CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–25 of 25 results for author: <span class="mathjax">Tsukamoto, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Tsukamoto%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tsukamoto, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tsukamoto%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tsukamoto, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11551">arXiv:2305.11551</a> <span> [<a href="https://arxiv.org/pdf/2305.11551">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Phononic Switching of Magnetization by the Ultrafast Barnett Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Davies%2C+C+S">C. S. Davies</a>, <a href="/search/cond-mat?searchtype=author&query=Fennema%2C+F+G+N">F. G. N. Fennema</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Razdolski%2C+I">I. Razdolski</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">A. Kirilyuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11551v1-abstract-short" style="display: inline;"> The Barnett effect, discovered more than a century ago, describes how an inertial body with otherwise zero net magnetic moment acquires spontaneous magnetization when mechanically spinning. Breakthrough experiments have recently shown that an ultrashort laser pulse destroys the magnetization of an ordered ferromagnet within hundreds of femtoseconds, with the spins losing angular momentum to circul… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11551v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11551v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11551v1-abstract-full" style="display: none;"> The Barnett effect, discovered more than a century ago, describes how an inertial body with otherwise zero net magnetic moment acquires spontaneous magnetization when mechanically spinning. Breakthrough experiments have recently shown that an ultrashort laser pulse destroys the magnetization of an ordered ferromagnet within hundreds of femtoseconds, with the spins losing angular momentum to circularly-polarized optical phonons as part of the ultrafast Einstein-de Haas effect. However, the prospect of using such high-frequency vibrations of the lattice to reciprocally switch magnetization in a nearby magnetic medium has not yet been experimentally explored. Here we show that the spontaneous magnetization temporarily gained via the ultrafast Barnett effect, through the resonant excitation of circularly-polarized optical phonons in paramagnetic substrates, can be used to permanently reverse the magnetic state of the substrate-mounted heterostructure. With the handedness of the phonons steering the direction of magnetic switching, the ultrafast Barnett effect offers a selective and potentially universal method for exercising ultrafast non-local control over magnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11551v1-abstract-full').style.display = 'none'; document.getElementById('2305.11551v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Total of 31 pages and 17 figures (main text and supplementary information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02872">arXiv:2005.02872</a> <span> [<a href="https://arxiv.org/pdf/2005.02872">pdf</a>, <a href="https://arxiv.org/format/2005.02872">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.100405">10.1103/PhysRevB.102.100405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct Ultrafast Electronic and Magnetic Response in M-edge Magnetic Circular Dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yao%2C+K">Kelvin Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Willems%2C+F">Felix Willems</a>, <a href="/search/cond-mat?searchtype=author&query=Schmising%2C+C+v+K">Clemens von Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&query=Radu%2C+I">Ilie Radu</a>, <a href="/search/cond-mat?searchtype=author&query=Strueber%2C+C">Christian Strueber</a>, <a href="/search/cond-mat?searchtype=author&query=Schick%2C+D">Daniel Schick</a>, <a href="/search/cond-mat?searchtype=author&query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Dewhurst%2C+J+K">J. K. Dewhurst</a>, <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+S">Sangeeta Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Eisebitt%2C+S">Stefan Eisebitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02872v1-abstract-short" style="display: inline;"> Experimental investigations of ultrafast magnetization dynamics increasingly employ resonant magnetic spectroscopy in the ultraviolet spectral range. Besides allowing to disentangle the element-specific transient response of functional magnetic systems, these techniques also promise to access attosecond to few-femtosecond dynamics of spin excitations. Here, we report on a systematic study of trans… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02872v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02872v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02872v1-abstract-full" style="display: none;"> Experimental investigations of ultrafast magnetization dynamics increasingly employ resonant magnetic spectroscopy in the ultraviolet spectral range. Besides allowing to disentangle the element-specific transient response of functional magnetic systems, these techniques also promise to access attosecond to few-femtosecond dynamics of spin excitations. Here, we report on a systematic study of transient magnetic circular dichroism (MCD) on the transition metals Fe, Co and Ni as well as on a FeNi and GdFe alloy and reveal a delayed onset between the electronic and magnetic response. Supported by \textit{ab-initio} calculations, we attribute our observation to a transient energy shift of the absorption and MCD spectra at the corresponding elemental resonances due to non-equilibrium changes of electron occupations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02872v1-abstract-full').style.display = 'none'; document.getElementById('2005.02872v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 100405 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.04540">arXiv:1907.04540</a> <span> [<a href="https://arxiv.org/pdf/1907.04540">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7567/1882-0786/ab33d5">10.7567/1882-0786/ab33d5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependence of magnetic resonance in ferrimagnetic GdFeCo alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S+K">Se Kwon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Mizuno%2C+H">Hayato Mizuno</a>, <a href="/search/cond-mat?searchtype=author&query=Ikebuchi%2C+T">Tetsuya Ikebuchi</a>, <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">Hiroki Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kab-Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Shiota%2C+Y">Yoichi Shiota</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.04540v1-abstract-short" style="display: inline;"> We provide a macroscopic theory and experimental results for magnetic resonances of antiferromagnetically-coupled ferrimagnets. Our theory, which interpolates the dynamics of antiferromagnets and ferromagnets smoothly, can describe ferrimagnetic resonances across the angular momentum compensation point. We also present experimental results for spin-torque induced ferrimagnetic resonance at several… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04540v1-abstract-full').style.display = 'inline'; document.getElementById('1907.04540v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.04540v1-abstract-full" style="display: none;"> We provide a macroscopic theory and experimental results for magnetic resonances of antiferromagnetically-coupled ferrimagnets. Our theory, which interpolates the dynamics of antiferromagnets and ferromagnets smoothly, can describe ferrimagnetic resonances across the angular momentum compensation point. We also present experimental results for spin-torque induced ferrimagnetic resonance at several temperatures. The spectral analysis based on our theory reveals that the Gilbert damping parameter, which has been considered to be strongly temperature dependent, is insensitive to temperature. We envision that our work will facilitate further investigation of ferrimagnetic dynamics by providing a theoretical framework suitable for a broad range of temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04540v1-abstract-full').style.display = 'none'; document.getElementById('1907.04540v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11977">arXiv:1904.11977</a> <span> [<a href="https://arxiv.org/pdf/1904.11977">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.024064">10.1103/PhysRevApplied.13.024064 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Blueprint for deterministic all-optical switching of magnetization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Davies%2C+C+S">C. S. Davies</a>, <a href="/search/cond-mat?searchtype=author&query=Janssen%2C+T">T. Janssen</a>, <a href="/search/cond-mat?searchtype=author&query=Mentink%2C+J+H">J. H. Mentink</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Meer%2C+A+F+G">A. F. G. van der Meer</a>, <a href="/search/cond-mat?searchtype=author&query=Stupakiewicz%2C+A">A. Stupakiewicz</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">A. Kirilyuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11977v1-abstract-short" style="display: inline;"> We resolve a significant controversy about how to understand and engineer single-shot all-optical switching of magnetization in ferrimagnets using femto- or picosecond-long heat pulses. By realistically modelling a generic ferrimagnet as two coupled macrospins, we comprehensively show that the net magnetization can be reversed via different pathways, using a heat pulse with duration spanning all r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11977v1-abstract-full').style.display = 'inline'; document.getElementById('1904.11977v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11977v1-abstract-full" style="display: none;"> We resolve a significant controversy about how to understand and engineer single-shot all-optical switching of magnetization in ferrimagnets using femto- or picosecond-long heat pulses. By realistically modelling a generic ferrimagnet as two coupled macrospins, we comprehensively show that the net magnetization can be reversed via different pathways, using a heat pulse with duration spanning all relevant timescales within the non-adiabatic limit. This conceptual understanding is fully validated by experiments studying the material and optical limits at which the switching process in GdFeCo alloys loses its reliability. Our interpretation and results constitute a blueprint for understanding how deterministic all-optical switching can be achieved in alternative ferrimagnets using short thermal pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11977v1-abstract-full').style.display = 'none'; document.getElementById('1904.11977v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 024064 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04293">arXiv:1903.04293</a> <span> [<a href="https://arxiv.org/pdf/1903.04293">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.174427">10.1103/PhysRevB.100.174427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Field Anomalies of Equilibrium and Ultrafast Magnetism in Rare-Earth-Transition Metal Ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pogrebna%2C+A">A. Pogrebna</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakara%2C+K">K. Prabhakara</a>, <a href="/search/cond-mat?searchtype=author&query=Davydova%2C+M">M. Davydova</a>, <a href="/search/cond-mat?searchtype=author&query=Becker%2C+J">J. Becker</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Zvezdin%2C+A+K">A. K. Zvezdin</a>, <a href="/search/cond-mat?searchtype=author&query=Christianen%2C+P+C+M">P. C. M. Christianen</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04293v1-abstract-short" style="display: inline;"> Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensation temperature, each of the magnetizations of the antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis loops. Contrary to stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04293v1-abstract-full').style.display = 'inline'; document.getElementById('1903.04293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04293v1-abstract-full" style="display: none;"> Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensation temperature, each of the magnetizations of the antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis loops. Contrary to state-of-the-art theory, which explains such loops by sample inhomogeneities, here we show that they are an intrinsic property of the rare-earth ferrimagnets. Assuming that the rare-earth ions are paramagnetic and have a non-zero orbital momentum in the ground state and, therefore, a large magnetic anisotropy, we are able to reproduce the experimentally observed behavior in equilibrium. The same theory is also able to describe the experimentally observed critical slowdown of the spin dynamics in the vicinity of the magnetization compensation temperature, emphasizing the role played by the orbital momentum in static and ultrafast magnetism of ferrimagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04293v1-abstract-full').style.display = 'none'; document.getElementById('1903.04293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 174427 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03251">arXiv:1903.03251</a> <span> [<a href="https://arxiv.org/pdf/1903.03251">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-019-0303-5">10.1038/s41928-019-0303-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-transfer torques for domain walls in antiferromagnetically coupled ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+S">Se-Hyeok Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S+K">Se Kwon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Nishimura%2C+T">Tomoe Nishimura</a>, <a href="/search/cond-mat?searchtype=author&query=Ham%2C+W+S">Woo Seung Ham</a>, <a href="/search/cond-mat?searchtype=author&query=Futakawa%2C+Y">Yasuhiro Futakawa</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">Hiroki Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&query=Shiota%2C+Y">Yoichi Shiota</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kab-Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03251v1-abstract-short" style="display: inline;"> Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic materials1. Though spin-transfer torque (STT) is a key for electrical control of spins as successfully demonstrated in ferromagnetic spintronics, experi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03251v1-abstract-full').style.display = 'inline'; document.getElementById('1903.03251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03251v1-abstract-full" style="display: none;"> Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic materials1. Though spin-transfer torque (STT) is a key for electrical control of spins as successfully demonstrated in ferromagnetic spintronics, experimental understanding of STT in antiferromagnets has been still lacking despite a number of pertinent theoretical studies2-5. Here, we report experimental results on the effects of STT on domain-wall (DW) motion in antiferromagnetically-coupled ferrimagnets. We find that non-adiabatic STT acts like a staggered magnetic field and thus can drive DWs effectively. Moreover, the non-adiabaticity parameter 尾 of STT is found to be significantly larger than the Gilbert damping parameter 伪, challenging our conventional understanding of the non-adiabatic STT based on ferromagnets as well as leading to fast current-induced antiferromagnetic DW motion. Our study will lead to further vigorous exploration of STT for antiferromagnetic spin textures for fundamental physics on spin-charge interaction as wells for efficient electrical control of antiferromagnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03251v1-abstract-full').style.display = 'none'; document.getElementById('1903.03251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Electron. 2, 389 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02076">arXiv:1809.02076</a> <span> [<a href="https://arxiv.org/pdf/1809.02076">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-09577-0">10.1038/s41467-019-09577-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Iacocca%2C+E">E. Iacocca</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">T-M. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Z">Z. Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Ruta%2C+S">S. Ruta</a>, <a href="/search/cond-mat?searchtype=author&query=Granitzka%2C+P+W">P. W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&query=Jal%2C+E">E. Jal</a>, <a href="/search/cond-mat?searchtype=author&query=Bonetti%2C+S">S. Bonetti</a>, <a href="/search/cond-mat?searchtype=author&query=Gray%2C+A+X">A. X. Gray</a>, <a href="/search/cond-mat?searchtype=author&query=Graves%2C+C+E">C. E. Graves</a>, <a href="/search/cond-mat?searchtype=author&query=Kukreja%2C+R">R. Kukreja</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Higley%2C+D+J">D. J. Higley</a>, <a href="/search/cond-mat?searchtype=author&query=Chase%2C+T">T. Chase</a>, <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Hirsch%2C+K">K. Hirsch</a>, <a href="/search/cond-mat?searchtype=author&query=Ohldag%2C+H">H. Ohldag</a>, <a href="/search/cond-mat?searchtype=author&query=Schlotter%2C+W+F">W. F. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&query=Coslovich%2C+G">G. Coslovich</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+M+C">M. C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Carron%2C+S">S. Carron</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">A. Kirilyuk</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02076v2-abstract-short" style="display: inline;"> Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of rapid magnetic order recovery in materials with perpendicular magnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02076v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02076v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02076v2-abstract-full" style="display: none;"> Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of rapid magnetic order recovery in materials with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify both localisation and coalescence regimes, whereby localised magnetic textures nucleate and subsequently evolve in accordance with a power law formalism. Coalescence is observed for optical excitations both above and below the switching threshold. Simulations indicate that the ultrafast generation of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of $10^8$ A/cm$^2$. Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. These processes suggest an ultrafast optical route for the stabilization of desired meta-stable states, e.g., isolated skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02076v2-abstract-full').style.display = 'none'; document.getElementById('1809.02076v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 1756 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.00415">arXiv:1809.00415</a> <span> [<a href="https://arxiv.org/pdf/1809.00415">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-018-0345-2">10.1038/s41565-018-0345-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S+K">Se Kwon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+D">Dong-Kyu Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+S">Se-Hyeok Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Dae-Yun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Nishimura%2C+T">Tomoe Nishimura</a>, <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Futakawa%2C+Y">Yasuhiro Futakawa</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">Hiroki Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&query=Shiota%2C+Y">Yoichi Shiota</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Choe%2C+S">Sug-Bong Choe</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.00415v1-abstract-short" style="display: inline;"> Charged particles exhibit the Hall effect in the presence of magnetic fields. Analogously, ferromagnetic skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for applications. The skyrmion Hall effect has been theoretically predicted to vanish for antiferromagnetic skyrmions because the fictitious magnetic field, p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00415v1-abstract-full').style.display = 'inline'; document.getElementById('1809.00415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.00415v1-abstract-full" style="display: none;"> Charged particles exhibit the Hall effect in the presence of magnetic fields. Analogously, ferromagnetic skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for applications. The skyrmion Hall effect has been theoretically predicted to vanish for antiferromagnetic skyrmions because the fictitious magnetic field, proportional to net spin density, is zero. We experimentally confirm this prediction by observing current-driven transverse elongation of pinned ferrimagnetic bubbles. Remarkably, the skyrmion Hall effect, estimated with the angle between the current and bubble elongation directions, vanishes at the angular momentum compensation temperature where the net spin density vanishes. This study establishes a direct connection between the fictitious magnetic field and spin density, offering a pathway towards the realization of skyrmionic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00415v1-abstract-full').style.display = 'none'; document.getElementById('1809.00415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05707">arXiv:1808.05707</a> <span> [<a href="https://arxiv.org/pdf/1808.05707">pdf</a>, <a href="https://arxiv.org/ps/1808.05707">ps</a>, <a href="https://arxiv.org/format/1808.05707">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Laser-induced antiferromagnetic-like resonance in amorphous ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mizukami%2C+S">S. Mizukami</a>, <a href="/search/cond-mat?searchtype=author&query=Sasaki%2C+Y">Y. Sasaki</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+D+-">D. -K. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">H. Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K+-">K. -J. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">T. Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05707v1-abstract-short" style="display: inline;"> The magnetization dynamics for ferrimagnets at the angular momentum compensation temperature T_A is believed to be analogous to that for antiferromagnets. We investigated the pulsed-laser-induced magnetization dynamics in amorphous rare-earth transition-metal ferrimagnet films with a T_A just above room temperature. For a low pulse fluence, the magnetization precession frequency decreases as the a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05707v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05707v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05707v1-abstract-full" style="display: none;"> The magnetization dynamics for ferrimagnets at the angular momentum compensation temperature T_A is believed to be analogous to that for antiferromagnets. We investigated the pulsed-laser-induced magnetization dynamics in amorphous rare-earth transition-metal ferrimagnet films with a T_A just above room temperature. For a low pulse fluence, the magnetization precession frequency decreases as the applied magnetic field increases, whereas for a higher pulse fluence, it increases as the applied field increases. The result was well explained by the left-handed and right-handed precession modes of the antiferromagnetic-like resonance at temperatures below and above T_A, respectively, and the data were in agreement with the theoretical simulation. The study demonstrated the experimental route to achieving antiferromagnetic resonance in ferrimagnets using a pulsed laser. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05707v1-abstract-full').style.display = 'none'; document.getElementById('1808.05707v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.04881">arXiv:1806.04881</a> <span> [<a href="https://arxiv.org/pdf/1806.04881">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.127203">10.1103/PhysRevLett.122.127203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low magnetic damping of ferrimagnetic GdFeCo alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S+K">Se Kwon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+S">Se-Hyeok Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Nishimura%2C+T">Tomoe Nishimura</a>, <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Futakawa%2C+Y">Yasuhiro Futakawa</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">Hiroki Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&query=Shiota%2C+Y">Yoichi Shiota</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kab-Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.04881v1-abstract-short" style="display: inline;"> We investigate the Gilbert damping parameter for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, the Gilbert damping parameter was as low as 0.0072 and was almost constant across the angular momentum compensation temperature, starkly contrasting previous predictions that the Gilbert damping parameter s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04881v1-abstract-full').style.display = 'inline'; document.getElementById('1806.04881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.04881v1-abstract-full" style="display: none;"> We investigate the Gilbert damping parameter for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, the Gilbert damping parameter was as low as 0.0072 and was almost constant across the angular momentum compensation temperature, starkly contrasting previous predictions that the Gilbert damping parameter should diverge at the angular momentum compensation temperature due to vanishing total angular momentum. Thus, magnetic damping of RE-TM ferrimagnets is not related to the total angular momentum but is dominated by electron scattering at the Fermi level where the TM has a dominant damping role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04881v1-abstract-full').style.display = 'none'; document.getElementById('1806.04881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 127203 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07436">arXiv:1801.07436</a> <span> [<a href="https://arxiv.org/pdf/1801.07436">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5022809">10.1063/1.5022809 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation between Magnetic Properties and Depinning Field in Field-Driven Domain Wall Dynamics in GdFeCo Ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nishimura%2C+T">Tomoe Nishimura</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Futakawa%2C+Y">Yasuhiro Futakawa</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">Hiroki Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Shiota%2C+Y">Yoichi Shiota</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07436v1-abstract-short" style="display: inline;"> The influence of temperature on the magnetic-field-driven domain wall (DW) motion is investigated in GdFeCo ferrimagnets with perpendicular magnetic anisotropy (PMA). We find that the depinning field strongly depends on temperature. Moreover, it is also found that the saturation magnetization exhibits a similar dependence on temperature to that of depinning field. From the creep-scaling criticalit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07436v1-abstract-full').style.display = 'inline'; document.getElementById('1801.07436v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07436v1-abstract-full" style="display: none;"> The influence of temperature on the magnetic-field-driven domain wall (DW) motion is investigated in GdFeCo ferrimagnets with perpendicular magnetic anisotropy (PMA). We find that the depinning field strongly depends on temperature. Moreover, it is also found that the saturation magnetization exhibits a similar dependence on temperature to that of depinning field. From the creep-scaling criticality, a simple relation between the depinning field and the properties of PMA is clearly identified theoretically as well as experimentally. Our findings open a way for a better understanding how the magnetic properties influence on the depinning field in magnetic system and would be valuably extended to depinning studies in other system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07436v1-abstract-full').style.display = 'none'; document.getElementById('1801.07436v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07779">arXiv:1710.07779</a> <span> [<a href="https://arxiv.org/pdf/1710.07779">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.220403">10.1103/PhysRevB.97.220403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation between Compensation Temperatures of Magnetization and Angular Momentum in GdFeCo Ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Nishimura%2C+T">Tomoe Nishimura</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Dae-Yun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Futakawa%2C+Y">Yasuhiro Futakawa</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">Hiroki Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kab-Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Choe%2C+S">Sug-Bong Choe</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07779v1-abstract-short" style="display: inline;"> Determining the angular momentum compensation temperature of ferrimagnets is an important step towards ferrimagnetic spintronics, but is not generally easy to achieve it experimentally. We propose a way to estimate the angular momentum compensation temperature of ferrimagnets. We find a linear relation between the compensation temperatures of the magnetization and angular momentum in GdFeCo ferrim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07779v1-abstract-full').style.display = 'inline'; document.getElementById('1710.07779v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07779v1-abstract-full" style="display: none;"> Determining the angular momentum compensation temperature of ferrimagnets is an important step towards ferrimagnetic spintronics, but is not generally easy to achieve it experimentally. We propose a way to estimate the angular momentum compensation temperature of ferrimagnets. We find a linear relation between the compensation temperatures of the magnetization and angular momentum in GdFeCo ferrimagnetic materials, which is proved by theoretically as well as experimentally. The linearity comes from the power-law criticality and is governed by the Curie temperature and the Land茅 g factors of the elements composing the ferrimagnets. Therefore, measuring the magnetization compensation temperature and the Curie temperature, which are easily assessable experimentally, enables to estimate the angular momentum compensation temperature of ferrimagnets. Our study provides efficient avenues into an exciting world of ferrimagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07779v1-abstract-full').style.display = 'none'; document.getElementById('1710.07779v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 220403 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10062">arXiv:1705.10062</a> <span> [<a href="https://arxiv.org/pdf/1705.10062">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Distinct domain-wall motion between creep and flow regimes near the angular momentum compensation temperature of ferrimagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Ham%2C+W+S">Woo Seung Ham</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sanghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kab-Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10062v1-abstract-short" style="display: inline;"> We investigate a magnetic domain-wall (DW) motion in two dynamic regimes, creep and flow regimes, near the angular momentum compensation temperature (T_A) of ferrimagnet. In the flow regime, the DW speed shows sharp increase at T_A due to the emergence of antiferromagnetic DW dynamics. In the creep regime, however, the DW speed exhibits a monotonic increase with increasing the temperature. This re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10062v1-abstract-full').style.display = 'inline'; document.getElementById('1705.10062v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10062v1-abstract-full" style="display: none;"> We investigate a magnetic domain-wall (DW) motion in two dynamic regimes, creep and flow regimes, near the angular momentum compensation temperature (T_A) of ferrimagnet. In the flow regime, the DW speed shows sharp increase at T_A due to the emergence of antiferromagnetic DW dynamics. In the creep regime, however, the DW speed exhibits a monotonic increase with increasing the temperature. This result suggests that, in the creep regime, the thermal activation process governs the DW dynamics even near T_A. Our result unambiguously shows the distinct behavior of ferrimagnetic DW motion depending on the dynamic regime, which is important for emerging ferrimagnet-based spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10062v1-abstract-full').style.display = 'none'; document.getElementById('1705.10062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07515">arXiv:1703.07515</a> <span> [<a href="https://arxiv.org/pdf/1703.07515">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4990">10.1038/nmat4990 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast domain wall motion induced by antiferromagnetic spin dynamics at the angular momentum compensation temperature of ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K">Kab-Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S+K">Se Kwon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Tono%2C+T">Takayuki Tono</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+S">Se-Hyeok Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Ham%2C+W+S">Woo Seung Ham</a>, <a href="/search/cond-mat?searchtype=author&query=Hirata%2C+Y">Yuushou Hirata</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sanghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Go%2C+G">Gyoungchoon Go</a>, <a href="/search/cond-mat?searchtype=author&query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07515v1-abstract-short" style="display: inline;"> Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation toward this direction is that antiferromagnetic spin dynamics is expected to be much faster than ferromagnetic counterpart because antiferromagnets have higher resonance frequencies than ferromagnets. Recent theories indeed predicted faster… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07515v1-abstract-full').style.display = 'inline'; document.getElementById('1703.07515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07515v1-abstract-full" style="display: none;"> Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation toward this direction is that antiferromagnetic spin dynamics is expected to be much faster than ferromagnetic counterpart because antiferromagnets have higher resonance frequencies than ferromagnets. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored mainly because of the immunity of antiferromagnets to magnetic fields. Furthermore, this immunity makes field-driven antiferromagnetic DW motion impossible despite rich physics of field-driven DW dynamics as proven in ferromagnetic DW studies. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare-earth 3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility remarkably enhances up to 20 km/sT. The collective coordinate approach generalized for ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07515v1-abstract-full').style.display = 'none'; document.getElementById('1703.07515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.00995">arXiv:1703.00995</a> <span> [<a href="https://arxiv.org/pdf/1703.00995">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit effective fields in Pt/GdFeCo bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ham%2C+W+S">Woo Seung Ham</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sanghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+K+-">Kab -Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Okuno%2C+T">Takaya Okuno</a>, <a href="/search/cond-mat?searchtype=author&query=Yoshikawa%2C+H">Hiroki Yoshikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Moriyama%2C+T">Takahiro Moriyama</a>, <a href="/search/cond-mat?searchtype=author&query=Ono%2C+T">Teruo Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.00995v1-abstract-short" style="display: inline;"> In the increasing interests on spin-orbit torque (SOT) with various magnetic materials, we investigated SOT in rare earth-transition metal ferrimagnetic alloys. The harmonic Hall measurements were performed in Pt/GdFeCo bilayers to quantify the effective fields resulting from the SOT. It is found that the damping-like torque rapidly increases near the magnetization compensation temperature TM of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.00995v1-abstract-full').style.display = 'inline'; document.getElementById('1703.00995v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.00995v1-abstract-full" style="display: none;"> In the increasing interests on spin-orbit torque (SOT) with various magnetic materials, we investigated SOT in rare earth-transition metal ferrimagnetic alloys. The harmonic Hall measurements were performed in Pt/GdFeCo bilayers to quantify the effective fields resulting from the SOT. It is found that the damping-like torque rapidly increases near the magnetization compensation temperature TM of the GdFeCo, which is attributed to the reduction of the net magnetic moment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.00995v1-abstract-full').style.display = 'none'; document.getElementById('1703.00995v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.06251">arXiv:1611.06251</a> <span> [<a href="https://arxiv.org/pdf/1611.06251">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.094418">10.1103/PhysRevB.95.094418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub 100-ps dynamics of the anomalous Hall effect at THz frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huisman%2C+T+J">T. J. Huisman</a>, <a href="/search/cond-mat?searchtype=author&query=Mikhaylovskiy%2C+R+V">R. V. Mikhaylovskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+L">L. Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+W+J">W. J. Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S+M">S. M. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.06251v1-abstract-short" style="display: inline;"> We report about the anomalous Hall effect in 4f 3d metallic alloys measured using terahertz time-domain spectroscopy. The strength of the observed terahertz spin-dependent transport phenomenon is in good agreement with expectations based on electronic transport measurements. Employing this effect, we succeeded to reveal ultrafast dynamics of the anomalous Hall effect which accompanies the sub-100… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06251v1-abstract-full').style.display = 'inline'; document.getElementById('1611.06251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.06251v1-abstract-full" style="display: none;"> We report about the anomalous Hall effect in 4f 3d metallic alloys measured using terahertz time-domain spectroscopy. The strength of the observed terahertz spin-dependent transport phenomenon is in good agreement with expectations based on electronic transport measurements. Employing this effect, we succeeded to reveal ultrafast dynamics of the anomalous Hall effect which accompanies the sub-100 picosecond optically induced magnetization reversal in a GdFeCo alloy. The experiments demonstrate the ability to control currents at terahertz frequencies in spintronic devices magnetically and ultrafast. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06251v1-abstract-full').style.display = 'none'; document.getElementById('1611.06251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 094418 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.07372">arXiv:1511.07372</a> <span> [<a href="https://arxiv.org/pdf/1511.07372">pdf</a>, <a href="https://arxiv.org/ps/1511.07372">ps</a>, <a href="https://arxiv.org/format/1511.07372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4944410">10.1063/1.4944410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Higley%2C+D+J">Daniel J. Higley</a>, <a href="/search/cond-mat?searchtype=author&query=Hirsch%2C+K">Konstantin Hirsch</a>, <a href="/search/cond-mat?searchtype=author&query=Dakovski%2C+G+L">Georgi L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+E">Edwin Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">Tianmin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lutman%2C+A+A">Alberto A. Lutman</a>, <a href="/search/cond-mat?searchtype=author&query=MacArthur%2C+J+P">James P. MacArthur</a>, <a href="/search/cond-mat?searchtype=author&query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Coslovich%2C+G">Giacomo Coslovich</a>, <a href="/search/cond-mat?searchtype=author&query=Denes%2C+P">Peter Denes</a>, <a href="/search/cond-mat?searchtype=author&query=Granitzka%2C+P+W">Patrick W. Granitzka</a>, <a href="/search/cond-mat?searchtype=author&query=Hart%2C+P">Philip Hart</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Joseph%2C+J">John Joseph</a>, <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">Lo茂c Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Mitra%2C+A">Ankush Mitra</a>, <a href="/search/cond-mat?searchtype=author&query=Moeller%2C+S">Stefan Moeller</a>, <a href="/search/cond-mat?searchtype=author&query=Ohldag%2C+H">Hendrik Ohldag</a>, <a href="/search/cond-mat?searchtype=author&query=Seaberg%2C+M">Matthew Seaberg</a>, <a href="/search/cond-mat?searchtype=author&query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&query=St%7F%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Nuhn%2C+H">Heinz-Dieter Nuhn</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.07372v1-abstract-short" style="display: inline;"> X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L$_{3,2}$-edges. This new ultrafast time-resolved capability is then applied to a fluence-dependent study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. At the magnetic switch… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07372v1-abstract-full').style.display = 'inline'; document.getElementById('1511.07372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.07372v1-abstract-full" style="display: none;"> X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L$_{3,2}$-edges. This new ultrafast time-resolved capability is then applied to a fluence-dependent study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. At the magnetic switching fuence, we corroborate the existence of a transient ferromagnetic-like state. The timescales of the dynamics, however, are longer than previously observed below the magnetization compensation temperature. Above and below the switching fluence range, we observe secondary demagnetization with about 5 ps timescales. This indicates that the spin thermalization takes longer than 5 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07372v1-abstract-full').style.display = 'none'; document.getElementById('1511.07372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 87, 033110 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.5396">arXiv:1412.5396</a> <span> [<a href="https://arxiv.org/pdf/1412.5396">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.104419">10.1103/PhysRevB.92.104419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the role of orbital magnetism in ultrafast laser-induced demagnetization in multisublattice metallic magnets by terahertz spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huisman%2C+T+J">T. J. Huisman</a>, <a href="/search/cond-mat?searchtype=author&query=Mikhaylovskiy%2C+R+V">R. V. Mikhaylovskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.5396v1-abstract-short" style="display: inline;"> Simultaneous detection of THz emission and transient magneto-optical response is employed to study ultrafast laser-induced magnetization dynamics in multisublattice magnets NdFeCo and GdFeCo amorphous alloys with in-plane magnetic anisotropy. A satisfactory quantitative agreement between the dynamics revealed with the help of these two techniques is obtained for GdFeCo. For NdFeCo the THz emission… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.5396v1-abstract-full').style.display = 'inline'; document.getElementById('1412.5396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.5396v1-abstract-full" style="display: none;"> Simultaneous detection of THz emission and transient magneto-optical response is employed to study ultrafast laser-induced magnetization dynamics in multisublattice magnets NdFeCo and GdFeCo amorphous alloys with in-plane magnetic anisotropy. A satisfactory quantitative agreement between the dynamics revealed with the help of these two techniques is obtained for GdFeCo. For NdFeCo the THz emission reveals faster dynamics than the magneto-optical response. This indicates that in addition to spin dynamics of Fe ultrafast laser excitation triggers faster magnetization dynamics of Nd. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.5396v1-abstract-full').style.display = 'none'; document.getElementById('1412.5396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0396">arXiv:1412.0396</a> <span> [<a href="https://arxiv.org/pdf/1412.0396">pdf</a>, <a href="https://arxiv.org/format/1412.0396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.134402">10.1103/PhysRevB.93.134402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-optical magnetization switching in ferrimagnetic alloys: deterministic vs thermally activated dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Moussaoui%2C+S+E">S. El Moussaoui</a>, <a href="/search/cond-mat?searchtype=author&query=Buzzi%2C+M">M. Buzzi</a>, <a href="/search/cond-mat?searchtype=author&query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+A">A. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&query=Nolting%2C+F">F. Nolting</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">A. V. Kimel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0396v1-abstract-short" style="display: inline;"> Using photo-emission electron microscopy with X-ray magnetic circular dichroism as a contrast mechanism, new insights into the all-optical magnetization switching (AOS) phenomenon in GdFe based rare-earth transition metal ferrimagnetic alloys are provided. From a sequence of static images taken after single linearly polarized laser pulse excitation, the repeatability of AOS can be measured with a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0396v1-abstract-full').style.display = 'inline'; document.getElementById('1412.0396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0396v1-abstract-full" style="display: none;"> Using photo-emission electron microscopy with X-ray magnetic circular dichroism as a contrast mechanism, new insights into the all-optical magnetization switching (AOS) phenomenon in GdFe based rare-earth transition metal ferrimagnetic alloys are provided. From a sequence of static images taken after single linearly polarized laser pulse excitation, the repeatability of AOS can be measured with a correlation coefficient. It is found that low coercivity enables thermally activated domain wall motion, limiting in turn the repeatability of the switching. Time-resolved measurement of the magnetization dynamics reveal that while AOS occurs below and above the magnetization compensation temperature $T_\text{M}$, it is not observed in GdFe samples where $T_\text{M}$ is absent. Finally, AOS is experimentally demonstrated against an applied magnetic field of up to 180 mT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0396v1-abstract-full').style.display = 'none'; document.getElementById('1412.0396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 134402 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.1280">arXiv:1409.1280</a> <span> [<a href="https://arxiv.org/pdf/1409.1280">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale confinement of all-optical switching in TbFeCo using plasmonic antennas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">TianMin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tianhan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A+H">Alexander H. Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Savoini%2C+M">Matteo Savoini</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xiaofei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Koene%2C+B">Benny Koene</a>, <a href="/search/cond-mat?searchtype=author&query=Granitzka%2C+P">Patrick Granitzka</a>, <a href="/search/cond-mat?searchtype=author&query=Graves%2C+C">Catherine Graves</a>, <a href="/search/cond-mat?searchtype=author&query=Higley%2C+D">Daniel Higley</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Razinskas%2C+G">Gary Razinskas</a>, <a href="/search/cond-mat?searchtype=author&query=Hantschmann%2C+M">Markus Hantschmann</a>, <a href="/search/cond-mat?searchtype=author&query=Scherz%2C+A">Andreas Scherz</a>, <a href="/search/cond-mat?searchtype=author&query=St%C3%B6hr%2C+J">Joachim St枚hr</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Arata Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Hecht%2C+B">Bert Hecht</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">Alexey V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">Andrei Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Rasing%2C+T">Theo Rasing</a>, <a href="/search/cond-mat?searchtype=author&query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.1280v1-abstract-short" style="display: inline;"> All-optical switching (AOS) of magnetic domains by femtosecond laser pulses was first observed in the transition metal-rare earth (TM-RE) alloy GdFeCo1-5; this phenomenon demonstrated the potential for optical control of magnetism for the development of ever faster future magnetic recording technologies. The technological potential of AOS has recently increased due to the discovery of the same eff… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1280v1-abstract-full').style.display = 'inline'; document.getElementById('1409.1280v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.1280v1-abstract-full" style="display: none;"> All-optical switching (AOS) of magnetic domains by femtosecond laser pulses was first observed in the transition metal-rare earth (TM-RE) alloy GdFeCo1-5; this phenomenon demonstrated the potential for optical control of magnetism for the development of ever faster future magnetic recording technologies. The technological potential of AOS has recently increased due to the discovery of the same effect in other materials, including RE-free magnetic multilayers6,7. However, to be technologically meaningful, AOS must compete with the bit densities of conventional storage devices, restricting optically-switched magnetic areas to sizes well below the diffraction limit. Here, we demonstrate reproducible and robust all-optical switching of magnetic domains of 53 nm size in a ferrimagnetic TbFeCo alloy using gold plasmonic antenna structures. The confined nanoscale magnetic reversal is imaged around and beneath plasmonic antennas using x-ray resonant holographic imaging. Our results demonstrate the potential of future AOS-based magnetic recording technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1280v1-abstract-full').style.display = 'none'; document.getElementById('1409.1280v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages (including Supplementary Materials)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.4010">arXiv:1407.4010</a> <span> [<a href="https://arxiv.org/pdf/1407.4010">pdf</a>, <a href="https://arxiv.org/format/1407.4010">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms6839">10.1038/ncomms6839 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-diffraction sub-100 ps all-optical magnetic switching by passive wavefront shaping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&query=Moussaoui%2C+S+E">S. El Moussaoui</a>, <a href="/search/cond-mat?searchtype=author&query=Buzzi%2C+M">M. Buzzi</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+A">A. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&query=Kimel%2C+A+V">A. V. Kimel</a>, <a href="/search/cond-mat?searchtype=author&query=Nolting%2C+F">F. Nolting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.4010v1-abstract-short" style="display: inline;"> The recently discovered magnetization reversal driven solely by a femtosecond laser pulse has been shown to be a promising way to record information at record breaking speeds. Seeking to improve the recording density has raised intriguing fundamental question about the feasibility to combine the ultrafast temporal with sub-wavelength spatial resolution of magnetic recording. Here we report about t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.4010v1-abstract-full').style.display = 'inline'; document.getElementById('1407.4010v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.4010v1-abstract-full" style="display: none;"> The recently discovered magnetization reversal driven solely by a femtosecond laser pulse has been shown to be a promising way to record information at record breaking speeds. Seeking to improve the recording density has raised intriguing fundamental question about the feasibility to combine the ultrafast temporal with sub-wavelength spatial resolution of magnetic recording. Here we report about the first experimental demonstration of sub-diffraction and sub-100 ps all-optical magnetic switching. Using computational methods we reveal the feasibility of sub-diffraction magnetic switching even for an unfocused incoming laser pulse. This effect is achieved via structuring the sample such that the laser pulse experiences a passive wavefront shaping as it couples and propagates inside the magnetic structure. Time-resolved studies with the help of photo-emission electron microscopy clearly reveal that the sub-wavelength switching with the help of the passive wave-front shaping can be pushed into sub-100 ps regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.4010v1-abstract-full').style.display = 'none'; document.getElementById('1407.4010v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 6:5839, 12th Jan 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.1754">arXiv:1304.1754</a> <span> [<a href="https://arxiv.org/pdf/1304.1754">pdf</a>, <a href="https://arxiv.org/ps/1304.1754">ps</a>, <a href="https://arxiv.org/format/1304.1754">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.177205">10.1103/PhysRevLett.110.177205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser-Induced Magnetic Nanostructures with Tunable Topological Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Finazzi%2C+M">M. Finazzi</a>, <a href="/search/cond-mat?searchtype=author&query=Savoini%2C+M">M. Savoini</a>, <a href="/search/cond-mat?searchtype=author&query=Khorsand%2C+A+R">A. R. Khorsand</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">A. Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Itoh%2C+A">A. Itoh</a>, <a href="/search/cond-mat?searchtype=author&query=Du%C3%B2%2C+L">L. Du貌</a>, <a href="/search/cond-mat?searchtype=author&query=Kirilyuk%2C+A">A. Kirilyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Rasing%2C+T">Th. Rasing</a>, <a href="/search/cond-mat?searchtype=author&query=Ezawa%2C+M">M. Ezawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.1754v1-abstract-short" style="display: inline;"> We report the creation and real-space observation of magnetic structures with well-defined topological properties and a lateral size as low as about 150 nm. They are generated in a thin ferrimagnetic film by ultrashort single optical laser pulses. Thanks to their topological properties, such structures can be classified as Skyrmions of a particular type that does not require an externally applied… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1754v1-abstract-full').style.display = 'inline'; document.getElementById('1304.1754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.1754v1-abstract-full" style="display: none;"> We report the creation and real-space observation of magnetic structures with well-defined topological properties and a lateral size as low as about 150 nm. They are generated in a thin ferrimagnetic film by ultrashort single optical laser pulses. Thanks to their topological properties, such structures can be classified as Skyrmions of a particular type that does not require an externally applied magnetic field for stabilization. Besides Skyrmions, we are able to generate magnetic features with topological characteristics that can be tuned by changing the laser fluence. The stability of such features is accounted for by an analytical model based on the interplay between the exchange and the magnetic dipole-dipole interactions <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1754v1-abstract-full').style.display = 'none'; document.getElementById('1304.1754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 177205 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.5721">arXiv:1011.5721</a> <span> [<a href="https://arxiv.org/pdf/1011.5721">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms1419">10.1038/ncomms1419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advantageous grain boundaries in iron pnictide superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Katase%2C+T">Takayoshi Katase</a>, <a href="/search/cond-mat?searchtype=author&query=Ishimaru%2C+Y">Yoshihiro Ishimaru</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Akira Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Hiramatsu%2C+H">Hidenori Hiramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Kamiya%2C+T">Toshio Kamiya</a>, <a href="/search/cond-mat?searchtype=author&query=Tanabe%2C+K">Keiichi Tanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Hosono%2C+H">Hideo Hosono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.5721v2-abstract-short" style="display: inline;"> High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries-the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here, we report that High criti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.5721v2-abstract-full').style.display = 'inline'; document.getElementById('1011.5721v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.5721v2-abstract-full" style="display: none;"> High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries-the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here, we report that High critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (thetaGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (> 1 MA/cm2) and nearly constant up to a critical angle thetac of ~9o, which is substantially larger than the thetac of ~5o for YBCO. Even at thetaGB > thetac, the decay of JcBGB was much smaller than that of YBCO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.5721v2-abstract-full').style.display = 'none'; document.getElementById('1011.5721v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Nature Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 2 (2011) 409 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.2021">arXiv:1005.2021</a> <span> [<a href="https://arxiv.org/pdf/1005.2021">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-2048/23/8/082001">10.1088/0953-2048/23/8/082001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DC superconducting quantum interference devices fabricated using bicrystal grain boundary junctions in Co-doped BaFe2As2 epitaxial films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Katase%2C+T">Takayoshi Katase</a>, <a href="/search/cond-mat?searchtype=author&query=Ishimaru%2C+Y">Yoshihiro Ishimaru</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Akira Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Hiramatsu%2C+H">Hidenori Hiramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Kamiya%2C+T">Toshio Kamiya</a>, <a href="/search/cond-mat?searchtype=author&query=Tanabe%2C+K">Keiichi Tanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Hosono%2C+H">Hideo Hosono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.2021v2-abstract-short" style="display: inline;"> DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30deg misorientation angles. The 18 x 8 micro-meter^2 SQUID loop with an estimated inductance of 13 pH contained two 3 micro-meter wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.2021v2-abstract-full').style.display = 'inline'; document.getElementById('1005.2021v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.2021v2-abstract-full" style="display: none;"> DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30deg misorientation angles. The 18 x 8 micro-meter^2 SQUID loop with an estimated inductance of 13 pH contained two 3 micro-meter wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with deltaV = 1.4 micro-volt at 14 K, while the intrinsic flux noise of dc-SQUIDs was 7.8 x 10^-5 fai0/Hz^1/2 above 20 Hz. The rather high flux noise is mainly attributed to the small voltage modulation depth which results from the superconductor-normal metal-superconductor junction nature of the bicrystal grain boundary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.2021v2-abstract-full').style.display = 'none'; document.getElementById('1005.2021v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published in Supercond. Sci. Technol. 23 082001 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.3615">arXiv:1001.3615</a> <span> [<a href="https://arxiv.org/pdf/1001.3615">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3371814">10.1063/1.3371814 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson junction in cobalt-doped BaFe2As2 epitaxial thin films on (La, Sr)(Al, Ta)O3 bicrystal substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Katase%2C+T">Takayoshi Katase</a>, <a href="/search/cond-mat?searchtype=author&query=Ishimaru%2C+Y">Yoshihiro Ishimaru</a>, <a href="/search/cond-mat?searchtype=author&query=Tsukamoto%2C+A">Akira Tsukamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Hiramatsu%2C+H">Hidenori Hiramatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Kamiya%2C+T">Toshio Kamiya</a>, <a href="/search/cond-mat?searchtype=author&query=Tanabe%2C+K">Keiichi Tanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Hosono%2C+H">Hideo Hosono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.3615v2-abstract-short" style="display: inline;"> Josephson junctions were fabricated in epitaxial films of cobalt-doped BaFe2As2 on [001]-tilt (La,Sr)(Al,Ta)O3 bicrystal substrates. 10m-wide microbridges spanning a 30-degrees-tilted bicrystal grain boundary (BGB bridge) exhibited resistively-shunted-junction (RSJ)-like current-voltage characteristics up to 17 K, and the critical current was suppressed remarkably by a magnetic field. Microbridges… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.3615v2-abstract-full').style.display = 'inline'; document.getElementById('1001.3615v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.3615v2-abstract-full" style="display: none;"> Josephson junctions were fabricated in epitaxial films of cobalt-doped BaFe2As2 on [001]-tilt (La,Sr)(Al,Ta)O3 bicrystal substrates. 10m-wide microbridges spanning a 30-degrees-tilted bicrystal grain boundary (BGB bridge) exhibited resistively-shunted-junction (RSJ)-like current-voltage characteristics up to 17 K, and the critical current was suppressed remarkably by a magnetic field. Microbridges without a BGB did not show the RSJ-like behavior, and their critical current densities were 20 times larger than those of BGB bridges, confirming BGB bridges display a Josephson effect originating from weakly-linked BGB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.3615v2-abstract-full').style.display = 'none'; document.getElementById('1001.3615v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APPLIED PHYSICS LETTERS 96, 142507 (2010) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>