CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 80 results for author: <span class="mathjax">Fullerton, E E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fullerton, E E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fullerton%2C+E+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fullerton, E E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15417">arXiv:2411.15417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15417">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Temperature dependent spin dynamics in La$_{0.67}$Sr$_{0.33}$MnO$_3$/Pt bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahoo%2C+B">Biswajit Sahoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%2C+A">Akilan K</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matthews%2C+K">Katherine Matthews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">Alex Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petit-Watelot%2C+S">Sebastien Petit-Watelot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+J+R">Juan-Carlos Rojas Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Sarmistha Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15417v1-abstract-short" style="display: inline;"> Complex ferromagnetic oxides such as La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) offer a pathway for creating energy efficient spintronic devices with new functionalities. LSMO exhibits high-temperature ferromagnetism, half metallicity, sharp resonance linewidth, low damping and a large anisotropic magnetoresistance response. Combined with Pt, a proven material with high spin-charge conversion efficiency&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15417v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15417v1-abstract-full" style="display: none;"> Complex ferromagnetic oxides such as La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) offer a pathway for creating energy efficient spintronic devices with new functionalities. LSMO exhibits high-temperature ferromagnetism, half metallicity, sharp resonance linewidth, low damping and a large anisotropic magnetoresistance response. Combined with Pt, a proven material with high spin-charge conversion efficiency, LSMO can potentially be used to create robust nano-oscillators. Here, we employed the ferromagnetic resonance (FMR) and spin-pumping FMR measurements to investigate the magnetization dynamics and spin transport in NdGaO3(110)/LSMO(15 nm)/Pt(0 and 5 nm) thin films at temperatures ranging from 300K to 90K. We find that the bilayer system exhibits a low magnetic damping (0.002), small linewidth (12Oe) and a large spin Hall angle ( 3.2%) at 170K, making it the optimum working temperature for spin orbit torque oscillators based on this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15417v1-abstract-full').style.display = 'none'; document.getElementById('2411.15417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10050">arXiv:2408.10050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10050">pdf</a>, <a href="https://arxiv.org/format/2408.10050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Imaging ultrafast electronic domain fluctuations with X-ray speckle visibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+P">P. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">N. Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoychev%2C+B+K">B. K. Stoychev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+E+S">E. S. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madhavi%2C+M">M. Madhavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botu%2C+S+T">S. T. Botu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeppson%2C+S">S. Jeppson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cl%C3%A9mence%2C+M">M. Cl茅mence</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McConnell%2C+A+G">A. G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zerdane%2C+S">S. Zerdane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemke%2C+H+T">H. T. Lemke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sander%2C+M">M. Sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kramer%2C+P">P. Kramer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">T. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">O. G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">R. Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10050v1-abstract-short" style="display: inline;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection du&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10050v1-abstract-full" style="display: none;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection due to experimental limitations, such as insufficient X-ray coherent flux. Here we demonstrate a nonequilibrium speckle visibility experiment using a split-and-delay setup at an X-ray free-electron laser. Photoinduced electronic domain fluctuations of the magnetic model material Fe$_{3}$O$_{4}$ reveal changes of the trimeron network configuration due to charge dynamics that exhibit liquid-like fluctuations, analogous to a supercooled liquid phase. This suggests that ultrafast dynamics of electronic heterogeneities under optical stimuli are fundamentally different from thermally-driven ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'none'; document.getElementById('2408.10050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00267">arXiv:2403.00267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00267">pdf</a>, <a href="https://arxiv.org/format/2403.00267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Critical slowing of the spin and charge density wave order in thin film Cr following photoexcitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorobtsov%2C+O+Y">Oleg Yu. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cela%2C+D">Devin Cela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabalin%2C+A+G">Anatoly G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wingert%2C+J">James Wingert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">Oleg G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00267v2-abstract-short" style="display: inline;"> We report on the evolution of the charge density wave (CDW) and spin density wave (SDW) order of a chromium film following photoexcitation with an ultrafast optical laser pulse. The CDW is measured by ultrafast time-resolved x-ray diffraction of the CDW satellite that tracks the suppression and recovery of the CDW following photoexcitation. We find that as the temperature of the film approaches a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00267v2-abstract-full').style.display = 'inline'; document.getElementById('2403.00267v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00267v2-abstract-full" style="display: none;"> We report on the evolution of the charge density wave (CDW) and spin density wave (SDW) order of a chromium film following photoexcitation with an ultrafast optical laser pulse. The CDW is measured by ultrafast time-resolved x-ray diffraction of the CDW satellite that tracks the suppression and recovery of the CDW following photoexcitation. We find that as the temperature of the film approaches a discontinuous phase transition in the CDW and SDW order, the time scales of recovery increase exponentially from the expected thermal time scales. We extend a Landau model for SDW systems to account for this critical slowing with the appropriate boundary conditions imposed by the geometry of the thin film system. This model allows us to assess the energy barrier between available CDW/SDW states with different spatial periodicities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00267v2-abstract-full').style.display = 'none'; document.getElementById('2403.00267v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author typo fixed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12256">arXiv:2311.12256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.12256">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c10633">10.1021/acsnano.3c10633 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local control of a single nitrogen-vacancy center by nanoscale engineered magnetic domain wall motions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12256v1-abstract-short" style="display: inline;"> Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental condi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12256v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12256v1-abstract-full" style="display: none;"> Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental conditions. It is an active contender for the development and implementation of cutting-edge quantum technologies. Here, we report magnetic domain wall motion driven local control and measurements of NV spin properties. By engineering the local magnetic field environment of an NV center via nanoscale reconfigurable domain wall motions, we show that NV photoluminescence, spin level energies, and coherence time can be reliably controlled and correlated to the magneto-transport response of a magnetic device. Our results highlight the electrically tunable dipole interaction between NV centers and nanoscale magnetic structures, providing an attractive platform to realize interactive information transfer between spin qubits and non-volatile magnetic memory in hybrid quantum spintronic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12256v1-abstract-full').style.display = 'none'; document.getElementById('2311.12256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05469">arXiv:2311.05469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05469">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202300416">10.1002/adma.202300416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skyrmion-Excited Spin Wave Fractal Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+N">Nan Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liyanage%2C+W+L+N+C">W. L. N. C. Liyanage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S">Sheena Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quigley%2C+L+J">Lizabeth J. Quigley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grutter%2C+A+J">Alexander J. Grutter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fitzsimmons%2C+M+R">Michael R. Fitzsimmons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+S">Sunil Sinha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchers%2C+J+A">Julie A. Borchers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeBeer-Schmitt%2C+L">Lisa DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilbert%2C+D+A">Dustin A. Gilbert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05469v1-abstract-short" style="display: inline;"> Magnetic skyrmions exhibit unique, technologically relevant pseudo-particle behaviors which arise from their topological protection, including well-defined, three-dimensional dynamic modes that occur at microwave frequencies. During dynamic excitation, spin waves are ejected into the interstitial regions between skyrmions, creating the magnetic equivalent of a turbulent sea. However, since the spi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05469v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05469v1-abstract-full" style="display: none;"> Magnetic skyrmions exhibit unique, technologically relevant pseudo-particle behaviors which arise from their topological protection, including well-defined, three-dimensional dynamic modes that occur at microwave frequencies. During dynamic excitation, spin waves are ejected into the interstitial regions between skyrmions, creating the magnetic equivalent of a turbulent sea. However, since the spin waves in these systems have a well-defined length scale, and the skyrmions are on an ordered lattice, ordered structures from spin wave interference can precipitate from the chaos. This work uses small angle neutron scattering (SANS) to capture the dynamics in hybrid skyrmions and investigate the spin wave structure. Performing simultaneous ferromagnetic resonance and SANS, the diffraction pattern shows a large increase in low-angle scattering intensity which is present only in the resonance condition. This scattering pattern is best fit using a mass fractal model, which suggests the spin waves form a long-range fractal network. The fractal structure is constructed of fundamental units with a size that encodes the spin wave emissions and are constrained by the skyrmion lattice. These results offer critical insights into the nanoscale dynamics of skyrmions, identify a new dynamic spin wave fractal structure, and demonstrates SANS as a unique tool to probe high-speed dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05469v1-abstract-full').style.display = 'none'; document.getElementById('2311.05469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials, 2300416 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04938">arXiv:2307.04938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.04938">pdf</a>, <a href="https://arxiv.org/format/2307.04938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00613-3">10.1038/s41535-023-00613-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Periodicity staircase in a Fe/Gd magnetic thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Arnab Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junli Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kevan%2C+S+D">Steve D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Datta%2C+T">Trinanjan Datta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04938v3-abstract-short" style="display: inline;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil&#39;s staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'inline'; document.getElementById('2307.04938v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04938v3-abstract-full" style="display: none;"> Presence of multiple competing periodicities may result in a system to go through states with modulated periodicities, an example of which is the self-similar staircase-like structure called the Devil&#39;s staircase. Herein we report on a novel staircase structure of domain periodicity in an amorphous and achiral Fe/Gd magnetic thin film wherein the reciprocal space wavevector \textbf{Q} due to the ordered stripe domains does not evolve continuously, rather exhibits a staircase structure. Resonant X-ray scattering experiments show jumps in the periodicity of the stripe domains as a function of an external magnetic field. When resolved in components, the step change along Q$_x$ was found to be an integral multiple of a minimum step height of 7 nm, which resembles closely to the exchange length of the system. Modeling the magnetic texture in the Fe/Gd thin film as an achiral spin arrangement, we have been able to reproduce the steps in the magnetization using a Landau-Lifshitz spin dynamics calculation. Our results indicate that anisotropy and not the dipolar interaction is the dominant cause for the staircase pattern, thereby revealing the effect of achiral magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04938v3-abstract-full').style.display = 'none'; document.getElementById('2307.04938v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 2 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11343">arXiv:2305.11343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11343">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01523">10.1021/acs.nanolett.3c01523 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale magnetic domains in polycrystalline Mn3Sn films imaged by a scanning single-spin magnetometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jingcheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11343v1-abstract-short" style="display: inline;"> Noncollinear antiferromagnets with novel magnetic orders, vanishingly small net magnetization and exotic spin related properties hold enormous promise for developing next-generation, transformative spintronic applications. A major ongoing research focus of this community is to explore, control, and harness unconventional magnetic phases of this emergent material system to deliver state-of-the-art&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11343v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11343v1-abstract-full" style="display: none;"> Noncollinear antiferromagnets with novel magnetic orders, vanishingly small net magnetization and exotic spin related properties hold enormous promise for developing next-generation, transformative spintronic applications. A major ongoing research focus of this community is to explore, control, and harness unconventional magnetic phases of this emergent material system to deliver state-of-the-art functionalities for modern microelectronics. Here we report direct imaging of magnetic domains of polycrystalline Mn3Sn films, a prototypical noncollinear antiferromagnet, using nitrogen-vacancy-based single-spin scanning microscopy. Nanoscale evolution of local stray field patterns of Mn3Sn samples are systematically investigated in response to external driving forces, revealing the characteristic &#34;heterogeneous&#34; magnetic switching behaviors in polycrystalline textured Mn3Sn films. Our results contribute to a comprehensive understanding of inhomogeneous magnetic orders of noncollinear antiferromagnets, highlighting the potential of nitrogen-vacancy centers to study microscopic spin properties of a broad range of emergent condensed matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11343v1-abstract-full').style.display = 'none'; document.getElementById('2305.11343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2023, 23, 11, 5326-5333 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02181">arXiv:2305.02181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02181">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Impacts of the half-skyrmion spin topology, spin-orbit torque, and dynamic symmetry breaking on the growth of magnetic stripe domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swinkels%2C+D">Daan Swinkels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koopmans%2C+B">Bert Koopmans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02181v1-abstract-short" style="display: inline;"> We have performed an experimental and modeling-based study of the spin-orbit torque-induced growth of magnetic stripe domains in heavy metal/ferromagnet thin-film heterostructures that possess chiral N茅el-type domain walls due to an interfacial Dzyaloshinskii-Moriya interaction. In agreement with previous reports, the stripe domains stabilized in these systems exhibit a significant transverse grow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02181v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02181v1-abstract-full" style="display: none;"> We have performed an experimental and modeling-based study of the spin-orbit torque-induced growth of magnetic stripe domains in heavy metal/ferromagnet thin-film heterostructures that possess chiral N茅el-type domain walls due to an interfacial Dzyaloshinskii-Moriya interaction. In agreement with previous reports, the stripe domains stabilized in these systems exhibit a significant transverse growth velocity relative to the applied current axis. This behavior has previously been attributed to the Magnus force-like skyrmion Hall effect of the stripe domain spin topology, which is analogous to that of a half-skyrmion. However, through analytic modeling of the in-plane torques generated by spin-orbit torque, we find that a dynamical reconfiguration of the domain wall magnetization profile is expected to occur - promoting motion with similar directionality and symmetry as the skyrmion Hall effect. These results further highlight the sensitivity of spin-orbit torque to the local orientation of the domain wall magnetization profile and its contribution to domain growth directionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02181v1-abstract-full').style.display = 'none'; document.getElementById('2305.02181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, 3 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01369">arXiv:2304.01369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01369">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.184412">10.1103/PhysRevB.107.184412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-Dimensional Structure of Hybrid Magnetic Skyrmions Determined by Neutron Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liyanage%2C+W">WLNC Liyanage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+N">Nan Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quigley%2C+L">Lizabeth Quigley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchers%2C+J+A">Julie A. Borchers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grutter%2C+A+J">Alexander J. Grutter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maranville%2C+B+B">Brian B. Maranville</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+S+K">Sunil K. Sinha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeBeer-Schmitt%2C+L">Lisa DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilbert%2C+D+A">Dustin A. Gilbert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01369v2-abstract-short" style="display: inline;"> Magnetic skyrmions are topologically protected chiral spin textures which present opportunities for next-generation magnetic data storage and logic information technologies. The topology of these structures originates in the geometric configuration of the magnetic spins - more generally described as the structure. While the skyrmion structure is most often depicted using a 2D projection of the thr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01369v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01369v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01369v2-abstract-full" style="display: none;"> Magnetic skyrmions are topologically protected chiral spin textures which present opportunities for next-generation magnetic data storage and logic information technologies. The topology of these structures originates in the geometric configuration of the magnetic spins - more generally described as the structure. While the skyrmion structure is most often depicted using a 2D projection of the three-dimensional structure, recent works have emphasized the role of all three dimensions in determining the topology and their response to external stimuli. In this work, grazing-incidence small-angle neutron scattering and polarized neutron reflectometry are used to determine the three-dimensional structure of hybrid skyrmions. The structure of the hybrid skyrmions, which includes a combination of N茅el-like and Bloch-like components along their length, is expected to significantly contribute to their notable stability, which includes ambient conditions. To interpret the neutron scattering data, micromagnetic simulations of the hybrid skyrmions were performed, and the corresponding diffraction patterns were determined using a Born approximation transformation. The converged magnetic profile reveals the magnetic structure along with the skyrmion depth profile, including the thickness of the Bloch and N茅el segments and the diameter of the core. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01369v2-abstract-full').style.display = 'none'; document.getElementById('2304.01369v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16131">arXiv:2303.16131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16131">pdf</a>, <a href="https://arxiv.org/format/2303.16131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.256702">10.1103/PhysRevLett.131.256702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of extreme domain wall speeds under ultrafast optical excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madhavi%2C+M">Meera Madhavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rockwell%2C+K">Kyle Rockwell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+J+M">Justin M. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Angelis%2C+D">Dario De Angelis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capotondi%2C+F">Flavio Capotondi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersoli%2C+E">Emanuele Pedersoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nembach%2C+H+T">Hans T. Nembach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+M+W">Mark W. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">Stefano Bonetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iacocca%2C+E">Ezio Iacocca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">Roopali Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silva%2C+T+J">Thomas J. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16131v2-abstract-short" style="display: inline;"> Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of &gt;10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold-dependence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16131v2-abstract-full').style.display = 'inline'; document.getElementById('2303.16131v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16131v2-abstract-full" style="display: none;"> Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of &gt;10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold-dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of $\approx$ 66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, non-equilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16131v2-abstract-full').style.display = 'none'; document.getElementById('2303.16131v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; Supplemental Material: 9 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01832">arXiv:2204.01832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01832">pdf</a>, <a href="https://arxiv.org/format/2204.01832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0094205">10.1063/5.0094205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum materials for energy-efficient neuromorphic computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramanathan%2C+S">Shriram Ramanathan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grollier%2C+J">Julie Grollier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+A+D">Andrew D. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rozenberg%2C+M">Marcelo Rozenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuller%2C+I+K">Ivan K. Schuller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O">Oleg Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dynes%2C+R">Robert Dynes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fainman%2C+Y">Yeshaiahu Fainman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">Alex Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galli%2C+G">Giulia Galli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomakin%2C+V">Vitaliy Lomakin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ong%2C+S+P">Shyue Ping Ong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petford-Long%2C+A+K">Amanda K. Petford-Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuller%2C+J+A">Jonathan A. Schuller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stiles%2C+M+D">Mark D. Stiles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takamura%2C+Y">Yayoi Takamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01832v1-abstract-short" style="display: inline;"> Neuromorphic computing approaches become increasingly important as we address future needs for efficiently processing massive amounts of data. The unique attributes of quantum materials can help address these needs by enabling new energy-efficient device concepts that implement neuromorphic ideas at the hardware level. In particular, strong correlations give rise to highly non-linear responses, su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01832v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01832v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01832v1-abstract-full" style="display: none;"> Neuromorphic computing approaches become increasingly important as we address future needs for efficiently processing massive amounts of data. The unique attributes of quantum materials can help address these needs by enabling new energy-efficient device concepts that implement neuromorphic ideas at the hardware level. In particular, strong correlations give rise to highly non-linear responses, such as conductive phase transitions that can be harnessed for short and long-term plasticity. Similarly, magnetization dynamics are strongly non-linear and can be utilized for data classification. This paper discusses select examples of these approaches, and provides a perspective for the current opportunities and challenges for assembling quantum-material-based devices for neuromorphic functionalities into larger emergent complex network systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01832v1-abstract-full').style.display = 'none'; document.getElementById('2204.01832v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Materials 10, 070904 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11465">arXiv:2203.11465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.11465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202200327">10.1002/adma.202200327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum sensing and imaging of spin-orbit-torque-driven spin dynamics in noncollinear antiferromagnet Mn3Sn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+G+Q">Gerald Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wernert%2C+L">Luke Wernert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11465v1-abstract-short" style="display: inline;"> Novel noncollinear antiferromagnets with spontaneous time-reversal symmetry breaking, nontrivial band topology, and unconventional transport properties have received immense research interest over the past decade due to their rich physics and enormous promise in technological applications. One of the central focuses in this emerging field is exploring the relationship between the microscopic magne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11465v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11465v1-abstract-full" style="display: none;"> Novel noncollinear antiferromagnets with spontaneous time-reversal symmetry breaking, nontrivial band topology, and unconventional transport properties have received immense research interest over the past decade due to their rich physics and enormous promise in technological applications. One of the central focuses in this emerging field is exploring the relationship between the microscopic magnetic structure and exotic material properties. Here, the nanoscale imaging of both spin-orbit-torque-induced deterministic magnetic switching and chiral spin rotation in noncollinear antiferromagnet Mn3Sn films using nitrogen-vacancy (NV) centers is reported. Direct evidence of the off-resonance dipole-dipole coupling between the spin dynamics in Mn3Sn and proximate NV centers is also demonstrated with NV relaxometry measurements. These results demonstrate the unique capabilities of NV centers in accessing the local information of the magnetic order and dynamics in these emergent quantum materials and suggest new opportunities for investigating the interplay between topology and magnetism in a broad range of topological magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11465v1-abstract-full').style.display = 'none'; document.getElementById('2203.11465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03931">arXiv:2202.03931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03931">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Emergence of Ferromagnetism in Antiferromagnetic FeRh in High Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dolgikh%2C+I+A">I. A. Dolgikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+T+G+H">T. G. H. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzdakov%2C+A+G">A. G. Buzdakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakara%2C+K+H">K. H. Prabhakara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">S. K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">R. Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koplak%2C+O+V">O. V. Koplak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mentink%2C+J+H">J. H. Mentink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+K+A">K. A. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christianen%2C+P+C+M">P. C. M. Christianen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03931v4-abstract-short" style="display: inline;"> Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03931v4-abstract-full').style.display = 'inline'; document.getElementById('2202.03931v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03931v4-abstract-full" style="display: none;"> Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different types of ultrafast magnetization dynamics were observed and, using a numerically calculated H-T phase diagram, the differences were explained by different initial states of FeRh corresponding to a (i) collinear antiferromagnetic, (ii) canted antiferromagnetic and (iii) ferromagnetic alignment of spins. We argue that ultrafast heating of FeRh in the canted antiferromagnetic phase launches practically the fastest possible emergence of magnetization in this material. The magnetization emerges on a time scale of 2 ps, which corresponds to the earlier reported time-scale of the structural changes during the phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03931v4-abstract-full').style.display = 'none'; document.getElementById('2202.03931v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06350">arXiv:2201.06350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06350">pdf</a>, <a href="https://arxiv.org/format/2201.06350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577522008414">10.1107/S1600577522008414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kerber%2C+N">Nico Kerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parra%2C+E+B">Erick Burgos Parra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beg%2C+M">Marijan Beg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Martin Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seng%2C+B">Boris Seng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kammerbauer%2C+F">Fabian Kammerbauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+H">Horia Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neeraj%2C+K">Kumar Neeraj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+D">Debanjan Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovcharenko%2C+S">Sergei Ovcharenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ksenzov%2C+D">Dmitriy Ksenzov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pronin%2C+I">Igor Pronin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baidakova%2C+M">Marina Baidakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmising%2C+C+v+K">Clemens von Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchert%2C+M">Martin Borchert</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06350v2-abstract-short" style="display: inline;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we presen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'inline'; document.getElementById('2201.06350v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06350v2-abstract-full" style="display: none;"> The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06350v2-abstract-full').style.display = 'none'; document.getElementById('2201.06350v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures. Supplementary Information as ancillary file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. (2022), 29 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09587">arXiv:2112.09587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09587">pdf</a>, <a href="https://arxiv.org/format/2112.09587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">Nanna Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jangid%2C+R">Rahul Jangid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meera"> Meera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J">Jeffrey Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+E+S">Erik S. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoychev%2C+B">Boyan Stoychev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">Justine Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B">Benjamin Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">Rafael Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">Laurent Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samartsev%2C+A">Andrey Samartsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherz%2C+A">Andreas Scherz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arora%2C+M">Monika Arora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nembach%2C+H+T">Hans T. Nembach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+J+M">Justin M. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+M+W">Mark W. Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">Roopali Kukreja</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09587v1-abstract-short" style="display: inline;"> Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how far-from-equilibrium states lead to spontaneous symmetry breaking. Conversely, ultrafast optical pumping can be used to drastically change the energy landscape and quench the magnetic order parameter in magnetic systems. Here, we find a dist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09587v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09587v1-abstract-full" style="display: none;"> Symmetry is a powerful concept in physics, but its applicability to far-from-equilibrium states is still being understood. Recent attention has focused on how far-from-equilibrium states lead to spontaneous symmetry breaking. Conversely, ultrafast optical pumping can be used to drastically change the energy landscape and quench the magnetic order parameter in magnetic systems. Here, we find a distinct symmetry-dependent ultrafast behaviour by use of ultrafast x-ray scattering from magnetic patterns with varying degrees of isotropic and anisotropic symmetry. After pumping with an optical laser, the scattered intensity reveals a radial shift exclusive to the isotropic component and exhibits a faster recovery time from quenching for the anisotropic component. These features arise even when both symmetry components are concurrently measured, suggesting a correspondence between the excitation and the magnetic order symmetry. Our results underline the importance of symmetry as a critical variable to manipulate the magnetic order in the ultrafast regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09587v1-abstract-full').style.display = 'none'; document.getElementById('2112.09587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05491">arXiv:2111.05491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05491">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/9.0000350">10.1063/9.0000350 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Micro-structuration effects on local magneto-transport in [Co/Pd]IrMn thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+C">C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkes%2C+M">M. Parkes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olsson%2C+C">C. Olsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keavney%2C+D">D. Keavney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chesnel%2C+K">K. Chesnel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05491v1-abstract-short" style="display: inline;"> We measured the local magneto-transport (MT) signal with an out-of-plane magnetic field, including magneto-resistance (MR) and Extraordinary Hall effect (EHE), in exchange-biased [Co/Pd]IrMn thin multilayers that are micro-structured with a 100 micron window. We found that when measured locally around the window, the MT signal deviate from the expected behavior. We studied possible causes, includi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05491v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05491v1-abstract-full" style="display: none;"> We measured the local magneto-transport (MT) signal with an out-of-plane magnetic field, including magneto-resistance (MR) and Extraordinary Hall effect (EHE), in exchange-biased [Co/Pd]IrMn thin multilayers that are micro-structured with a 100 micron window. We found that when measured locally around the window, the MT signal deviate from the expected behavior. We studied possible causes, including film micro-structuration, electrical contact geometry as well as magnetic field tilt from the normal direction. These MT measurements were carried using the Van-der-Pauw method, with a set a four microscopic contacts directly surrounding the window, and a set of four contacts positioned several millimeters away from the window. We found that tilting the magnetic field direction with respect to the normal does not significantly affect the MT signal, whereas the positioning and geometry of the contacts seem to highly affect the MT signal. When the contacts are directly surrounding the window, the shape of the EHE signal is drastically deformed, suggesting that the electron path is disturbed by the presence of the window and the proximity of the electric contacts. If, on the other hand, the contacts are sufficiently far apart, the MT signal is not significantly affected by the presence of the window. Furthermore, the deformed EHE signal measured on the inner contacts can be modeled as a mix of the EHE and MR signals measured on the outer contacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05491v1-abstract-full').style.display = 'none'; document.getElementById('2111.05491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01649">arXiv:2111.01649</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01649">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium self-assembly of spin-wave solitons in FePt nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">D. Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">A. Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Unikandanuni%2C+V">V. Unikandanuni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaskivskyi%2C+I">I. Vaskivskyi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">E. Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R">R. Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">R. Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">N. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Kuiken%2C+B">B. Van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">L. Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teichmann%2C+M">M. Teichmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomidze%2C+D">D. Lomidze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castoldi%2C+A">A. Castoldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potorochin%2C+D">D. Potorochin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukkattukavil%2C+D">D. Mukkattukavil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J">J. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagstr%C3%B6m%2C+N+Z">N. Z. Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">X. Shen</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01649v1-abstract-short" style="display: inline;"> Magnetic nanoparticles such as FePt in the L10-phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magneto-crystalline anisotropy. This in turn reduces the magnetic exchange length to just a few nanometers enabling magnetic structures to be induced within the na&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01649v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01649v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01649v1-abstract-full" style="display: none;"> Magnetic nanoparticles such as FePt in the L10-phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magneto-crystalline anisotropy. This in turn reduces the magnetic exchange length to just a few nanometers enabling magnetic structures to be induced within the nanoparticles. Here we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved X-ray diffraction and micromagnetic modeling that spin-wave solitons of sub-10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin-precession frequency of 0.1 THz positions this system as a platform to develop miniature devices capable of filling the THz gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01649v1-abstract-full').style.display = 'none'; document.getElementById('2111.01649v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, please check the &#34;attachemnts&#34; tab in the pdf file in order to see the movie</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11108">arXiv:2109.11108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11108">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Large Exotic Spin Torques in Antiferromagnetic Iron Rhodium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gibbons%2C+J">Jonathan Gibbons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dohi%2C+T">Takaaki Dohi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+V+P">Vivek P. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Haowen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jun-Wen Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arava%2C+H">Hanu Arava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shim%2C+S">Soho Shim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saglam%2C+H">Hilal Saglam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuzi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pearson%2C+J+E">John E. Pearson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mason%2C+N">Nadya Mason</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petford-Long%2C+A+K">Amanda K. Petford-Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haney%2C+P+M">Paul M. Haney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stiles%2C+M+D">Mark D. Stiles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+A+D">Andrew D. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fukami%2C+S">Shunsuke Fukami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11108v1-abstract-short" style="display: inline;"> Spin torque is a promising tool for driving magnetization dynamics for novel computing technologies. These torques can be easily produced by spin-orbit effects, but for most conventional spin source materials, a high degree of crystal symmetry limits the geometry of the spin torques produced. Magnetic ordering is one way to reduce the symmetry of a material and allow exotic torques, and antiferrom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11108v1-abstract-full').style.display = 'inline'; document.getElementById('2109.11108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11108v1-abstract-full" style="display: none;"> Spin torque is a promising tool for driving magnetization dynamics for novel computing technologies. These torques can be easily produced by spin-orbit effects, but for most conventional spin source materials, a high degree of crystal symmetry limits the geometry of the spin torques produced. Magnetic ordering is one way to reduce the symmetry of a material and allow exotic torques, and antiferromagnets are particularly promising because they are robust against external fields. We present spin torque ferromagnetic resonance measurements and second harmonic Hall measurements characterizing the spin torques in antiferromagnetic iron rhodium alloy. We report extremely large, strongly temperature-dependent exotic spin torques with a geometry apparently defined by the magnetic ordering direction. We find the spin torque efficiency of iron rhodium to be (330$\pm$150) % at 170 K and (91$\pm$32) % at room temperature. We support our conclusions with theoretical calculations showing how the antiferromagnetic ordering in iron rhodium gives rise to such exotic torques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11108v1-abstract-full').style.display = 'none'; document.getElementById('2109.11108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03076">arXiv:2109.03076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03076">pdf</a>, <a href="https://arxiv.org/format/2109.03076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.237201">10.1103/PhysRevLett.129.237201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inertial spin dynamics in epitaxial cobalt films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Unikandanunni%2C+V">Vivek Unikandanunni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asa%2C+M">Marco Asa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albisetti%2C+E">Edoardo Albisetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petti%2C+D">Daniela Petti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertacco%2C+R">Riccardo Bertacco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">Stefano Bonetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03076v2-abstract-short" style="display: inline;"> We investigate the spin dynamics driven by terahertz magnetic fields in epitaxial thin films of cobalt in its three crystalline phases. The terahertz magnetic field generates a torque on the magnetization which causes it to precess for about 1 ps, with a sub-picosecond temporal lag from the driving force. Then, the magnetization undergoes natural damped THz oscillations at a frequency characterist&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03076v2-abstract-full').style.display = 'inline'; document.getElementById('2109.03076v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03076v2-abstract-full" style="display: none;"> We investigate the spin dynamics driven by terahertz magnetic fields in epitaxial thin films of cobalt in its three crystalline phases. The terahertz magnetic field generates a torque on the magnetization which causes it to precess for about 1 ps, with a sub-picosecond temporal lag from the driving force. Then, the magnetization undergoes natural damped THz oscillations at a frequency characteristic of the crystalline phase. We describe the experimental observations solving the inertial Landau-Lifshitz-Gilbert equation. Using the results from the relativistic theory of magnetic inertia, we find that the angular momentum relaxation time $畏$ is the only material parameter needed to describe all the experimental evidence. Our experiments suggest a proportionality between $畏$ and the strength of the magneto-crystalline anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03076v2-abstract-full').style.display = 'none'; document.getElementById('2109.03076v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10973">arXiv:2108.10973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.10973">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Skyrmion stabilization at the domain morphology transition in ferromagnet/heavy metal heterostructures with low exchange stiffness </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10973v1-abstract-short" style="display: inline;"> We report the experimental observation of micron-scale magnetic skyrmions at room temperature in several Pt/Co-based thin film heterostructures designed to possess a low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii-Moriya interaction (iDMI). We find both experimentally and by micromagnetic and analytic modeling that the combined action of low excha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10973v1-abstract-full').style.display = 'inline'; document.getElementById('2108.10973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10973v1-abstract-full" style="display: none;"> We report the experimental observation of micron-scale magnetic skyrmions at room temperature in several Pt/Co-based thin film heterostructures designed to possess a low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii-Moriya interaction (iDMI). We find both experimentally and by micromagnetic and analytic modeling that the combined action of low exchange stiffness and modest iDMI eliminates the energetic penalty associated with forming domain walls in thin film heterostructures. When the domain wall energy density approaches negative values, the remanent domain morphology transitions from a uniform state to a labyrinthian stripe phase. A low exchange stiffness, indicated by a reduction in the Curie temperature below 400 K, is achieved in Pt/Co, Pt/Co/Ni, and Pt/Co/Ni/Re structures by reducing the Co thickness to the ultrathin limit (&lt; 0.3 nm). A similar effect occurs in thicker Pt/Co/NixCu1-x structures when the Ni layer is alloyed with Cu. At this transition in domain morphology, skyrmion phases are stabilized when a small (&lt; 1 mT) perpendicular magnetic field is applied and current-induced skyrmion motion including the skyrmion Hall effect is observed. The temperature and thickness-induced morphological phase transitions observed are similar to the well-studied spin reorientation transition that occurs in the ultrathin limit, but we find that the underlying energy balances are substantially modified by the presence of an iDMI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10973v1-abstract-full').style.display = 'none'; document.getElementById('2108.10973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures, 3 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08876">arXiv:2103.08876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.08876">pdf</a>, <a href="https://arxiv.org/format/2103.08876">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.064410">10.1103/PhysRevMaterials.5.064410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Spin-to-Charge Conversion in Ultrathin Gold-Silicon Multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hadri%2C+M+S+E">Mohammed Salah El Hadri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibbons%2C+J">Jonathan Gibbons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Haowen Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arava%2C+H">Hanu Arava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuzi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhaowei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petford-Long%2C+A">Amanda Petford-Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08876v1-abstract-short" style="display: inline;"> Investigation of the spin Hall effect in gold has triggered increasing interest over the past decade, since gold combines the properties of a large bulk spin diffusion length and strong interfacial spin-orbit coupling. However, discrepancies between the values of the spin Hall angle of gold reported in the literature have brought into question the microscopic origin of the spin Hall effect in Au.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08876v1-abstract-full').style.display = 'inline'; document.getElementById('2103.08876v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08876v1-abstract-full" style="display: none;"> Investigation of the spin Hall effect in gold has triggered increasing interest over the past decade, since gold combines the properties of a large bulk spin diffusion length and strong interfacial spin-orbit coupling. However, discrepancies between the values of the spin Hall angle of gold reported in the literature have brought into question the microscopic origin of the spin Hall effect in Au. Here, we investigate the thickness dependence of the spin-charge conversion efficiency in single Au films and ultrathin Au/Si multilayers by non-local transport and spin-torque ferromagnetic resonance measurements. We show that the spin-charge conversion efficiency is strongly enhanced in ultrathin Au/Si multilayers, reaching exceedingly large values of 0.99 +/- 0.34 when the thickness of the individual Au layers is scaled down to 2 nm. These findings reveal the coexistence of a strong interfacial spin-orbit coupling effect which becomes dominant in ultrathin Au, and bulk spin Hall effect with a relatively low bulk spin Hall angle of 0.012 +/- 0.005. Our experimental results suggest the key role of the Rashba-Edelstein effect in the spin-to-charge conversion in ultrathin Au. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08876v1-abstract-full').style.display = 'none'; document.getElementById('2103.08876v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 064410 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07909">arXiv:2102.07909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.07909">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202101524">10.1002/adma.202101524 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic symmetry breaking in chiral magnetic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kitcher%2C+M+D">Michael D. Kitcher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vallobra%2C+P">Pierre Vallobra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M+P">Maxwell P. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Graef%2C+M">Marc De Graef</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokalski%2C+V">Vincent Sokalski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07909v4-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI) in magnetic systems stabilizes spin textures with preferred chirality, applicable to next-generation memory and computing architectures. In perpendicularly magnetized heavy-metal/ferromagnet films, the interfacial DMI originating from structural inversion asymmetry and strong spin-orbit coupling favors chiral N茅el-type domain walls (DWs) whose energetics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07909v4-abstract-full').style.display = 'inline'; document.getElementById('2102.07909v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07909v4-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI) in magnetic systems stabilizes spin textures with preferred chirality, applicable to next-generation memory and computing architectures. In perpendicularly magnetized heavy-metal/ferromagnet films, the interfacial DMI originating from structural inversion asymmetry and strong spin-orbit coupling favors chiral N茅el-type domain walls (DWs) whose energetics and mobility remain at issue. Here, we characterize a new effect in which domains expand unidirectionally in response to a combination of out-of-plane and in-plane magnetic fields, with the growth direction controlled by the in-plane field strength. These growth directionalities and symmetries with applied fields cannot be understood from static treatments alone. We theoretically demonstrate that perpendicular field torques stabilize steady-state magnetization profiles highly asymmetric in elastic energy, resulting in a dynamic symmetry breaking consistent with the experimental findings. This phenomenon sheds light on the mechanisms governing the dynamics of N茅el-type DWs and expands the utility of field-driven DW motion to probe and control chiral DWs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07909v4-abstract-full').style.display = 'none'; document.getElementById('2102.07909v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, 10 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05353">arXiv:2012.05353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05353">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Phonon-assisted formation of an itinerant electronic density wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaruo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorobtsov%2C+O+Y">Oleg Yu. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gregory%2C+B">Benjamin Gregory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabalin%2C+A+G">Anatoly G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S">Stjepan Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wingert%2C+J">James Wingert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cela%2C+D">Devin Cela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O+G">Oleg G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05353v1-abstract-short" style="display: inline;"> Electronic instabilities drive ordering transitions in condensed matter. Despite many advances in the microscopic understanding of the ordered states, a more nuanced and profound question often remains unanswered: how do the collective excitations influence the electronic order formation? Here, we experimentally show that a phonon affects the spin density wave (SDW) formation after an SDW-quench b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05353v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05353v1-abstract-full" style="display: none;"> Electronic instabilities drive ordering transitions in condensed matter. Despite many advances in the microscopic understanding of the ordered states, a more nuanced and profound question often remains unanswered: how do the collective excitations influence the electronic order formation? Here, we experimentally show that a phonon affects the spin density wave (SDW) formation after an SDW-quench by femtosecond laser pulses. In a thin film, the temperature-dependent SDW period is quantized, allowing us to track the out-of-equilibrium formation path of the SDW precisely. By exploiting its persistent coupling to the lattice, we probe the SDW through the transient lattice distortion, measured by femtosecond X-ray diffraction. We find that within 500 femtoseconds after a complete quench, the SDW forms with the low-temperature period, directly bypassing a thermal state with the high-temperature period. We argue that a momentum-matched phonon launched by the quench changes the formation path of the SDW through the dynamic pinning of the order parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05353v1-abstract-full').style.display = 'none'; document.getElementById('2012.05353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03905">arXiv:2011.03905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.03905">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abg8562">10.1126/sciadv.abg8562 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Sensing of Spin Transport Properties of an Antiferromagnetic Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flebus%2C+B">Benedetta Flebus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03905v1-abstract-short" style="display: inline;"> Antiferromagnetic insulators (AFIs) are of significant interest due to their potential to develop next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage. Here, we report a non-invasive method to optically access the intrinsic spin transport properties of an archetypical AFI 伪-Fe2O3 via nitrogen-vacanc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03905v1-abstract-full').style.display = 'inline'; document.getElementById('2011.03905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03905v1-abstract-full" style="display: none;"> Antiferromagnetic insulators (AFIs) are of significant interest due to their potential to develop next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage. Here, we report a non-invasive method to optically access the intrinsic spin transport properties of an archetypical AFI 伪-Fe2O3 via nitrogen-vacancy (NV) quantum spin sensors. By NV relaxometry measurements, we successfully detect the time-dependent fluctuations of the longitudinal spin density of 伪-Fe2O3. The observed frequency dependence of the NV relaxation rate is in agreement with a theoretical model, from which an intrinsic spin diffusion constant of 伪-Fe2O3 is experimentally measured in the absence of external spin biases. Our results highlight the significant opportunity offered by NV centers in diagnosing the underlying spin transport properties in a broad range of high-frequency magnetic materials, which are challenging to access by more conventional measurement techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03905v1-abstract-full').style.display = 'none'; document.getElementById('2011.03905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 6, eabg8562 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03119">arXiv:2008.03119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.03119">pdf</a>, <a href="https://arxiv.org/format/2008.03119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0049692">10.1063/5.0049692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic Ultrafast Spin Dynamics in Epitaxial Cobalt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Unikandanunni%2C+V">Vivek Unikandanunni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carva%2C+K">Karel Carva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oppeneer%2C+P+M">Peter M. Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">Stefano Bonetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03119v1-abstract-short" style="display: inline;"> We investigate the ultrafast spin dynamics in an epitaxial hcp(1100) cobalt thin film. By performing pump-probe magneto-optical measurements with the magnetization along either the easy or hard magnetic axis, we determine the demagnetization and recovery times for the two axes. We observe a 35% slower dynamics along the easy magnetization axis, which we attribute to magneto-crystalline anisotropy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03119v1-abstract-full').style.display = 'inline'; document.getElementById('2008.03119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03119v1-abstract-full" style="display: none;"> We investigate the ultrafast spin dynamics in an epitaxial hcp(1100) cobalt thin film. By performing pump-probe magneto-optical measurements with the magnetization along either the easy or hard magnetic axis, we determine the demagnetization and recovery times for the two axes. We observe a 35% slower dynamics along the easy magnetization axis, which we attribute to magneto-crystalline anisotropy of the electron-phonon coupling, supported by our ab initio calculations. This points towards an unambiguous and previously undisclosed role of anisotropic electron-lattice coupling in ultrafast magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03119v1-abstract-full').style.display = 'none'; document.getElementById('2008.03119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures. Supplemental Material: 6 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07543">arXiv:2007.07543</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07543">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-020-00308-8">10.1038/s41534-020-00308-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical Control of Coherent Spin Rotation of a Single-Spin Qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoche Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yuxuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chuanpu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee-Wong%2C+E">Eric Lee-Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanfeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mingzhong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07543v1-abstract-short" style="display: inline;"> Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. One of the critical challenges to develop NV-based quantum operation platforms results from the difficulty to locally address the qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07543v1-abstract-full').style.display = 'inline'; document.getElementById('2007.07543v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07543v1-abstract-full" style="display: none;"> Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. One of the critical challenges to develop NV-based quantum operation platforms results from the difficulty to locally address the quantum spin states of individual NV spins in a scalable, energy-efficient manner. Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems. By utilizing electrically generated spin currents, we are able to achieve efficient tuning of magnetic damping and the amplitude of the dipole fields generated by a micrometer-sized resonant magnet, enabling electrical control of the Rabi oscillation frequency of NV spins. Our results highlight the potential of NV centers in designing functional hybrid solid-state systems for next-generation quantum-information technologies. The demonstrated coupling between the NV centers and the propagating spin waves harbored by a magnetic insulator further points to the possibility to establish macroscale entanglement between distant spin qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07543v1-abstract-full').style.display = 'none'; document.getElementById('2007.07543v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 6, 78 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06008">arXiv:2007.06008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.06008">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.104409">10.1103/PhysRevMaterials.4.104409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy-efficient generation of skyrmion phases in Co/Ni/Pt-based multilayers using Joule heating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Brock%2C+J+A">Jeffrey A. Brock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06008v2-abstract-short" style="display: inline;"> We have studied the effects of electrical current pulses on skyrmion formation in a series of Co/Ni/Pt-based multilayers. Transmission X-ray microscopy reveals that by applying electrical current pulses of duration and current density on the order of $蟿$=50 $渭$s and j=1.7x10$^1$$^0$ A/m$^2$, respectively, in an applied magnetic field of $渭$$_0$Hz=50 mT, stripe-to-skyrmion transformations are attai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06008v2-abstract-full').style.display = 'inline'; document.getElementById('2007.06008v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06008v2-abstract-full" style="display: none;"> We have studied the effects of electrical current pulses on skyrmion formation in a series of Co/Ni/Pt-based multilayers. Transmission X-ray microscopy reveals that by applying electrical current pulses of duration and current density on the order of $蟿$=50 $渭$s and j=1.7x10$^1$$^0$ A/m$^2$, respectively, in an applied magnetic field of $渭$$_0$Hz=50 mT, stripe-to-skyrmion transformations are attained. The skyrmions remain stable across a wide range of magnetic fields, including zero field. The skyrmions then remain stable across a wide range of magnetic fields, including zero field. We primarily attribute the transformation to current-induced Joule heating on the order of ~125 K. Reducing the magnetic moment and perpendicular anisotropy using thin rare-earth spacers dramatically reduces the pulse duration, current density, and magnetic field necessary to 25 $渭$s, 2.4x10$^9$ A/m$^2$, and 27 mT, respectively. These findings show that energetic inputs allow for the formation of skyrmion phases in a broad class of materials and that material properties can be tuned to yield more energy-efficient access to skyrmion phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06008v2-abstract-full').style.display = 'none'; document.getElementById('2007.06008v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 7 figures, 9 supplemental figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 104409 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04930">arXiv:2007.04930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04930">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms11648">10.1038/ncomms11648 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chesnel%2C+K">Karine Chesnel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Safsten%2C+A">Alex Safsten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rytting%2C+M">Matthew Rytting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04930v1-abstract-short" style="display: inline;"> The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), i.e., the tendency for magnetic domains to repeat the same pattern during field-cycling, is important to many technologies including magnetic recording developments. We show coherent x-ray magnetic scattering studies unveiling MDM in [Co/Pd]/IrMn fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04930v1-abstract-full').style.display = 'inline'; document.getElementById('2007.04930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04930v1-abstract-full" style="display: none;"> The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), i.e., the tendency for magnetic domains to repeat the same pattern during field-cycling, is important to many technologies including magnetic recording developments. We show coherent x-ray magnetic scattering studies unveiling MDM in [Co/Pd]/IrMn films. When illuminated by coherent x-rays, the magnetic domains in the [Co/Pd] multilayer produce a speckle pattern unique to their specific nanoscale configuration. By cross-correlating such speckle patterns throughout the magnetization loop, we measure the MDM. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-couplings with the IrMn layer. Furthermore, the degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04930v1-abstract-full').style.display = 'none'; document.getElementById('2007.04930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Comm. 7, 11648 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13379">arXiv:2005.13379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.13379">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Femtosecond Photocurrents at the Pt/FeRh Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guanqiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhaylovskiy%2C+R+V">Rostislav. V. Mikhaylovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Theo Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">Alexey V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13379v1-abstract-short" style="display: inline;"> Femtosecond laser excitation of FeRh/Pt bilayers launches an ultrafast pulse of electric photocurrent in the Pt-layer and thus results in emission of electromagnetic radiation in the THz spectral range. Analysis of the THz emission as a function of polarization of the femtosecond laser pulse, external magnetic field, sample temperature and sample orientation shows that photocurrent can emerge due&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13379v1-abstract-full').style.display = 'inline'; document.getElementById('2005.13379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13379v1-abstract-full" style="display: none;"> Femtosecond laser excitation of FeRh/Pt bilayers launches an ultrafast pulse of electric photocurrent in the Pt-layer and thus results in emission of electromagnetic radiation in the THz spectral range. Analysis of the THz emission as a function of polarization of the femtosecond laser pulse, external magnetic field, sample temperature and sample orientation shows that photocurrent can emerge due to vertical spin pumping and photo-induced inverse spin-orbit torque at the FeRh/Pt interface. The vertical spin pumping from FeRh to Pt does not depend on the polarization of light and originates from ultrafast laser-induced demagnetization of the ferromagnetic phase of FeRh. The photo-induced inverse spin-orbit torque at the FeRh/Pt interface can be described in terms of a helicity-dependent effect of circularly polarized light on the magnetization of the ferromagnetic FeRh and subsequent generation of a photocurrent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13379v1-abstract-full').style.display = 'none'; document.getElementById('2005.13379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04259">arXiv:2002.04259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04259">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of temporal correlations above the spin-glass transition by coherent resonant magnetic x-ray spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jingjin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharya%2C+R">Rupak Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+S">Sudip Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+M">Xiao M. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maple%2C+M+B">M. Brian Maple</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">Claudio Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varma%2C+C+M">Chandra M. Varma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+S+K">Sunil K. Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04259v1-abstract-short" style="display: inline;"> In the 1970s a new paradigm was introduced that interacting quenched systems, such as a spin-glass, have a phase transition in which long time memory of spatial patterns is realized without spatial correlations. The principal methods to study the spin-glass transition, besides some elaborate and elegant theoretical constructions, have been numerical computer simulations and neutron spin echo measu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04259v1-abstract-full').style.display = 'inline'; document.getElementById('2002.04259v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04259v1-abstract-full" style="display: none;"> In the 1970s a new paradigm was introduced that interacting quenched systems, such as a spin-glass, have a phase transition in which long time memory of spatial patterns is realized without spatial correlations. The principal methods to study the spin-glass transition, besides some elaborate and elegant theoretical constructions, have been numerical computer simulations and neutron spin echo measurements . We show here that the dynamical correlations of the spin-glass transition are embedded in measurements of the four-spin correlations at very long times. This information is directly available in the temporal correlations of the intensity, which encode the spin-orientation memory, obtained by the technique of resonant magnetic x-ray photon correlation spectroscopy (RM- XPCS). We have implemented this method to observe and accurately characterize the critical slowing down of the spin orientation fluctuations in the classic metallic spin glass alloy Cu(Mn) over time scales of 1 to 1000 secs. Our method opens the way for studying phase transitions in systems such as spin ices, and quantum spin liquids, as well as the structural glass transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04259v1-abstract-full').style.display = 'none'; document.getElementById('2002.04259v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11719">arXiv:2001.11719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11719">pdf</a>, <a href="https://arxiv.org/format/2001.11719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast perturbation of magnetic domains by optical pumping in a ferromagnetic multilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zusin%2C+D">Dmitriy Zusin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iacocca%2C+E">Ezio Iacocca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">William F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tian-Min Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wandel%2C+S+F">Scott F. Wandel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tengdin%2C+P+M">Phoebe M. Tengdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shabalin%2C+A">Anatoly Shabalin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrkac%2C+S+B">Stjepan B. Hrkac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nembach%2C+H+T">Hans T. Nembach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+J+M">Justin M. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blonsky%2C+A">Adam Blonsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gentry%2C+C">Christian Gentry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoefer%2C+M+A">Mark A. Hoefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murnane%2C+M+M">Margaret M. Murnane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapteyn%2C+H+C">Henry C. Kapteyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shpyrko%2C+O">Oleg Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11719v4-abstract-short" style="display: inline;"> Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to 5th order. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11719v4-abstract-full').style.display = 'inline'; document.getElementById('2001.11719v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11719v4-abstract-full" style="display: none;"> Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to 5th order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps. In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by 6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In particular, we demonstrate that a radial shift explained by domain wall broadening can be ruled out. With the unprecedented dynamic range of our data, our results provide convincing evidence that labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium conditions, albeit the mechanism inducing the perturbations remains yet to be clarified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11719v4-abstract-full').style.display = 'none'; document.getElementById('2001.11719v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06799">arXiv:2001.06799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.06799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">R. Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mentink%2C+J+H">J. H. Mentink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhaylovskiy%2C+R+V">R. V. Mikhaylovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+T+G+H">T. G. H. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">S. K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06799v4-abstract-short" style="display: inline;"> Understanding how fast short-range interactions build up long-range order is one of the most intriguing topics in condensed matter physics. FeRh is a test specimen for studying this problem in magnetism, where the microscopic spin-spin exchange interaction is ultimately responsible for either ferro- or antiferromagnetic macroscopic order. Femtosecond laser excitation can induce ferromagnetism in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06799v4-abstract-full').style.display = 'inline'; document.getElementById('2001.06799v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06799v4-abstract-full" style="display: none;"> Understanding how fast short-range interactions build up long-range order is one of the most intriguing topics in condensed matter physics. FeRh is a test specimen for studying this problem in magnetism, where the microscopic spin-spin exchange interaction is ultimately responsible for either ferro- or antiferromagnetic macroscopic order. Femtosecond laser excitation can induce ferromagnetism in antiferromagnetic FeRh, but the mechanism and dynamics of this transition are topics of intense debates. Employing double-pump THz emission spectroscopy has enabled us to dramatically increase the temporal detection window of THz emission probes of transient states without sacrificing any loss of resolution or sensitivity. It allows us to study the kinetics of emergent ferromagnetism from the femtosecond up to the nanosecond timescales in FeRh/Pt bilayers. Our results strongly suggest a latency period between the initial pump-excitation and the emission of THz radiation by ferromagnetic nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06799v4-abstract-full').style.display = 'none'; document.getElementById('2001.06799v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages total, 8 figures in main text, 7 figures in supplementary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.00630">arXiv:1912.00630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.00630">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.9b08699">10.1021/acsnano.9b08699 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct demonstration of topological stability of magnetic skyrmions via topology manipulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Je%2C+S">Soong-Geun Je</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H">Hee-Sung Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S+K">Se Kwon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chao%2C+W">Weilun Chao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+I">Ik-Sun Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Ki-Suk Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J">Jung-Il Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.00630v2-abstract-short" style="display: inline;"> Topological protection precludes a continuous deformation between topologically inequivalent configurations in a continuum. Motivated by this concept, magnetic skyrmions, topologically nontrivial spin textures, are expected to exhibit the topological stability, thereby offering a prospect as a nanometer-scale non-volatile information carrier. In real materials, however, atomic spins are configured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00630v2-abstract-full').style.display = 'inline'; document.getElementById('1912.00630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.00630v2-abstract-full" style="display: none;"> Topological protection precludes a continuous deformation between topologically inequivalent configurations in a continuum. Motivated by this concept, magnetic skyrmions, topologically nontrivial spin textures, are expected to exhibit the topological stability, thereby offering a prospect as a nanometer-scale non-volatile information carrier. In real materials, however, atomic spins are configured as not continuous but discrete distribution, which raises a fundamental question if the topological stability is indeed preserved for real magnetic skyrmions. Answering this question necessitates a direct comparison between topologically nontrivial and trivial spin textures, but the direct comparison in one sample under the same magnetic fields has been challenging. Here we report how to selectively achieve either a skyrmion state or a topologically trivial bubble state in a single specimen and thereby show how robust the skyrmion structure is in comparison with the bubbles for the first time. We demonstrate that topologically nontrivial magnetic skyrmions show longer lifetimes than trivial bubble structures, evidencing the topological stability in a real discrete system. Our work corroborates the physical importance of the topology in the magnetic materials, which has hitherto been suggested by mathematical arguments, providing an important step towards ever-dense and more-stable magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00630v2-abstract-full').style.display = 'none'; document.getElementById('1912.00630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2020, 14, 3, 3251-3258 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.13274">arXiv:1904.13274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.13274">pdf</a>, <a href="https://arxiv.org/format/1904.13274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.104406">10.1103/PhysRevMaterials.3.104406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realization of Ordered Magnetic Skyrmions in Thin Films at Ambient Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Desautels%2C+R+D">Ryan D. Desautels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeBeer-Schmitt%2C+L">Lisa DeBeer-Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S">Sergio Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchers%2C+J+A">Julie A. Borchers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Je%2C+S">Soong-Geun Je</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+N">Nan Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fitzsimmons%2C+M+R">Michael R. Fitzsimmons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilbert%2C+D+A">Dustin A. Gilbert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.13274v1-abstract-short" style="display: inline;"> Magnetic skyrmions present interesting physics due to their topological nature and hold significant promise for future information technologies. A key barrier to realizing skyrmion devices has been stabilizing these spin structures under ambient conditions. In this manuscript, we exploit the tunable magnetic properties of amorphous Fe/Gd mulitlayers to realize skyrmion lattices which are stable ov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13274v1-abstract-full').style.display = 'inline'; document.getElementById('1904.13274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.13274v1-abstract-full" style="display: none;"> Magnetic skyrmions present interesting physics due to their topological nature and hold significant promise for future information technologies. A key barrier to realizing skyrmion devices has been stabilizing these spin structures under ambient conditions. In this manuscript, we exploit the tunable magnetic properties of amorphous Fe/Gd mulitlayers to realize skyrmion lattices which are stable over a large temperature and magnetic field parameter space, including room temperature and zero magnetic field. These hybrid skyrmions have both Bloch-type and N茅el-type character and are stabilized by dipolar interactions rather than Dzyaloshinskii-Moriya interactions, which are typically considered required for the generation of skyrmions. Small angle neutron scattering (SANS) was used in combination with soft X-ray microscopy to provide a unique, multi-scale probe of the local and long-range order of these structures. These results identify a pathway to engineer controllable skyrmion phases in thin film geometries which are stable at ambient conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13274v1-abstract-full').style.display = 'none'; document.getElementById('1904.13274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 104406 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.08287">arXiv:1903.08287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.08287">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Distinguishing Local and non-Local Demagnetization in Ferromagnetic FePt Nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Granitzka%2C+P+W">Patrick W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hurst%2C+J">Jerome Hurst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tian-Min Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salemi%2C+L">Leandro Salemi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">Tyler Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berritta%2C+M">Marco Berritta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">William F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohldag%2C+H">Hendrik Ohldag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">Georgi L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carron%2C+S">Sebastian Carron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehta%2C+V">Virat Mehta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+Y+K">Yukiko K. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oppeneer%2C+P+M">Peter M. Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.08287v1-abstract-short" style="display: inline;"> Time-resolved coherent X-ray diffraction is used to measure the spatially resolved magnetization structure within FePt nanoparticles during laser-induced ultrafast demagnetization. The momentum-dependent X-ray magnetic diffraction shows that demagnetization proceeds at different rates at different X-ray momentum transfer. We show that the observed momentum-dependent scattering has the signature of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08287v1-abstract-full').style.display = 'inline'; document.getElementById('1903.08287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.08287v1-abstract-full" style="display: none;"> Time-resolved coherent X-ray diffraction is used to measure the spatially resolved magnetization structure within FePt nanoparticles during laser-induced ultrafast demagnetization. The momentum-dependent X-ray magnetic diffraction shows that demagnetization proceeds at different rates at different X-ray momentum transfer. We show that the observed momentum-dependent scattering has the signature of inhomogeneous demagnetization within the nanoparticles, with the demagnetization proceeding more rapidly at the boundary of the nanoparticle. A shell region of reduced magnetization forms and moves inwards at a supermagnonic velocity. Spin-transport calculations show that the shell formation is driven by superdiffusive spin flux mainly leaving the nanoparticle into the surrounding carbon. Quantifying this non-local contribution to the demagnetization allows us to separate it from the local demagnetization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08287v1-abstract-full').style.display = 'none'; document.getElementById('1903.08287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04423">arXiv:1903.04423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.04423">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.084415">10.1103/PhysRevMaterials.3.084415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">R. Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhaylovskiy%2C+R+V">R. V. Mikhaylovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spada%2C+F+E">F. E. Spada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04423v2-abstract-short" style="display: inline;"> Femtosecond laser excitation of a Co/Pt bilayer results in the efficient emission of picosecond THz pulses. Two known mechanisms for generating THz emission are spin-polarized currents through a Co/Pt interface, resulting in helicity-independent electric currents in the Pt layer due to the inverse spin-Hall effect and helicity-dependent electric currents at the Co/Pt interface due to the inverse s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04423v2-abstract-full').style.display = 'inline'; document.getElementById('1903.04423v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04423v2-abstract-full" style="display: none;"> Femtosecond laser excitation of a Co/Pt bilayer results in the efficient emission of picosecond THz pulses. Two known mechanisms for generating THz emission are spin-polarized currents through a Co/Pt interface, resulting in helicity-independent electric currents in the Pt layer due to the inverse spin-Hall effect and helicity-dependent electric currents at the Co/Pt interface due to the inverse spin-orbit torque effect. Here we explore how roughness, crystal structure and intermixing at the Co/Pt interface affect the efficiency of the THz emission. In particular, we varied the roughness of the interface, in the range of 0.1-0.4 nm, by tuning the deposition pressure conditions during the fabrication of the Co/Pt bilayers. To control the intermixing at the Co/Pt interface a 1-2 nm thick CoxPt1-x alloy spacer layer was introduced with various compositions of Co and Pt. Finally, the crystal structure of Co was varied from face centered cubic to hexagonal close packed. Our study shows that the roughness of the interface is of crucial importance for the efficiency of helicity-dependent THz emission induced by femtosecond laser pulses. However, it is puzzling that intermixing while strongly enhancing the helicity-independent THz emission had no effect on the helicity-dependent THz emission which is suppressed and similar to the smooth interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04423v2-abstract-full').style.display = 'none'; document.getElementById('1903.04423v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 084415 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12517">arXiv:1805.12517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.12517">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.104432">10.1103/PhysRevB.98.104432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit torque induced dipole skyrmion motion at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tolley%2C+R">Robert Tolley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilbert%2C+I">Ian Gilbert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Je%2C+S">Soong-Geun Je</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12517v1-abstract-short" style="display: inline;"> We demonstrate deterministic control of dipole-field-stabilized skyrmions by means of spin-orbit torques arising from heavy transition-metal seed layers. Experiments are performed on amorphous Fe/Gd multilayers that are patterned into wires and exhibit stripe domains and dipole skyrmions at room temperature. We show that while the domain walls and skyrmions are achiral on average due to lack of Dz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12517v1-abstract-full').style.display = 'inline'; document.getElementById('1805.12517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12517v1-abstract-full" style="display: none;"> We demonstrate deterministic control of dipole-field-stabilized skyrmions by means of spin-orbit torques arising from heavy transition-metal seed layers. Experiments are performed on amorphous Fe/Gd multilayers that are patterned into wires and exhibit stripe domains and dipole skyrmions at room temperature. We show that while the domain walls and skyrmions are achiral on average due to lack of Dzyaloshinskii-Moriya interactions, the N茅el-like closure domain walls at each surface are chiral and can couple to spin-orbit torques. The current-induced domain evolutions are reported for different magnetic phases, including disordered stripe domains, coexisting stripes and dipole skyrmions and a closed packed dipole skyrmion lattice. The magnetic textures exhibit motion under current excitations with a current density ~10^8 A/m2. By comparing the motion resulting from magnetic spin textures in Fe/Gd films with different heavy transition-metal interfaces, we confirm spin currents can be used to manipulate achiral dipole skyrmions via spin-orbit torques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12517v1-abstract-full').style.display = 'none'; document.getElementById('1805.12517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02432">arXiv:1805.02432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.02432">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single-shot multi-level all-optical magnetization switching mediated by spin-polarized hot electron transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Iihama%2C+S">S. Iihama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Y. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deb%2C+M">M. Deb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">G. Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorchon%2C+J">J. Gorchon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">S. Mangin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02432v1-abstract-short" style="display: inline;"> All-optical ultrafast magnetization switching in magnetic material thin film without the assistance of an applied external magnetic field is being explored for future ultrafast and energy-efficient magnetic storage and memories. It has been shown that femto-second light pulses induce magnetization reversal in a large variety of magnetic materials. However, so far, only GdFeCo-based ferrimagnetic t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02432v1-abstract-full').style.display = 'inline'; document.getElementById('1805.02432v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02432v1-abstract-full" style="display: none;"> All-optical ultrafast magnetization switching in magnetic material thin film without the assistance of an applied external magnetic field is being explored for future ultrafast and energy-efficient magnetic storage and memories. It has been shown that femto-second light pulses induce magnetization reversal in a large variety of magnetic materials. However, so far, only GdFeCo-based ferrimagnetic thin films exhibit magnetization switching via a single optical pulse. Here we demonstrate the single-pulse switching of Co/Pt multilayers within a magnetic spin-valve structure ([Co/Pt] / Cu / GdFeCo) and further show that the four possible magnetic configurations of the spin valve can be accessed using a sequence of single femto-second light pulses. Our experimental study reveals that the magnetization final state of the ferromagnetic [Co/Pt] layer is determined by spin-polarized hot electrons generated by the light pulse interactions with the GdFeCo layer. This work provides a new approach to deterministically switch ferromagnetic layers and a pathway to engineering materials for opto-magnetic multi-bit recording. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02432v1-abstract-full').style.display = 'none'; document.getElementById('1805.02432v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.00780">arXiv:1803.00780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.00780">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5027809">10.1063/1.5027809 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pressacco%2C+F">Federico Pressacco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uhl%C3%AD%C5%99%2C+V">Vojt臎ch Uhl铆艡</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+M">Matteo Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicolaou%2C+A">Alessandro Nicolaou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bendounan%2C+A">Azzedine Bendounan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arregi%2C+J+A">Jon Ander Arregi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patel%2C+S+K+K">Sheena K. K. Patel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krizmancic%2C+D">Damjan Krizmancic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sirotti%2C+F">Fausto Sirotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.00780v1-abstract-short" style="display: inline;"> We use time-resolved X-ray photoelectron spectroscopy to probe the electronic and magnetization dynamics in FeRh films after ultrafast laser excitations. We present experimental and theoretical results which investigate the electronic structure of the FeRh during the first-order phase transition identifying a clear signature of the magnetic phase. We find that a spin polarized feature at the Fermi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00780v1-abstract-full').style.display = 'inline'; document.getElementById('1803.00780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.00780v1-abstract-full" style="display: none;"> We use time-resolved X-ray photoelectron spectroscopy to probe the electronic and magnetization dynamics in FeRh films after ultrafast laser excitations. We present experimental and theoretical results which investigate the electronic structure of the FeRh during the first-order phase transition identifying a clear signature of the magnetic phase. We find that a spin polarized feature at the Fermi edge is a fingerprint of the magnetic status of the system that is independent of the long-range ferromagnetic alignment of the magnetic domains. We use this feature to follow the phase transition induced by a laser pulse in a pump-probe experiment and find that the magnetic transition occurs in less than 50 ps, and reaches its maximum in 100 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00780v1-abstract-full').style.display = 'none'; document.getElementById('1803.00780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Struct. Dyn. 5, 034501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03387">arXiv:1712.03387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03387">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.064406">10.1103/PhysRevMaterials.2.064406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Periodic chiral magnetic domains in single-crystal nickel nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kan%2C+J+J">Jimmy J. Kan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lubarda%2C+M+V">Marko V. Lubarda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+K+T">Keith T. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uhlir%2C+V">Vojtech Uhlir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scholl%2C+A">Andreas Scholl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomakin%2C+V">Vitaliy Lomakin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03387v1-abstract-short" style="display: inline;"> We report on experimental and computational investigations of the domain structure of ~0.2 x 0.2 x 8 渭m single-crystal Ni nanowires (NWs). The Ni NWs were grown by a thermal chemical vapor deposition technique that results in highly-oriented single-crystal structures on amorphous SiOx coated Si substrates. Magnetoresistance measurements of the Ni NWs suggest the average magnetization points largel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03387v1-abstract-full').style.display = 'inline'; document.getElementById('1712.03387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03387v1-abstract-full" style="display: none;"> We report on experimental and computational investigations of the domain structure of ~0.2 x 0.2 x 8 渭m single-crystal Ni nanowires (NWs). The Ni NWs were grown by a thermal chemical vapor deposition technique that results in highly-oriented single-crystal structures on amorphous SiOx coated Si substrates. Magnetoresistance measurements of the Ni NWs suggest the average magnetization points largely off the NW long axis at zero field. X-ray photoemission electron microscopy images show a well-defined periodic magnetization pattern along the surface of the nanowires with a period of 位 = 250 nm. Finite element micromagnetic simulations reveal that an oscillatory magnetization configuration with a period closely matching experimental observation (位 = 240 nm) is obtainable at remanence. This magnetization configuration involves a periodic array of alternating chirality vortex domains distributed along the length of the NW. Vortex formation is attributable to the cubic anisotropy of the single crystal Ni NW system and its reduced structural dimensions. The periodic alternating chirality vortex state is a topologically protected metastable state, analogous to an array of 360掳 domain walls in a thin strip. Simulations show that other remanent states are also possible, depending on the field history. Effects of material properties and strain on the vortex pattern are investigated. It is shown that at reduced cubic anisotropy vortices are no longer stable, while negative uniaxial anisotropy and magnetoelastic effects in the presence of compressive biaxial strain contribute to vortex formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03387v1-abstract-full').style.display = 'none'; document.getElementById('1712.03387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 064406 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.07101">arXiv:1711.07101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.07101">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.044404">10.1103/PhysRevMaterials.2.044404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tolley%2C+R">R. Tolley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">S. A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.07101v1-abstract-short" style="display: inline;"> We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface resulting in reduced saturation magnetization, magnetic anisotropy and Curie temperature. The observed skyrmions exist in a narrow temperature, appl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07101v1-abstract-full').style.display = 'inline'; document.getElementById('1711.07101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.07101v1-abstract-full" style="display: none;"> We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface resulting in reduced saturation magnetization, magnetic anisotropy and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3渭m and transport measurements demonstrate these features can be displaced with current densities as low as J = 2x10^4 A/cm^2 and display a skyrmion Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07101v1-abstract-full').style.display = 'none'; document.getElementById('1711.07101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 044404 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.07645">arXiv:1709.07645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.07645">pdf</a>, <a href="https://arxiv.org/format/1709.07645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.054419">10.1103/PhysRevB.97.054419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helicity-dependent all-optical domain wall motion in ferromagnetic thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Quessab%2C+Y">Y. Quessab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">R. Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hadri%2C+M+S+E">M. S. El Hadri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">G. Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">S. Mangin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.07645v1-abstract-short" style="display: inline;"> Domain wall displacement in Co/Pt thin films induced by not only fs- but also ps-laser pulses is demonstrated using time-resolved magneto-optical Faraday imaging. We evidence multi-pulse helicity-dependent laser-induced domain wall motion in all-optical switchable Co/Pt multilayers with a laser energy below the switching threshold. Domain wall displacement of about 2 nm per 2- ps pulse is achieved&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07645v1-abstract-full').style.display = 'inline'; document.getElementById('1709.07645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.07645v1-abstract-full" style="display: none;"> Domain wall displacement in Co/Pt thin films induced by not only fs- but also ps-laser pulses is demonstrated using time-resolved magneto-optical Faraday imaging. We evidence multi-pulse helicity-dependent laser-induced domain wall motion in all-optical switchable Co/Pt multilayers with a laser energy below the switching threshold. Domain wall displacement of about 2 nm per 2- ps pulse is achieved. By investigating separately the effect of linear and circular polarization, we reveal that laser-induced domain wall motion results from a complex interplay between pinning, temperature gradient and helicity effect. Then, we explore the microscopic origin of the helicity effect acting on the domain wall. These experimental results enhance the understanding of the mechanism of all-optical switching in ultra-thin ferromagnetic films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07645v1-abstract-full').style.display = 'none'; document.getElementById('1709.07645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 054419 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.00774">arXiv:1707.00774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.00774">pdf</a>, <a href="https://arxiv.org/format/1707.00774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Emerging Magnetic Order In Copper Induced By Proximity To Cobalt: A Detailed Soft X-Ray Spectroscopy Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohldag%2C+H">Hendrik Ohldag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">Tyler Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sani%2C+S">Sohrab Sani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukreja%2C+R">Roopali Kukreja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">Stefano Bonetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+A+D">Andrew D. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+J">Joachim St枚hr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.00774v2-abstract-short" style="display: inline;"> We present an x-ray magnetic dichroism (XMCD) and soft x-ray absorption spectroscopy (XAS) study to address the nature of emerging magnetic order in metallic Copper as Cobalt is added to the matrix. For this purpose line shape and energy position of XAS and XMCD spectra will be analyzed for a series of Co/Cu alloys as well as a multilayer reference. We observe an increased hybridization between Cu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00774v2-abstract-full').style.display = 'inline'; document.getElementById('1707.00774v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.00774v2-abstract-full" style="display: none;"> We present an x-ray magnetic dichroism (XMCD) and soft x-ray absorption spectroscopy (XAS) study to address the nature of emerging magnetic order in metallic Copper as Cobalt is added to the matrix. For this purpose line shape and energy position of XAS and XMCD spectra will be analyzed for a series of Co/Cu alloys as well as a multilayer reference. We observe an increased hybridization between Cu and Co sites as well as increased localization of the Cu d-electrons and an induced magnetic moment in Cu. The emergence of long range magnetic order in non-magnetic materials that are in proximity to a ferromagnet is significant for a comprehensive interpretation of transport phenomena at ferromagnetic/non-magnetic interfaces, like e.g. the giant magnetoresistance effect. The presented results will further enable us to interpret Cu XMCD and XAS spectra acquired from unknown Co/Cu samples to identify the environment of Cu atoms exhibiting proximity induced magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00774v2-abstract-full').style.display = 'none'; document.getElementById('1707.00774v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. To be submitted to Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04691">arXiv:1702.04691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04691">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.224405">10.1103/PhysRevB.95.224405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant properties of dipole skyrmions in amorphous Fe/Gd multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">S. A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Couture%2C+S">S. Couture</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chess%2C+J+J">J. J. Chess</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+C+T">J. C. T Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+N">N. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M+-">M. -Y. Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorran%2C+B+J">B. J. McMorran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">S. Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomakin%2C+V">V. Lomakin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04691v2-abstract-short" style="display: inline;"> The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-spac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04691v2-abstract-full').style.display = 'inline'; document.getElementById('1702.04691v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04691v2-abstract-full" style="display: none;"> The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-space imaging and scattering patterns allows us to conclude the resonant modes arise from local topological features such as dipole skyrmions but does not depend on the collective response of a closed packed lattice of these chiral textures. Using, micromagnetic modeling, we are able to quantitatively reproduce our experimental observations which suggests the existence of localized spin-wave modes that are dependent on the helicity of the dipole skyrmion. We identify four localized spin wave excitations for the skyrmions that are excited under either in-plane or out-of-plane r.f. fields. Lastly we show that dipole skyrmions and non-chiral bubble domains exhibit qualitatively different localized spin wave modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04691v2-abstract-full').style.display = 'none'; document.getElementById('1702.04691v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 224405 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.01237">arXiv:1701.01237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.01237">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b00052">10.1021/acs.nanolett.7b00052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic switching in granular FePt layers promoted by near-field laser enhancement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Granitzka%2C+P+W">Patrick W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoini%2C+M">Matteo Savoini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianmin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chase%2C+T">Tyler Chase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohldag%2C+H">Hendrik Ohldag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovsky%2C+G+L">Georgi L. Dakovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W">William Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carron%2C+S">Sebastian Carron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+M">Matthias Hoffman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellwig%2C+O">Olav Hellwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehta%2C+V">Virat Mehta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+Y+K">Yukiko K. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.01237v1-abstract-short" style="display: inline;"> Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01237v1-abstract-full').style.display = 'inline'; document.getElementById('1701.01237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.01237v1-abstract-full" style="display: none;"> Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, one order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between &#34;up&#34; and &#34;down&#34; magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material, with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01237v1-abstract-full').style.display = 'none'; document.getElementById('1701.01237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett., Article ASAP, March 8, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.09338">arXiv:1612.09338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.09338">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.144403">10.1103/PhysRevB.96.144403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating exchange bias using all-optical helicity-dependent switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vallobra%2C+P">Pierre Vallobra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fache%2C+T">Thibaud Fache</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">Gregory Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+J+R+E+E">Juan-Carlos Rojas-S谩nchez Eric. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">Stephane Mangin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.09338v1-abstract-short" style="display: inline;"> Deterministic all-optical control of magnetization without an applied magnetic field has been reported for different materials such as ferrimagnetic and ferromagnetic thin films and granular recording media. These findings have challenged the understanding of all-optical helicity-dependent switching of magnetization and opened many potential applications for future magnetic information, memory and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.09338v1-abstract-full').style.display = 'inline'; document.getElementById('1612.09338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.09338v1-abstract-full" style="display: none;"> Deterministic all-optical control of magnetization without an applied magnetic field has been reported for different materials such as ferrimagnetic and ferromagnetic thin films and granular recording media. These findings have challenged the understanding of all-optical helicity-dependent switching of magnetization and opened many potential applications for future magnetic information, memory and storage technologies. Here we demonstrate optical control of an antiferromagnetic layer through the exchange bias interaction using the helicity of a femtosecond pulsed laser on IrMn/[Co/Pt]xN antiferromagnetic/ ferromagnetic heterostructures. We show controlled switching of the sign of the exchange bias field without any applied field, only by changing the helicity of the light, and quantify the influence of the laser fluence and the number of light pulses on the exchange bias control. We also present the combined effect of laser pulses and applied magnetic field. This study opens applications in spintronic devices where the exchange bias phenomenon is routinely used to fix the magnetization orientation of a magnetic layer in one direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.09338v1-abstract-full').style.display = 'none'; document.getElementById('1612.09338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages / 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 144403 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06000">arXiv:1608.06000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.06000">pdf</a>, <a href="https://arxiv.org/format/1608.06000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ultramic.2017.02.004">10.1016/j.ultramic.2017.02.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A streamlined approach to mapping the magnetic induction of skyrmionic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chess%2C+J+J">Jordan J. Chess</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">Sergio A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+T+R">Tyler R. Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ophus%2C+C">Colin Ophus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Couture%2C+S">Simon Couture</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomakin%2C+V">Vitaliy Lomakin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorran%2C+B+J">Benjamin J. McMorran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06000v2-abstract-short" style="display: inline;"> Recently, Lorentz transmission electron microscopy (LTEM) has helped researchers advance the emerging field of magnetic skyrmions. These magnetic quasi-particles, composed of topologically non-trivial magnetization textures, have a large potential for application as information carriers in low-power memory and logic devices. LTEM is one of a very few techniques for direct real space imaging of mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06000v2-abstract-full').style.display = 'inline'; document.getElementById('1608.06000v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06000v2-abstract-full" style="display: none;"> Recently, Lorentz transmission electron microscopy (LTEM) has helped researchers advance the emerging field of magnetic skyrmions. These magnetic quasi-particles, composed of topologically non-trivial magnetization textures, have a large potential for application as information carriers in low-power memory and logic devices. LTEM is one of a very few techniques for direct real space imaging of magnetic features at the nanoscale. For Fresnel-contrast LTEM, the transport of intensity equation (TIE) is the tool of choice for quantitative reconstruction of the local magnetic induction through the sample thickness. Typically this analysis requires collection of at least three images.Here we show that for uniform thin magnetic films which includes many skyrmionic samples, the magnetic induction can be quantitatively determined from a single defocused image using a simplified TIE approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06000v2-abstract-full').style.display = 'none'; document.getElementById('1608.06000v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01368">arXiv:1608.01368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01368">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.024415">10.1103/PhysRevB.95.024415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S+A">S. A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Couture%2C+S">S. Couture</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chess%2C+J+J">J. J. Chess</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+C+T">J. C. T. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+N">N. Kent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henze%2C+D">D. Henze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+S+K">S. K. Sinha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M+-">M. -Y. Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kevan%2C+S+D">S. D. Kevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">P. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorran%2C+B+J">B. J. McMorran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomakin%2C+V">V. Lomakin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">S. Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">E. E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01368v2-abstract-short" style="display: inline;"> The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions, has prompted efforts to discover new material systems that can host these kind of magnetic structures. Here we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01368v2-abstract-full').style.display = 'inline'; document.getElementById('1608.01368v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01368v2-abstract-full" style="display: none;"> The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions, has prompted efforts to discover new material systems that can host these kind of magnetic structures. Here we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and skyrmion lattices that form from the competition of dipolar field and exchange energy. Using both real space imaging and reciprocal space scattering techniques we determined the range of material properties and magnetic fields where skyrmions form. Micromagnetic modeling closely matches our observation of small skyrmion features (~50 to 70nm) and suggests these class of skyrmions have a rich domain structure that is Bloch like in the center of the film and more N茅el like towards each surface. Our results provide a pathway to engineer the formation and controllability of dipole skyrmion phases in a thin film geometry at different temperatures and magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01368v2-abstract-full').style.display = 'none'; document.getElementById('1608.01368v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 024415 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02505">arXiv:1607.02505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.02505">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Mechanism of all-optical control of ferromagnetic multilayers with circularly polarized light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Medapalli%2C+R">Rajasekhar Medapalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Afanasiev%2C+D">Dymtro Afanasiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Dokyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quessab%2C+Y">Yassine Quessab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monotoya%2C+S+A">Sergio A. Monotoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirilyuk%2C+A">Andrei Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rasing%2C+T">Theo Rasing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimel%2C+A+V">Alexey V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02505v1-abstract-short" style="display: inline;"> Time-resolved imaging reveals that the helicity dependent all-optical switching (HD-AOS) of Co/Pt ferromagnetic multilayers proceeds by two stages. First one involves the helicity independent and stochastic nucleation of reversed magnetic domains. At the second stage circularly polarized light breaks the degeneracy between the magnetic domains and promotes the preferred direction of domain wall (D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02505v1-abstract-full').style.display = 'inline'; document.getElementById('1607.02505v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02505v1-abstract-full" style="display: none;"> Time-resolved imaging reveals that the helicity dependent all-optical switching (HD-AOS) of Co/Pt ferromagnetic multilayers proceeds by two stages. First one involves the helicity independent and stochastic nucleation of reversed magnetic domains. At the second stage circularly polarized light breaks the degeneracy between the magnetic domains and promotes the preferred direction of domain wall (DW) motion. The growth of the reversed domain from the nucleation cite, for a particular helicity, leads to full magnetic reversal. This study demonstrates a novel mechanism of HD-AOS mediated by the deterministic displacement of DWs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02505v1-abstract-full').style.display = 'none'; document.getElementById('1607.02505v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06823">arXiv:1605.06823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06823">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13113">10.1038/ncomms13113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Uhlir%2C+V">Vojtech Uhlir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arregi%2C+J+A">Jon Ander Arregi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E+E">Eric E. Fullerton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06823v1-abstract-short" style="display: inline;"> Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06823v1-abstract-full').style.display = 'inline'; document.getElementById('1605.06823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06823v1-abstract-full" style="display: none;"> Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRh films, the effect is dramatically enhanced at the mesoscale. The asymmetry in the transitions is independent of applied magnetic fields and the activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. The collective behavior upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order magnetic phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06823v1-abstract-full').style.display = 'none'; document.getElementById('1605.06823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fullerton%2C+E+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10