CINXE.COM
Search results for: strengthening
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: strengthening</title> <meta name="description" content="Search results for: strengthening"> <meta name="keywords" content="strengthening"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="strengthening" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="strengthening"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 664</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: strengthening</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingjie%20Wang">Bingjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianqian%20Qang"> Qianqian Qang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Lu"> Nan Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiubing%20Liang"> Xiubing Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baolong%20Shen"> Baolong Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%E2%82%82O%E2%82%83-reinforcement" title="Al₂O₃-reinforcement">Al₂O₃-reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=HfNbTaTiZrV" title=" HfNbTaTiZrV"> HfNbTaTiZrV</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20high-entropy%20alloy" title=" refractory high-entropy alloy"> refractory high-entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=interstitial%20strengthening" title=" interstitial strengthening"> interstitial strengthening</a> </p> <a href="https://publications.waset.org/abstracts/158860/enhanced-high-temperature-strength-of-hfnbtatizrv-refractory-high-entropy-alloy-via-al2o3-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> Recent Studies on Strengthening of Reinforced Concrete Members by Ferrocement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Lam">E. Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20D.%20Yang"> Z. D. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Li"> B. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ho"> I. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Wong"> T. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Wong"> V. Wong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports some of the recent studies on strengthening of reinforced concrete members by ferrocement. Using mortar in ferrocement with high tensile strength, tensile properties of (high performance) ferrocement can be enhanced. In the proposed strengthening strategy, defective concrete cover of structural members is replaced by ferrocement so as to increase the load carrying capacity. This has been successfully applied to strengthen columns and beam-column joints. To facilitate the ease of application of the proposed strengthening strategy, mortar in ferrocement is applied through dry spray shotcrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrocement" title="ferrocement">ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20ferrocement" title=" high performance ferrocement"> high performance ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=dry" title=" dry"> dry</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20shotcrete" title=" spray shotcrete"> spray shotcrete</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column%20joint" title=" beam-column joint"> beam-column joint</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/17783/recent-studies-on-strengthening-of-reinforced-concrete-members-by-ferrocement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%27%20Al-Ghanim">Hana' Al-Ghanim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%27tasim%20Abdel-Jaber"> Mu'tasim Abdel-Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Alqam"> Maha Alqam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental investigation deals with shear strengthening of reinforced concrete (RC) deep beams using the externally bonded carbon fiber-reinforced polymer (CFRP) composites. The current study, therefore, evaluates the effectiveness of four various configurations for shear strengthening of deep beams with two different types of CFRP materials including sheets and laminates. For this purpose, a total of 10 specimens of deep beams were cast and tested. The shear performance of the strengthened beams is assessed with respect to the cracks’ formation, modes of failure, ultimate strength and the overall stiffness. The obtained results demonstrate the effectiveness of using the CFRP technique on enhancing the shear capacity of deep beams; however, the efficiency varies depending on the material used and the strengthening scheme adopted. Among the four investigated schemes, the highest increase in the ultimate strength is recorded by using the continuous wrap of two layers of CFRP sheets, exceeding a value of 86%, whereas an enhancement of about 36% is achieved by the inclined CFRP laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20beams" title="deep beams">deep beams</a>, <a href="https://publications.waset.org/abstracts/search?q=laminates" title=" laminates"> laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=sheets" title=" sheets"> sheets</a> </p> <a href="https://publications.waset.org/abstracts/55807/shear-strengthening-of-reinforced-concrete-deep-beams-using-carbon-fiber-reinforced-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117055/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-door" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qudama%20Albu-Jasim">Qudama Albu-Jasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Majdi%20Kanaan"> Majdi Kanaan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20rating" title="load rating">load rating</a>, <a href="https://publications.waset.org/abstracts/search?q=CSIBridge" title=" CSIBridge"> CSIBridge</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainties" title=" uncertainties"> uncertainties</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a> </p> <a href="https://publications.waset.org/abstracts/141480/strengthening-evaluation-of-steel-girder-bridge-under-load-rating-analysis-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Z.%20Mahmud">Emin Z. Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20of%20masonry%20structures" title="behaviour of masonry structures">behaviour of masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode" title=" Eurocode"> Eurocode</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/117054/the-influence-of-strengthening-on-the-fundamental-frequency-and-stiffness-of-a-confined-masonry-wall-with-an-opening-for-a-window" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Rzeszut">Katarzyna Rzeszut</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilona%20Szewczak"> Ilona Szewczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20tapes" title="CFRP tapes">CFRP tapes</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma%20profiles" title=" sigma profiles"> sigma profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20thin-walled%20structures" title=" steel thin-walled structures"> steel thin-walled structures</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/67413/experimental-studies-of-sigma-thin-walled-beams-strengthen-by-cfrp-tapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talebi%20Aliasghar">Talebi Aliasghar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahimpour%20Komeleh%20Hooman"> Ebrahimpour Komeleh Hooman</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghsoudi%20Ali%20Akbar"> Maghsoudi Ali Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HSC" title="HSC">HSC</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column%20connection" title=" beam-column connection"> beam-column connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiber%20Reinforcement%20Polymer" title=" Fiber Reinforcement Polymer"> Fiber Reinforcement Polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Modeling" title=" Finite Element Modeling"> Finite Element Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/99896/fem-study-of-different-methods-of-fiber-reinforcement-polymer-strengthening-of-a-high-strength-concrete-beam-column-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eray%20Ozbek">Eray Ozbek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan"> Ilker Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Oguzhan%20Akbas"> S. Oguzhan Akbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabahattin%20Aykac"> Sabahattin Aykac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infill%20wall" title="infill wall">infill wall</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20plate" title=" external plate"> external plate</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20behavior" title=" earthquake behavior"> earthquake behavior</a> </p> <a href="https://publications.waset.org/abstracts/4948/influence-of-strengthening-with-perforated-steel-plates-on-the-behavior-of-infill-walls-and-rc-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lan%20Nguyen">Lan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lam%20Cao%20Van"> Lam Cao Van</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATENA" title="ATENA">ATENA</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20pier%20strengthening" title=" bridge pier strengthening"> bridge pier strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29" title=" carbon fiber reinforced polymer (CFRP)"> carbon fiber reinforced polymer (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20prediction%20analysis" title=" crack prediction analysis"> crack prediction analysis</a> </p> <a href="https://publications.waset.org/abstracts/54125/strengthening-bridge-piers-by-carbon-fiber-reinforced-polymer-cfrp-a-case-study-for-thuan-phuoc-suspension-bridge-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> Shear Strengthening of Reinforced Concrete Flat Slabs Using Prestressing Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haifa%20Saleh">Haifa Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamiran%20Abduka"> Kamiran Abduka</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Kalfat"> Robin Kalfat</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Al-Mahaidi"> Riadh Al-Mahaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectiveness of using pre-stressing steel bars for shear strengthening of high strength reinforced concrete (RC) slabs was assessed. Two large-scale RC slabs were tested, one without shear reinforcement and the second strengthened against punching shear failure using pre-stressing steel bars. The two slabs had the same dimensions, flexural reinforcement ratio, loading and support arrangements. The experimental program including the method of strengthening, set up and instrumentation are described in this paper. The experimental results are analyzed and discussed in terms of the structural behavior of the RC slabs, the performance of pre-stressing steel bolts and failure modes. The results confirmed that the shear strengthening technique increased the shear capacity, ductility and yield capacity of the slab by up to 15%, 44%, and 22%, respectively compared to the unstrengthened slab. The strengthening technique also successfully contributed to changing the failure mode from a brittle punching shear mode to ductile flexural failure mode. Vic3D digital image correlation system (photogrammetry) was also used in this research. This technique holds several advantages over traditional contact instrumentations including that it is inexpensive, it produces results that are simple to analyze and it is remote visualization technique. The displacement profile along the span of the slab and rotation has been found and compared with the results obtained from traditional sensors. The performance of the photogrammetry technique was very good and the results of both measurements were in very close agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20slab" title="flat slab">flat slab</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20shear" title=" punching shear"> punching shear</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/89102/shear-strengthening-of-reinforced-concrete-flat-slabs-using-prestressing-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Cyclic Loading Tests of Reinforced Concrete Frame Structures Strengthened by Externally-Anchored Precast Wall-Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Choi">Seung-Ho Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Yuel%20Oh"> Jae Yuel Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Sung%20Lim"> Chi Sung Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20Seong%20Jung"> Ho Seong Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Su%20Kim"> Kang Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, various strengthening methods for buildings have been developed, but most of them require quite a long construction period during which the building users need to be patient on uncomfortable working environments including various lousy noises or even evacuation of the buildings. In this study, externally anchored precast wall-panel method (EPCW) for strengthening non-seismic reinforced concrete (RC) structures has been proposed, which is occupant-friendly technique because the strengthening walls are manufactured at factory and can be tightened to the members very quickly at the site. In order to investigate the structural performance of the specimens strengthened by the EPCW method, a total of four specimens were fabricated, and tested under axial and reversed cyclic lateral loads. The test results showed that the lateral resistances of the specimens strengthened by the EPCW method were greatly enhanced in both positive and negative directions, compared to the RC specimen having non-seismic details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precast%20wall" title="precast wall">precast wall</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20strengthening" title=" seismic strengthening"> seismic strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=externally-anchored" title=" externally-anchored"> externally-anchored</a> </p> <a href="https://publications.waset.org/abstracts/75858/cyclic-loading-tests-of-reinforced-concrete-frame-structures-strengthened-by-externally-anchored-precast-wall-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">652</span> Effectiveness of Impairment Specified Muscle Strengthening Programme in a Group of Disabled Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20I.%20Prasanna">A. L. I. Prasanna</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Liyanage"> E. Liyanage</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Rajaratne"> S. A. Rajaratne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20A.%20P.%20Kariyawasam"> K. P. A. P. Kariyawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20J.%20Rajaratne"> A. A. J. Rajaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintaining or improving the muscle strength of the injured body part is essential to optimize performance among disabled athletes. General conditioning and strengthening exercises might be ineffective if not sufficiently intense enough or targeted for each participant’s specific impairment. Specific strengthening programme, targeted to the affected body part, are essential to improve the strength of impaired muscles and increase in strength will help reducing the impact of disability. Methods: The muscle strength of hip, knee and ankle joints was assessed in a group of randomly selected disabled athletes, using the Medical Research Council (MRC) grading. Those having muscle strength of grade 4 or less were selected for this study (24 in number) and were given and a custom made exercise program designed to strengthen their hip, knee or ankle joint musculature, according to the muscle or group of muscles affected. Effectiveness of the strengthening program was assessed after a period of 3 months. Results: Statistical analysis was done using the Minitab 16 statistical software. A Mann-Whitney U test was used to compare the strength of muscle group before and after exercise programme. A significant difference was observed after the three month strengthening program for knee flexors (Left and Right) (P =0.0889, 0.0312) hip flexors (left and right) (P=0.0312, 0.0466), hip extensors (Left and Right) (P=0.0478, 0.0513), ankle plantar flexors (Left and Right) (P=0.0466, 0.0423) and right ankle dorsiflexors (P= 0.0337). No significant difference of strength was observed after the strengthening program in the knee extensors (left and right), hip abductors (left and right) and left ankle dorsiflexors. Conclusion: Impairment specific exercise programme appear to be beneficial for disabled athletes to significantly improve the muscle strength of the affected joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme" title="muscle strengthening programme">muscle strengthening programme</a>, <a href="https://publications.waset.org/abstracts/search?q=disabled%20athletes" title=" disabled athletes"> disabled athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20sciences" title=" rehabilitation sciences"> rehabilitation sciences</a> </p> <a href="https://publications.waset.org/abstracts/1783/effectiveness-of-impairment-specified-muscle-strengthening-programme-in-a-group-of-disabled-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">651</span> Analysis of a Strengthening of a Building Reinforced Concrete Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassereddine%20Attari">Nassereddine Attari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title="pushover analysis">pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/44859/analysis-of-a-strengthening-of-a-building-reinforced-concrete-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">650</span> Transversal Connection Strengthening of T Section Beam Bridge with Brace System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chen">Chen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> T section beam bridge has been widely used in China as it is low cost and easy to erect. Some of T section beam bridges only have end diagrams and the adjacent girders are connected by wet-joint along span, which leads to the damage of transversal connection becomes a serious problem in operation and maintenance. This paper presents a brace system to strengthen the transversal connection of T section beam bridge. The strengthening effect was discussed by experiments and finite element analysis. The results show that the proposed brace system can improve load transfer between adjacent girders. Based on experiments and FEA model, displacement of T section beam with proposed brace system reduced 14.9% and 19.1% respectively. Integral rigidity increased 19.4% by static experiments. The transversal connection of T section beam bridge can be improved efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment" title="experiment">experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=T%20section%20beam%20bridge" title=" T section beam bridge"> T section beam bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=transversal%20connection" title=" transversal connection"> transversal connection</a> </p> <a href="https://publications.waset.org/abstracts/78983/transversal-connection-strengthening-of-t-section-beam-bridge-with-brace-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">649</span> Strengthening Strategy across Languages: A Cognitive and Grammatical Universal Phenomenon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Jay">Behnam Jay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the phenomenon called “Strengthening” in human language refers to the strategic use of multiple linguistic elements to intensify specific grammatical or semantic functions. This study explores cross-linguistic evidence demonstrating how strengthening appears in various grammatical structures. In French and Spanish, double negatives are used not to cancel each other out but to intensify the negation, challenging the conventional understanding that double negatives result in an affirmation. For example, in French, il ne sait pas (He dosn't know.) uses both “ne” and “pas” to strengthen the negation. Similarly, in Spanish, No vio a nadie. (He didn't see anyone.) uses “no” and “nadie” to achieve a stronger negative meaning. In Japanese, double honorifics, often perceived as erroneous, are reinterpreted as intentional efforts to amplify politeness, as seen in forms like ossharareru (to say, (honorific)). Typically, an honorific morpheme appears only once in a predicate, but native speakers often use double forms to reinforce politeness. In Turkish, the word eğer (indicating a condition) is sometimes used together with the conditional suffix -se(sa) within the same sentence to strengthen the conditional meaning, as in Eğer yağmur yağarsa, o gelmez. (If it rains, he won't come). Furthermore, the combination of question words with rising intonation in various languages serves to enhance interrogative force. These instances suggest that strengthening is a cross-linguistic strategy that may reflect a broader cognitive mechanism in language processing. This paper investigates these cases in detail, providing insights into why languages may adopt such strategies. No corpus was used for collecting examples from different languages. Instead, the examples were gathered from languages the author encountered during their research, focusing on specific grammatical and morphological phenomena relevant to the concept of strengthening. Due to the complexity of employing a comparative method across multiple languages, this approach was chosen to illustrate common patterns of strengthening based on available data. It is acknowledged that different languages may have different strengthening strategies in various linguistic domains. While the primary focus is on grammar and morphology, it is recognized that the strengthening phenomenon may also appear in phonology. Future research should aim to include a broader range of languages and utilize more comprehensive comparative methods where feasible to enhance methodological rigor and explore this phenomenon more thoroughly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strengthening" title="strengthening">strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linguistic%20analysis" title=" cross-linguistic analysis"> cross-linguistic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=syntax" title=" syntax"> syntax</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20mechanism" title=" cognitive mechanism"> cognitive mechanism</a> </p> <a href="https://publications.waset.org/abstracts/190207/strengthening-strategy-across-languages-a-cognitive-and-grammatical-universal-phenomenon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisaynew%20Tesfaw%20Admassu">Sisaynew Tesfaw Admassu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heritage%20structures" title="heritage structures">heritage structures</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20resin" title=" polyester resin"> polyester resin</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plates" title=" steel plates"> steel plates</a> </p> <a href="https://publications.waset.org/abstracts/172985/experimental-investigation-on-strengthening-of-timber-beam-using-glass-fibers-and-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Techniques for Seismic Strengthening of Historical Monuments from Diagnosis to Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mircan%20Kaya">Mircan Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multi-disciplinary approach is required in any intervention project for historical monuments. Due to the complexity of their geometry, the variable and unpredictable characteristics of original materials used in their creation, heritage structures are peculiar. Their histories are often complex, and they require correct diagnoses to decide on the techniques of intervention. This approach should not only combine technical aspects but also historical research that may help discover phenomena involving structural issues, and acquire a knowledge of the structure on its concept, method of construction, previous interventions, process of damage, and its current state. In addition to the traditional techniques like bed joint reinforcement, the repairing, strengthening and restoration of historical buildings may require several other modern methods which may be described as innovative techniques like pre-stressing and post-tensioning, use of shape memory alloy devices and shock transmission units, shoring, drilling, and the use of stainless steel or titanium. Regardless of the method to be incorporated in the strengthening process, which can be traditional or innovative, it is crucial to recognize that structural strengthening is the process of upgrading the structural system of the existing building with the aim of improving its performance under existing and additional loads like seismic loads. This process is much more complex than dealing with a new construction, owing to the fact that there are several unknown factors associated with the structural system. Material properties, load paths, previous interventions, existing reinforcement are especially important matters to be considered. There are several examples of seismic strengthening with traditional and innovative techniques around the world, which will be discussed in this paper in detail, including their pros and cons. Ultimately, however, the main idea underlying the philosophy of a successful intervention with the most appropriate techniques of strengthening a historic monument should be decided by a proper assessment of the specific needs of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20joint%20reinforcement" title="bed joint reinforcement">bed joint reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20monuments" title=" historical monuments"> historical monuments</a>, <a href="https://publications.waset.org/abstracts/search?q=post-tensioning" title=" post-tensioning"> post-tensioning</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stressing" title=" pre-stressing"> pre-stressing</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20strengthening" title=" seismic strengthening"> seismic strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy%20devices" title=" shape memory alloy devices"> shape memory alloy devices</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20transmitters" title=" shock transmitters"> shock transmitters</a>, <a href="https://publications.waset.org/abstracts/search?q=tie%20rods" title=" tie rods"> tie rods</a> </p> <a href="https://publications.waset.org/abstracts/62436/techniques-for-seismic-strengthening-of-historical-monuments-from-diagnosis-to-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> Shear Strengthening of RC T-Beams by Means of CFRP Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Farghal">Omar A. Farghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer" title="carbon fiber reinforced polymer">carbon fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=wrapping" title=" wrapping"> wrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a> </p> <a href="https://publications.waset.org/abstracts/6324/shear-strengthening-of-rc-t-beams-by-means-of-cfrp-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhuha%20Albusalih">Dhuha Albusalih</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Weston"> David Weston</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Gill"> Simon Gill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20reverse%20plating" title=" pulse reverse plating"> pulse reverse plating</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20performance%20of%20cobalt%20nanocomposites" title=" tribological performance of cobalt nanocomposites"> tribological performance of cobalt nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/74419/mechanical-properties-of-nanocomposites-cobalt-matrix-with-nano-sic-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahid">Muhammad Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mansoor"> Muhammad Mansoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20melting" title=" induction melting"> induction melting</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening%20mechanism" title=" strengthening mechanism"> strengthening mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/38656/induction-melting-as-a-fabrication-route-for-aluminum-carbon-nanotubes-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Gyansah">L. Gyansah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanfang%20Shen"> Yanfang Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiqiang%20Wang"> Jiqiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianying%20Xiong"> Tianying Xiong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spraying" title="cold spraying">cold spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20deformation" title=" hot deformation"> hot deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20temperature" title=" deformation temperature"> deformation temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechancal%20properties" title=" thermomechancal properties"> thermomechancal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SiC%2FAl%20composite" title=" SiC/Al composite"> SiC/Al composite</a> </p> <a href="https://publications.waset.org/abstracts/159583/thermomechanical-deformation-response-in-cold-sprayed-sicpal-composites-strengthening-microstructure-characterization-and-thermomechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Repair and Strengthening of Plain and FRC Shear Deficient Beams Using Externally Bonded CFRP Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20S.%20Abou%20El-Mal">H. S. S. Abou El-Mal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20M.%20Sallam"> H. E. M. Sallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents experimental and analytical study on the behavior of repaired and strengthened shear critical RC beams using externally bonded CFRP bi-directional fabrics. The use of CFRP sheets to repair or strengthen RC beams has been repetitively studied and proven feasible. However, the use of combined repair techniques and applying that method to both plain and FRC beams can maximize the shear capacity of RC shear deficient beams. A total of twelve slender beams were tested under four-point bending. The test parameters included CFRP layout, number of layers and fiber direction, injecting cracks before applying repairing sheets, enhancing the flexural capacity to differentiate between shear repair and strengthening techniques, and concrete matrix types. The findings revealed that applying CFRP sheets increased the overall shear capacity, the amount and orientation of wrapping is of prime importance in both repairing and strengthening, CFRP wrapping could change the failure mode from shear to flexural shear, the use of crack injection combined to CFRP wrapping further improved the shear capacity while, applying the previous method to FRC beams enhanced both shear capacity and failure ductility. Acceptable agreement was found between predicted shear capacities using the Canadian code and the experimental results of the current study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=FRC" title=" FRC"> FRC</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a> </p> <a href="https://publications.waset.org/abstracts/28345/repair-and-strengthening-of-plain-and-frc-shear-deficient-beams-using-externally-bonded-cfrp-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Punching Shear Strengthening of Reinforced Concrete Flat Slabs Using Internal Square Patches of Carbon Fiber Reinforced Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malik%20Assi">Malik Assi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a strengthening technique for enhancing the punching shear resistance of concrete flat slabs. Internal square patches of CFRP were centrally installed inside 450*450mm concrete panels during casting at a chosen distance from the tension face to produce six simply supported samples. The dimensions of those patches ranged from 50*50mm to 360*360mm. All the examined slabs contained the same amount of tensile reinforcement, had identical dimensions, were designed according to the American Concrete Institute code (ACI) and tested to failure. Compared to the control unstrengthened spacemen, all the strengthened slabs have shown an enhancement in punching capacity and stiffness. This enhancement has been found to be proportional to the area of the installed CFRP patches. In addition to the reasonably enhanced stiffness and punching shear, this strengthening technique can change the slab failure mode from shear to flexural. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20patches" title="CFRP patches">CFRP patches</a>, <a href="https://publications.waset.org/abstracts/search?q=Flat%20slabs" title=" Flat slabs"> Flat slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexural" title=" Flexural"> Flexural</a>, <a href="https://publications.waset.org/abstracts/search?q=Stiffness" title=" Stiffness"> Stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=Punching%20shear" title=" Punching shear"> Punching shear</a> </p> <a href="https://publications.waset.org/abstracts/66194/punching-shear-strengthening-of-reinforced-concrete-flat-slabs-using-internal-square-patches-of-carbon-fiber-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humayun%20R.%20H.%20Kabir">Humayun R. H. Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dome" title="dome">dome</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening%20program" title=" strengthening program"> strengthening program</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20test" title=" load test"> load test</a> </p> <a href="https://publications.waset.org/abstracts/76188/on-strengthening-program-of-sixty-years-old-dome-using-carbon-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> Low-Level Forced and Ambient Vibration Tests on URM Building Strengthened by Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Taleb">Rafik Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Bouriche"> Farid Bouriche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Boukri"> Mehdi Boukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Kehila"> Fouad Kehila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the paper is to investigate the dynamic behavior of an unreinforced masonry (URM) building strengthened by DC-90 dampers by ambient and low-level forced vibration tests. Ambient and forced vibration techniques are usually applied to reinforced concrete or steel buildings to understand and identify their dynamic behavior, however, less is known about their applicability for masonry buildings. Ambient vibrations were measured before and after strengthening of the URM building by DC-90 dampers system. For forced vibration test, a series of low amplitude steady state harmonic forced vibration tests were conducted after strengthening using eccentric mass shaker. The resonant frequency curves, mode shapes and damping coefficients as well as stress distribution in the steel braces of the DC-90 dampers have been investigated and could be defined. It was shown that the dynamic behavior of the masonry building, even if not regular and with deformable floors, can be effectively represented. It can be concluded that the strengthening of the building does not change the dynamic properties of the building due to the fact of low amplitude excitation which do not activate the dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibrations" title="ambient vibrations">ambient vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20buildings" title=" masonry buildings"> masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vibrations" title=" forced vibrations"> forced vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamic%20identification" title=" structural dynamic identification"> structural dynamic identification</a> </p> <a href="https://publications.waset.org/abstracts/41511/low-level-forced-and-ambient-vibration-tests-on-urm-building-strengthened-by-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> Influence of Strengthening of Hip Abductors and External Rotators in Treatment of Patellofemoral Pain Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Abdel%20Aty%20Hassan%20Mohamed">Karima Abdel Aty Hassan Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Mohamed%20Ismail"> Manal Mohamed Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Hassan%20Gamal%20Eldein"> Mona Hassan Gamal Eldein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hassan%20Hussein"> Ahmed Hassan Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Aziz%20Mohamed%20Elsingerg"> Abdel Aziz Mohamed Elsingerg </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Patellofemoral pain (PFP) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor, yet the relationships between pain, hip muscle strength and function are not known. Objective: The purpose of this study is to investigate the effects of strengthening hip abductors and lateral rotators on pain intensity, function and hip abductor and hip lateral rotator eccentric and concentric torques in patients with PFPS. Methods: Thirty patients had participated in this study; they were assigned into two experimental groups. With age ranged for eighty to thirty five years. Group A consisted of 15 patients (11females and 4 males) with mean age 20.8 (±2.73) years, received closed kinetic chain exercises program, stretching exercises for tight lower extremity soft tissues, and hip strengthening exercises .Group B consisted of 15 patients (12 females and 3 males) with mean age 21.2(±3.27) years, received closed kinetic chain exercises program and stretching exercises for tight lower extremity soft tissues. Treatment was given 2-3times/week, for 6 weeks. Patients were evaluated pre and post treatment for their pain severity, function of knee joint, hip abductors and external rotators concentric/eccentric peak torque. Result: the results revealed that there were significant differences in pain and function between both groups, while there was improvement for all values for both group. Conclusion: Six weeks rehabilitation program focusing on knee strengthening exercises either supplemented by hip strengthening exercises or not effective in improving function, reducing pain and improving hip muscles torque in patients with PFPS. However, adding hip abduction and lateral rotation strengthening exercises seem to reduce pain and improve function more efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patellofemoral%20pain%20syndrome" title="patellofemoral pain syndrome">patellofemoral pain syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20muscles" title=" hip muscles"> hip muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=isokinetic" title=" isokinetic "> isokinetic </a> </p> <a href="https://publications.waset.org/abstracts/23022/influence-of-strengthening-of-hip-abductors-and-external-rotators-in-treatment-of-patellofemoral-pain-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Irshidat">Mohammad R. Irshidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Al-Saleh"> Mohammed H. Al-Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Al-Shoubaki"> Mahmoud Al-Shoubaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nano tubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT" title="CNT">CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20columns" title=" RC columns "> RC columns </a> </p> <a href="https://publications.waset.org/abstracts/20856/strengthening-rc-columns-using-carbon-fiber-reinforced-epoxy-composites-modified-with-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Numerical Investigation for External Strengthening of Dapped-End Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdel-Moniem">A. Abdel-Moniem</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Madkour"> H. Madkour</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Farah"> K. Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdullah"> A. Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dapped-end%20beams" title="dapped-end beams">dapped-end beams</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20failure" title=" shear failure"> shear failure</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening%20techniques" title=" strengthening techniques"> strengthening techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title=" numerical investigation"> numerical investigation</a> </p> <a href="https://publications.waset.org/abstracts/99291/numerical-investigation-for-external-strengthening-of-dapped-end-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Influence of Machining Process on Surface Integrity of Plasma Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Zl%C3%A1mal">T. Zlámal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Petr%C5%AF"> J. Petrů</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pag%C3%A1%C4%8D"> M. Pagáč</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krajkovi%C4%8D"> P. Krajkovič</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20sprayed%20coating" title=" plasma sprayed coating"> plasma sprayed coating</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20integrity" title=" surface integrity"> surface integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/85489/influence-of-machining-process-on-surface-integrity-of-plasma-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strengthening&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>