CINXE.COM
Solid State Phenomena Vol. 360 | Scientific.Net
<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The relentless advancement in high-power electronics has driven the need for innovative materials and new device architectures. This special edition delves readers into the cutting-edge developments and challenges in the field, with a focus on silicon carbide (SiC) technology. The edition provides a comprehensive overview of the critical aspects of SiC MOSFETs, highlighting their superior switching characteristics and robustness, etc., compared to traditional silicon-based devices. Collected articles not only focus on the theoretical underpinnings but also provide practical insights for engineers in design and real-world applications." /> <link rel="canonical" href="https://www.scientific.net/SSP.360" /> <meta property="og:title" content="Solid State Phenomena Vol. 360 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/SSP.360" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Solid State Phenomena Vol. 360 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=cDLnZ3YA6cfiZP7BySDRmdCXis5ooi759DeeBZ1J5CM" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700%7COpen+Sans:300i,400,400i,600,600i,700&display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.360" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.360" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/SSP.366" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 366</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.365" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 365</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.364" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 364</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.363" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 363</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.362" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 362</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.361" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 361</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.360" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 360</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.359" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 359</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.358" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 358</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.357" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 357</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.356" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 356</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.355" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 355</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.354" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 354</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/SSP">Solid State Phenomena</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Solid State Phenomena Vol. 360</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Solid State Phenomena Vol. 360</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-5rUKKF">https://doi.org/10.4028/v-5rUKKF</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.360/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.360_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.360/2">2</a></li><li><a href="/SSP.360/3">3</a></li><li><a href="/SSP.360/4">4</a></li><li class="PagedList-skipToNext"><a href="/SSP.360/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.1">3<sup>rd</sup> Quadrant Surge Current SOA of SiC MOSFETs with Different Voltage Class</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Mohamed Alaluss, Christoph Böhm, Clemens Herrmann, Thomas Basler, Rudolf Elpelt, Guang Zeng </div> </div> <div id="abstractTextBlock605083" class="volume-info volume-info-text volume-info-description"> Abstract: The aim of this work is to investigate the 3<sup>rd</sup> quadrant safe operating area (SOA) of different voltage class SiC MOSFETs under surge current conditions depending on the gate-source voltage. The extent to which an applied gate-source voltage can influence the surge current capability was investigated. For 650 V and 1.2 kV voltage class devices, surge current capability was higher with channel-on mode. However, this behavior was vice-versa for 2 kV and 3.3 kV devices. In this investigation, during the surge current event, the gate-source voltage was switched between different values to optimize the resulting voltage drop. This method can reduce power dissipation during a surge current event, especially for high voltage class SiC MOSFETs. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605083', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 1 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.9">Investigation of the Trapping and Detrapping Behavior by the On-State Resistance at Low Off-State Drain Bias in Schottky p-GaN Gate HEMTs</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Maximilian Goller, Jörg Franke, Josef Lutz, Samir Mouhoubi, Gilberto Curatola, Thomas Basler </div> </div> <div id="abstractTextBlock605731" class="volume-info volume-info-text volume-info-description"> Abstract: GaN power HEMTs enable the design of power electronic systems with highest efficiencies and reduced size. Despite strong advancements in device reliability, charge carrier trapping is still an important challenge. The applied methodology allows to characterize defects that cause the dynamic <i>R</i><sub>DS,on</sub> in GaN power devices at product level with flexibility in duty cycle, number of pulses and mission profile. A pronounced trapping is observed for lateral GaN-on-Si HEMTs with Schottky p-GaN gate structure at low drain bias and long off-state pulses (> 100 ms). The effect is investigated by fast determination of the on-state resistance <i>R</i><sub>DS,on</sub> under different trap capturing conditions: a) different drain bias b) off-state time and number of cycles c) variation of temperature. The trapping and detrapping effects are characterized and the activation energy is extracted from time constants. An elevated on-state resistance was present for up to 3 hours. The threshold voltage modification due to high drain bias does explain the significant <i>R</i><sub>DS,on</sub> increase. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605731', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 9 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.17">Junction-Controlled-Diode-Embedded SiC-MOSFET for Improving Third Quadrant and Turn-On Characteristics</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Qian Lou, Xuan Li, Zheng Yu Yang, Ling Feng Li, Song Jun Li, Xiao Chuan Deng, Bo Zhang </div> </div> <div id="abstractTextBlock603443" class="volume-info volume-info-text volume-info-description"> Abstract: In this paper, we propose a novel 1200V SiC MOSFET featuring the embedded junction-controlled-diode (JCD-MOSFET) and demonstrate its static and dynamic characteristics through TCAD simulations. Without sacrificing blocking and conduction performance, the adoption of JCD can effectively reduce knee voltage to 1.7V based on unipolar carrier conduction mode. Due to the reduced peak reverse recovery current and reverse recovery charge, the JCD-MOSFET achieves 30.8% lower turn-on losses than conventional MOSFET. Meanwhile, the fabrication process for the JCD-MOSFET is the same as conventional MOSFET without an extra mask. This proposed JCD-MOSFET prototype shows great potential in target applications in the near future. </div> <div> <a data-readmore="{ block: '#abstractTextBlock603443', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 17 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.23">Effect Evaluation and Modeling of p-Type Contact and p-Well Sheet Resistance of SiC MOSFET with Respect to Switching Characteristics</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Yui Nagase, Shuhei Nakata, Takaaki Tominaga </div> </div> <div id="abstractTextBlock604499" class="volume-info volume-info-text volume-info-description"> Abstract: SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) exhibit excellent high-speed switching characteristics. However, the sheet resistance of the p-body region and the contact resistance between the p-body region and source electrode significantly degrade the switching performance. In this study, to clarify the effect of resistance on switching speed, which has not been sufficiently explored before, we used the temperature dependence of sheet and contact resistance and conducted switching tests under different temperature conditions. Furthermore, we created a circuit model that considered body effects and compared the results of the models with the measurements. We were able to reproduce the same temperature and resistance dependences as those exhibited by the experimental results, thus confirming the effectiveness of the model. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604499', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 23 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.29">Ohmic Contact Resistance in SiC Diodes with Ti and NiSi P<sup>+</sup> Contacts</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Massimo Mazzillo, Davood Momeni, Zhe Yu, Joachim Stache, Jesus Urresti, Christian Liguda, Soenke Habenicht </div> </div> <div id="abstractTextBlock604634" class="volume-info volume-info-text volume-info-description"> Abstract: Ohmic contacts play a major role in the signal transfer between the semiconductor device and the external circuitry. One of the main technological issues to develop high-performance SiC-based devices is the control of metal/SiC contact properties to fabricate low resistance and high stability SiC Ohmic contacts to p-type SiC. This is mostly due to intrinsic SiC characteristics like large work function, low dopant activation for p-type materials and low hole mobility. These limits are even more emphasized in SiC JBS or MPS diodes, where Schottky and Ohmic contacts on the P doped regions embedded in the active area to improve surge ruggedness are usually formed by using the same metallization process. This naturally results either in a high Schottky barrier height in the Schottky contact with consequent increase of the conduction loss at low currents or in a poorly conductive Ohmic contact, leading to reduced IFSM capability. Therefore, the optimization and control of the process parameters like for example the P<sup>+</sup> doping concentration peak underneath the metallization layer and the annealing process temperatures is crucial to obtain a good Ohmic contact and enhance the device麓s robustness against surge current. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604634', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 29 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.37">Influence of Material Properties on Ruggedness Evaluation of Package Architectures for SiC Power Devices</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Hans-Juergen Funke, Zh. Li, H. Fan, O. Dong, A J. Garete, Tom Birkoben, Christian Liguda, Soenke Habenicht </div> </div> <div id="abstractTextBlock604894" class="volume-info volume-info-text volume-info-description"> Abstract: Button shear tests at different temperatures between different mold compounds and Cu-leadframes have been performed to evaluate the adhesion of mold compounds to the inner surfaces of SiC-power devices. The results at different temperatures show the behavior of different material and layer stack combinations under storage at room temperatures as well as under operating conditions with elevated temperatures, where adhesion and thus the hermeticity of the device against moisture is significantly lowered. It has been shown that different thermomechanical properties of the mold compounds as well as the usage of different adhesion promoter materials have a significant effect on the adhesion properties of the mold compound to the leadframe surface of the SiC power devices, which have direct impact on the ruggedness and lifetime stability. Furthermore, these results have been correlated to thermomechanical simulations of the package architecture of SiC power devices under stress. Different wire bond architectures have been evaluated in simulations with and without die top delamination taken into account, showing that EMC delamination may play a major role in the lifetime stability of SiC power devices under thermomechanical stress like simulated in TCT- , IOL- and PTC-testing. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604894', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 37 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.45">1.2 kV SiC MOSFET with Low Specific ON-Resistance and High Immunity to Parasitic Turn-On</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Thanh Toan Pham, Jimmy Franchi, Soo Hyun Kang, Kyeong Seok Park, Doo Jin Choi, Martin Domeij </div> </div> <div id="abstractTextBlock604887" class="volume-info volume-info-text volume-info-description"> Abstract: With the capability to switch at high speed, there are important concerns about Parasitic Turn-On (PTO) when using SiC MOSFETs in switching applications with fundamental half-bridge configuration [1]. In this work, we present 1200V SiC planar MOSFETs with low specific ON-resistance (Rsp), fast switching characteristics and high immunity to PTO. The PTO immunity is verified by experimental comparison to several commercially available SiC MOSFETs. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604887', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 45 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.51">Analysis of Electrothermal Imbalance of Hard-Switched Parallel SiC MOSFETs through Infrared Thermography</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Alessandro Borghese, Stefano Angora, Marco Boccarossa, Michele Riccio, Luca Maresca, Vincenzo Romano Marrazzo, Giovanni Breglio, Andrea Irace </div> </div> <div id="abstractTextBlock604901" class="volume-info volume-info-text volume-info-description"> Abstract: This paper provides an experimental investigation through infrared thermography of the steady-state temperature imbalance arising in parallel SiC MOSFETs. A switched-mode boost power converter based on two arrays of 4 parallel 1.2 kV MOSFETs is selected as a case-study. The analysis aims at proving that a proper device arrangement can minimize the thermal imbalance in the absence of circuit layout optimization. </div> <div> <a data-readmore="{ block: '#abstractTextBlock604901', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 51 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.360.59">Non-Linear Gate Stack Effect on the Short Circuit Performance of a 1.2-kV SiC MOSFET</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> <i class="inline-icon lock-open-red inline-icon-small" title="Open Access"></i> Authors: Marco Boccarossa, Luca Maresca, Alessandro Borghese, Michele Riccio, Giovanni Breglio, Andrea Irace, Giovanni Antonio Salvatore </div> </div> <div id="abstractTextBlock605445" class="volume-info volume-info-text volume-info-description"> Abstract: In this paper, the effect of a non-linear dielectric gate stack on the short-circuit performance of a 1.2 kV SiC MOSFET was analyzed through TCAD simulations. Starting from the TCAD model of a commercial 1.2 kV, its standard gate oxide was replaced with a stack formed by oxide and a non鈥憀inear dielectric, characterized by a temperature dependent permittivity. This variation on temperature can be exploited to reduce the current conducted during short-circuit events, lowering the temperature reached through the device by about 30%, without affecting its static and dynamic performance. </div> <div> <a data-readmore="{ block: '#abstractTextBlock605445', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 59 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 31 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.360/2">2</a></li><li><a href="/SSP.360/3">3</a></li><li><a href="/SSP.360/4">4</a></li><li class="PagedList-skipToNext"><a href="/SSP.360/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy & Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> © 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=SSP&volumeBegin=360&volumeEnd=360', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> </body> </html>