CINXE.COM
Solid State Phenomena Vol. 368 | Scientific.Net
<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="This special edition introduces the results of groundbreaking research across four areas of materials engineering: materials for functional applications, materials for energy conversion and energy storage devices, corrosion behaviour and functional coatings of structural materials, and the strength of materials and structural mechanics. The edition will be useful to specialists in materials science, machinery, electronics and structural engineering." /> <link rel="canonical" href="https://www.scientific.net/SSP.368" /> <meta property="og:title" content="Solid State Phenomena Vol. 368 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/SSP.368" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Solid State Phenomena Vol. 368 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=cDLnZ3YA6cfiZP7BySDRmdCXis5ooi759DeeBZ1J5CM" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700%7COpen+Sans:300i,400,400i,600,600i,700&display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.368" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.368" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/SSP.370" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 370</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.369" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 369</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.368" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 368</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.367" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 367</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.366" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 366</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.365" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 365</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.364" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 364</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.363" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 363</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.362" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 362</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.361" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 361</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.360" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 360</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.359" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 359</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.358" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 358</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/SSP">Solid State Phenomena</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Solid State Phenomena Vol. 368</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Solid State Phenomena Vol. 368</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-JeWD4S">https://doi.org/10.4028/v-JeWD4S</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.368/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.368_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.368/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.368/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.3">Investigation of Electromechanical Properties of CF Monolayer</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: The Hung Dinh, Hoang Linh Nguyen, The Quang Tran, Van Truong Do </div> </div> <div id="abstractTextBlock617506" class="volume-info volume-info-text volume-info-description"> Abstract: In this study, we delve into the electromechanical characteristics of the CF monolayer using ab initio theory. The CF monolayer possesses flexible mechanical properties with relatively small elastic coefficients. Additionally, our findings reveal that the CF monolayer can sustain significant strains of up to 24% along the x-axis and 14% along the y-axis under tensile stress. The critical stresses corresponding to these strain values are 21.79 N/m and 17.46 N/m, respectively. Specifically, as the charge varies from 0.00 to -0.07 e/atom, there is an increase in the failure strain along the x-axis, from 24% at equilibrium to 30% at -0.07 e/atom. At equilibrium, the CF monolayer is identified as a direct semiconductor with a band gap of 3.21 eV. Despite charge doping, the monolayer CF retains its direct semiconductor properties. Notably, the energy band gap of the CF monolayer is dependent on charge doping and can be modified by about 10%. Furthermore, the electronic properties of the CF monolayer suggest its potential applications in spin-polarized electronics. Our results provide evidence of the applicability of the CF monolayer in electronic devices. </div> <div> <a data-readmore="{ block: '#abstractTextBlock617506', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.9">Microwave Absorption Performance of Durian-Husk-Derived Carbon Nanomaterials</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Quang Dat Tran, Xuan Quang Pham, Thi Thanh Nguyen, Dinh Vi Le, Nguyen Long Nguyen, Ngoc Huynh Ngo, Tuan Anh Vu, Van Hoang Nguyen, Vu Tung Nguyen, Thi Anh Xuan Chu </div> </div> <div id="abstractTextBlock617609" class="volume-info volume-info-text volume-info-description"> Abstract: The present research focuses on the development of highly efficient and lightweight electromagnetic wave (EMW) absorbers to address the growing issue of electromagnetic pollution. We investigate the use of carbon derived from biomass, specifically durian husks, to create carbon-based microwave absorbers with enhanced performance. A two-step process involving carbonization followed by potassium hydroxide (KOH) activation was employed to synthesize porous carbon materials. The microwave absorption properties were then analyzed using a vector network analyzer across a frequency range from 2 to 18 GHz, with a focus on key parameters such as reflection loss and complex permittivity. The sample, which was 2.0 mm thick and had 15% carbon nanomaterials mixed in with paraffin wax, had an optimal reflection loss of -30.8 dB at 12.8 GHz with an effective absorption bandwidth of 9.0 GHz, highlighting its strong electromagnetic wave absorption performance. The porous structure and large specific surface area significantly contributed to the material鈥檚 ability to absorb electromagnetic radiation. These findings highlight the potential of durian husk-derived carbon material as a highly effective and lightweight EMW absorber for practical applications. </div> <div> <a data-readmore="{ block: '#abstractTextBlock617609', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 9 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.17">Selective Carbon Monoxide-Gas-Sensing Properties over CuO/Rb<sub>2</sub>CO<sub>3</sub> Nanohybrid Structure</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Manh Hung Nguyen, Van Hoang Nguyen, Tien Hung Pham, Dinh Hoat Phung, Minh Hieu Nguyen </div> </div> <div id="abstractTextBlock617653" class="volume-info volume-info-text volume-info-description"> Abstract: CuO/Rb<sub>2</sub>CO<sub>3</sub> nanohybrid structures are fabricated, and their selectivity to CO over H<sub>2</sub> as well as related sensing mechanisms are investigated. A series of CuO/Rb<sub>2</sub>CO<sub>3</sub> nanohybrid structures are deposited on alumina substrates by the bar-coating method. The chemical, morphological, and structural properties of the nanohybrid structures are examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Raman spectroscopy. The best selectivity to CO over H<sub>2</sub> and highest CO response level are observed upon CuO/Rb<sub>2</sub>CO<sub>3</sub> nanohybrid (5 wt.% Rb<sub>2</sub>CO<sub>3</sub>). The gas-sensing performance of the CuO/Rb<sub>2</sub>CO<sub>3</sub> hybrid nanostructures is analyzed to prove that the catalytic properties of Rb2CO3 and its modulation ability to hole accumulation layer thickness of CuO determine the outstanding selectivity and high response level of CuO/Rb<sub>2</sub>CO<sub>3</sub> nanohybrid structure compared to pristine CuO nanoparticles. </div> <div> <a data-readmore="{ block: '#abstractTextBlock617653', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 17 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.29">Study of Localization-Delocalization Transition of Light in Photonic Moir茅 Lattices Fabricated with Saturable Nonlinear Materials</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Trong Dat Ngo, Chinh Cuong Duong, Luong Thien Nguyen, Thanh Luan Nguyen, Duc Anh Quan Nguyen, Viet Hung Nguyen </div> </div> <div id="abstractTextBlock617657" class="volume-info volume-info-text volume-info-description"> Abstract: Recently, Moir茅 lattices have received much attention from physicists and materials scientists. These structures have opened the door to the exploration of numerous physical phenomena such as superconductivity, the commensurate-incommensurate transition, the appearance of quasicrystals at special rotation angles, or the two-dimensional localization-delocalization transition of light in linear systems. In this study, we propose photonic Moir茅 lattices induced by saturable nonlinear materials. After performing numerical simulations, it is observed that there exists a transition between delocalized and localized formation of laser beams under different geometrical conditions, commensurate and incommensurate lattices. The results suggest that Moir茅 lattices with their compactness and tunability would be utilized to control the light patterns in integrated optical devices. </div> <div> <a data-readmore="{ block: '#abstractTextBlock617657', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 29 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.35">Spatial Solitons in Moir茅 Photonic Lattices in Cubic-Quintic Competing Nonlinear Material</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Thanh Luan Nguyen, Thi Dung Nguyen, Thi Hai Tran, Trong Dat Ngo, Duc Tho Do, Viet Hung Nguyen </div> </div> <div id="abstractTextBlock617662" class="volume-info volume-info-text volume-info-description"> Abstract: In this study, we investigate the formation and stability of non-topological spatial solitons in a cubic-quintic nonlinear medium integrated with photonic Moir茅 lattices. This particular type of nonlinearity can be observed in carbon disulfide. For applying the competing nonlinearities of cubicand quintic orders, this study mitigates the catastrophic collapse that typically occurs in cubic nonlinear media, thereby stabilizing the soliton beams. Our approach is to identify fundamental soliton solutions by employing the Squared Operator Method (SOM), with further stability validation performed through the Split-Step Fourier method. Moir茅 lattices formed by the superposition of two periodic sublattices with a twist angle, exhibit unique properties that can significantly modify the light propagation characteristics. The shift from commensurate to incommensurate Moir茅 configurations influences critically soliton localization and power, highlighting the potential of cubicquintic nonlinear media for advanced soliton control in photonic and communication applications. </div> <div> <a data-readmore="{ block: '#abstractTextBlock617662', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 35 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.45">Effect of Am-241 Irradiation on ZnO Crystallinity with Different Annealing Temperature</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Rani Marizah Amelia, Swastya Rahastama, Musyarofah Musyarofah </div> </div> <div id="abstractTextBlock619216" class="volume-info volume-info-text volume-info-description"> Abstract: Am-241 is an alpha emitting isotope which can be used to fuel a nuclear battery via alphavoltaic effect by using a semiconductor to convert alpha radiation to electricity. The main issue of alphavoltaic battery is the radiation damage due to high energy alpha particle, resulted in a rapid decline in performance. Zinc oxide (ZnO) is known as a semiconductor with high radiation tolerance. In this study, the effect of annealing temperature to ZnO crystal was studied along with its alteration due to Am-241 irradiation overtime. The annealing temperatures were set at 450掳C and 650掳C. The irradiation process was carried out using Am-241 isotope for 12 days with an activity of 44.85 mCi and approximately 0.0866 MGy of absorbed dose. The crystal structure of fabricated and irradiated ZnO were investigated through X-ray Diffraction (XRD). The XRD diffraction pattern indicates that the crystal structure of ZnO is hexagonal wurtzite and still maintained after irradiation process. Raising the annealing temperature from 450掳C to 650掳C leads to a reduction in peak intensity. This change correlates with an increase in grain size post-irradiation. After exposure to alpha particle radiation, changes occurred in the diffraction peaks of ZnO. At 450掳C annealing temperature, the intensity decreased by 94.822%, while at 650掳C annealing temperature, the intensity decrease was 85.489%. This shows that increasing the annealing temperature can reduce the decrease in intensity after irradiation with alpha particles. The (002) plane shifted by 0.057藲 at 450掳C annealing temperature and by 0.042藲 at 650掳C after irradiation. In addition, the crystal lattice parameters increased after irradiation, which led to a change in the FWHM value and an increase in the crystal grain size. </div> <div> <a data-readmore="{ block: '#abstractTextBlock619216', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 45 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.53">Addressing of Aluminum Anode Based Battery Challenges: Electrochemical Effect of Zn-Mn Electrodeposition</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Syarifa Nur'aini, Widiyastuti Widiyastuti, Tantular Nurtono, Heru Setyawan </div> </div> <div id="abstractTextBlock616864" class="volume-info volume-info-text volume-info-description"> Abstract: Aluminum (Al) has emerged to become one of the potential anode materials candidates in metal-based batteries due to its abundant resource, inexpensive cost, good safeness and high theoretical energy density. However, thoughtful challenges have been barrier towards huge progress, including easy aluminum hydroxide formation, low practical voltage, and high corrosion rate. To approach those problems, this article proposes to enhance the electrochemical performance of anode side through electrodeposition of Zn-Mn on aluminum surface. The deposition of Zn-Mn consists of citrate and ethylenediaminetetraacetic acid (EDTA) as complexing agent to control the process rate. The effect of various deposition time, 0, 10, and 30 minutes, will be investigated by linear polarization, linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy measurements. The electrochemical measurement exhibits the deposition effect, minimized the impedance of Al surface and improved the electrochemical reactions. Moreover, the appearance of Zn-Mn layer has prolonged the discharge performance with battery analyzer measurements. Therefore, energy density increased from 1270.52 to 3327.68 mWh g<sup>-1</sup>Al and the specific capacity enhances from 2779.908 to 7291.651 mAh g<sup>-1</sup>. All the measurements applied 3.5% sodium chloride (NaCl). These results pose the electrical performance enhancement from the anode side, but the development of other sides is also necessary. </div> <div> <a data-readmore="{ block: '#abstractTextBlock616864', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 53 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.61">Oil Palm Empty Fruit Bunch (OPEFB) Activated Carbon as Promising Electrode Materials for Battery</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Yogi Mirza Pangestu Utomo, Risnawati Risnawati, Fikan Mubarok Rohimsyah, Masato Tominaga, Fredy Kurniawan, Widi Astuti, Andi Idhil Ismail, Yunita Triana </div> </div> <div id="abstractTextBlock619437" class="volume-info volume-info-text volume-info-description"> Abstract: Due to its abundant availability and classification as biomass, the focus in renewable energy is currently centred on the use of Oil Palm Empty Fruit Bunches (OPEFB) as an alternative material for carbon production that can be used in many applications, one of which is batteries. The type of battery that is trying to use is a primary battery. The purpose of this study is to determine the effect of different concentrations of NaOH activation and immersion time on OPEFB activated carbon by analyzing the result of surface area, morphology, and electrical properties. The study found that 1 M NaOH concentration and an 18-hour immersion time were optimal, producing a surface area of 281.96 m虏/g and a voltage of 0.785 V. These findings align with and contribute to existing research on biomass utilization in energy storage, demonstrating the potential of OPEFB-activated carbon in battery applications and highlighting the significance of further research in this area to enhance battery performance and scalability. </div> <div> <a data-readmore="{ block: '#abstractTextBlock619437', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 61 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.368.79">Corrosion Performance of Steel Bar Embedded in Seawater Mixed Mortar with Batching Plant Waste</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Pinta Astuti </div> </div> <div id="abstractTextBlock606557" class="volume-info volume-info-text volume-info-description"> Abstract: Reinforcing steel deterioration is complicated by corrosion. Reinforcing steel corrosion can weaken a structure. Corrosion cannot be eliminated; however, it can be reduced to increase building service life. The objective of the research it to demonstrate the effect of coating method as corrosion prevention and the cover depth to the corrosion performance of steel bar embedded in seawater mixed mortar. This study examines the corrosion rate of steel reinforcement in a 15 x 15 x 15 cm mortar cube made by using seawater as mixing water and containing Portland Pozzolan Cement (PPC) as a binder material. This study also experiences numerous corrosion mitigation methods using wet, dry, and dry-wet cycle exposure methods. The reinforcement and mortar surface were protected with anti-corrosive paint. Additionally, specimens without protective measures were also fabricated for comparison. Two reinforcing steels were attached in the two different cover depths, 3 cm and 5 cm. This study used sand and batching plant byproducts as fine aggregate. Study found a hierarchy of corrosion-causing exposures. The dry-wet cycle was the most corrosive, followed by wet and dry. Steel coating prevents corrosion better than surface coating. However, both methods outperformed the uncoated method in corrosion resistance. The mortar cover was 5 cm thick, compared to 3 cm expected. A combination of mortar with fine sand aggregate outperformed dry mortar made from batching plant leftovers. The investigation of corrosion potential through the utilization of the half-cell potential technique reveals that the outcomes obtained from test specimens using the steel coating prevention approach exhibit a higher degree of positivity in comparison to the prevention method including surface coating. The unprotected approach exhibits outcomes that lean towards being more unfavorable compared to the steel coating prevention method and the surface coating prevention method. The findings indicate that the performance of reinforcing steel embedded within a 3 cm mortar cover depth is often worse when compared to reinforcing steel situated inside a 5 cm mortar cover depth. </div> <div> <a data-readmore="{ block: '#abstractTextBlock606557', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 79 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 15 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.368/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.368/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy & Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> © 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=SSP&volumeBegin=368&volumeEnd=368', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> </body> </html>