CINXE.COM

Search results for: load test

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: load test</title> <meta name="description" content="Search results for: load test"> <meta name="keywords" content="load test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="load test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="load test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11324</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: load test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11324</span> A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuo%20Xu">Nuo Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Hun%20Goh"> Kok Hun Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeyatharan%20Kumarasamy"> Jeyatharan Kumarasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus%20of%20pile%20under%20soil%20interaction" title="elastic modulus of pile under soil interaction">elastic modulus of pile under soil interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=jurong%20formation" title=" jurong formation"> jurong formation</a>, <a href="https://publications.waset.org/abstracts/search?q=kentledge%20test" title=" kentledge test"> kentledge test</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a> </p> <a href="https://publications.waset.org/abstracts/82593/a-statistical-approach-to-rationalise-the-number-of-working-load-test-for-quality-control-of-pile-installation-in-singapore-jurong-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11323</span> Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nazeri">A. Nazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ghiasinejad"> H. Ghiasinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 &nbsp;to 132 , 224 , and 396 &nbsp;in presence of 15 cm, 20 cm, and 30 cm base course, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20subgrade%20reaction" title="modulus of subgrade reaction">modulus of subgrade reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20course" title=" base course"> base course</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20subgrade" title=" sandy subgrade"> sandy subgrade</a> </p> <a href="https://publications.waset.org/abstracts/80835/effect-of-base-coarse-layer-on-load-settlement-characteristics-of-sandy-subgrade-using-plate-load-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11322</span> Performance of Bored Pile on Alluvial Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raja%20Rajan">K. Raja Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nagarajan"> D. Nagarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20bearing" title="end bearing">end bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20friction" title=" shaft friction"> shaft friction</a> </p> <a href="https://publications.waset.org/abstracts/74868/performance-of-bored-pile-on-alluvial-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11321</span> Settlement Analysis of Axially Loaded Bored Piles: A Case History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mert">M. Mert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Ozkan"> M. T. Ozkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined.&nbsp; Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20and%20instrumentation" title=" monitoring and instrumentation"> monitoring and instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/103165/settlement-analysis-of-axially-loaded-bored-piles-a-case-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11320</span> A Study on the Method of Accelerated Life Test to Electric Rotating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Hwan%20Kim">Youn-Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Won%20Moon"> Jae-Won Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Joong%20Kim"> Hae-Joong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acceleration%20coefficient" title="acceleration coefficient">acceleration coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20motor" title=" electric vehicle motor"> electric vehicle motor</a>, <a href="https://publications.waset.org/abstracts/search?q=HALT" title=" HALT"> HALT</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20expectancy" title=" life expectancy"> life expectancy</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/74733/a-study-on-the-method-of-accelerated-life-test-to-electric-rotating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11319</span> Shaft Friction of Bored Pile Socketed in Weathered Limestone in Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanawat%20Chuleekiat">Thanawat Chuleekiat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Socketing of bored piles in rock is always seen as a matter of debate on construction sites between consultants and contractors. The socketing depth normally depends on the type of rock, depth at which the rock is available below the pile cap and load carrying capacity of the pile. In this paper, the review of field load test data of drilled shaft socketed in weathered limestone conducted using conventional static pile load test and dynamic pile load test was made to evaluate a unit shaft friction for the bored piles socketed in weathered limestone (weak rock). The borehole drilling data were also reviewed in conjunction with the pile test result. In addition, the back-calculated unit shaft friction was reviewed against various empirical methods for bored piles socketed in weak rock. The paper concludes with an estimated ultimate unit shaft friction from the case study in Qatar for preliminary design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piled%20foundation" title="piled foundation">piled foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=weathered%20limestone" title=" weathered limestone"> weathered limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20friction" title=" shaft friction"> shaft friction</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20socket" title=" rock socket"> rock socket</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a> </p> <a href="https://publications.waset.org/abstracts/92705/shaft-friction-of-bored-pile-socketed-in-weathered-limestone-in-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11318</span> Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neritan%20Shkodrani">Neritan Shkodrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Klearta%20Rrushi"> Klearta Rrushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anxhela%20Shaha"> Anxhela Shaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20shafts" title=" drilled shafts"> drilled shafts</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20capacity" title=" ultimate load capacity"> ultimate load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=allowable%20load%20capacity" title=" allowable load capacity"> allowable load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT%20test" title=" SPT test"> SPT test</a>, <a href="https://publications.waset.org/abstracts/search?q=CPTU%20test" title=" CPTU test"> CPTU test</a> </p> <a href="https://publications.waset.org/abstracts/150822/axial-load-capacity-of-drilled-shafts-from-in-situ-test-data-at-semani-site-in-albania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11317</span> Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20Mallya">Ravindra Mallya</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Satish%20Shenoy"> B. Satish Shenoy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghuvir%20Pai"> B. Raghuvir Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20groove" title="axial groove">axial groove</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20pressure" title=" hydrodynamic pressure"> hydrodynamic pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=journal%20bearing" title=" journal bearing"> journal bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20rig" title=" test rig"> test rig</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20lubrication" title=" water lubrication"> water lubrication</a> </p> <a href="https://publications.waset.org/abstracts/15451/experimental-challenges-and-solutions-in-design-and-operation-of-the-test-rig-for-water-lubricated-journal-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11316</span> A Methodology of Testing Beam to Column Connection under Lateral Impact Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Rifaie">A. Al-Rifaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20W.%20Guan"> Z. W. Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Jones"> S. W. Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title=" impact load"> impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20hammer" title=" drop hammer"> drop hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20methods" title=" testing methods"> testing methods</a> </p> <a href="https://publications.waset.org/abstracts/76082/a-methodology-of-testing-beam-to-column-connection-under-lateral-impact-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11315</span> Equipment Design for Lunar Lander Landing-Impact Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohuan%20Li">Xiaohuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wangmin%20Yi"> Wangmin Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghui%20Wu"> Xinghui Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing-impact%20test" title="landing-impact test">landing-impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=releasing%20device" title=" releasing device"> releasing device</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20equipment" title=" test equipment"> test equipment</a> </p> <a href="https://publications.waset.org/abstracts/10548/equipment-design-for-lunar-lander-landing-impact-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11314</span> Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Yong%20Kang">Hee Yong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Ho%20Shin"> Hyeon Ho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Cheol%20Yoo"> Jung Cheol Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Taek%20Lee"> Il Taek Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Mo%20Yang"> Sung Mo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seat%20back%20frame" title="seat back frame">seat back frame</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20and%20torsional%20strength" title=" bending and torsional strength"> bending and torsional strength</a>, <a href="https://publications.waset.org/abstracts/search?q=BMC%20%28Bulk%20Molding%20Compound%29" title=" BMC (Bulk Molding Compound)"> BMC (Bulk Molding Compound)</a>, <a href="https://publications.waset.org/abstracts/search?q=FMVSS%20207%20seating%20systems" title=" FMVSS 207 seating systems"> FMVSS 207 seating systems</a> </p> <a href="https://publications.waset.org/abstracts/92200/experimental-study-on-bending-and-torsional-strength-of-bulk-molding-compound-seat-back-frame-part" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11313</span> Assessment of Adequacy of Pile Load Determination Formulas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Eid">Ashraf Eid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many formulas are set to estimate the pile load capacity based on the in-situ pile load tests. However, discrepancy is obvious between the results of these applications. Some formulas are more adequate than others with respect to soil formation and its characteristics. In this research, attempts were undertaken to evaluate the adequacy of the most well-known formulas based on a series of pile load tests carried out in Port Said city in the northeast of Egypt for major residential projects. Comparisons were undertaken between the different formulas supported by the results of in-situ Cone Penetration Tests (CPT). Based on this study, a guide for engineers for using the proper formula can be adopted with consideration of soil type and characteristics. The Egyptian Code which relies on the results of some formulas is involved in the study as a guiding aspect in the pile design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20formula" title="pile load formula">pile load formula</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20test%20of%20piles" title=" load test of piles"> load test of piles</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT" title=" CPT"> CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20code" title=" Egyptian code"> Egyptian code</a> </p> <a href="https://publications.waset.org/abstracts/108649/assessment-of-adequacy-of-pile-load-determination-formulas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11312</span> Load Flow Analysis of 5-IEEE Bus Test System Using Matlab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Abaal">H. Abaal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Skouri"> R. Skouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20flow%20analysis" title="power flow analysis">power flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20Raphson%20polar%20coordinates%20method" title=" Newton Raphson polar coordinates method"> Newton Raphson polar coordinates method</a> </p> <a href="https://publications.waset.org/abstracts/22344/load-flow-analysis-of-5-ieee-bus-test-system-using-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11311</span> Compilation of Load Spectrum of Loader Drive Axle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yongxiang">Wei Yongxiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Haoyue"> Zhu Haoyue</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Heng"> Tang Heng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Qunwei"> Yuan Qunwei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20spectrum" title="load spectrum">load spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=axle" title=" axle"> axle</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-flow%20counting%20method" title=" rain-flow counting method"> rain-flow counting method</a>, <a href="https://publications.waset.org/abstracts/search?q=extrapolation" title=" extrapolation"> extrapolation</a> </p> <a href="https://publications.waset.org/abstracts/78796/compilation-of-load-spectrum-of-loader-drive-axle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11310</span> Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyashri%20Kamlesh%20Sridhar">Priyashri Kamlesh Sridhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Suranga%20Nanayakkara"> Suranga Nanayakkara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20childhood" title="early childhood">early childhood</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=methodologies" title=" methodologies"> methodologies</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogies" title=" pedagogies"> pedagogies</a> </p> <a href="https://publications.waset.org/abstracts/74017/identifying-physiological-markers-that-are-sensitive-to-cognitive-load-in-preschoolers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11309</span> Study on Shape Coefficient of Large Statue Building Based on CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Guangda">Wang Guangda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Jun"> Ma Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Caiqi"> Zhao Caiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan%20Rui"> Pan Rui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind load is the main control load of large statue structures. Due to the irregular plane and elevation and uneven outer contour, statues’ shape coefficient can not pick up from the current code. Currently a common practice is based on wind tunnel test. But this method is time-consuming and high cost. In this paper, based on the fundamental theory of CFD, using fluid dynamics software of Fluent 15.0, a few large statue structure of 40 to 70m high, which are located in china , including large fairy statues and large Buddha statues, are analyzed by numerical wind tunnel. The results are contrasted with the recommended values in load code and the wind tunnel test results respectively. Results show that the shape coefficient has a good reliability by the numerical wind tunnel method of this kind of building. This will has a certain reference value of wind load values for large statues’ structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20statue%20structure" title="large statue structure">large statue structure</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20coefficient" title=" shape coefficient"> shape coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20structure" title=" irregular structure"> irregular structure</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20wind%20tunnel%20simulation" title=" numerical wind tunnel simulation"> numerical wind tunnel simulation</a> </p> <a href="https://publications.waset.org/abstracts/31038/study-on-shape-coefficient-of-large-statue-building-based-on-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11308</span> Integration of Virtual Learning of Induction Machines for Undergraduates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Aggarwal"> Puneet Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20rotor%20test" title="block rotor test">block rotor test</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20test" title=" DC test"> DC test</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20load%20test" title=" no load test"> no load test</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20environment" title=" virtual environment"> virtual environment</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20source%20inverter" title=" voltage source inverter"> voltage source inverter</a> </p> <a href="https://publications.waset.org/abstracts/70939/integration-of-virtual-learning-of-induction-machines-for-undergraduates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11307</span> Influence of Shock Absorber Condition on the Vertical Dynamic Load Applied on the Pavement by a Truck’s Front Suspension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Kubo">Pablo Kubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassio%20Paiva"> Cassio Paiva</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelino%20Ferreira"> Adelino Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research study is to present the results of the influence of shock absorber condition, from a truck front suspension, on the vertical dynamic load applied on the pavement. For the measurements, it has been used a durability test track located in Brazil. The shock absorber conditions were new, used and failed with a constant load of 6 tons on the front suspension, the maximum allowed load for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the shock absorber conditions will significantly affect the load applied on the pavement. Although, it is recommended to repeat the same methodology in order to analyze the influence on the variation of the quarter car model variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20absorber" title=" shock absorber"> shock absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20dynamic%20load" title=" vertical dynamic load"> vertical dynamic load</a>, <a href="https://publications.waset.org/abstracts/search?q=absorber" title=" absorber "> absorber </a> </p> <a href="https://publications.waset.org/abstracts/12320/influence-of-shock-absorber-condition-on-the-vertical-dynamic-load-applied-on-the-pavement-by-a-trucks-front-suspension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11306</span> Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Byong%20Bae">Doo Byong Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Jun%20Yoo"> Jae Jun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Gyu%20Park"> Il Gyu Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Seowon"> Choi Seowon</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Chang%20Kook"> Oh Chang Kook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20load" title="wind load">wind load</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20bifurcation%20analysis" title=" linear bifurcation analysis"> linear bifurcation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrically%20nonlinear%20analysis" title=" geometrically nonlinear analysis"> geometrically nonlinear analysis</a> </p> <a href="https://publications.waset.org/abstracts/45923/effects-of-wind-load-on-the-tank-structures-with-various-shapes-and-aspect-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11305</span> Experimental and Analytical Studies for the Effect of Thickness and Axial Load on Load-Bearing Capacity of Fire-Damaged Concrete Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeo%20Kyeong%20Lee">Yeo Kyeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Yeon%20Kang"> Ji Yeon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Mi%20Ryu"> Eun Mi Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Sun%20Kim"> Hee Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong%20Soo%20Shin"> Yeong Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is an investigation of the effects of the thickness and axial loading during a fire test on the load-bearing capacity of a fire-damaged normal-strength concrete wall. Two factors are attributed to the temperature distributions in the concrete members and are mainly obtained through numerous experiments. Toward this goal, three wall specimens of different thicknesses are heated for 2 h according to the ISO-standard heating curve, and the temperature distributions through the thicknesses are measured using thermocouples. In addition, two wall specimens are heated for 2 h while simultaneously being subjected to a constant axial loading at their top sections. The test results show that the temperature distribution during the fire test depends on wall thickness and axial load during the fire test. After the fire tests, the specimens are cured for one month, followed by the loading testing. The heated specimens are compared with three unheated specimens to investigate the residual load-bearing capacities. The fire-damaged walls show a minor difference of the load-bearing capacity regarding the axial loading, whereas a significant difference became evident regarding the wall thickness. To validate the experiment results, finite element models are generated for which the material properties that are obtained for the experiment are subject to elevated temperatures, and the analytical results show sound agreements with the experiment results. The analytical method based on validated thought experimental results is applied to generate the fire-damaged walls with 2,800 mm high considering the buckling effect: typical story height of residual buildings in Korea. The models for structural analyses generated to deformation shape after thermal analysis. The load-bearing capacity of the fire-damaged walls with pin supports at both ends does not significantly depend on the wall thickness, the reason for it is restraint of pinned ends. The difference of the load-bearing capacity of fire-damaged walls as axial load during the fire is within approximately 5 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal-strength%20concrete%20wall" title="normal-strength concrete wall">normal-strength concrete wall</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness" title=" wall thickness"> wall thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=axial-load%20ratio" title=" axial-load ratio"> axial-load ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title=" slenderness ratio"> slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20test" title=" fire test"> fire test</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20strength" title=" residual strength"> residual strength</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/78179/experimental-and-analytical-studies-for-the-effect-of-thickness-and-axial-load-on-load-bearing-capacity-of-fire-damaged-concrete-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11304</span> Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon%20Soon%20Choi">Seon Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to present the good probability distribution fit for the fatigue crack propagation life at a specified fatigue crack size in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed and the good probability distribution fit for the fatigue crack propagation life is presented. The effect of load ratio on variability of fatigue crack propagation life is also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20propagation%20life" title="fatigue crack propagation life">fatigue crack propagation life</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20ratio" title=" load ratio"> load ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title=" probability distribution"> probability distribution</a> </p> <a href="https://publications.waset.org/abstracts/34718/effect-of-load-ratio-on-probability-distribution-of-fatigue-crack-propagation-life-in-magnesium-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11303</span> A Two Level Load Balancing Approach for Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Jain">Anurag Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is the outcome of rapid growth of internet. Due to elastic nature of cloud computing and unpredictable behavior of user, load balancing is the major issue in cloud computing paradigm. An efficient load balancing technique can improve the performance in terms of efficient resource utilization and higher customer satisfaction. Load balancing can be implemented through task scheduling, resource allocation and task migration. Various parameters to analyze the performance of load balancing approach are response time, cost, data processing time and throughput. This paper demonstrates a two level load balancer approach by combining join idle queue and join shortest queue approach. Authors have used cloud analyst simulator to test proposed two level load balancer approach. The results are analyzed and compared with the existing algorithms and as observed, proposed work is one step ahead of existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20analyst" title="cloud analyst">cloud analyst</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=join%20idle%20queue" title=" join idle queue"> join idle queue</a>, <a href="https://publications.waset.org/abstracts/search?q=join%20shortest%20queue" title=" join shortest queue"> join shortest queue</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20balancing" title=" load balancing"> load balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20scheduling" title=" task scheduling"> task scheduling</a> </p> <a href="https://publications.waset.org/abstracts/46562/a-two-level-load-balancing-approach-for-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11302</span> A Study on the Calculation of Bearing Life of Electric Motor Using Accelerated Life Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Hwan%20Kim">Youn-Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Joong%20Kim"> Hae-Joong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Won%20Moon"> Jae-Won Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out and it is compared with the bearing life expectancy by ISO 281. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acceleration%20coefficient" title="acceleration coefficient">acceleration coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=HALT" title=" HALT"> HALT</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20expectancy" title=" life expectancy"> life expectancy</a>, <a href="https://publications.waset.org/abstracts/search?q=motor" title=" motor"> motor</a> </p> <a href="https://publications.waset.org/abstracts/78838/a-study-on-the-calculation-of-bearing-life-of-electric-motor-using-accelerated-life-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11301</span> A Study on an Evacuation Test to Measure Delay Time in Using an Evacuation Elevator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyungsuk%20Cho">Kyungsuk Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungun%20Chae"> Seungun Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihun%20Choi"> Jihun Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elevators are examined as one of evacuation methods in super-tall buildings. However, data on the use of elevators for evacuation at a fire are extremely scarce. Therefore, a test to measure delay time in using an evacuation elevator was conducted. In the test, time taken to get on and get off an elevator was measured and the case in which people gave up boarding when the capacity of the elevator was exceeded was also taken into consideration. 170 men and women participated in the test, 130 of whom were young people (20 ~ 50 years old) and 40 were senior citizens (over 60 years old). The capacity of the elevator was 25 people and it travelled between the 2nd and 4th floors. A video recording device was used to analyze the test. An elevator at an ordinary building, not a super-tall building, was used in the test to measure delay time in getting on and getting off an elevator. In order to minimize interference from other elements, elevator platforms on the 2nd and 4th floors were partitioned off. The elevator travelled between the 2nd and 4th floors where people got on and off. If less than 20 people got on the elevator which was empty, the data were excluded. If the elevator carrying 10 passengers stopped and less than 10 new passengers got on the elevator, the data were excluded. Getting-on an empty elevator was observed 49 times. The average number of passengers was 23.7, it took 14.98 seconds for the passengers to get on the empty elevator and the load factor was 1.67 N/s. It took the passengers, whose average number was 23.7, 10.84 seconds to get off the elevator and the unload factor was 2.33 N/s. When an elevator’s capacity is exceeded, the excessive number of people should get off. Time taken for it and the probability of the case were measure in the test. 37% of the times of boarding experienced excessive number of people. As the number of people who gave up boarding increased, the load factor of the ride decreased. When 1 person gave up boarding, the load factor was 1.55 N/s. The case was observed 10 times, which was 12.7% of the total. When 2 people gave up boarding, the load factor was 1.15 N/s. The case was observed 7 times, which was 8.9% of the total. When 3 people gave up boarding, the load factor was 1.26 N/s. The case was observed 4 times, which was 5.1% of the total. When 4 people gave up boarding, the load factor was 1.03 N/s. The case was observed 5 times, which was 6.3% of the total. Getting-on and getting-off time data for people who can walk freely were obtained from the test. In addition, quantitative results were obtained from the relation between the number of people giving up boarding and time taken for getting on. This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CRC-16-02-KICT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evacuation%20elevator" title="evacuation elevator">evacuation elevator</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20tall%20buildings" title=" super tall buildings"> super tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=evacuees" title=" evacuees"> evacuees</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20time" title=" delay time"> delay time</a> </p> <a href="https://publications.waset.org/abstracts/94390/a-study-on-an-evacuation-test-to-measure-delay-time-in-using-an-evacuation-elevator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11300</span> A Full-Scale Test of Coping-Girder Integrated Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heeyoung%20Lee">Heeyoung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Woosung%20Bin"> Woosung Bin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kangseog%20Seo"> Kangseog Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyojeong%20Yun"> Hyojeong Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuog%20An"> Zuog An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coping" title="coping">coping</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20bridge" title=" integrated bridge"> integrated bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20test" title=" full-scale test"> full-scale test</a> </p> <a href="https://publications.waset.org/abstracts/7461/a-full-scale-test-of-coping-girder-integrated-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11299</span> Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firooz%20Bakhtiari-Nejad">Firooz Bakhtiari-Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Rostami"> Hamidreza Rostami</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Mirzaee"> Meysam Mirzaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Zandbaf"> Mona Zandbaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-Contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employed for a modal analysis of a beam and detecting crack of the beam. The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20analysis" title="experimental analysis">experimental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20load" title=" moving load"> moving load</a>, <a href="https://publications.waset.org/abstracts/search?q=non-contact%20excitation" title=" non-contact excitation"> non-contact excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20engineering" title=" materials engineering"> materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/2510/design-and-manufacture-of-non-contact-moving-load-for-experimental-analysis-of-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11298</span> Consumer Load Profile Determination with Entropy-Based K-Means Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20P.%20Panapakidis">Ioannis P. Panapakidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Marios%20N.%20Moschakis"> Marios N. Moschakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20profiling" title=" load profiling"> load profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20modeling" title=" load modeling"> load modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20and%20quality" title=" energy efficiency and quality"> energy efficiency and quality</a> </p> <a href="https://publications.waset.org/abstracts/89525/consumer-load-profile-determination-with-entropy-based-k-means-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11297</span> BLDC Motor Design Considering Core Loss Caused by Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong">Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim"> In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye-Jun%20Oh"> Ye-Jun Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the effects of welding performed for the manufacture of laminations in a stator in the case of prototype motors that are manufactured in small quantity. As a result of performing the no-load test for an IPM (interior permanent magnet)-type BLDC (blushless direct current) motor manufactured by welding both inside and outside of the stator, it was found that more DC input than expected was provided. To verify the effects of welding, a stator was re-manufactured by bonding, and DC inputs provided during the no-load test were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=stator" title=" stator"> stator</a>, <a href="https://publications.waset.org/abstracts/search?q=Eddy%20current" title=" Eddy current"> Eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC" title=" BLDC"> BLDC</a> </p> <a href="https://publications.waset.org/abstracts/41389/bldc-motor-design-considering-core-loss-caused-by-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11296</span> A Review of Deformation and Settlement Monitoring on the Field: Types and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ali">Hassan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Hamid"> Abdulrahman Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses using of instruments to monitor deformation and settlement. Specifically, it concentrates on field instruments such as inclinometer and plate load test and their applications in the field. Inclinometer has been used effectively to monitor lateral earth movements and settlement in landslide areas, embankments and foundations. They are also used to monitor the deflection of retaining walls and piles under load. This paper is reviewing types of inclinometer systems, comparison between systems, applications, field accuracy and correction. The paper also will present a case study of using inclinometer to monitor the creep movements within the ancient landslide on The Washington Park Station. Furthermore, the application of deformation and settlement instruments in Saudi Arabia will be discussed in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclinometer" title="inclinometer">inclinometer</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=backfills" title=" backfills"> backfills</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20and%20settlement" title=" deformation and settlement"> deformation and settlement</a> </p> <a href="https://publications.waset.org/abstracts/41331/a-review-of-deformation-and-settlement-monitoring-on-the-field-types-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11295</span> Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Kitsutaka">Yoshinori Kitsutaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumiya%20Ikedo"> Fumiya Ikedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gypsum%20board" title="gypsum board">gypsum board</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor" title=" anchor"> anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20test" title=" shear test"> shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=load-unload%20curve" title=" load-unload curve"> load-unload curve</a> </p> <a href="https://publications.waset.org/abstracts/61469/mechanical-model-of-gypsum-board-anchors-subjected-cyclic-shear-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=377">377</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=378">378</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=load%20test&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10