–54. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1937FrInJ.223...43E">1937FrInJ.223...43E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0016-0032%2837%2990583-0">10.1016/S0016-0032(37)90583-0</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Franklin+Institute&rft.atitle=On+gravitational+waves&rft.volume=223&rft.issue=1&rft.pages=43-54&rft.date=1937-01&rft_id=info%3Adoi%2F10.1016%2FS0016-0032%2837%2990583-0&rft_id=info%3Abibcode%2F1937FrInJ.223...43E&rft.aulast=Einstein&rft.aufirst=Albert&rft.au=Rosen%2C+Nathan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Comins-270"><span class="mw-cite-backlink"><b><a href="#cite_ref-Comins_270-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCominsKaufmann2008" class="citation book cs1">Comins, Neil F.; Kaufmann, William J. (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=J1d9HJHlISkC&pg=PA347"><i>Discovering the Universe: From the Stars to the Planets</i></a>. MacMillan. p. 347. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009dufs.book.....C">2009dufs.book.....C</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4292-3042-1" title="Special:BookSources/978-1-4292-3042-1"><bdi>978-1-4292-3042-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Discovering+the+Universe%3A+From+the+Stars+to+the+Planets&rft.pages=347&rft.pub=MacMillan&rft.date=2008&rft_id=info%3Abibcode%2F2009dufs.book.....C&rft.isbn=978-1-4292-3042-1&rft.aulast=Comins&rft.aufirst=Neil+F.&rft.au=Kaufmann%2C+William+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJ1d9HJHlISkC%26pg%3DPA347&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-271"><span class="mw-cite-backlink"><b><a href="#cite_ref-271">^</a></b></span> <span class="reference-text"> Reif (1965): "[in the special case of purely thermal interaction between two system:] The mean energy transferred from one system to the other as a result of purely thermal interaction is called 'heat'" (p. 67). the quantity <span class="texhtml mvar" style="font-style:italic;">Q</span> [...] is simply a measure of the mean energy change <i>not</i> due to the change of external parameters. [...] splits the total mean energy change into a part W due to mechanical interaction and a part <span class="texhtml mvar" style="font-style:italic;">Q</span> due to thermal interaction [...] by virtue of [the definition <span class="texhtml">Δ<i>U</i>=<i>Q</i> − <i>W</i></span>, present notation, physics sign convention], both heat and work have the dimensions of energy" (p. 73). C.f.: "heat is thermal energy in transfer" Stephen J. Blundell, Katherine M. Blundell, <i>Concepts in Thermal Physics</i> (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YE9uBAAAQBAJ&pg=PA13">p. 13</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180624150432/https://books.google.ch/books?id=YE9uBAAAQBAJ&pg=PA13">Archived</a> 24 June 2018 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-272"><span class="mw-cite-backlink"><b><a href="#cite_ref-272">^</a></b></span> <span class="reference-text"><i>Thermodynamics and an Introduction to Thermostatics, 2nd Edition,</i> by Herbert B. Callen, 1985, <a rel="nofollow" class="external free" href="http://cvika.grimoar.cz/callen/">http://cvika.grimoar.cz/callen/</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181017152028/http://cvika.grimoar.cz/callen/">Archived</a> 17 October 2018 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> or <a rel="nofollow" class="external free" href="http://keszei.chem.elte.hu/1alapFizkem/H.B.Callen-Thermodynamics.pdf">http://keszei.chem.elte.hu/1alapFizkem/H.B.Callen-Thermodynamics.pdf</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161230040339/http://keszei.chem.elte.hu/1alapFizkem/H.B.Callen-Thermodynamics.pdf">Archived</a> 30 December 2016 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> , p. 8: Energy may be transferred via ... work. "But it is equally possible to transfer energy via the hidden atomic modes of motion as well as via those that happen to be macroscopically observable. An energy transfer via the hidden atomic modes is called <i>heat</i>."</span> </li> <li id="cite_note-273"><span class="mw-cite-backlink"><b><a href="#cite_ref-273">^</a></b></span> <span class="reference-text"><a href="/wiki/Max_Born" title="Max Born">Born, M.</a> (1949), p. 31.</span> </li> <li id="cite_note-274"><span class="mw-cite-backlink"><b><a href="#cite_ref-274">^</a></b></span> <span class="reference-text"><a href="/wiki/Brian_Pippard" title="Brian Pippard">Pippard, A.B.</a> (1957/1966), p. 16.</span> </li> <li id="cite_note-275"><span class="mw-cite-backlink"><b><a href="#cite_ref-275">^</a></b></span> <span class="reference-text"><a href="/wiki/Lev_Landau" title="Lev Landau">Landau, L.</a>, <a href="/wiki/Evgeny_Lifshitz" title="Evgeny Lifshitz">Lifshitz, E.M.</a> (1958/1969), p. 43</span> </li> <li id="cite_note-276"><span class="mw-cite-backlink"><b><a href="#cite_ref-276">^</a></b></span> <span class="reference-text"><a href="/wiki/Herbert_Callen" title="Herbert Callen">Callen, H.B.</a> (1960/1985), pp. 18–19.</span> </li> <li id="cite_note-277"><span class="mw-cite-backlink"><b><a href="#cite_ref-277">^</a></b></span> <span class="reference-text">Bailyn, M. (1994), p. 82.</span> </li> <li id="cite_note-MathPages-278"><span class="mw-cite-backlink"><b><a href="#cite_ref-MathPages_278-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathpages.com/home/kmath242/kmath242.htm">"Huygens' Principle"</a>. <i>MathPages</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-10-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathPages&rft.atitle=Huygens%27+Principle&rft_id=https%3A%2F%2Fwww.mathpages.com%2Fhome%2Fkmath242%2Fkmath242.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-279"><span class="mw-cite-backlink"><b><a href="#cite_ref-279">^</a></b></span> <span class="reference-text"><a class="external text" href="https://en.wiktionary.org/wiki/ice_point">Wiktionary</a></span> </li> <li id="cite_note-280"><span class="mw-cite-backlink"><b><a href="#cite_ref-280">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClapeyron,_E.1834" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Beno%C3%AEt_Paul_%C3%89mile_Clapeyron" class="mw-redirect" title="Benoît Paul Émile Clapeyron">Clapeyron, E.</a> (1834). "Mémoire sur la puissance motrice de la chaleur". <i><a href="/w/index.php?title=Journal_de_l%27%C3%89cole_Polytechnique&action=edit&redlink=1" class="new" title="Journal de l'École Polytechnique (page does not exist)">Journal de l'École Polytechnique</a></i> (in French). <b>XIV</b>: 153–90.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+de+l%27%C3%89cole+Polytechnique&rft.atitle=M%C3%A9moire+sur+la+puissance+motrice+de+la+chaleur&rft.volume=XIV&rft.pages=153-90&rft.date=1834&rft.au=Clapeyron%2C+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span> <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k4336791/f157.table">Facsimile at the Bibliothèque nationale de France (pp. 153–90)</a>.</span> </li> <li id="cite_note-281"><span class="mw-cite-backlink"><b><a href="#cite_ref-281">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrönig,_A.1856" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/August_Kr%C3%B6nig" title="August Krönig">Krönig, A.</a> (1856). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1423642">"Grundzüge einer Theorie der Gase"</a>. <i><a href="/wiki/Annalen_der_Physik" title="Annalen der Physik">Annalen der Physik und Chemie</a></i> (in German). <b>99</b> (10): 315–22. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1856AnP...175..315K">1856AnP...175..315K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.18561751008">10.1002/andp.18561751008</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik+und+Chemie&rft.atitle=Grundz%C3%BCge+einer+Theorie+der+Gase&rft.volume=99&rft.issue=10&rft.pages=315-22&rft.date=1856&rft_id=info%3Adoi%2F10.1002%2Fandp.18561751008&rft_id=info%3Abibcode%2F1856AnP...175..315K&rft.au=Kr%C3%B6nig%2C+A.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1423642&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span> <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k15184h/f327.table">Facsimile at the Bibliothèque nationale de France (pp. 315–22)</a>.</span> </li> <li id="cite_note-282"><span class="mw-cite-backlink"><b><a href="#cite_ref-282">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClausius,_R.1857" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Rudolf_Clausius" title="Rudolf Clausius">Clausius, R.</a> (1857). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1423644">"Ueber die Art der Bewegung, welche wir Wärme nennen"</a>. <i><a href="/wiki/Annalen_der_Physik_und_Chemie" class="mw-redirect" title="Annalen der Physik und Chemie">Annalen der Physik und Chemie</a></i> (in German). <b>176</b> (3): 353–79. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1857AnP...176..353C">1857AnP...176..353C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.18571760302">10.1002/andp.18571760302</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik+und+Chemie&rft.atitle=Ueber+die+Art+der+Bewegung%2C+welche+wir+W%C3%A4rme+nennen&rft.volume=176&rft.issue=3&rft.pages=353-79&rft.date=1857&rft_id=info%3Adoi%2F10.1002%2Fandp.18571760302&rft_id=info%3Abibcode%2F1857AnP...176..353C&rft.au=Clausius%2C+R.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1423644&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span> <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k15185v/f371.table">Facsimile at the Bibliothèque nationale de France (pp. 353–79)</a>.</span> </li> <li id="cite_note-:2-283"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_283-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_283-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathwords.com/i/identity.htm">"Mathwords: Identity"</a>. <i>mathwords.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-12-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathwords.com&rft.atitle=Mathwords%3A+Identity&rft_id=https%3A%2F%2Fwww.mathwords.com%2Fi%2Fidentity.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-284"><span class="mw-cite-backlink"><b><a href="#cite_ref-284">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathopenref.com/identity.html">"Identity – math word definition – Math Open Reference"</a>. <i>mathopenref.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-12-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathopenref.com&rft.atitle=Identity+%E2%80%93+math+word+definition+%E2%80%93+Math+Open+Reference&rft_id=https%3A%2F%2Fwww.mathopenref.com%2Fidentity.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Cole-285"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cole_285-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCole2005" class="citation book cs1">Cole, Matthew (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RhuciGEQ1G8C&pg=PA178"><i>Explore science, 2nd Ed</i></a>. Pearson Education. p. 178. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-06-2002-8" title="Special:BookSources/978-981-06-2002-8"><bdi>978-981-06-2002-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Explore+science%2C+2nd+Ed.&rft.pages=178&rft.pub=Pearson+Education&rft.date=2005&rft.isbn=978-981-06-2002-8&rft.aulast=Cole&rft.aufirst=Matthew&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRhuciGEQ1G8C%26pg%3DPA178&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-286"><span class="mw-cite-backlink"><b><a href="#cite_ref-286">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/merriamwebstersc00merr_6"><i>Merriam-Webster's collegiate dictionary, 11th Ed</i></a></span>. Merriam-Webster. 2003. p. <a rel="nofollow" class="external text" href="https://archive.org/details/merriamwebstersc00merr_6/page/629">629</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-87779-809-5" title="Special:BookSources/978-0-87779-809-5"><bdi>978-0-87779-809-5</bdi></a>. <q>inclined plane definition dictionary.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Merriam-Webster%27s+collegiate+dictionary%2C+11th+Ed.&rft.pages=629&rft.pub=Merriam-Webster&rft.date=2003&rft.isbn=978-0-87779-809-5&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmerriamwebstersc00merr_6&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Edinformatics-287"><span class="mw-cite-backlink">^ <a href="#cite_ref-Edinformatics_287-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Edinformatics_287-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.edinformatics.com/math_science/simple_machines/inclined_plane.htm">"The Inclined Plane"</a>. <i>Math and science activity center</i>. Edinformatics. 1999<span class="reference-accessdate">. Retrieved <span class="nowrap">March 11,</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Math+and+science+activity+center&rft.atitle=The+Inclined+Plane&rft.date=1999&rft_id=http%3A%2F%2Fwww.edinformatics.com%2Fmath_science%2Fsimple_machines%2Finclined_plane.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-288"><span class="mw-cite-backlink"><b><a href="#cite_ref-288">^</a></b></span> <span class="reference-text"><a class="external free" href="https://en.wiktionary.org/wiki/indefinite_integral">https://en.wiktionary.org/wiki/indefinite_integral</a> Wiktionary</span> </li> <li id="cite_note-289"><span class="mw-cite-backlink"><b><a href="#cite_ref-289">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerway,_A._RaymondJewett,_John_W.Wilson,_JaneWilson,_Anna2016" class="citation book cs1">Serway, A. Raymond; Jewett, John W.; Wilson, Jane; Wilson, Anna; Rowlands, Wayne (1 October 2016). "32". <i>Physics for global scientists and engineers</i> (2ndition ed.). Cengage AU. p. 901. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-17-035552-0" title="Special:BookSources/978-0-17-035552-0"><bdi>978-0-17-035552-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=32&rft.btitle=Physics+for+global+scientists+and+engineers&rft.pages=901&rft.edition=2ndition&rft.pub=Cengage+AU&rft.date=2016-10-01&rft.isbn=978-0-17-035552-0&rft.au=Serway%2C+A.+Raymond&rft.au=Jewett%2C+John+W.&rft.au=Wilson%2C+Jane&rft.au=Wilson%2C+Anna&rft.au=Rowlands%2C+Wayne&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-290"><span class="mw-cite-backlink"><b><a href="#cite_ref-290">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexanderSadiku" class="citation book cs1">Alexander, Charles; Sadiku, Matthew. <i>Fundamentals of Electric Circuits</i> (3 ed.). McGraw-Hill. p. 211.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Electric+Circuits&rft.pages=211&rft.edition=3&rft.pub=McGraw-Hill&rft.aulast=Alexander&rft.aufirst=Charles&rft.au=Sadiku%2C+Matthew&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-291"><span class="mw-cite-backlink"><b><a href="#cite_ref-291">^</a></b></span> <span class="reference-text">Salvendy, Gabriel. Handbook of Industrial Engineering. John Wiley & Sons, Inc; 3rd edition p. 5</span> </li> <li id="cite_note-292"><span class="mw-cite-backlink"><b><a href="#cite_ref-292">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.iienet2.org/details.aspx?id=716">"What IEs Do"</a>. <i>iienet2.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">September 24,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=iienet2.org&rft.atitle=What+IEs+Do&rft_id=http%3A%2F%2Fwww.iienet2.org%2Fdetails.aspx%3Fid%3D716&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-297"><span class="mw-cite-backlink"><b><a href="#cite_ref-297">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20121029023510/http://portal.acs.org/portal/acs/corg/content?_nfpb=true">"Careers in Chemistry: Inorganic Chemistry"</a>. American Chemical Society. Archived from <a rel="nofollow" class="external text" href="http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=1188&content_id=CTP_003393&use_sec=true&sec_url_var=region1&__uuid=2fe23bbd-4dcd-4087-b35c-3a886576a618">the original</a> on 2012-10-29.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Careers+in+Chemistry%3A+Inorganic+Chemistry&rft.pub=American+Chemical+Society&rft_id=http%3A%2F%2Fportal.acs.org%2Fportal%2Facs%2Fcorg%2Fcontent%3F_nfpb%3Dtrue%26_pageLabel%3DPP_ARTICLEMAIN%26node_id%3D1188%26content_id%3DCTP_003393%26use_sec%3Dtrue%26sec_url_var%3Dregion1%26__uuid%3D2fe23bbd-4dcd-4087-b35c-3a886576a618&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-298"><span class="mw-cite-backlink"><b><a href="#cite_ref-298">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://doi.org/10.1351/goldbook.IT07058">"Ionic bond"</a>. <i>IUPAC Compendium of Chemical Terminology</i>. 2009. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fgoldbook.IT07058">10.1351/goldbook.IT07058</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-9678550-9-7" title="Special:BookSources/978-0-9678550-9-7"><bdi>978-0-9678550-9-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Ionic+bond&rft.btitle=IUPAC+Compendium+of+Chemical+Terminology&rft.date=2009&rft_id=info%3Adoi%2F10.1351%2Fgoldbook.IT07058&rft.isbn=978-0-9678550-9-7&rft_id=https%3A%2F%2Fdoi.org%2F10.1351%2Fgoldbook.IT07058&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-299"><span class="mw-cite-backlink"><b><a href="#cite_ref-299">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerzog2020" class="citation web cs1">Herzog, Gregory F. (2 June 2020). <a rel="nofollow" class="external text" href="https://www.britannica.com/science/isotope">"Isotope"</a>. Encyclopedia Britannica.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Isotope&rft.pub=Encyclopedia+Britannica&rft.date=2020-06-02&rft.aulast=Herzog&rft.aufirst=Gregory+F.&rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2Fisotope&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-300"><span class="mw-cite-backlink"><b><a href="#cite_ref-300">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKapustaMüllerRafelski2003" class="citation book cs1">Kapusta, J.; Müller, B.; Rafelski, J. (9 December 2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8AD3GDoVaMkC&q=psion+meson+-wikipedia&pg=PA462"><i>[no title cited]</i></a>. Gulf Professional. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-51110-2" title="Special:BookSources/978-0-444-51110-2"><bdi>978-0-444-51110-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">25 September</span> 2014</span> – via Google Books.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%5Bno+title+cited%5D&rft.pub=Gulf+Professional&rft.date=2003-12-09&rft.isbn=978-0-444-51110-2&rft.aulast=Kapusta&rft.aufirst=J.&rft.au=M%C3%BCller%2C+B.&rft.au=Rafelski%2C+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8AD3GDoVaMkC%26q%3Dpsion%2Bmeson%2B-wikipedia%26pg%3DPA462&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources#What_information_to_include" title="Wikipedia:Citing sources"><span title="A complete citation is needed. (May 2020)">full citation needed</span></a></i>]</sup><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged May 2020">dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></span> </li> <li id="cite_note-301"><span class="mw-cite-backlink"><b><a href="#cite_ref-301">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/nobel_prizes/physics/laureates/1976/press.html">"Shared Physics prize for elementary particle"</a> (Press release). <a href="/wiki/The_Royal_Swedish_Academy_of_Sciences" class="mw-redirect" title="The Royal Swedish Academy of Sciences">The Royal Swedish Academy of Sciences</a>. 18 October 1976<span class="reference-accessdate">. Retrieved <span class="nowrap">23 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Shared+Physics+prize+for+elementary+particle&rft.pub=The+Royal+Swedish+Academy+of+Sciences&rft.date=1976-10-18&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1976%2Fpress.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-302"><span class="mw-cite-backlink"><b><a href="#cite_ref-302">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFInternational_Bureau_of_Weights_and_Measures2006" class="citation cs2"><a href="/wiki/International_Bureau_of_Weights_and_Measures" title="International Bureau of Weights and Measures">International Bureau of Weights and Measures</a> (2006), <a rel="nofollow" class="external text" href="https://www.bipm.org/documents/20126/41483022/si_brochure_8.pdf"><i>The International System of Units (SI)</i></a> <span class="cs1-format">(PDF)</span> (8th ed.), p. 120, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/92-822-2213-6" title="Special:BookSources/92-822-2213-6"><bdi>92-822-2213-6</bdi></a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210604163219/https://www.bipm.org/documents/20126/41483022/si_brochure_8.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2021-06-04<span class="reference-accessdate">, retrieved <span class="nowrap">2021-12-16</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+International+System+of+Units+%28SI%29&rft.pages=120&rft.edition=8th&rft.date=2006&rft.isbn=92-822-2213-6&rft.au=International+Bureau+of+Weights+and+Measures&rft_id=https%3A%2F%2Fwww.bipm.org%2Fdocuments%2F20126%2F41483022%2Fsi_brochure_8.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-303"><span class="mw-cite-backlink"><b><a href="#cite_ref-303">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20060413141420/http://education.yahoo.com/reference/dictionary/entry/joule">American Heritage Dictionary of the English Language</a>, Online Edition (2009). Houghton Mifflin Co., hosted by <a rel="nofollow" class="external text" href="https://web.archive.org/web/20010502171832/http://education.yahoo.com/">Yahoo! Education</a>.</span> </li> <li id="cite_note-304"><span class="mw-cite-backlink"><b><a href="#cite_ref-304">^</a></b></span> <span class="reference-text"><i>The American Heritage Dictionary</i>, Second College Edition (1985). Boston: Houghton Mifflin Co., p. 691.</span> </li> <li id="cite_note-305"><span class="mw-cite-backlink"><b><a href="#cite_ref-305">^</a></b></span> <span class="reference-text"><i>McGraw-Hill Dictionary of Physics</i>, Fifth Edition (1997). McGraw-Hill, Inc., p. 224.</span> </li> <li id="cite_note-Rao-306"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rao_306-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRao1997" class="citation book cs1">Rao, Y. V. C. (1997). <i>Chemical Engineering Thermodynamics</i>. Universities Press. p. 158. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-7371-048-3" title="Special:BookSources/978-81-7371-048-3"><bdi>978-81-7371-048-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Chemical+Engineering+Thermodynamics&rft.pages=158&rft.pub=Universities+Press&rft.date=1997&rft.isbn=978-81-7371-048-3&rft.aulast=Rao&rft.aufirst=Y.+V.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Young&Freedman-307"><span class="mw-cite-backlink"><b><a href="#cite_ref-Young&Freedman_307-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoungFreedman2008" class="citation book cs1">Young, Hugh D.; Freedman, Roger A. (2008). <i>University Physics</i>. Vol. 1 (12 ed.). <a href="/wiki/Pearson_Education" title="Pearson Education">Pearson Education</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-50125-7" title="Special:BookSources/978-0-321-50125-7"><bdi>978-0-321-50125-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=University+Physics&rft.edition=12&rft.pub=Pearson+Education&rft.date=2008&rft.isbn=978-0-321-50125-7&rft.aulast=Young&rft.aufirst=Hugh+D.&rft.au=Freedman%2C+Roger+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Whittaker-308"><span class="mw-cite-backlink"><b><a href="#cite_ref-Whittaker_308-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdmund_Taylor_Whittaker1904" class="citation book cs1"><a href="/wiki/E._T._Whittaker" title="E. T. Whittaker">Edmund Taylor Whittaker</a> (1904). <i><a href="/wiki/A_Treatise_on_the_Analytical_Dynamics_of_Particles_and_Rigid_Bodies" class="mw-redirect" title="A Treatise on the Analytical Dynamics of Particles and Rigid Bodies">A Treatise on the Analytical Dynamics of Particles and Rigid Bodies</a></i>. Cambridge University Press. Chapter 1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-35883-3" title="Special:BookSources/0-521-35883-3"><bdi>0-521-35883-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Treatise+on+the+Analytical+Dynamics+of+Particles+and+Rigid+Bodies&rft.pages=Chapter+1&rft.pub=Cambridge+University+Press&rft.date=1904&rft.isbn=0-521-35883-3&rft.au=Edmund+Taylor+Whittaker&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Beggs-309"><span class="mw-cite-backlink"><b><a href="#cite_ref-Beggs_309-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoseph_Stiles_Beggs1983" class="citation book cs1">Joseph Stiles Beggs (1983). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=y6iJ1NIYSmgC"><i>Kinematics</i></a>. Taylor & Francis. p. 1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-89116-355-7" title="Special:BookSources/0-89116-355-7"><bdi>0-89116-355-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Kinematics&rft.pages=1&rft.pub=Taylor+%26+Francis&rft.date=1983&rft.isbn=0-89116-355-7&rft.au=Joseph+Stiles+Beggs&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dy6iJ1NIYSmgC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Wright-310"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wright_310-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomas_Wallace_Wright1896" class="citation book cs1">Thomas Wallace Wright (1896). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-LwLAAAAYAAJ"><i>Elements of Mechanics Including Kinematics, Kinetics and Statics</i></a>. E and FN Spon. Chapter 1.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elements+of+Mechanics+Including+Kinematics%2C+Kinetics+and+Statics&rft.pages=Chapter+1&rft.pub=E+and+FN+Spon&rft.date=1896&rft.au=Thomas+Wallace+Wright&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-LwLAAAAYAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-311"><span class="mw-cite-backlink"><b><a href="#cite_ref-311">^</a></b></span> <span class="reference-text">Streeter, V.L. (1951-1966) <i>Fluid Mechanics</i>, Section 3.3 (4th edition). McGraw-Hill</span> </li> <li id="cite_note-Geankoplis,_Christie_John_2003-312"><span class="mw-cite-backlink"><b><a href="#cite_ref-Geankoplis,_Christie_John_2003_312-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeankoplis2003" class="citation book cs1">Geankoplis, Christie John (2003). <a rel="nofollow" class="external text" href="http://www.pearsonhighered.com/educator/product/Transport-Processes-and-Separation-Process-Principles-Includes-Unit-Operations/9780131013674.page"><i>Transport Processes and Separation Process Principles</i></a>. Prentice Hall Professional Technical Reference. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-101367-4" title="Special:BookSources/978-0-13-101367-4"><bdi>978-0-13-101367-4</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150501122109/http://www.pearsonhighered.com/educator/product/Transport-Processes-and-Separation-Process-Principles-Includes-Unit-Operations/9780131013674.page">Archived</a> from the original on 2015-05-01.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transport+Processes+and+Separation+Process+Principles&rft.pub=Prentice+Hall+Professional+Technical+Reference&rft.date=2003&rft.isbn=978-0-13-101367-4&rft.aulast=Geankoplis&rft.aufirst=Christie+John&rft_id=http%3A%2F%2Fwww.pearsonhighered.com%2Feducator%2Fproduct%2FTransport-Processes-and-Separation-Process-Principles-Includes-Unit-Operations%2F9780131013674.page&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-313"><span class="mw-cite-backlink"><b><a href="#cite_ref-313">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNoakesSleigh2009" class="citation web cs1">Noakes, Cath; Sleigh, Andrew (January 2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101021003853/http://www.efm.leeds.ac.uk/CIVE/CIVE1400/Section4/laminar_turbulent.htm">"Real Fluids"</a>. <i>An Introduction to Fluid Mechanics</i>. University of Leeds. Archived from <a rel="nofollow" class="external text" href="http://www.efm.leeds.ac.uk/CIVE/CIVE1400/Section4/laminar_turbulent.htm">the original</a> on 21 October 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">23 November</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=An+Introduction+to+Fluid+Mechanics&rft.atitle=Real+Fluids&rft.date=2009-01&rft.aulast=Noakes&rft.aufirst=Cath&rft.au=Sleigh%2C+Andrew&rft_id=http%3A%2F%2Fwww.efm.leeds.ac.uk%2FCIVE%2FCIVE1400%2FSection4%2Flaminar_turbulent.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-314"><span class="mw-cite-backlink"><b><a href="#cite_ref-314">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://tutorial.math.lamar.edu/classes/de/LaplaceIntro.aspx">"Differential Equations – Laplace Transforms"</a>. <i>tutorial.math.lamar.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=tutorial.math.lamar.edu&rft.atitle=Differential+Equations+%E2%80%93+Laplace+Transforms&rft_id=https%3A%2F%2Ftutorial.math.lamar.edu%2Fclasses%2Fde%2FLaplaceIntro.aspx&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-315"><span class="mw-cite-backlink"><b><a href="#cite_ref-315">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/LaplaceTransform.html">"Laplace Transform"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Laplace+Transform&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLaplaceTransform.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-Systemantics-316"><span class="mw-cite-backlink">^ <a href="#cite_ref-Systemantics_316-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Systemantics_316-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGall2002" class="citation book cs1">Gall, John (2002). <i>The Systems Bible</i> (3rd ed.). General Systemantics Press. <q>The System always kicks back</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Systems+Bible&rft.edition=3rd&rft.pub=General+Systemantics+Press&rft.date=2002&rft.aulast=Gall&rft.aufirst=John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-317"><span class="mw-cite-backlink"><b><a href="#cite_ref-317">^</a></b></span> <span class="reference-text">Lenz, E. (1834), "<a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k151161/f499.image.r=lenz.langEN">Ueber die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme</a>", <i>Annalen der Physik und Chemie</i>, <b>107</b> (31), pp. 483–494. A partial translation of the paper is available in Magie, W. M. (1963), <i>A Source Book in Physics</i>, Harvard: Cambridge MA, pp. 511–513.</span> </li> <li id="cite_note-Electromagnetics_explained:_a_handbook_for_wireless/RF,_EMC,_and_high-speed_electronics-318"><span class="mw-cite-backlink"><b><a href="#cite_ref-Electromagnetics_explained:_a_handbook_for_wireless/RF,_EMC,_and_high-speed_electronics_318-0">^</a></b></span> <span class="reference-text">Schmitt, Ron. <a rel="nofollow" class="external text" href="https://archive.org/details/electromagnetics0000schm/page/75"><i>Electromagnetics explained</i></a>. 2002. Retrieved 16 July 2010.</span> </li> <li id="cite_note-319"><span class="mw-cite-backlink"><b><a href="#cite_ref-319">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="http://www.britannica.com/EBchecked/topic/336940/lepton">"Lepton (physics)"</a>. <i><a href="/wiki/Encyclop%C3%A6dia_Britannica" title="Encyclopædia Britannica">Encyclopædia Britannica</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">2010-09-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Lepton+%28physics%29&rft.btitle=Encyclop%C3%A6dia+Britannica&rft_id=http%3A%2F%2Fwww.britannica.com%2FEBchecked%2Ftopic%2F336940%2Flepton&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-320"><span class="mw-cite-backlink"><b><a href="#cite_ref-320">^</a></b></span> <span class="reference-text"><a href="/wiki/International_Commission_on_Illumination" title="International Commission on Illumination">CIE</a> (1987). <a rel="nofollow" class="external text" href="http://www.cie.co.at/publ/abst/17-4-89.html"><i>International Lighting Vocabulary</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100227034508/http://www.cie.co.at/publ/abst/17-4-89.html">Archived</a> 27 February 2010 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Number 17.4. CIE, 4th edition. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-900734-07-7" title="Special:BookSources/978-3-900734-07-7">978-3-900734-07-7</a>.<br />By the <i>International Lighting Vocabulary</i>, the definition of <i>light</i> is: "Any radiation capable of causing a visual sensation directly."</span> </li> <li id="cite_note-Pal2001-321"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pal2001_321-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPalPal2001" class="citation book cs1">Pal, G.K.; Pal, Pravati (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CcJvIiesqp8C&pg=PA387">"chapter 52"</a>. <i>Textbook of Practical Physiology</i> (1st ed.). Chennai: Orient Blackswan. p. 387. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-250-2021-9" title="Special:BookSources/978-81-250-2021-9"><bdi>978-81-250-2021-9</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">11 October</span> 2013</span>. <q>The human eye has the ability to respond to all the wavelengths of light from 400–700 nm. This is called the visible part of the spectrum.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=chapter+52&rft.btitle=Textbook+of+Practical+Physiology&rft.place=Chennai&rft.pages=387&rft.edition=1st&rft.pub=Orient+Blackswan&rft.date=2001&rft.isbn=978-81-250-2021-9&rft.aulast=Pal&rft.aufirst=G.K.&rft.au=Pal%2C+Pravati&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCcJvIiesqp8C%26pg%3DPA387&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-BuserImbert1992-322"><span class="mw-cite-backlink"><b><a href="#cite_ref-BuserImbert1992_322-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuserImbert1992" class="citation book cs1">Buser, Pierre A.; Imbert, Michel (1992). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/vision0000buse"><i>Vision</i></a></span>. MIT Press. p. <a rel="nofollow" class="external text" href="https://archive.org/details/vision0000buse/page/50">50</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-02336-8" title="Special:BookSources/978-0-262-02336-8"><bdi>978-0-262-02336-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">11 October</span> 2013</span>. <q>Light is a special class of radiant energy embracing wavelengths between 400 and 700 nm (or mμ), or 4000 to 7000 Å.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vision&rft.pages=50&rft.pub=MIT+Press&rft.date=1992&rft.isbn=978-0-262-02336-8&rft.aulast=Buser&rft.aufirst=Pierre+A.&rft.au=Imbert%2C+Michel&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fvision0000buse&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> <li id="cite_note-323"><span class="mw-cite-backlink"><b><a href="#cite_ref-323">^</a></b></span> <span class="reference-text">All statements in this section can be found in <a href="#CITEREFShirali2002">Shirali 2002</a>, Section 4, <a href="#CITEREFDowning2003">Downing 2003</a>, p. 275, or <a href="#CITEREFKateBhapkar2009">Kate & Bhapkar 2009</a>, p. 1-1, for example.</span> </li> <li id="cite_note-324"><span class="mw-cite-backlink"><b><a href="#cite_ref-324">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIncroperaDeWittBergmanLavine2007" class="citation book cs1">Incropera; DeWitt; Bergman; Lavine (2007). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/fundamentalsheat00incr_869"><i>Fundamentals of Heat and Mass Transfer</i></a></span> (6th ed.). John Wiley & Sons. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/fundamentalsheat00incr_869/page/n267">260</a>–261. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-45728-2" title="Special:BookSources/978-0-471-45728-2"><bdi>978-0-471-45728-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Heat+and+Mass+Transfer&rft.pages=260-261&rft.edition=6th&rft.pub=John+Wiley+%26+Sons&rft.date=2007&rft.isbn=978-0-471-45728-2&rft.au=Incropera&rft.au=DeWitt&rft.au=Bergman&rft.au=Lavine&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffundamentalsheat00incr_869&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></span> </li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> </div> <div class="mw-heading mw-heading3"><h3 id="Works_cited">Works cited</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&action=edit&section=17" title="Edit section: Works cited"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAntonBivensDavis2016" class="citation cs2">Anton, Howard; Bivens, Irl C.; Davis, Stephen (2016), <i>Calculus: Early Transcendentals</i> (11th ed.), John Wiley & Sons, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-118-88382-2" title="Special:BookSources/978-1-118-88382-2"><bdi>978-1-118-88382-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+Early+Transcendentals&rft.edition=11th&rft.pub=John+Wiley+%26+Sons&rft.date=2016&rft.isbn=978-1-118-88382-2&rft.aulast=Anton&rft.aufirst=Howard&rft.au=Bivens%2C+Irl+C.&rft.au=Davis%2C+Stephen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1967" class="citation cs2"><a href="/wiki/Tom_M._Apostol" title="Tom M. Apostol">Apostol, Tom M.</a> (1967), <a rel="nofollow" class="external text" href="https://archive.org/details/calculus01apos"><i>Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra</i></a> (2nd ed.), Wiley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-00005-1" title="Special:BookSources/978-0-471-00005-1"><bdi>978-0-471-00005-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%2C+Vol.+1%3A+One-Variable+Calculus+with+an+Introduction+to+Linear+Algebra&rft.edition=2nd&rft.pub=Wiley&rft.date=1967&rft.isbn=978-0-471-00005-1&rft.aulast=Apostol&rft.aufirst=Tom+M.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculus01apos&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAGU2011" class="citation web cs1"><a href="/wiki/American_Geophysical_Union" title="American Geophysical Union">American Geophysical Union</a> (2011). <a rel="nofollow" class="external text" href="http://about.agu.org/our-science/">"Our Science"</a>. <i>About AGU</i><span class="reference-accessdate">. Retrieved <span class="nowrap">30 September</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=About+AGU&rft.atitle=Our+Science&rft.date=2011&rft.au=American+Geophysical+Union&rft_id=http%3A%2F%2Fabout.agu.org%2Four-science%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDowning2003" class="citation book cs1">Downing, Douglas (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RiX-TJLiQv0C"><i>Algebra the Easy Way</i></a>. Barrons Educational Series. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7641-1972-9" title="Special:BookSources/978-0-7641-1972-9"><bdi>978-0-7641-1972-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra+the+Easy+Way&rft.pub=Barrons+Educational+Series&rft.date=2003&rft.isbn=978-0-7641-1972-9&rft.aulast=Downing&rft.aufirst=Douglas&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRiX-TJLiQv0C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1970" class="citation book cs1"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, Paul R.</a> (1970). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=x6cZBQ9qtgoC"><i>Naive Set Theory</i></a>. Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-90092-6" title="Special:BookSources/978-0-387-90092-6"><bdi>978-0-387-90092-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Naive+Set+Theory&rft.pub=Springer-Verlag&rft.date=1970&rft.isbn=978-0-387-90092-6&rft.aulast=Halmos&rft.aufirst=Paul+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dx6cZBQ9qtgoC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIUGG2011" class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.iugg.org/about/">"About IUGG"</a>. 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">30 September</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=About+IUGG&rft.date=2011&rft_id=http%3A%2F%2Fwww.iugg.org%2Fabout%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKateBhapkar2009" class="citation book cs1">Kate, S.K.; Bhapkar, H.R. (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v4R0GSJtEQ4C"><i>Basics Of Mathematics</i></a>. Technical Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-8431-755-8" title="Special:BookSources/978-81-8431-755-8"><bdi>978-81-8431-755-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basics+Of+Mathematics&rft.pub=Technical+Publications&rft.date=2009&rft.isbn=978-81-8431-755-8&rft.aulast=Kate&rft.aufirst=S.K.&rft.au=Bhapkar%2C+H.R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv4R0GSJtEQ4C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged September 2023">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeggHutter2007" class="citation arxiv cs1">Legg, Shane; Hutter, Marcus (15 June 2007). "A Collection of Definitions of Intelligence". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0706.3639">0706.3639</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.AI">cs.AI</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+Collection+of+Definitions+of+Intelligence&rft.date=2007-06-15&rft_id=info%3Aarxiv%2F0706.3639&rft.aulast=Legg&rft.aufirst=Shane&rft.au=Hutter%2C+Marcus&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNilsson1998" class="citation book cs1"><a href="/wiki/Nils_Nilsson_(researcher)" class="mw-redirect" title="Nils Nilsson (researcher)">Nilsson, Nils</a> (1998). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/artificialintell0000nils"><i>Artificial Intelligence: A New Synthesis</i></a></span>. Morgan Kaufmann. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-55860-467-4" title="Special:BookSources/978-1-55860-467-4"><bdi>978-1-55860-467-4</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200726131654/https://archive.org/details/artificialintell0000nils">Archived</a> from the original on 26 July 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">18 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Artificial+Intelligence%3A+A+New+Synthesis&rft.pub=Morgan+Kaufmann&rft.date=1998&rft.isbn=978-1-55860-467-4&rft.aulast=Nilsson&rft.aufirst=Nils&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fartificialintell0000nils&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPooleMackworthGoebel1998" class="citation book cs1"><a href="/w/index.php?title=David_Poole_(researcher)&action=edit&redlink=1" class="new" title="David Poole (researcher) (page does not exist)">Poole, David</a>; <a href="/wiki/Alan_Mackworth" title="Alan Mackworth">Mackworth, Alan</a>; <a href="/w/index.php?title=Randy_Goebel&action=edit&redlink=1" class="new" title="Randy Goebel (page does not exist)">Goebel, Randy</a> (1998). <a rel="nofollow" class="external text" href="https://archive.org/details/computationalint00pool"><i>Computational Intelligence: A Logical Approach</i></a>. New York: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-510270-3" title="Special:BookSources/978-0-19-510270-3"><bdi>978-0-19-510270-3</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200726131436/https://archive.org/details/computationalint00pool">Archived</a> from the original on 26 July 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">22 August</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computational+Intelligence%3A+A+Logical+Approach&rft.place=New+York&rft.pub=Oxford+University+Press&rft.date=1998&rft.isbn=978-0-19-510270-3&rft.aulast=Poole&rft.aufirst=David&rft.au=Mackworth%2C+Alan&rft.au=Goebel%2C+Randy&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcomputationalint00pool&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussellNorvig2003" class="citation cs2"><a href="/wiki/Stuart_J._Russell" title="Stuart J. Russell">Russell, Stuart J.</a>; <a href="/wiki/Peter_Norvig" title="Peter Norvig">Norvig, Peter</a> (2003), <a rel="nofollow" class="external text" href="http://aima.cs.berkeley.edu/"><i>Artificial Intelligence: A Modern Approach</i></a> (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-790395-2" title="Special:BookSources/0-13-790395-2"><bdi>0-13-790395-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Artificial+Intelligence%3A+A+Modern+Approach&rft.place=Upper+Saddle+River%2C+New+Jersey&rft.edition=2nd&rft.pub=Prentice+Hall&rft.date=2003&rft.isbn=0-13-790395-2&rft.aulast=Russell&rft.aufirst=Stuart+J.&rft.au=Norvig%2C+Peter&rft_id=http%3A%2F%2Faima.cs.berkeley.edu%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussellNorvig2009" class="citation book cs1"><a href="/wiki/Stuart_J._Russell" title="Stuart J. Russell">Russell, Stuart J.</a>; <a href="/wiki/Peter_Norvig" title="Peter Norvig">Norvig, Peter</a> (2009). <i><a href="/wiki/Artificial_Intelligence:_A_Modern_Approach" title="Artificial Intelligence: A Modern Approach">Artificial Intelligence: A Modern Approach</a></i> (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-604259-4" title="Special:BookSources/978-0-13-604259-4"><bdi>978-0-13-604259-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Artificial+Intelligence%3A+A+Modern+Approach&rft.place=Upper+Saddle+River%2C+New+Jersey&rft.edition=3rd&rft.pub=Prentice+Hall&rft.date=2009&rft.isbn=978-0-13-604259-4&rft.aulast=Russell&rft.aufirst=Stuart+J.&rft.au=Norvig%2C+Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSheriff1991" class="citation encyclopaedia cs1">Sheriff, Robert E. (1991). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/encyclopedicdict0000unse_h0w6">"Geophysics"</a></span>. <i>Encyclopedic Dictionary of Exploration Geophysics</i> (3rd ed.). Society of Exploration. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56080-018-7" title="Special:BookSources/978-1-56080-018-7"><bdi>978-1-56080-018-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Geophysics&rft.btitle=Encyclopedic+Dictionary+of+Exploration+Geophysics&rft.edition=3rd&rft.pub=Society+of+Exploration&rft.date=1991&rft.isbn=978-1-56080-018-7&rft.aulast=Sheriff&rft.aufirst=Robert+E.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fencyclopedicdict0000unse_h0w6&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShirali2002" class="citation book cs1">Shirali, S. (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TPE0fXGnYtMC&pg=PP1"><i>Adventures in Problem Solving</i></a>. Universities Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-7371-413-9" title="Special:BookSources/978-81-7371-413-9"><bdi>978-81-7371-413-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Adventures+in+Problem+Solving&rft.pub=Universities+Press&rft.date=2002&rft.isbn=978-81-7371-413-9&rft.aulast=Shirali&rft.aufirst=S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTPE0fXGnYtMC%26pg%3DPP1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGlossary+of+engineering%3A+A%E2%80%93L" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Engineering" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Engineering_fields" title="Template:Engineering fields"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Engineering_fields" title="Template talk:Engineering fields"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Engineering_fields" title="Special:EditPage/Template:Engineering fields"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Engineering" style="font-size:114%;margin:0 4em"><a href="/wiki/Engineering" title="Engineering">Engineering</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/History_of_engineering" title="History of engineering">History</a></li> <li><a href="/wiki/Outline_of_engineering" title="Outline of engineering">Outline</a></li> <li><a href="/wiki/List_of_engineering_branches" title="List of engineering branches">List of engineering branches</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Specialties<br />and<br /><a href="/wiki/Interdisciplinarity" title="Interdisciplinarity">Interdisciplinarity</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Civil_engineering" title="Civil engineering">Civil</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Architectural_engineering" title="Architectural engineering">Architectural</a></li> <li><a href="/wiki/Coastal_engineering" title="Coastal engineering">Coastal</a></li> <li><a href="/wiki/Construction_engineering" title="Construction engineering">Construction</a></li> <li><a href="/wiki/Earthquake_engineering" title="Earthquake engineering">Earthquake</a></li> <li><a href="/wiki/Environmental_engineering" title="Environmental engineering">Environmental</a> <ul><li><a href="/wiki/Sanitary_engineering" title="Sanitary engineering">Sanitary</a></li></ul></li> <li><a href="/wiki/Ecological_engineering" title="Ecological engineering">Ecological</a></li> <li><a href="/wiki/Geological_engineering" title="Geological engineering">Geological</a></li> <li><a href="/wiki/Geotechnical_engineering" title="Geotechnical engineering">Geotechnical</a></li> <li><a href="/wiki/Hydraulic_engineering" title="Hydraulic engineering">Hydraulic</a></li> <li><a href="/wiki/Mining_engineering" title="Mining engineering">Mining</a></li> <li><a href="/wiki/Municipal_or_urban_engineering" title="Municipal or urban engineering">Municipal/Urban</a></li> <li><a href="/wiki/Offshore_engineering" class="mw-redirect" title="Offshore engineering">Offshore</a></li> <li><a href="/wiki/River_engineering" title="River engineering">River</a></li> <li><a href="/wiki/Structural_engineering" title="Structural engineering">Structural</a></li> <li><a href="/wiki/Transportation_engineering" title="Transportation engineering">Transportation</a> <ul><li><a href="/wiki/Traffic_engineering_(transportation)" title="Traffic engineering (transportation)">Traffic</a></li> <li><a href="/wiki/Railway_engineering" title="Railway engineering">Railway</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mechanical_engineering" title="Mechanical engineering">Mechanical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acoustical_engineering" title="Acoustical engineering">Acoustic</a></li> <li><a href="/wiki/Aerospace_engineering" title="Aerospace engineering">Aerospace</a></li> <li><a href="/wiki/Automotive_engineering" title="Automotive engineering">Automotive</a></li> <li><a href="/wiki/Biomechanical_engineering" title="Biomechanical engineering">Biomechanical</a></li> <li><a href="/wiki/Energy_engineering" title="Energy engineering">Energy</a></li> <li><a href="/wiki/Manufacturing_engineering" title="Manufacturing engineering">Manufacturing</a></li> <li><a href="/wiki/Marine_engineering" title="Marine engineering">Marine</a></li> <li><a href="/wiki/Naval_architecture" title="Naval architecture">Naval architecture</a></li> <li><a href="/wiki/Railway_engineering" title="Railway engineering">Railway</a></li> <li><a href="/wiki/Sports_engineering" title="Sports engineering">Sports</a></li> <li><a href="/wiki/Thermal_engineering" title="Thermal engineering">Thermal</a></li> <li><a href="/wiki/Tribology" title="Tribology">Tribology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Electrical_engineering" title="Electrical engineering">Electrical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Broadcast_engineering" title="Broadcast engineering">Broadcast</a></li> <li><a href="/wiki/Computer_engineering" title="Computer engineering">Computer</a> <ul><li><a href="/wiki/Outline_of_computer_engineering" title="Outline of computer engineering">outline</a></li></ul></li> <li><a href="/wiki/Control_engineering" title="Control engineering">Control</a></li> <li><a href="/wiki/Electromechanics" title="Electromechanics">Electromechanics</a></li> <li><a href="/wiki/Electronic_engineering" title="Electronic engineering">Electronics</a></li> <li><a href="/wiki/Microwave_engineering" title="Microwave engineering">Microwaves</a></li> <li><a href="/wiki/Optical_engineering" title="Optical engineering">Optical</a></li> <li><a href="/wiki/Power_engineering" title="Power engineering">Power</a></li> <li><a href="/wiki/Radio-frequency_engineering" title="Radio-frequency engineering">Radio frequency</a></li> <li><a href="/wiki/Signal_processing" title="Signal processing">Signal processing</a></li> <li><a href="/wiki/Telecommunications_engineering" title="Telecommunications engineering">Telecommunications</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Chemical_engineering" title="Chemical engineering">Chemical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biochemical_engineering" title="Biochemical engineering">Biochemical</a>/Bioprocess</li> <li><a href="/wiki/Biological_engineering" title="Biological engineering">Biological</a> <ul><li><a href="/wiki/Bioresource_engineering" title="Bioresource engineering">Bioresource</a></li> <li><a href="/wiki/Genetic_engineering" title="Genetic engineering">Genetic</a></li> <li><a href="/wiki/Tissue_engineering" title="Tissue engineering">Tissue</a></li></ul></li> <li><a href="/wiki/Chemical_reaction_engineering" title="Chemical reaction engineering">Chemical reaction</a></li> <li><a href="/wiki/Electrochemical_engineering" title="Electrochemical engineering">Electrochemical</a></li> <li><a href="/wiki/Food_engineering" title="Food engineering">Food</a></li> <li><a href="/wiki/Molecular_engineering" title="Molecular engineering">Molecular</a></li> <li><a href="/wiki/Paper_engineering" title="Paper engineering">Paper</a></li> <li><a href="/wiki/Petroleum_engineering" title="Petroleum engineering">Petroleum</a></li> <li><a href="/wiki/Process_engineering" title="Process engineering">Process</a></li> <li><a href="/wiki/Chemical_reaction_engineering" title="Chemical reaction engineering">Reaction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Materials_science" title="Materials science">Materials</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biomaterial" title="Biomaterial">Biomaterial</a></li> <li><a href="/wiki/Ceramic_engineering" title="Ceramic engineering">Ceramics</a></li> <li><a href="/wiki/Corrosion_engineering" title="Corrosion engineering">Corrosion</a></li> <li><a href="/wiki/Metallurgy" title="Metallurgy">Metallurgy</a></li> <li><a href="/wiki/Molecular_engineering" title="Molecular engineering">Molecular</a></li> <li><a href="/wiki/Nanotechnology" title="Nanotechnology">Nanotechnology</a></li> <li><a href="/wiki/Polymer_engineering" title="Polymer engineering">Polymers</a></li> <li><a href="/wiki/Semiconductor_device" title="Semiconductor device">Semiconductors</a></li> <li><a href="/wiki/Surface_engineering" title="Surface engineering">Surfaces</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Agricultural_engineering" title="Agricultural engineering">Agricultural</a></li> <li><a href="/wiki/Artificial_intelligence_engineering" title="Artificial intelligence engineering">AI</a></li> <li><a href="/wiki/Audio_engineer" title="Audio engineer">Audio</a></li> <li><a href="/wiki/Automation_engineering" title="Automation engineering">Automation</a></li> <li><a href="/wiki/Biomedical_engineering" title="Biomedical engineering">Biomedical</a> <ul><li><a href="/wiki/Bioinformatics" title="Bioinformatics">Bioinformatics</a></li> <li><a href="/wiki/Clinical_engineering" title="Clinical engineering">Clinical</a></li> <li><a href="/wiki/Health_technology" title="Health technology">Health technology</a></li> <li><a href="/wiki/Pharmaceutical_engineering" title="Pharmaceutical engineering">Pharmaceutical</a></li> <li><a href="/wiki/Rehabilitation_engineering" title="Rehabilitation engineering">Rehabilitation</a></li></ul></li> <li><a href="/wiki/Building_services_engineering" title="Building services engineering">Building services</a> <ul><li><a href="/wiki/Mechanical,_electrical,_and_plumbing" title="Mechanical, electrical, and plumbing">MEP</a></li></ul></li> <li><a href="/wiki/Climate_engineering" title="Climate engineering">Geoengineering</a></li> <li><a href="/wiki/Cybersecurity_engineering" title="Cybersecurity engineering">Cybersecurity</a></li> <li><a href="/wiki/Data_engineering" title="Data engineering">Data</a></li> <li><a href="/wiki/Design_engineer" title="Design engineer">Design</a></li> <li><a href="/wiki/Engineering_drawing" title="Engineering drawing">Engineering drawing</a>/graphics</li> <li><a href="/wiki/Engineering_management" title="Engineering management">Engineering management</a></li> <li><a href="/wiki/Engineering_mathematics" title="Engineering mathematics">Engineering mathematics</a></li> <li><a href="/wiki/Engineering_physics" title="Engineering physics">Engineering physics</a></li> <li><a href="/wiki/Explosives_engineering" title="Explosives engineering">Explosives</a></li> <li><a href="/wiki/Facilities_engineering" title="Facilities engineering">Facilities</a></li> <li><a href="/wiki/Fire_protection_engineering" title="Fire protection engineering">Fire</a></li> <li><a href="/wiki/Forensic_engineering" title="Forensic engineering">Forensic</a></li> <li><a href="/wiki/Geomatics_engineering" class="mw-redirect" title="Geomatics engineering">Geomatics</a></li> <li><a href="/wiki/Industrial_engineering" title="Industrial engineering">Industrial</a></li> <li><a href="/wiki/Information_engineering" title="Information engineering">Information</a></li> <li><a href="/wiki/Instrumentation_engineering" class="mw-redirect" title="Instrumentation engineering">Instrumentation</a> <ul><li><a href="/wiki/Instrumentation_and_control_engineering" title="Instrumentation and control engineering">and Control</a></li></ul></li> <li><a href="/wiki/Logistics_engineering" title="Logistics engineering">Logistics</a></li> <li><a href="/wiki/Robotics" title="Robotics">Robotics</a></li> <li><a href="/wiki/Mechatronics" title="Mechatronics">Mechatronics</a></li> <li><a href="/wiki/Military_engineering" title="Military engineering">Military</a></li> <li><a href="/w/index.php?title=Computer_networks_engineering&action=edit&redlink=1" class="new" title="Computer networks engineering (page does not exist)">Networks</a></li> <li><a href="/wiki/Nuclear_engineering" title="Nuclear engineering">Nuclear</a></li> <li><a href="/wiki/Ontology_engineering" title="Ontology engineering">Ontology</a></li> <li><a href="/wiki/Packaging_engineering" title="Packaging engineering">Packaging</a></li> <li><a href="/wiki/Privacy_engineering" title="Privacy engineering">Privacy</a></li> <li><a href="/wiki/Robotics_engineering" title="Robotics engineering">Robotics</a></li> <li><a href="/wiki/Safety_engineering" title="Safety engineering">Safety</a></li> <li><a href="/wiki/Survey_engineering" class="mw-redirect" title="Survey engineering">Survey</a></li> <li><a href="/wiki/Security_engineering" title="Security engineering">Security</a></li> <li><a href="/wiki/Software_engineering" title="Software engineering">Software</a></li> <li><a href="/wiki/Sustainable_engineering" title="Sustainable engineering">Sustainability</a></li> <li><a href="/wiki/Systems_engineering" title="Systems engineering">Systems</a></li> <li><a href="/wiki/Textile_engineering" class="mw-redirect" title="Textile engineering">Textile</a></li></ul> </div></td></tr></tbody></table><div></div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kcmsystem.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Nuvola_apps_kcmsystem.png/50px-Nuvola_apps_kcmsystem.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Nuvola_apps_kcmsystem.png/75px-Nuvola_apps_kcmsystem.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/35/Nuvola_apps_kcmsystem.png/100px-Nuvola_apps_kcmsystem.png 2x" data-file-width="128" data-file-height="128" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Engineering_education" title="Engineering education">Engineering education</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bachelor_of_Engineering" title="Bachelor of Engineering">Bachelor of Engineering</a></li> <li><a href="/wiki/Bachelor_of_Science" title="Bachelor of Science">Bachelor of Science</a></li> <li><a href="/wiki/Master%27s_degree" title="Master's degree">Master's degree</a></li> <li><a href="/wiki/Doctorate" title="Doctorate">Doctorate</a></li> <li><a href="/wiki/Graduate_certificate" title="Graduate certificate">Graduate certificate</a></li> <li><a href="/wiki/Engineer%27s_degree" title="Engineer's degree">Engineer's degree</a></li> <li><a href="/wiki/Regulation_and_licensure_in_engineering" title="Regulation and licensure in engineering">Licensed engineer</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Engineer" title="Engineer">Engineer</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Glossary" title="Glossary">Glossaries</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Engineering <ul><li><a class="mw-selflink selflink">A–L</a></li> <li><a href="/wiki/Glossary_of_engineering:_M%E2%80%93Z" title="Glossary of engineering: M–Z">M–Z</a></li></ul></li> <li><a href="/wiki/Glossary_of_aerospace_engineering" title="Glossary of aerospace engineering">Aerospace engineering</a></li> <li><a href="/wiki/Glossary_of_civil_engineering" title="Glossary of civil engineering">Civil engineering</a></li> <li><a href="/wiki/Glossary_of_electrical_and_electronics_engineering" title="Glossary of electrical and electronics engineering">Electrical and electronics engineering</a></li> <li><a href="/wiki/Glossary_of_mechanical_engineering" title="Glossary of mechanical engineering">Mechanical engineering</a></li> <li><a href="/wiki/Glossary_of_structural_engineering" title="Glossary of structural engineering">Structural engineering</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3" style="font-weight:bold;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Engineering" title="Category:Engineering">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Engineering" class="extiw" title="commons:Engineering">Commons</a></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <a href="/wiki/Wikipedia:WikiProject_Engineering" title="Wikipedia:WikiProject Engineering">Wikiproject</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <a href="/wiki/Portal:Engineering" title="Portal:Engineering">Portal</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Glossaries_of_science_and_engineering" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Glossaries_of_science_and_engineering" title="Template:Glossaries of science and engineering"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Glossaries_of_science_and_engineering" title="Template talk:Glossaries of science and engineering"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Glossaries_of_science_and_engineering" title="Special:EditPage/Template:Glossaries of science and engineering"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Glossaries_of_science_and_engineering" style="font-size:114%;margin:0 4em">Glossaries of <a href="/wiki/Science" title="Science">science</a> and <a href="/wiki/Engineering" title="Engineering">engineering</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Glossary_of_aerospace_engineering" title="Glossary of aerospace engineering">Aerospace engineering</a></li> <li><a href="/wiki/Glossary_of_agriculture" title="Glossary of agriculture">Agriculture</a></li> <li><a href="/wiki/Glossary_of_archaeology" title="Glossary of archaeology">Archaeology</a></li> <li><a href="/wiki/Glossary_of_architecture" title="Glossary of architecture">Architecture</a></li> <li><a href="/wiki/Glossary_of_artificial_intelligence" title="Glossary of artificial intelligence">Artificial intelligence</a></li> <li><a href="/wiki/Glossary_of_astronomy" title="Glossary of astronomy">Astronomy</a></li> <li><a href="/wiki/Glossary_of_biology" title="Glossary of biology">Biology</a></li> <li><a href="/wiki/Glossary_of_botanical_terms" title="Glossary of botanical terms">Botany</a></li> <li><a href="/wiki/Glossary_of_calculus" title="Glossary of calculus">Calculus</a></li> <li><a href="/wiki/Glossary_of_cell_biology" class="mw-redirect" title="Glossary of cell biology">Cell biology</a></li> <li><a href="/wiki/Glossary_of_chemistry_terms" title="Glossary of chemistry terms">Chemistry</a></li> <li><a href="/wiki/Glossary_of_civil_engineering" title="Glossary of civil engineering">Civil engineering</a></li> <li><a href="/wiki/Glossary_of_clinical_research" title="Glossary of clinical research">Clinical research</a></li> <li><a href="/wiki/Glossary_of_computer_hardware_terms" title="Glossary of computer hardware terms">Computer hardware</a></li> <li><a href="/wiki/Glossary_of_computer_science" title="Glossary of computer science">Computer science</a></li> <li><a href="/wiki/Glossary_of_developmental_biology" title="Glossary of developmental biology">Developmental and reproductive biology</a></li> <li><a href="/wiki/Glossary_of_ecology" title="Glossary of ecology">Ecology</a></li> <li><a href="/wiki/Glossary_of_economics" title="Glossary of economics">Economics</a></li> <li><a href="/wiki/Glossary_of_electrical_and_electronics_engineering" title="Glossary of electrical and electronics engineering">Electrical and electronics engineering</a></li> <li>Engineering <ul><li><a class="mw-selflink selflink">A–L</a></li> <li><a href="/wiki/Glossary_of_engineering:_M%E2%80%93Z" title="Glossary of engineering: M–Z">M–Z</a></li></ul></li> <li><a href="/wiki/Glossary_of_entomology_terms" title="Glossary of entomology terms">Entomology</a></li> <li><a href="/wiki/Glossary_of_environmental_science" title="Glossary of environmental science">Environmental science</a></li> <li><a href="/wiki/Glossary_of_genetics_and_evolutionary_biology" title="Glossary of genetics and evolutionary biology">Genetics and evolutionary biology</a></li> <li>Cellular and molecular biology <ul><li><a href="/wiki/Glossary_of_cellular_and_molecular_biology_(0%E2%80%93L)" title="Glossary of cellular and molecular biology (0–L)">0–L</a></li> <li><a href="/wiki/Glossary_of_cellular_and_molecular_biology_(M%E2%80%93Z)" title="Glossary of cellular and molecular biology (M–Z)">M–Z</a></li></ul></li> <li>Geography <ul><li><a href="/wiki/Glossary_of_geography_terms_(A%E2%80%93M)" title="Glossary of geography terms (A–M)">A–M</a></li> <li><a href="/wiki/Glossary_of_geography_terms_(N%E2%80%93Z)" title="Glossary of geography terms (N–Z)">N–Z</a></li> <li><a href="/wiki/Glossary_of_Arabic_toponyms" title="Glossary of Arabic toponyms">Arabic toponyms</a></li> <li><a href="/wiki/Glossary_of_Hebrew_toponyms" title="Glossary of Hebrew toponyms">Hebrew toponyms</a></li> <li><a href="/wiki/Oikonyms_in_Western_and_South_Asia" title="Oikonyms in Western and South Asia">Western and South Asia</a></li></ul></li> <li><a href="/wiki/Glossary_of_geology" title="Glossary of geology">Geology</a></li> <li><a href="/wiki/Glossary_of_ichthyology" title="Glossary of ichthyology">Ichthyology</a></li> <li><a href="/wiki/Glossary_of_machine_vision" title="Glossary of machine vision">Machine vision</a></li> <li><a href="/wiki/Glossary_of_areas_of_mathematics" title="Glossary of areas of mathematics">Mathematics</a></li> <li><a href="/wiki/Glossary_of_mechanical_engineering" title="Glossary of mechanical engineering">Mechanical engineering</a></li> <li><a href="/wiki/Glossary_of_medicine" title="Glossary of medicine">Medicine</a></li> <li><a href="/wiki/Glossary_of_meteorology" title="Glossary of meteorology">Meteorology</a></li> <li><a href="/wiki/Glossary_of_mycology" title="Glossary of mycology">Mycology</a></li> <li><a href="/wiki/Glossary_of_nanotechnology" title="Glossary of nanotechnology">Nanotechnology</a></li> <li><a href="/wiki/Glossary_of_bird_terms" title="Glossary of bird terms">Ornithology</a></li> <li><a href="/wiki/Glossary_of_physics" title="Glossary of physics">Physics</a></li> <li><a href="/wiki/Glossary_of_probability_and_statistics" title="Glossary of probability and statistics">Probability and statistics</a></li> <li><a href="/wiki/Glossary_of_psychiatry" title="Glossary of psychiatry">Psychiatry</a></li> <li><a href="/wiki/Glossary_of_quantum_computing" title="Glossary of quantum computing">Quantum computing</a></li> <li><a href="/wiki/Glossary_of_robotics" title="Glossary of robotics">Robotics</a></li> <li><a href="/wiki/Glossary_of_scientific_naming" title="Glossary of scientific naming">Scientific naming</a></li> <li><a href="/wiki/Glossary_of_structural_engineering" title="Glossary of structural engineering">Structural engineering</a></li> <li><a href="/wiki/Glossary_of_virology" title="Glossary of virology">Virology</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐68pwz Cached time: 20241122161701 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, no‐toc] CPU time usage: 4.815 seconds Real time usage: 5.285 seconds Preprocessor visited node count: 45212/1000000 Post‐expand include size: 832568/2097152 bytes Template argument size: 226031/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 990133/5000000 bytes Lua time usage: 2.583/10.000 seconds Lua memory usage: 21677484/52428800 bytes Lua Profile: ? 520 ms 19.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 240 ms 8.9% dataWrapper <mw.lua:672> 240 ms 8.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 220 ms 8.1% recursiveClone <mwInit.lua:45> 200 ms 7.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 180 ms 6.7% (for generator) 140 ms 5.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 120 ms 4.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 120 ms 4.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 100 ms 3.7% [others] 620 ms 23.0% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 4301.060 1 -total 43.43% 1867.857 8 Template:Reflist 24.09% 1036.249 382 Template:Defn 19.07% 820.412 382 Template:Term 13.95% 600.025 108 Template:Cite_book 8.83% 379.634 31 Template:Cite_journal 8.24% 354.560 77 Template:Cite_web 4.15% 178.592 1 Template:Refn 3.68% 158.494 2 Template:Harvtxt 3.60% 154.646 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:idhash:36535684-0!canonical and timestamp 20241122161701 and revision id 1245543686. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Glossary_of_engineering:_A–L&oldid=1245543686">https://en.wikipedia.org/w/index.php?title=Glossary_of_engineering:_A–L&oldid=1245543686</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Engineering_disciplines" title="Category:Engineering disciplines">Engineering disciplines</a></li><li><a href="/wiki/Category:Engineering" title="Category:Engineering">Engineering</a></li><li><a href="/wiki/Category:Glossaries_of_science" title="Category:Glossaries of science">Glossaries of science</a></li><li><a href="/wiki/Category:Glossaries_of_technology" title="Category:Glossaries of technology">Glossaries of technology</a></li><li><a href="/wiki/Category:Safety" title="Category:Safety">Safety</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">CS1 maint: unfit URL</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_February_2013" title="Category:Wikipedia articles needing page number citations from February 2013">Wikipedia articles needing page number citations from February 2013</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">CS1 maint: archived copy as title</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:All_articles_with_incomplete_citations" title="Category:All articles with incomplete citations">All articles with incomplete citations</a></li><li><a href="/wiki/Category:Articles_with_incomplete_citations_from_May_2020" title="Category:Articles with incomplete citations from May 2020">Articles with incomplete citations from May 2020</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_May_2020" title="Category:Articles with dead external links from May 2020">Articles with dead external links from May 2020</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_with_empty_Wikidata_description" title="Category:Short description with empty Wikidata description">Short description with empty Wikidata description</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2019" title="Category:Articles with unsourced statements from February 2019">Articles with unsourced statements from February 2019</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2020" title="Category:Articles with unsourced statements from August 2020">Articles with unsourced statements from August 2020</a></li><li><a href="/wiki/Category:Articles_containing_French-language_text" title="Category:Articles containing French-language text">Articles containing French-language text</a></li><li><a href="/wiki/Category:Pages_with_French_IPA" title="Category:Pages with French IPA">Pages with French IPA</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_September_2023" title="Category:Articles with dead external links from September 2023">Articles with dead external links from September 2023</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Wikipedia_glossaries_using_description_lists" title="Category:Wikipedia glossaries using description lists">Wikipedia glossaries using description lists</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 13 September 2024, at 16:09<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Glossary_of_engineering:_A%E2%80%93L&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-jlfln","wgBackendResponseTime":202,"wgPageParseReport":{"limitreport":{"cputime":"4.815","walltime":"5.285","ppvisitednodes":{"value":45212,"limit":1000000},"postexpandincludesize":{"value":832568,"limit":2097152},"templateargumentsize":{"value":226031,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":990133,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 4301.060 1 -total"," 43.43% 1867.857 8 Template:Reflist"," 24.09% 1036.249 382 Template:Defn"," 19.07% 820.412 382 Template:Term"," 13.95% 600.025 108 Template:Cite_book"," 8.83% 379.634 31 Template:Cite_journal"," 8.24% 354.560 77 Template:Cite_web"," 4.15% 178.592 1 Template:Refn"," 3.68% 158.494 2 Template:Harvtxt"," 3.60% 154.646 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"2.583","limit":"10.000"},"limitreport-memusage":{"value":21677484,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"1\"] = 1,\n [\"CITEREFAGU2011\"] = 1,\n [\"CITEREFAcott,_Chris1999\"] = 1,\n [\"CITEREFAlexanderSadiku\"] = 1,\n [\"CITEREFAnderson2016\"] = 1,\n [\"CITEREFAnthonsen2000\"] = 1,\n [\"CITEREFAnthony_C._Fischer-Cripps2004\"] = 1,\n [\"CITEREFAntonBivensDavis2016\"] = 1,\n [\"CITEREFApostol1967\"] = 1,\n [\"CITEREFArora2001\"] = 1,\n [\"CITEREFAroyoMüllerWondratschek2006\"] = 1,\n [\"CITEREFArrhenius1889\"] = 2,\n [\"CITEREFAtkinsDe_Paula2006\"] = 1,\n [\"CITEREFAtkinsJones2008\"] = 1,\n [\"CITEREFAttaway1999\"] = 1,\n [\"CITEREFBal2012\"] = 1,\n [\"CITEREFBatchelor2000\"] = 1,\n [\"CITEREFBeerJohnston1984\"] = 1,\n [\"CITEREFBeerJohnston1996\"] = 1,\n [\"CITEREFBoothroydKnight2006\"] = 1,\n [\"CITEREFBornWolf1999\"] = 1,\n [\"CITEREFBornensAzimzadeh2007\"] = 1,\n [\"CITEREFBrowne,_Michael2013\"] = 1,\n [\"CITEREFBrönsted,_J._N.1923\"] = 1,\n [\"CITEREFBudynasNisbett2014\"] = 1,\n [\"CITEREFBuserImbert1992\"] = 1,\n [\"CITEREFC.R._Nave\"] = 1,\n [\"CITEREFCarroll,_Sean2007\"] = 1,\n [\"CITEREFClancy1975\"] = 1,\n [\"CITEREFClapeyron,_E.1834\"] = 1,\n [\"CITEREFClapeyron1834\"] = 1,\n [\"CITEREFClausius,_R.1857\"] = 1,\n [\"CITEREFClausius1850\"] = 1,\n [\"CITEREFCloseCloseMarten2004\"] = 1,\n [\"CITEREFCoff2010\"] = 1,\n [\"CITEREFCole2005\"] = 1,\n [\"CITEREFCominsKaufmann2008\"] = 1,\n [\"CITEREFCrumpHoelLangleyPeto1976\"] = 1,\n [\"CITEREFCurtis2003\"] = 1,\n [\"CITEREFDaigle2012\"] = 1,\n [\"CITEREFDaintith2004\"] = 2,\n [\"CITEREFDarrigolFrisch2008\"] = 1,\n [\"CITEREFDaryl_L._Logan2011\"] = 1,\n [\"CITEREFDavidNgulubeDube2013\"] = 1,\n [\"CITEREFDowning2003\"] = 1,\n [\"CITEREFDraper1861\"] = 1,\n [\"CITEREFDuderstadt,_James_J.Martin,_William_R.1979\"] = 1,\n [\"CITEREFDuggal2000\"] = 1,\n [\"CITEREFEdmund_Taylor_Whittaker1904\"] = 1,\n [\"CITEREFEichtenLanePeskin1983\"] = 1,\n [\"CITEREFEinstein,_A1916\"] = 1,\n [\"CITEREFEinstein,_A1918\"] = 1,\n [\"CITEREFEinsteinRosen1937\"] = 1,\n [\"CITEREFFaber2011\"] = 1,\n [\"CITEREFFacklerTran1988\"] = 1,\n [\"CITEREFFarmelo2009\"] = 1,\n [\"CITEREFFeynman1964\"] = 1,\n [\"CITEREFFeynman1970\"] = 1,\n [\"CITEREFFinley\"] = 1,\n [\"CITEREFFletcherShoup1978\"] = 1,\n [\"CITEREFFosterNightingale2006\"] = 1,\n [\"CITEREFFranklinFischbach2016\"] = 1,\n [\"CITEREFFrederick_M._Steingress,_Harold_J._Frost_and_Darryl_R._Walker2003\"] = 1,\n [\"CITEREFFrederick_M._Steingress2001\"] = 1,\n [\"CITEREFFreidberg,_Jeffrey_P.2008\"] = 1,\n [\"CITEREFFullick1994\"] = 1,\n [\"CITEREFG._Falkovich2011\"] = 1,\n [\"CITEREFGall2002\"] = 1,\n [\"CITEREFGeankoplis2003\"] = 1,\n [\"CITEREFGereTimoshenko1996\"] = 1,\n [\"CITEREFGeroch1981\"] = 1,\n [\"CITEREFGhatak2009\"] = 1,\n [\"CITEREFGiordano2009\"] = 1,\n [\"CITEREFGoldberg,_David_E.1988\"] = 1,\n [\"CITEREFGoldberg2006\"] = 1,\n [\"CITEREFGroover2014\"] = 1,\n [\"CITEREFGrønHervik2007\"] = 1,\n [\"CITEREFHalmos1970\"] = 1,\n [\"CITEREFHerzog2020\"] = 1,\n [\"CITEREFHibbeler2007\"] = 1,\n [\"CITEREFHorowitzHill2015\"] = 1,\n [\"CITEREFHoskingAnderson1992\"] = 1,\n [\"CITEREFIEEE_Computer_SocietyACM2004\"] = 1,\n [\"CITEREFIUGG2011\"] = 1,\n [\"CITEREFIncroperaDeWittBergmanLavine2007\"] = 1,\n [\"CITEREFJacobs1994\"] = 1,\n [\"CITEREFJaspersenWiney2004\"] = 1,\n [\"CITEREFJayasingheSmallridge,_Andrew_J.Trewhella,_Maurie_A.1993\"] = 1,\n [\"CITEREFJean_Maruani1989\"] = 1,\n [\"CITEREFJohll2009\"] = 1,\n [\"CITEREFJohn_Denis_EnderleJoseph_D._Bronzino2012\"] = 1,\n [\"CITEREFJoseph_Stiles_Beggs1983\"] = 1,\n [\"CITEREFKapustaMüllerRafelski2003\"] = 1,\n [\"CITEREFKateBhapkar2009\"] = 1,\n [\"CITEREFKnopp,_KonradBagemihl,_Frederick1996\"] = 1,\n [\"CITEREFKnowles1980\"] = 1,\n [\"CITEREFKonowrocki_R.Szolc_T.Pochanke_A.Pregowska_A.2016\"] = 1,\n [\"CITEREFKreith1998\"] = 1,\n [\"CITEREFKrönig,_A.1856\"] = 1,\n [\"CITEREFKuck1978\"] = 1,\n [\"CITEREFLakatos,_JohnOenoki,_KeijiJudez,_HectorOenoki,_Kazushi1998\"] = 1,\n [\"CITEREFLakhtakia1989\"] = 1,\n [\"CITEREFLambersTschumakMaierCanadinc2009\"] = 1,\n [\"CITEREFLawrenceLivingston1932\"] = 1,\n [\"CITEREFLawrence_Berkeley_National_Laboratory2000\"] = 1,\n [\"CITEREFLeggHutter2007\"] = 1,\n [\"CITEREFLehrman1973\"] = 1,\n [\"CITEREFLemmetty1999\"] = 1,\n [\"CITEREFLevineMichele_Boldrin2008\"] = 1,\n [\"CITEREFLowry,_T._M.1923\"] = 1,\n [\"CITEREFMacauleyArdley1998\"] = 1,\n [\"CITEREFMatthews2005\"] = 1,\n [\"CITEREFMeriamKraige2002\"] = 1,\n [\"CITEREFMostellerTukey1987\"] = 1,\n [\"CITEREFNarayan2008\"] = 2,\n [\"CITEREFNave2012\"] = 1,\n [\"CITEREFNeyman1937\"] = 1,\n [\"CITEREFNichols_R2001\"] = 1,\n [\"CITEREFNilsson1998\"] = 1,\n [\"CITEREFNoakesSleigh2009\"] = 1,\n [\"CITEREFOgden1999\"] = 1,\n [\"CITEREFOrchinMacomberPinhasWilson2005\"] = 1,\n [\"CITEREFPalPal2001\"] = 1,\n [\"CITEREFPichlerMoreno-Díaz1992\"] = 1,\n [\"CITEREFPilhofer2007\"] = 1,\n [\"CITEREFPollock2005\"] = 1,\n [\"CITEREFPooleMackworthGoebel1998\"] = 1,\n [\"CITEREFPurcellMorin2013\"] = 1,\n [\"CITEREFPurcell_and_Morin,_Harvard_University.2013\"] = 1,\n [\"CITEREFRamsay1949\"] = 1,\n [\"CITEREFRao1997\"] = 1,\n [\"CITEREFRichard_Feynman1970\"] = 3,\n [\"CITEREFRifkin,_Jeremy1995\"] = 1,\n [\"CITEREFRuinaPratap2002\"] = 1,\n [\"CITEREFRussellNorvig2009\"] = 1,\n [\"CITEREFSchmit2002\"] = 1,\n [\"CITEREFSerway,_A._RaymondJewett,_John_W.Wilson,_JaneWilson,_Anna2016\"] = 1,\n [\"CITEREFSharma2008\"] = 1,\n [\"CITEREFSheriff1991\"] = 1,\n [\"CITEREFShirali2002\"] = 1,\n [\"CITEREFSingleton_P1999\"] = 1,\n [\"CITEREFSolivérez2016\"] = 1,\n [\"CITEREFSoutas-LittleInman2008\"] = 1,\n [\"CITEREFStryerBergTymoczko2002\"] = 1,\n [\"CITEREFSuresh2004\"] = 1,\n [\"CITEREFSzolc_T.Konowrocki_R.Michajłow_M.Pregowska_A.2014\"] = 1,\n [\"CITEREFThe_National_Aeronautic_and_Atmospheric_Administration\u0026#039;s_Glenn_Research_Center\"] = 1,\n [\"CITEREFTheodore,_LouisDupont,_R._RyanGanesan,_Kumar1999\"] = 1,\n [\"CITEREFThomas_Wallace_Wright1896\"] = 1,\n [\"CITEREFTom_Henderson\"] = 1,\n [\"CITEREFTruesdellNoll2004\"] = 1,\n [\"CITEREFU.S._Congress,_Office_of_Technology_Assessment1984\"] = 1,\n [\"CITEREFUniversity_of_Colorado_Boulder2013\"] = 1,\n [\"CITEREFVincent2006\"] = 1,\n [\"CITEREFVincenzo_De_Risi2015\"] = 1,\n [\"CITEREFWade2006\"] = 1,\n [\"CITEREFWagnerMusso1983\"] = 1,\n [\"CITEREFWeik,_Martin_H.1961\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n [\"CITEREFWeisstein2007\"] = 1,\n [\"CITEREFWells1990\"] = 1,\n [\"CITEREFWu2005\"] = 1,\n [\"CITEREFYoungFreedman2008\"] = 1,\n [\"CITEREFZhou2011\"] = 1,\n [\"CITEREFZielinski2008\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 4,\n [\"=\"] = 3,\n [\"Blockquote\"] = 3,\n [\"Chem\"] = 4,\n [\"Chem2\"] = 1,\n [\"Citation\"] = 11,\n [\"Citation needed\"] = 2,\n [\"Cite arXiv\"] = 1,\n [\"Cite book\"] = 108,\n [\"Cite conference\"] = 1,\n [\"Cite encyclopedia\"] = 7,\n [\"Cite journal\"] = 31,\n [\"Cite news\"] = 3,\n [\"Cite press release\"] = 1,\n [\"Cite web\"] = 72,\n [\"Closed access\"] = 1,\n [\"Colbegin\"] = 1,\n [\"Colend\"] = 1,\n [\"Compact TOC\"] = 1,\n [\"DEFAULTSORT:Glossary of engineering: A-L\"] = 1,\n [\"Dead link\"] = 2,\n [\"Defn\"] = 382,\n [\"E\"] = 1,\n [\"Efn\"] = 1,\n [\"Em\"] = 2,\n [\"Engineering fields\"] = 1,\n [\"Frac\"] = 2,\n [\"Full citation needed\"] = 1,\n [\"Further\"] = 1,\n [\"Gli\"] = 1,\n [\"Glossaries of science and engineering\"] = 1,\n [\"Glossary\"] = 12,\n [\"Glossary end\"] = 12,\n [\"Glossary of engineering ToC\"] = 10,\n [\"GoldBookRef\"] = 6,\n [\"Google books\"] = 2,\n [\"Harvid\"] = 2,\n [\"Harvnb\"] = 11,\n [\"Harvs\"] = 1,\n [\"Harvtxt\"] = 2,\n [\"Hyphen\"] = 1,\n [\"IETF RFC\"] = 1,\n [\"IPA\"] = 1,\n [\"IPAc-en\"] = 5,\n [\"ISBN\"] = 6,\n [\"Lang\"] = 3,\n [\"Math\"] = 27,\n [\"MerriamWebsterDictionary\"] = 1,\n [\"Mvar\"] = 23,\n [\"Notelist\"] = 2,\n [\"Nowrap\"] = 3,\n [\"Open access\"] = 1,\n [\"Page needed\"] = 1,\n [\"Physconst\"] = 4,\n [\"Reflist\"] = 6,\n [\"Refn\"] = 1,\n [\"Respell\"] = 1,\n [\"Rp\"] = 6,\n [\"Russell Norvig 2003\"] = 1,\n [\"SIbrochure8th\"] = 1,\n [\"See also\"] = 1,\n [\"Sfn\"] = 3,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Snd\"] = 1,\n [\"Sub\"] = 4,\n [\"SubatomicParticle\"] = 6,\n [\"Sup\"] = 3,\n [\"Term\"] = 382,\n [\"TopicTOC-Engineering\"] = 1,\n [\"US patent\"] = 1,\n [\"Val\"] = 9,\n [\"Vanchor\"] = 4,\n [\"Var\"] = 4,\n [\"Visible anchor\"] = 1,\n [\"Webarchive\"] = 7,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","520","19.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","240","8.9"],["dataWrapper \u003Cmw.lua:672\u003E","240","8.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","220","8.1"],["recursiveClone \u003CmwInit.lua:45\u003E","200","7.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","180","6.7"],["(for generator)","140","5.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","120","4.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","120","4.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","100","3.7"],["[others]","620","23.0"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-68pwz","timestamp":"20241122161701","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Glossary of engineering: A\u2013L","url":"https:\/\/en.wikipedia.org\/wiki\/Glossary_of_engineering:_A%E2%80%93L","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5571805","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5571805","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2012-07-24T21:03:23Z","dateModified":"2024-09-13T16:09:45Z"}</script> </body> </html>