CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;25 of 25 results for author: <span class="mathjax">Guyader, L L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Guyader%2C+L+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Guyader, L L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Guyader%2C+L+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Guyader, L L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01483">arXiv:2312.01483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01483">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Femtosecond spin-state switching dynamics of spin-crossover molecules condensed in thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%A4mmerer%2C+L">Lea K盲mmerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%A4mmerer%2C+G">G茅rald K盲mmerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gruber%2C+M">Manuel Gruber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grunwald%2C+J">Jan Grunwald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lojewski%2C+T">Tobias Lojewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">Laurent Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carinan%2C+C">Cammille Carinan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teichmann%2C+M">Martin Teichmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuppusamy%2C+S+K">Senthil Kumar Kuppusamy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherz%2C+A">Andreas Scherz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruben%2C+M">Mario Ruben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolowski-Tinten%2C+K">Klaus Sokolowski-Tinten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschenlohr%2C+A">Andrea Eschenlohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollefs%2C+K">Katharina Ollefs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitz-Antoniak%2C+C">Carolin Schmitz-Antoniak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tuczek%2C+F">Felix Tuczek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kratzer%2C+P">Peter Kratzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wende%2C+H">Heiko Wende</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01483v1-abstract-short" style="display: inline;"> The photoinduced switching of Fe(II)-based spin-crossover complexes from singlet to quintet takes place at ultrafast time scales. This a priori spin-forbidden transition triggered numerous time-resolved experiments of solvated samples to elucidate the mechanism at play. The involved intermediate states remain uncertain. We apply ultrafast x-ray spectroscopy in molecular films as a method sensitive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01483v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01483v1-abstract-full" style="display: none;"> The photoinduced switching of Fe(II)-based spin-crossover complexes from singlet to quintet takes place at ultrafast time scales. This a priori spin-forbidden transition triggered numerous time-resolved experiments of solvated samples to elucidate the mechanism at play. The involved intermediate states remain uncertain. We apply ultrafast x-ray spectroscopy in molecular films as a method sensitive to spin, electronic, and nuclear degrees of freedom. Combining the progress in molecule synthesis and film growth with the opportunities at x-ray free-electron lasers, we analyze the transient evolution of the Fe L3 fine structure at room temperature. Our measurements and calculations indicate the involvement of an Fe triplet intermediate state. The high-spin state saturates at half of the available molecules, limited by molecule-molecule interaction within the film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01483v1-abstract-full').style.display = 'none'; document.getElementById('2312.01483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10145">arXiv:2305.10145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10145">pdf</a>, <a href="https://arxiv.org/format/2305.10145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Photo-induced charge-transfer renormalization in NiO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lojewski%2C+T">Tobias Lojewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golez%2C+D">Denis Golez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollefs%2C+K">Katharina Ollefs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%A4mmerer%2C+L">Lea K盲mmerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rothenbach%2C+N">Nico Rothenbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miedema%2C+P+S">Piter S. Miedema</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beye%2C+M">Martin Beye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzb%C4%83ian%2C+G+S">Gheorghe S. Chiuzb膬ian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">Justina Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherz%2C+A">Andreas Scherz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=David%2C+C">Christian David</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wende%2C+H">Heiko Wende</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eckstein%2C+M">Martin Eckstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschenlohr%2C+A">Andrea Eschenlohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10145v2-abstract-short" style="display: inline;"> Photo-doped states in strongly correlated charge transfer insulators are characterized by $d$-$d$ and $d$-$p$ interactions and the resulting intertwined dynamics of charge excitations and local multiplets. Here we use femtosecond x-ray absorption spectroscopy in combination with dynamical mean-field theory to disentangle these contributions in NiO. Upon resonant optical excitation across the charg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10145v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10145v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10145v2-abstract-full" style="display: none;"> Photo-doped states in strongly correlated charge transfer insulators are characterized by $d$-$d$ and $d$-$p$ interactions and the resulting intertwined dynamics of charge excitations and local multiplets. Here we use femtosecond x-ray absorption spectroscopy in combination with dynamical mean-field theory to disentangle these contributions in NiO. Upon resonant optical excitation across the charge transfer gap, the Ni $L_3$ and O $K$ absorption edges red-shift for $&gt;10$ ps, associated with photo-induced changes in the screening environment. An additional signature below the Ni $L_3$ edge is identified for $&lt;1$ ps, reflecting a transient nonthermal population of local many-body multiplets. We employ a nonthermal generalization of the multiplet ligand field theory to show that the feature originates from $d$-$d$ transitions. Overall, the photo-doped state differs significantly from a chemically doped state. Our results demonstrate the ability to reveal excitation pathways in correlated materials by x-ray spectroscopies, which is relevant for ultrafast materials design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10145v2-abstract-full').style.display = 'none'; document.getElementById('2305.10145v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17008">arXiv:2211.17008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17008">pdf</a>, <a href="https://arxiv.org/format/2211.17008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/4.0000206">10.1063/4.0000206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Dynamics at High-Energy Densities in Nickel from Non-linear Resonant X-ray Absorption Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alexander%2C+O">Oliver Alexander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atak%2C+K">Kaan Atak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buck%2C+J">Jens Buck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cascella%2C+M">Michele Cascella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chardonnet%2C+V">Valentin Chardonnet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzbaian%2C+G+S">Gheorghe Sorin Chiuzbaian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=David%2C+C">Christian David</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschenlohr%2C+A">Andrea Eschenlohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Humphries%2C+O+S">Oliver S. Humphries</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Izquierdo%2C+M">Manuel Izquierdo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubec%2C+A">Adam Kubec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laarmann%2C+T">Tim Laarmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambert%2C+C">Charles-Henri Lambert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCning%2C+J">Jan L眉ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marangos%2C+J+P">Jonathan P. Marangos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">Laurent Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17008v1-abstract-short" style="display: inline;"> The pulse intensity from X-ray free-electron lasers (FELs) can create extreme excitation densities in solids, entering the regime of non-linear X-ray-matter interactions. We show L3-edge absorption spectra of metallic nickel thin films with fluences entering a regime where several X-ray photons are incident per absorption cross-section. Main features of the observed non-linear spectral changes are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17008v1-abstract-full').style.display = 'inline'; document.getElementById('2211.17008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17008v1-abstract-full" style="display: none;"> The pulse intensity from X-ray free-electron lasers (FELs) can create extreme excitation densities in solids, entering the regime of non-linear X-ray-matter interactions. We show L3-edge absorption spectra of metallic nickel thin films with fluences entering a regime where several X-ray photons are incident per absorption cross-section. Main features of the observed non-linear spectral changes are described with a predictive rate model for electron population dynamics during the pulse, utilizing a fixed density of states and tabulated ground-state properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17008v1-abstract-full').style.display = 'none'; document.getElementById('2211.17008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The main text contains 5 pages and 4 figures, the total length including supplement is 14 pages, 7 figures and one table. See also the simultaneously submitted paper about the rate model</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04265">arXiv:2211.04265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04265">pdf</a>, <a href="https://arxiv.org/format/2211.04265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577523000619">10.1107/S1600577523000619 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschenlohr%2C+A">Andrea Eschenlohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beye%2C+M">Martin Beye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W">William Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carinan%2C+C">Cammille Carinan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovensiepen%2C+U">Uwe Bovensiepen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buck%2C+J">Jens Buck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Elia%2C+A">Alessandro D&#39;Elia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delitz%2C+J">Jan-Torben Delitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehsan%2C+W">Wajid Ehsan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R">Robin Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6hlisch%2C+A">Alexander F枚hlisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gensch%2C+M">Michael Gensch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04265v3-abstract-short" style="display: inline;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy &amp; Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'inline'; document.getElementById('2211.04265v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04265v3-abstract-full" style="display: none;"> Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy &amp; Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04265v3-abstract-full').style.display = 'none'; document.getElementById('2211.04265v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2023). 30, 284-300 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13162">arXiv:2210.13162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13162">pdf</a>, <a href="https://arxiv.org/format/2210.13162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The interplay of local electron correlations and ultrafast spin dynamics in fcc Ni </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lojewski%2C+T">Tobias Lojewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elhanoty%2C+M+F">Mohamed F. Elhanoty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%A5n%C3%A4s%2C+O">Oscar Gr氓n盲s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">Robert Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castoldi%2C+A">Andrea Castoldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=David%2C+C">Christian David</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deiter%2C+C">Carsten Deiter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%B6ring%2C+F">Florian D枚ring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erdinger%2C+F">Florian Erdinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansen%2C+K">Karsten Hansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauf%2C+S">Steffen Hauf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickin%2C+D">David Hickin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Izquierdo%2C+M">Manuel Izquierdo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B+E">Benjamin E. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kvashnin%2C+Y">Yaroslav Kvashnin</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13162v1-abstract-short" style="display: inline;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13162v1-abstract-full" style="display: none;"> The complex electronic structure of metallic ferromagnets is determined by a balance between exchange interaction, electron hopping leading to band formation, and local Coulomb repulsion. The interplay between the respective terms of the Hamiltonian is of fundamental interest, since it produces most, if not all, of the exotic phenomena observed in the solid state. By combining high energy and temporal resolution in femtosecond time-resolved X-ray absorption spectroscopy with ab initio time-dependent density functional theory we analyze the electronic structure in fcc Ni on the time scale of these interactions in a pump-probe experiment. We distinguish transient broadening and energy shifts in the absorption spectra, which we demonstrate to be caused by electron repopulation and correlation-induced modifications of the electronic structure, respectively. Importantly, the theoretical description of this experimental result hence requires to take the local Coulomb interaction into account, revealing a temporal interplay between band formation, exchange interaction, and Coulomb repulsion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13162v1-abstract-full').style.display = 'none'; document.getElementById('2210.13162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06350">arXiv:2201.06350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06350">pdf</a>, <a href="https://arxiv.org/format/2201.06350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577522008414">10.1107/S1600577522008414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kerber%2C+N">Nico Kerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parra%2C+E+B">Erick Burgos Parra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seng%2C+B">Boris Seng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kammerbauer%2C+F">Fabian Kammerbauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+H">Horia Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neeraj%2C+K">Kumar Neeraj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+D">Debanjan Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovcharenko%2C+S">Sergei Ovcharenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ksenzov%2C+D">Dmitriy Ksenzov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pronin%2C+I">Igor Pronin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baidakova%2C+M">Marina Baidakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmising%2C+C+v+K">Clemens von Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchert%2C+M">Martin Borchert</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06350v2-abstract-short" style="display: inline;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we presen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06350v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06350v2-abstract-full" style="display: none;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'none'; document.getElementById('2201.06350v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures. Supplementary Information as ancillary file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2022), 29 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09587">arXiv:2112.09587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09587">pdf</a>, <a href="https://arxiv.org/format/2112.09587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meera"> Meera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J">Jeffrey Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+E+S">Erik S. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoychev%2C+B">Boyan Stoychev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">Justine Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B">Benjamin Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">Laurent Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samartsev%2C+A">Andrey Samartsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherz%2C+A">Andreas Scherz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arora%2C+M">Monika Arora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nembach%2C+H+T">Hans T. Nembach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+J+M">Justin M. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+M+W">Mark W. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">Roopali Kukreja</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09587v1-abstract-short" style="display: inline;"> Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how far-from-equilibrium states lead to spontaneous symmetry breaking. Conversely, ultrafast optical pumping can be used to drastically change the energy landscape and quench the magnetic order parameter in magnetic systems. Here, we find a dist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09587v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09587v1-abstract-full" style="display: none;"> Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how far-from-equilibrium states lead to spontaneous symmetry breaking. Conversely, ultrafast optical pumping can be used to drastically change the energy landscape and quench the magnetic order parameter in magnetic systems. Here, we find a distinct symmetry-dependent ultrafast behaviour by use of ultrafast x-ray scattering from magnetic patterns with varying degrees of isotropic and anisotropic symmetry. After pumping with an optical laser, the scattered intensity reveals a radial shift exclusive to the isotropic component and exhibits a faster recovery time from quenching for the anisotropic component. These features arise even when both symmetry components are concurrently measured, suggesting a correspondence between the excitation and the magnetic order symmetry. Our results underline the importance of symmetry as a critical variable to manipulate the magnetic order in the ultrafast regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09587v1-abstract-full').style.display = 'none'; document.getElementById('2112.09587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01649">arXiv:2111.01649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01649">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium self-assembly of spin-wave solitons in FePt nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">D. Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">A. Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Unikandanuni%2C+V">V. Unikandanuni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaskivskyi%2C+I">I. Vaskivskyi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">E. Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">R. Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">R. Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">N. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B">B. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">L. Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teichmann%2C+M">M. Teichmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomidze%2C+D">D. Lomidze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castoldi%2C+A">A. Castoldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potorochin%2C+D">D. Potorochin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukkattukavil%2C+D">D. Mukkattukavil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J">J. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">N. Z. Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">X. Shen</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01649v1-abstract-short" style="display: inline;"> Magnetic nanoparticles such as FePt in the L10-phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magneto-crystalline anisotropy. This in turn reduces the magnetic exchange length to just a few nanometers enabling magnetic structures to be induced within the na&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01649v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01649v1-abstract-full" style="display: none;"> Magnetic nanoparticles such as FePt in the L10-phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magneto-crystalline anisotropy. This in turn reduces the magnetic exchange length to just a few nanometers enabling magnetic structures to be induced within the nanoparticles. Here we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved X-ray diffraction and micromagnetic modeling that spin-wave solitons of sub-10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin-precession frequency of 0.1 THz positions this system as a platform to develop miniature devices capable of filling the THz gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01649v1-abstract-full').style.display = 'none'; document.getElementById('2111.01649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, please check the &#34;attachemnts&#34; tab in the pdf file in order to see the movie</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15615">arXiv:2110.15615</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15615">pdf</a>, <a href="https://arxiv.org/format/2110.15615">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0076953">10.1063/5.0076953 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State-resolved ultrafast charge and spin dynamics in [Co/Pd] multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianmin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">Tyler Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granitzka%2C+P+W">Patrick W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lutman%2C+A+A">Alberto A. Lutman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">Georgi L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">William F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lalieu%2C+M+L+M">Mark L. M. Lalieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koopmans%2C+B">Bert Koopmans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">Stefano Bonetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15615v1-abstract-short" style="display: inline;"> We use transient absorption spectroscopy with circularly polarized x-rays to detect laser-excited hole states below the Fermi level and compare their dynamics with that of unoccupied states above the Fermi level in ferromagnetic [Co/Pd] multilayers. While below the Fermi level an instantaneous and significantly stronger demagnetization is observed, above the Fermi level the demagnetization is dela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15615v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15615v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15615v1-abstract-full" style="display: none;"> We use transient absorption spectroscopy with circularly polarized x-rays to detect laser-excited hole states below the Fermi level and compare their dynamics with that of unoccupied states above the Fermi level in ferromagnetic [Co/Pd] multilayers. While below the Fermi level an instantaneous and significantly stronger demagnetization is observed, above the Fermi level the demagnetization is delayed by 35+/-10 fs. This provides a direct visualization of how ultrafast demagnetization proceeds via initial spin-flip scattering of laser-excited holes to the subsequent formation of spin waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15615v1-abstract-full').style.display = 'none'; document.getElementById('2110.15615v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures. The following article has been submitted to Applied Physics Letters. After it is published, it will be found at https://publishing.aip.org/resources/librarians/products/journals/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09999">arXiv:2106.09999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.09999">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Optical control of 4f orbital state in rare-earth metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thielemann-K%C3%BChn%2C+N">N. Thielemann-K眉hn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amrhein%2C+T">T. Amrhein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bronsch%2C+W">W. Bronsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+S">S. Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">R. Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miedema%2C+P+S">P. S. Miedema</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legut%2C+D">D. Legut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carva%2C+K">K. Carva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atxitia%2C+U">U. Atxitia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Kuiken%2C+B+E">B. E. van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teichmann%2C+M">M. Teichmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R+E">R. E. Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">L. Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">A. Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">N. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">R. Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherz%2C+A">A. Scherz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dziarzhytski%2C+S">S. Dziarzhytski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brenner%2C+G">G. Brenner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pressacco%2C+F">F. Pressacco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schunck%2C+J+O">J. O. Schunck</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09999v4-abstract-short" style="display: inline;"> A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth (RE) elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09999v4-abstract-full').style.display = 'inline'; document.getElementById('2106.09999v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09999v4-abstract-full" style="display: none;"> A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth (RE) elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafast spin physics. With time-resolved X-ray absorption and resonant inelastic scattering experiments, we show for Tb metal that 4f-electronic excitations out of the ground state multiplet occur after optical pumping. These excitations are driven by inelastic 5d-4f-electron scattering, alter the 4f-orbital state and consequently the MCA with important implications for magnetization dynamics in 4f-metals, and more general for the excitation of localized electronic states in correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09999v4-abstract-full').style.display = 'none'; document.getElementById('2106.09999v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript (23 pages, 5 figures) and Supplementary Information (32 pages, 10 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11719">arXiv:2001.11719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11719">pdf</a>, <a href="https://arxiv.org/format/2001.11719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast perturbation of magnetic domains by optical pumping in a ferromagnetic multilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zusin%2C+D">Dmitriy Zusin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iacocca%2C+E">Ezio Iacocca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">William F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tian-Min Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wandel%2C+S+F">Scott F. Wandel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tengdin%2C+P+M">Phoebe M. Tengdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabalin%2C+A">Anatoly Shabalin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nembach%2C+H+T">Hans T. Nembach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+J+M">Justin M. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blonsky%2C+A">Adam Blonsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gentry%2C+C">Christian Gentry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoefer%2C+M+A">Mark A. Hoefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murnane%2C+M+M">Margaret M. Murnane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapteyn%2C+H+C">Henry C. Kapteyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O">Oleg Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11719v4-abstract-short" style="display: inline;"> Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to 5th order. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11719v4-abstract-full').style.display = 'inline'; document.getElementById('2001.11719v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11719v4-abstract-full" style="display: none;"> Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to 5th order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps. In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by 6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In particular, we demonstrate that a radial shift explained by domain wall broadening can be ruled out. With the unprecedented dynamic range of our data, our results provide convincing evidence that labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium conditions, albeit the mechanism inducing the perturbations remains yet to be clarified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11719v4-abstract-full').style.display = 'none'; document.getElementById('2001.11719v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13143">arXiv:1910.13143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13143">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Laser induced ultrafast 3d and 4f spin dynamics in CoDy ferrimagnetic alloys as a function of temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fert%C3%A9%2C+T">Tom Fert茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">Gr茅gory Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrier%2C+E">Erwan Terrier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Halt%C3%A9%2C+V">Val茅rie Halt茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holldack%2C+K">Karsten Holldack</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeard%2C+N">Nicolas Bergeard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13143v2-abstract-short" style="display: inline;"> We report on an element- and time-resolved investigation of femtosecond laser induced ultrafast dynamics of 3d and 4f spins in a ferrimagnetic Co80Dy20 alloy as a function of temperature. We observe an increase of the Co3d characteristic demagnetization time and a decrease of the Dy4f demagnetization time when the temperature is approaching the Curie temperature. It suggests that the critical slow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13143v2-abstract-full').style.display = 'inline'; document.getElementById('1910.13143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13143v2-abstract-full" style="display: none;"> We report on an element- and time-resolved investigation of femtosecond laser induced ultrafast dynamics of 3d and 4f spins in a ferrimagnetic Co80Dy20 alloy as a function of temperature. We observe an increase of the Co3d characteristic demagnetization time and a decrease of the Dy4f demagnetization time when the temperature is approaching the Curie temperature. It suggests that the critical slowing down regime, which affects the laser induced ultrafast dynamics in pure 3d transition metals and 4f rare-earth ferromagnetic layers, vanishes for the Dy sublattice in the CoDy alloy, in line with the theoretical predictions of the Landau-Lifshitz-Bloch model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13143v2-abstract-full').style.display = 'none'; document.getElementById('1910.13143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.08287">arXiv:1903.08287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.08287">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Distinguishing Local and non-Local Demagnetization in Ferromagnetic FePt Nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Granitzka%2C+P+W">Patrick W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hurst%2C+J">Jerome Hurst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tian-Min Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salemi%2C+L">Leandro Salemi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">Tyler Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berritta%2C+M">Marco Berritta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">William F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohldag%2C+H">Hendrik Ohldag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">Georgi L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carron%2C+S">Sebastian Carron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehta%2C+V">Virat Mehta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+Y+K">Yukiko K. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oppeneer%2C+P+M">Peter M. Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.08287v1-abstract-short" style="display: inline;"> Time-resolved coherent X-ray diffraction is used to measure the spatially resolved magnetization structure within FePt nanoparticles during laser-induced ultrafast demagnetization. The momentum-dependent X-ray magnetic diffraction shows that demagnetization proceeds at different rates at different X-ray momentum transfer. We show that the observed momentum-dependent scattering has the signature of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08287v1-abstract-full').style.display = 'inline'; document.getElementById('1903.08287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.08287v1-abstract-full" style="display: none;"> Time-resolved coherent X-ray diffraction is used to measure the spatially resolved magnetization structure within FePt nanoparticles during laser-induced ultrafast demagnetization. The momentum-dependent X-ray magnetic diffraction shows that demagnetization proceeds at different rates at different X-ray momentum transfer. We show that the observed momentum-dependent scattering has the signature of inhomogeneous demagnetization within the nanoparticles, with the demagnetization proceeding more rapidly at the boundary of the nanoparticle. A shell region of reduced magnetization forms and moves inwards at a supermagnonic velocity. Spin-transport calculations show that the shell formation is driven by superdiffusive spin flux mainly leaving the nanoparticle into the surrounding carbon. Quantifying this non-local contribution to the demagnetization allows us to separate it from the local demagnetization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08287v1-abstract-full').style.display = 'none'; document.getElementById('1903.08287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04611">arXiv:1902.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04611">pdf</a>, <a href="https://arxiv.org/ps/1902.04611">ps</a>, <a href="https://arxiv.org/format/1902.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-13272-5">10.1038/s41467-019-13272-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast X-Ray Induced Changes of the Electronic and Magnetic Response of Solids Due to Valence Electron Redistribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alex H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lutman%2C+A+A">Alberto A. Lutman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianmin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">Tyler Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">Georgi L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitra%2C+A">Ankush Mitra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+E">Edwin Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">Justine Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">William F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+J">Joachim St枚hr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04611v1-abstract-short" style="display: inline;"> We report a novel mechanism, consisting of redistribution of valence electrons near the Fermi level, during interactions of intense femtosecond X-ray pulses with a Co/Pd multilayer. The changes in Co 3d valence shell occupation were directly revealed by fluence-dependent changes of the Co L$_3$ X-ray absorption and magnetic circular dichroism spectra near the excitation threshold. The valence shel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04611v1-abstract-full').style.display = 'inline'; document.getElementById('1902.04611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04611v1-abstract-full" style="display: none;"> We report a novel mechanism, consisting of redistribution of valence electrons near the Fermi level, during interactions of intense femtosecond X-ray pulses with a Co/Pd multilayer. The changes in Co 3d valence shell occupation were directly revealed by fluence-dependent changes of the Co L$_3$ X-ray absorption and magnetic circular dichroism spectra near the excitation threshold. The valence shell redistribution arises from inelastic scattering of high energy Auger electrons and photoelectrons that lead to transient holes below and electrons above the Fermi level on the femtosecond time scale. The valence electron reshuffling effect scales with the energy deposited by X-rays and within 17 fs extends to valence states within 2 eV of the Fermi level. As a consequence the sample demagnetizes by more than twenty percent due to magnon generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04611v1-abstract-full').style.display = 'none'; document.getElementById('1902.04611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 10, 5289 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02076">arXiv:1809.02076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02076">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-09577-0">10.1038/s41467-019-09577-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Iacocca%2C+E">E. Iacocca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">T-M. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Z">Z. Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruta%2C+S">S. Ruta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granitzka%2C+P+W">P. W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">E. Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">S. Bonetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gray%2C+A+X">A. X. Gray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graves%2C+C+E">C. E. Graves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">R. Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">D. J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">T. Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirsch%2C+K">K. Hirsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohldag%2C+H">H. Ohldag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">W. F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">G. Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M+C">M. C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carron%2C+S">S. Carron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirilyuk%2C+A">A. Kirilyuk</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02076v2-abstract-short" style="display: inline;"> Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of rapid magnetic order recovery in materials with perpendicular magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02076v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02076v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02076v2-abstract-full" style="display: none;"> Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of rapid magnetic order recovery in materials with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify both localisation and coalescence regimes, whereby localised magnetic textures nucleate and subsequently evolve in accordance with a power law formalism. Coalescence is observed for optical excitations both above and below the switching threshold. Simulations indicate that the ultrafast generation of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of $10^8$ A/cm$^2$. Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. These processes suggest an ultrafast optical route for the stabilization of desired meta-stable states, e.g., isolated skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02076v2-abstract-full').style.display = 'none'; document.getElementById('1809.02076v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 1756 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.08918">arXiv:1708.08918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.08918">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.134303">10.1103/PhysRevB.96.134303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Element-resolved ultrafast demagnetization rates in ferrimagnetic CoDy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ferte%2C+T">T. Ferte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeard%2C+N">N. Bergeard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">G. Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terrier%2C+E">E. Terrier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otero%2C+E">E. Otero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holldack%2C+K">K. Holldack</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">C. Boeglin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.08918v2-abstract-short" style="display: inline;"> Femtosecond laser induced ultrafast magnetization dynamics have been studied in multisublattice CoxDy1-x alloys. By performing element and time-resolved X-ray spectroscopy, we distinguish the ultrafast quenching of Co3d and Dy4f magnetic order when the initial temperatures are below (T=150K) or above (T=270K) the temperature of magnetic compensation (Tcomp). In accordance with former element-resol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08918v2-abstract-full').style.display = 'inline'; document.getElementById('1708.08918v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.08918v2-abstract-full" style="display: none;"> Femtosecond laser induced ultrafast magnetization dynamics have been studied in multisublattice CoxDy1-x alloys. By performing element and time-resolved X-ray spectroscopy, we distinguish the ultrafast quenching of Co3d and Dy4f magnetic order when the initial temperatures are below (T=150K) or above (T=270K) the temperature of magnetic compensation (Tcomp). In accordance with former element-resolved investigations and theoretical calculations, we observe different dynamics for Co3d and Dy4f spins. In addition we observe that, for a given laser fluence, the demagnetization amplitudes and demagnetization times are not affected by the existence of a temperature of magnetic compensation. However, our experiment reveals a twofold increase of the ultrafast demagnetization rates for the Dy sublattice at low temperature. In parallel, we measure a constant demagnetization rate of the Co3d sublattice above and below Tcomp. This intriguing difference between the Dy4f and Co3d sublattices calls for further theoretical and experimental investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08918v2-abstract-full').style.display = 'none'; document.getElementById('1708.08918v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figure, 2 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 134303 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.05035">arXiv:1703.05035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.05035">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4982918">10.1063/1.4982918 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stacking order dynamic in the quasi-two-dimensional dichalcogenide 1T-TaS$_2$ probed with MeV ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">T. Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A">A. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R+K">R. K. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svetin%2C+D">D. Svetin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vecchione%2C+T">T. Vecchione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+J">X. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">D. Mihailovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">H. A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.05035v1-abstract-short" style="display: inline;"> Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS$_2$ is investigated for the first time. From the intensity of the CDW satellites aligned arou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05035v1-abstract-full').style.display = 'inline'; document.getElementById('1703.05035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.05035v1-abstract-full" style="display: none;"> Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS$_2$ is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate $l$ = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.5 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate $l$ = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable &#34;hidden&#34; state recently discovered in this compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05035v1-abstract-full').style.display = 'none'; document.getElementById('1703.05035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Structural Dynamics 4, 044020 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.01237">arXiv:1701.01237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.01237">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b00052">10.1021/acs.nanolett.7b00052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic switching in granular FePt layers promoted by near-field laser enhancement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Granitzka%2C+P+W">Patrick W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoini%2C+M">Matteo Savoini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianmin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">Tyler Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohldag%2C+H">Hendrik Ohldag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovsky%2C+G+L">Georgi L. Dakovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W">William Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carron%2C+S">Sebastian Carron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+M">Matthias Hoffman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehta%2C+V">Virat Mehta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+Y+K">Yukiko K. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.01237v1-abstract-short" style="display: inline;"> Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01237v1-abstract-full').style.display = 'inline'; document.getElementById('1701.01237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.01237v1-abstract-full" style="display: none;"> Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, one order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between &#34;up&#34; and &#34;down&#34; magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material, with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01237v1-abstract-full').style.display = 'none'; document.getElementById('1701.01237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett., Article ASAP, March 8, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.07372">arXiv:1511.07372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.07372">pdf</a>, <a href="https://arxiv.org/ps/1511.07372">ps</a>, <a href="https://arxiv.org/format/1511.07372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4944410">10.1063/1.4944410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirsch%2C+K">Konstantin Hirsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">Georgi L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+E">Edwin Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianmin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lutman%2C+A+A">Alberto A. Lutman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacArthur%2C+J+P">James P. MacArthur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denes%2C+P">Peter Denes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granitzka%2C+P+W">Patrick W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hart%2C+P">Philip Hart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+J">John Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitra%2C+A">Ankush Mitra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moeller%2C+S">Stefan Moeller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohldag%2C+H">Hendrik Ohldag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seaberg%2C+M">Matthew Seaberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%7F%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nuhn%2C+H">Heinz-Dieter Nuhn</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.07372v1-abstract-short" style="display: inline;"> X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L$_{3,2}$-edges. This new ultrafast time-resolved capability is then applied to a fluence-dependent study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. At the magnetic switch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07372v1-abstract-full').style.display = 'inline'; document.getElementById('1511.07372v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.07372v1-abstract-full" style="display: none;"> X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L$_{3,2}$-edges. This new ultrafast time-resolved capability is then applied to a fluence-dependent study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. At the magnetic switching fuence, we corroborate the existence of a transient ferromagnetic-like state. The timescales of the dynamics, however, are longer than previously observed below the magnetization compensation temperature. Above and below the switching fluence range, we observe secondary demagnetization with about 5 ps timescales. This indicates that the spin thermalization takes longer than 5 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07372v1-abstract-full').style.display = 'none'; document.getElementById('1511.07372v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 87, 033110 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0396">arXiv:1412.0396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.0396">pdf</a>, <a href="https://arxiv.org/format/1412.0396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.134402">10.1103/PhysRevB.93.134402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-optical magnetization switching in ferrimagnetic alloys: deterministic vs thermally activated dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moussaoui%2C+S+E">S. El Moussaoui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzzi%2C+M">M. Buzzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+A">A. Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nolting%2C+F">F. Nolting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0396v1-abstract-short" style="display: inline;"> Using photo-emission electron microscopy with X-ray magnetic circular dichroism as a contrast mechanism, new insights into the all-optical magnetization switching (AOS) phenomenon in GdFe based rare-earth transition metal ferrimagnetic alloys are provided. From a sequence of static images taken after single linearly polarized laser pulse excitation, the repeatability of AOS can be measured with a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0396v1-abstract-full').style.display = 'inline'; document.getElementById('1412.0396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0396v1-abstract-full" style="display: none;"> Using photo-emission electron microscopy with X-ray magnetic circular dichroism as a contrast mechanism, new insights into the all-optical magnetization switching (AOS) phenomenon in GdFe based rare-earth transition metal ferrimagnetic alloys are provided. From a sequence of static images taken after single linearly polarized laser pulse excitation, the repeatability of AOS can be measured with a correlation coefficient. It is found that low coercivity enables thermally activated domain wall motion, limiting in turn the repeatability of the switching. Time-resolved measurement of the magnetization dynamics reveal that while AOS occurs below and above the magnetization compensation temperature $T_\text{M}$, it is not observed in GdFe samples where $T_\text{M}$ is absent. Finally, AOS is experimentally demonstrated against an applied magnetic field of up to 180 mT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0396v1-abstract-full').style.display = 'none'; document.getElementById('1412.0396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 134402 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.4010">arXiv:1407.4010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.4010">pdf</a>, <a href="https://arxiv.org/format/1407.4010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms6839">10.1038/ncomms6839 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-diffraction sub-100 ps all-optical magnetic switching by passive wavefront shaping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moussaoui%2C+S+E">S. El Moussaoui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzzi%2C+M">M. Buzzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Itoh%2C+A">A. Itoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nolting%2C+F">F. Nolting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.4010v1-abstract-short" style="display: inline;"> The recently discovered magnetization reversal driven solely by a femtosecond laser pulse has been shown to be a promising way to record information at record breaking speeds. Seeking to improve the recording density has raised intriguing fundamental question about the feasibility to combine the ultrafast temporal with sub-wavelength spatial resolution of magnetic recording. Here we report about t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.4010v1-abstract-full').style.display = 'inline'; document.getElementById('1407.4010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.4010v1-abstract-full" style="display: none;"> The recently discovered magnetization reversal driven solely by a femtosecond laser pulse has been shown to be a promising way to record information at record breaking speeds. Seeking to improve the recording density has raised intriguing fundamental question about the feasibility to combine the ultrafast temporal with sub-wavelength spatial resolution of magnetic recording. Here we report about the first experimental demonstration of sub-diffraction and sub-100 ps all-optical magnetic switching. Using computational methods we reveal the feasibility of sub-diffraction magnetic switching even for an unfocused incoming laser pulse. This effect is achieved via structuring the sample such that the laser pulse experiences a passive wavefront shaping as it couples and propagates inside the magnetic structure. Time-resolved studies with the help of photo-emission electron microscopy clearly reveal that the sub-wavelength switching with the help of the passive wave-front shaping can be pushed into sub-100 ps regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.4010v1-abstract-full').style.display = 'none'; document.getElementById('1407.4010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 6:5839, 12th Jan 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.4164">arXiv:1301.4164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.4164">pdf</a>, <a href="https://arxiv.org/ps/1301.4164">ps</a>, <a href="https://arxiv.org/format/1301.4164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Imaging the antiferromagnetic to ferromagnetic first order phase transition of FeRh </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mariager%2C+S+O">S. O. Mariager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzzi%2C+M">M. Buzzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ingold%2C+G">G. Ingold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quitmann%2C+C">C. Quitmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.4164v1-abstract-short" style="display: inline;"> The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to shape anisotropy, but the magnetocrystalline anisotropy is negligible and there is no preferred in-plane magnetization direction. When heating through&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4164v1-abstract-full').style.display = 'inline'; document.getElementById('1301.4164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.4164v1-abstract-full" style="display: none;"> The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to shape anisotropy, but the magnetocrystalline anisotropy is negligible and there is no preferred in-plane magnetization direction. When heating through the AFM to FM phase transition the nucleation of the FM phase occurs at many independent nucleation sites with random domain orientation. The domains subsequently align to form the final FM domain structure. We observe no pinning of the FM domain structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4164v1-abstract-full').style.display = 'none'; document.getElementById('1301.4164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.2702">arXiv:1209.2702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.2702">pdf</a>, <a href="https://arxiv.org/format/1209.2702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3657828">10.1063/1.3657828 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin configurations in Co2FeAl0.4Si0.6 Heusler alloy thin film elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+C+A+F">C. A. F. Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhensius%2C+J">J. Rhensius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heidler%2C+J">J. Heidler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlhueter%2C+P">P. Wohlhueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisig%2C+A">A. Bisig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koerner%2C+H+S">H. S. Koerner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mentes%2C+T+O">T. O. Mentes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locatelli%2C+A">A. Locatelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nolting%2C+F">F. Nolting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+T">T. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heyderman%2C+L+J">L. J. Heyderman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klaeui%2C+M">M. Klaeui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.2702v1-abstract-short" style="display: inline;"> We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong influence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.2702v1-abstract-full').style.display = 'inline'; document.getElementById('1209.2702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.2702v1-abstract-full" style="display: none;"> We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong influence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined geometries up to 800 K. The switching temperature for the transition from transverse to vortex walls in ring elements is found to increase with ring width, an effect attributed to structural changes and consequent changes in magnetic anisotropy, which start to occur in the narrower elements at lower temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.2702v1-abstract-full').style.display = 'none'; document.getElementById('1209.2702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 99:182510, 2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.5005">arXiv:1007.5005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1007.5005">pdf</a>, <a href="https://arxiv.org/ps/1007.5005">ps</a>, <a href="https://arxiv.org/format/1007.5005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3495967">10.1063/1.3495967 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-Situ Contacting and Current-Injection into Samples in Photoemission Electron Microscopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heyne%2C+L">L. Heyne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">M. Kl盲ui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nolting%2C+F">F. Nolting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.5005v1-abstract-short" style="display: inline;"> Studying the interaction of spin-polarized currents with the magnetization configuration is of high interest due to the possible applications and the novel physics involved. High resolution magnetic imaging is one of the key techniques necessary for a better understanding of these effects. Here we present an extension to a magnetic microscope that allows for in-situ current injection into the stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.5005v1-abstract-full').style.display = 'inline'; document.getElementById('1007.5005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.5005v1-abstract-full" style="display: none;"> Studying the interaction of spin-polarized currents with the magnetization configuration is of high interest due to the possible applications and the novel physics involved. High resolution magnetic imaging is one of the key techniques necessary for a better understanding of these effects. Here we present an extension to a magnetic microscope that allows for in-situ current injection into the structure investigated and furthermore for the study of current induced magnetization changes during pulsed current injection. The developed setup is highly flexible and can be used for a wide range of investigations. Examples of current-induced domain wall motion and vortex core displacements measured using this setup are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.5005v1-abstract-full').style.display = 'none'; document.getElementById('1007.5005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 81, 113707 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/q-bio/0507031">arXiv:q-bio/0507031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/q-bio/0507031">pdf</a>, <a href="https://arxiv.org/ps/q-bio/0507031">ps</a>, <a href="https://arxiv.org/format/q-bio/0507031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Subcellular Processes">q-bio.SC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.73.011915">10.1103/PhysRevE.73.011915 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of confinement and jumps in single molecule membrane trajectories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meilhac%2C+N">N. Meilhac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salome%2C+L">L. Salome</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Destainville%2C+N">N. Destainville</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="q-bio/0507031v2-abstract-short" style="display: inline;"> We propose a novel variant of the algorithm by Simson et al. [R. Simson, E.D. Sheets, K. Jacobson, Biophys. J. 69, 989 (1995)]. Their algorithm was developed to detect transient confinement zones in experimental single particle tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect confinement in a wider class of confining potential shapes th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('q-bio/0507031v2-abstract-full').style.display = 'inline'; document.getElementById('q-bio/0507031v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="q-bio/0507031v2-abstract-full" style="display: none;"> We propose a novel variant of the algorithm by Simson et al. [R. Simson, E.D. Sheets, K. Jacobson, Biophys. J. 69, 989 (1995)]. Their algorithm was developed to detect transient confinement zones in experimental single particle tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect confinement in a wider class of confining potential shapes than Simson et al.&#39;s one. Furthermore it enables to detect not only temporary confinement but also jumps between confinement zones. Jumps are predicted by membrane skeleton fence and picket models. In the case of experimental trajectories of $渭$-opioid receptors, which belong to the family of G-protein-coupled receptors involved in a signal transduction pathway, this algorithm confirms that confinement cannot be explained solely by rigid fences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('q-bio/0507031v2-abstract-full').style.display = 'none'; document.getElementById('q-bio/0507031v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 73, 011915 (2006) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10