CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 1,065 results for author: <span class="mathjax">Li, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Li%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17398">arXiv:2411.17398</a> <span> [<a href="https://arxiv.org/pdf/2411.17398">pdf</a>, <a href="https://arxiv.org/format/2411.17398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-Classical Correspondence of Non-Hermitian Symmetry Breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+Z">Zhuo-Ting Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Dong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Wei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17398v1-abstract-short" style="display: inline;"> Real-to-complex spectral transitions and the associated spontaneous symmetry breaking of eigenstates are central to non-Hermitian physics, yet their underlying physical mechanisms remain elusive. Here, we resolve the mystery by employing the complex path integral formalism and developing a generalized Gutzwiller trace formula. These methodologies enable us to establish a universal quantum-classica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17398v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17398v1-abstract-full" style="display: none;"> Real-to-complex spectral transitions and the associated spontaneous symmetry breaking of eigenstates are central to non-Hermitian physics, yet their underlying physical mechanisms remain elusive. Here, we resolve the mystery by employing the complex path integral formalism and developing a generalized Gutzwiller trace formula. These methodologies enable us to establish a universal quantum-classical correspondence that precisely links the real or complex nature of individual energy levels to the symmetry properties of their corresponding semiclassical orbits. Specifically, in systems with a general $畏$-pseudo-Hermitian symmetry, real energy levels are quantized along periodic orbits that preserve the corresponding classical $S_畏$ symmetry. In contrast, complex conjugate energy levels arise from semiclassical orbits that individually break the $S_畏$ symmetry but together form $S_畏$-symmetric pairs. This framework provides a unified explanation for the spectral behaviors in various continuous non-Hermitian models and for the ${PT}$ transition in two-level systems. Our work uncovers the physical mechanism of non-Hermitian symmetry breaking and introduces a new perspective with broad implications for the control and application of non-Hermitian phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17398v1-abstract-full').style.display = 'none'; document.getElementById('2411.17398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17156">arXiv:2411.17156</a> <span> [<a href="https://arxiv.org/pdf/2411.17156">pdf</a>, <a href="https://arxiv.org/ps/2411.17156">ps</a>, <a href="https://arxiv.org/format/2411.17156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54632-0">10.1038/s41467-024-54632-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Abnormally enhanced Hall Lorenz number in the magnetic Weyl semimetal NdAlSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+N">Nan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+D">Daifeng Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Ding Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+K">Kaixin Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Nie%2C+L">Linpeng Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Houpu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+T">Tao Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+T">Tao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jianhui Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+Z">Ziji Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xianhui Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17156v1-abstract-short" style="display: inline;"> In Landau's celebrated Fermi liquid theory, electrons in a metal obey the Wiedemann--Franz law at the lowest temperatures. This law states that electron heat and charge transport are linked by a constant $L_0$, i.e., the Sommerfeld value of the Lorenz number ($L$). Such relation can be violated at elevated temperatures where the abundant inelastic scattering leads to a reduction of the Lorenz numb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17156v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17156v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17156v1-abstract-full" style="display: none;"> In Landau's celebrated Fermi liquid theory, electrons in a metal obey the Wiedemann--Franz law at the lowest temperatures. This law states that electron heat and charge transport are linked by a constant $L_0$, i.e., the Sommerfeld value of the Lorenz number ($L$). Such relation can be violated at elevated temperatures where the abundant inelastic scattering leads to a reduction of the Lorenz number ($L < L_0$). Here, we report a rare case of remarkably enhanced Lorenz number ($L > L_0$) discovered in the magnetic topological semimetal NdAlSi. Measurements of the transverse electrical and thermal transport coefficients reveal that the Hall Lorenz number $L_{xy}$ in NdAlSi starts to deviate from the canonical value far above its magnetic ordering temperature. Moreover, $L_{xy}$ displays strong nonmonotonic temperature and field dependence, reaching its maximum value close to 2$L_0$ in an intermediate parameter range. Further analysis excludes charge-neutral excitations as the origin of enhanced $L_{xy}$. Alternatively, we attribute it to the Kondo-type elastic scattering off localized 4$f$ electrons, which creates a peculiar energy distribution of the quasiparticle relaxation time. Our results provide insights into the perplexing transport phenomena caused by the interplay between charge and spin degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17156v1-abstract-full').style.display = 'none'; document.getElementById('2411.17156v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14675">arXiv:2411.14675</a> <span> [<a href="https://arxiv.org/pdf/2411.14675">pdf</a>, <a href="https://arxiv.org/format/2411.14675">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum dynamics of photophysical aggregates in conjugated polymers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kantrow%2C+H+J">Henry J. Kantrow</a>, <a href="/search/cond-mat?searchtype=author&query=Guti%C3%A9rrez-Meza%2C+E">Elizabeth Guti茅rrez-Meza</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongmo Li</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Q">Qiao He</a>, <a href="/search/cond-mat?searchtype=author&query=Heeney%2C+M">Martin Heeney</a>, <a href="/search/cond-mat?searchtype=author&query=Stingelin%2C+N">Natalie Stingelin</a>, <a href="/search/cond-mat?searchtype=author&query=Bittner%2C+E+R">Eric R. Bittner</a>, <a href="/search/cond-mat?searchtype=author&query=Silva-Acu%C3%B1a%2C+C">Carlos Silva-Acu帽a</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Thouin%2C+F">F茅lix Thouin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14675v3-abstract-short" style="display: inline;"> Photophysical aggregates are ubiquitous in many solid-state microstructures adopted by conjugated polymers, in which $蟺$ electrons interact with those in other polymer chains or those in other chromophores along the chain. These interactions fundamentally define the electronic and optical properties of the polymer film. While valuable insight can be gained from linear excitation and photoluminesce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14675v3-abstract-full').style.display = 'inline'; document.getElementById('2411.14675v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14675v3-abstract-full" style="display: none;"> Photophysical aggregates are ubiquitous in many solid-state microstructures adopted by conjugated polymers, in which $蟺$ electrons interact with those in other polymer chains or those in other chromophores along the chain. These interactions fundamentally define the electronic and optical properties of the polymer film. While valuable insight can be gained from linear excitation and photoluminescence spectra, nonlinear coherent excitation spectral lineshapes provide intricate understanding on the electronic couplings that define the aggregate and their fluctuations. Here, we discuss the coherent two-dimensional excitation lineshape of a model hairy-rod conjugated polymer. At zero population waiting time, we find a $蟺/2$ phase shift between the 0-0 and 0-1 vibronic peaks in the real and imaginary components of the complex coherent spectrum, as well as a dynamic phase rotation with population waiting time over timescales that are longer than the optical dephasing time. We conjecture that these are markers of relaxation of the photophysical aggregate down the tight manifold of the exciton band. These results highlight the potential for coherent spectroscopy via analysis of the complex spectral lineshape to become a key tool to develop structure-property relationships in complex functional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14675v3-abstract-full').style.display = 'none'; document.getElementById('2411.14675v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 manuscript pages plus supplementary material document. Submitted to the Journal of Chemical Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12534">arXiv:2411.12534</a> <span> [<a href="https://arxiv.org/pdf/2411.12534">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4NH00383G">10.1039/D4NH00383G <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How to Recognize Clustering of Luminescent Defects in Single-Wall Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sebastian%2C+F+L">Finn L. Sebastian</a>, <a href="/search/cond-mat?searchtype=author&query=Settele%2C+S">Simon Settele</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Flavel%2C+B+S">Benjamin S. Flavel</a>, <a href="/search/cond-mat?searchtype=author&query=Zaumseil%2C+J">Jana Zaumseil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12534v1-abstract-short" style="display: inline;"> Semiconducting single-wall carbon nanotubes (SWCNTs) are a promising material platform for near-infrared in-vivo imaging, optical sensing, and single-photon emission at telecommunication wavelengths. The functionalization of SWCNTs with luminescent defects can lead to significantly enhanced photoluminescence (PL) properties due to efficient trapping of highly mobile excitons and red-shifted emissi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12534v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12534v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12534v1-abstract-full" style="display: none;"> Semiconducting single-wall carbon nanotubes (SWCNTs) are a promising material platform for near-infrared in-vivo imaging, optical sensing, and single-photon emission at telecommunication wavelengths. The functionalization of SWCNTs with luminescent defects can lead to significantly enhanced photoluminescence (PL) properties due to efficient trapping of highly mobile excitons and red-shifted emission from these trap states. Among the most studied luminescent defect types are oxygen and aryl defects that have largely similar optical properties. So far, no direct comparison between SWCNTs functionalized with oxygen and aryl defects under identical conditions has been performed. Here, we employ a combination of spectroscopic techniques to quantify the number of defects, their distribution along the nanotubes and thus their exciton trapping efficiencies. The different slopes of Raman D/G+ ratios versus calculated defect densities from PL quantum yield measurements indicate substantial dissimilarities between oxygen and aryl defects. Supported by statistical analysis of single-nanotube PL spectra at cryogenic temperatures it reveals clustering of oxygen defects. The clustering of 2-3 oxygen defects, which act as a single exciton trap, occurs irrespective of the functionalization method and thus enables the use of simple equations to determine the density of oxygen defects and oxygen defect clusters in SWCNTs based on standard Raman spectroscopy. The presented analytical approach is a versatile and sensitive tool to study defect distribution and clustering in SWCNTs and can be applied to any new functionalization method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12534v1-abstract-full').style.display = 'none'; document.getElementById('2411.12534v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale Horizons, 2024, 9, 2286 - 2294 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12260">arXiv:2411.12260</a> <span> [<a href="https://arxiv.org/pdf/2411.12260">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Noncollinear ferroelectric and screw-type antiferroelectric phases in a metal-free hybrid molecular crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Na Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z">Zhong Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+W">Wang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hua-Kai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Ze-Jiang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+C">Chao Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+H">Heng-Yun Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+S">Shuai Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+L">Le-Ping Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12260v1-abstract-short" style="display: inline;"> Noncollinear dipole textures greatly extend the scientific merits and application perspective of ferroic materials. In fact, noncollinear spin textures have been well recognized as one of the core issues of condensed matter, e.g. cycloidal/conical magnets with multiferroicity and magnetic skyrmions with topological properties. However, the counterparts in electrical polarized materials are less st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12260v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12260v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12260v1-abstract-full" style="display: none;"> Noncollinear dipole textures greatly extend the scientific merits and application perspective of ferroic materials. In fact, noncollinear spin textures have been well recognized as one of the core issues of condensed matter, e.g. cycloidal/conical magnets with multiferroicity and magnetic skyrmions with topological properties. However, the counterparts in electrical polarized materials are less studied and thus urgently needed, since electric dipoles are usually aligned collinearly in most ferroelectrics/antiferroelectrics. Molecular crystals with electric dipoles provide a rich ore to explore the noncollinear polarity. Here we report an organic salt (H2Dabco)BrClO4 (H2Dabco = N,N'-1,4-diazabicyclo[2.2.2]octonium) that shows a transition between the ferroelectric and antiferroelectric phases. Based on experimental characterizations and ab initio calculations, it is found that its electric dipoles present nontrivial noncollinear textures with $60^\circ$-twisting angle between the neighbours. Then the ferroelectric-antiferroelectric transition can be understood as the coding of twisting angle sequence. Our study reveals the unique science of noncollinear electric polarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12260v1-abstract-full').style.display = 'none'; document.getElementById('2411.12260v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12231">arXiv:2411.12231</a> <span> [<a href="https://arxiv.org/pdf/2411.12231">pdf</a>, <a href="https://arxiv.org/format/2411.12231">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional superconductivity in new niobium dichalcogenides-based bulk superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+K">Kaibao Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">Mengzhu Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Houpu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+Z">Ziji Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xianhui Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12231v1-abstract-short" style="display: inline;"> Transition metal dichalcogenides exhibit many unexpected properties including two-dimensional (2D) superconductivity as the interlayer coupling being weakened upon either layer-number reduction or chemical intercalation. Here we report the realization of 2D superconductivity in the newly-synthesized niobium dichalcogenides-based bulk superlattices Ba$_{0.75}$ClNbS$_{2}$ and Ba$_{0.75}$ClNbSe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12231v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12231v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12231v1-abstract-full" style="display: none;"> Transition metal dichalcogenides exhibit many unexpected properties including two-dimensional (2D) superconductivity as the interlayer coupling being weakened upon either layer-number reduction or chemical intercalation. Here we report the realization of 2D superconductivity in the newly-synthesized niobium dichalcogenides-based bulk superlattices Ba$_{0.75}$ClNbS$_{2}$ and Ba$_{0.75}$ClNbSe$_{2}$, which consists of the alternating stacking of monolayer $H$-NbS$_{2}$ (or $H$-NbSe$_{2}$) and monolayer inorganic insulator spacer Ba$_{0.75}$Cl. Magnetic susceptibility and resistivity measurements show that both superlattices belong to type-II superconductor with $T_{c}$ of 1 K and 1.25 K, respectively. Intrinsic 2D superconductivity is confirmed for both compounds below a Berezinskii-Kosterlitz-Thouless transition and a large anisotropy of the upper critical field. Furthermore, the upper critical field along $ab$ plane ($H_{c2}^{\parallel ab}$) exceeds the Pauli limit ($渭_{0}H_{p}$) in Ba$_{0.75}$ClNbSe$_{2}$, highlighting the influence of spin-orbit interactions. Our results establish a generic method for realizing the 2D superconducting properties in bulk superlattice materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12231v1-abstract-full').style.display = 'none'; document.getElementById('2411.12231v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12219">arXiv:2411.12219</a> <span> [<a href="https://arxiv.org/pdf/2411.12219">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional superconductivity and anomalous vortex dissipation in newly-discovered transition metal dichalcogenide-based superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">Mengzhu Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+K">Kaibao Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Houpu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+S">Senyang Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+J">Jiaqiang Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+N">Nan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+T">Tao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+Z">Ziji Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xianhui Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12219v1-abstract-short" style="display: inline;"> Properties of layered superconductors can vary drastically when thinned down from bulk to monolayer, owing to the reduced dimensionality and weakened interlayer coupling. In transition metal dichalcogenides (TMDs), the inherent symmetry breaking effect in atomically thin crystals prompts novel states of matter, such as Ising superconductivity with an extraordinary in-plane upper critical field. He… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12219v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12219v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12219v1-abstract-full" style="display: none;"> Properties of layered superconductors can vary drastically when thinned down from bulk to monolayer, owing to the reduced dimensionality and weakened interlayer coupling. In transition metal dichalcogenides (TMDs), the inherent symmetry breaking effect in atomically thin crystals prompts novel states of matter, such as Ising superconductivity with an extraordinary in-plane upper critical field. Here, we demonstrate that two-dimensional (2D) superconductivity resembling those in atomic layers but with more fascinating behaviours can be realized in the bulk crystals of two new TMD-based superconductors Ba0.75ClTaS2 and Ba0.75ClTaSe2. They comprise an alternating stack of H-type TMD layers and Ba-Cl layers. In both materials, intrinsic 2D superconductivity develops below a Berezinskii-Kosterlitz-Thouless transition. The upper critical field along ab plane exceeds the Pauli limit (Hp); in particular, Ba0.75ClTaSe2 exhibits an extremely high in plane Hc2 (14Hp) and a colossal superconducting anisotropy of 150. Moreover, the temperature-field phase diagram of Ba0.75ClTaSe2 under an in-plane magnetic field contains a large phase regime of vortex dissipation, which can be ascribed to the Josephson vortex motion, signifying an unprecedentedly strong fluctuation effect in TMD-based superconductors. Our results provide a new path towards the establishment of 2D superconductivity and novel exotic quantum phases in bulk crystals of TMD-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12219v1-abstract-full').style.display = 'none'; document.getElementById('2411.12219v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by JACS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10147">arXiv:2411.10147</a> <span> [<a href="https://arxiv.org/pdf/2411.10147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous-Hall Neel textures in altermagnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+H">Hui Han</a>, <a href="/search/cond-mat?searchtype=author&query=Gan%2C+W">Wei Gan</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">Mengmeng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jianhui Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10147v1-abstract-short" style="display: inline;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10147v1-abstract-full" style="display: none;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferromagnets. However, the relationship between the AHE and the N茅el vector remains largely elusive. Here, we propose an "extrinsic parameter" method and further reveal diverse unconventional anomalous Hall textures in the N茅el vector space, dubbed anomalous-Hall N茅el textures (AHNTs), for altermagnets. Notably, we find that AHNTs resemble the spin textures in momentum space, and identify 10 types across four categories of AHNTs in altermagnets. Meanwhile, we examine our key discoveries in prototypical altermagnets. Our work can offer a methodology for detecting N茅el vectors via anomalous Hall transport, and provide useful guidelines for designing electronic and optoelectronic devices based on altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v1-abstract-full').style.display = 'none'; document.getElementById('2411.10147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08298">arXiv:2411.08298</a> <span> [<a href="https://arxiv.org/pdf/2411.08298">pdf</a>, <a href="https://arxiv.org/format/2411.08298">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0242204">10.1063/5.0242204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-molecule theory of polyethylene liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Huimin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Donley%2C+J+P">James P. Donley</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+D+T">David T. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Curro%2C+J+G">John G. Curro</a>, <a href="/search/cond-mat?searchtype=author&query=Tormey%2C+C+A">Caleb A. Tormey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08298v1-abstract-short" style="display: inline;"> Two-molecule theory refers to a class of microscopic, self-consistent field theories for the radial distribution function in classical molecular liquids. The version examined here can be considered as one of the very few formally derived closures to the reference interaction site model (RISM) equation. The theory is applied to polyethylene liquids, computing their equilibrium structural and thermo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08298v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08298v1-abstract-full" style="display: none;"> Two-molecule theory refers to a class of microscopic, self-consistent field theories for the radial distribution function in classical molecular liquids. The version examined here can be considered as one of the very few formally derived closures to the reference interaction site model (RISM) equation. The theory is applied to polyethylene liquids, computing their equilibrium structural and thermodynamic properties at melt densities. The equation for the radial distribution function, which is represented as an average over the accessible states of two molecules in an external field that mimics the effects of the other molecules in the liquid, is computed by Monte Carlo simulation along with the intramolecular structure function. An improved direct sampling algorithm is utilized to speed the equilibration. Polyethylene chains of 24 and 66 united atom CH2 units are studied. Results are compared with full, many-chain molecular dynamics (MD) simulations and self-consistent polymer-RISM (PRISM) theory with the atomic Percus-Yevick (PY) closure under the same conditions. It is shown that the two-molecule theory produces results that are close to those of MD, and is thus able to overcome defects of PRISM-PY theory and predict more accurate liquid structure at both short and long range. Predictions for the equation of state are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08298v1-abstract-full').style.display = 'none'; document.getElementById('2411.08298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 161, 194903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span> [<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03754">arXiv:2411.03754</a> <span> [<a href="https://arxiv.org/pdf/2411.03754">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic order induced truly chiral phonons in a ferromagnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Che%2C+M">Mengqian Che</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+J">Jinxuan Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yunpeng Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+B">Bingru Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Sang%2C+W">Wenbo Sang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+T">Tao Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tiantian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03754v1-abstract-short" style="display: inline;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectrosc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03754v1-abstract-full" style="display: none;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectroscopy, we observe the spontaneous splitting of the doubly degenerate in-plane Eg modes into two distinct chiral phonon modes of opposite helicity when the sample is zero-field cooled below the Curie temperature, without the application of an external magnetic field. As we sweep the out-of-plane magnetic field, this Eg phonon splitting exhibits a well-defined hysteresis loop directly correlated with the material's magnetization. The observed spontaneous splitting reaches up to 1.27 cm-1 at low temperatures and diminishes with increasing temperature, ultimately vanishing at the Curie temperature. Our findings highlight the role of the magnetic order in inducing chiral phonons, paving the way for novel methods to manipulate chiral phonons through magnetization and vice versa. Additionally, our work introduces new possibilities for controlling chiral Weyl fermions using chiral phonons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'none'; document.getElementById('2411.03754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03072">arXiv:2411.03072</a> <span> [<a href="https://arxiv.org/pdf/2411.03072">pdf</a>, <a href="https://arxiv.org/format/2411.03072">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Hotter isn't faster for a melting RNA hairpin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Huaping Li</a>, <a href="/search/cond-mat?searchtype=author&query=Bah%C3%A7eci%2C+E+M">Ekrem Mert Bah莽eci</a>, <a href="/search/cond-mat?searchtype=author&query=Sayar%2C+M">Mehmet Sayar</a>, <a href="/search/cond-mat?searchtype=author&query=Kabak%C3%A7%C4%B1o%C4%9Flu%2C+A">Alkan Kabak莽谋o臒lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03072v1-abstract-short" style="display: inline;"> We investigate the denaturation dynamics of nucleic acids through extensive molecular dynamics simulations of a coarse-grained RNA hairpin model. In apparent contradiction with Arrhenius' law, our findings reveal that the denaturation time of RNA hairpins is a non-monotonous function of temperature for molecules longer than few persistence lengths, with an optimal temperature above the melting poi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03072v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03072v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03072v1-abstract-full" style="display: none;"> We investigate the denaturation dynamics of nucleic acids through extensive molecular dynamics simulations of a coarse-grained RNA hairpin model. In apparent contradiction with Arrhenius' law, our findings reveal that the denaturation time of RNA hairpins is a non-monotonous function of temperature for molecules longer than few persistence lengths, with an optimal temperature above the melting point, $T_m$, at which denaturation occurs fastest. This anomaly arises from the existence of two distinct pathways: ``unidirectional'' unzipping, progressing from one end to the other and favored near $T_m$, and ``bidirectional'' denaturation, where competing unzipping events initiate from both ends at higher temperatures. The two regimes manifest distinct scaling laws for the melting time \textit{vs.} length, $L$, and are separated by a crossover temperature $T_\times$, with $(T_\times-T_m) \sim L^{-1}$. The results highlight the significant role of the helical structure in the out-of-equilibrium dynamics of RNA/DNA denaturation and unveil multiple surprises in a decades-old problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03072v1-abstract-full').style.display = 'none'; document.getElementById('2411.03072v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01160">arXiv:2411.01160</a> <span> [<a href="https://arxiv.org/pdf/2411.01160">pdf</a>, <a href="https://arxiv.org/ps/2411.01160">ps</a>, <a href="https://arxiv.org/format/2411.01160">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.195418">10.1103/PhysRevB.109.195418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Longitudinal and transverse mobilities of $n$-type monolayer transition metal dichalcogenides in the presence of proximity-induced interactions at low temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">W. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y+M">Y. M. Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+L">L. Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H+W">H. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Duppen%2C+B">B. Van Duppen</a>, <a href="/search/cond-mat?searchtype=author&query=Milo%C5%A1evi%C4%87%2C+M+V">M. V. Milo拧evi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Peeters%2C+F+M">F. M. Peeters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01160v1-abstract-short" style="display: inline;"> We present a detailed theoretical investigation on the electronic transport properties of $n$-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr枚dinger equation with a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01160v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01160v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01160v1-abstract-full" style="display: none;"> We present a detailed theoretical investigation on the electronic transport properties of $n$-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr枚dinger equation with a $\mathbf{k}\cdot\mathbf{p}$ Hamiltonian, and the electric screening induced by electron-electron interaction is evaluated under a standard random phase approximation approach. In particular, the longitudinal and transverse or Hall mobilities are calculated by using a momentum-balance equation derived from a semi-classical Boltzmann equation, where the electron-impurity interaction is considered as the principal scattering center at low temperature. The obtained results show that the RSOC can induce the in-plane spin components for spin-split subbands in different valleys, while the exchange interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned from one in the $K'$-valley to one in the $K$-valley by varying the Rashba parameter. The occupation of electrons in different valleys also varies with changing carrier density. Therefore, we can change the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate voltage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01160v1-abstract-full').style.display = 'none'; document.getElementById('2411.01160v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 195418 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17654">arXiv:2410.17654</a> <span> [<a href="https://arxiv.org/pdf/2410.17654">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Tuning of Single-Photon Emission in Monolayer WSe2 via Localized Strain Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yi Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Junyu Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+M">Manlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+I+C">In Cheol Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y">Youngmin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Eng%2C+J+J+H">John J. H. Eng</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+K">Kunze Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+T">Tian-Ran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Nam%2C+D">Donguk Nam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17654v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials have emerged as promising candidates for next-generation integrated single-photon emitters (SPEs). However, significant variability in the emission energies of 2D SPEs presents a major challenge in producing identical single photons from different SPEs, which may become crucial for various quantum applications including quantum information processing. Although variou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17654v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17654v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials have emerged as promising candidates for next-generation integrated single-photon emitters (SPEs). However, significant variability in the emission energies of 2D SPEs presents a major challenge in producing identical single photons from different SPEs, which may become crucial for various quantum applications including quantum information processing. Although various approaches to dynamically tuning the emission energies of 2D SPEs have been developed to address the issue, the practical solution to matching multiple individual SPEs in a single 2D flake is still scarce. In this work, we demonstrate a precise emission energy tuning of individual SPEs in a WSe2 monolayer. Our approach utilizes localized strain fields near individual SPEs, which we control independently by adjusting the physical volume of an SU-8-based stressor layer via focused laser annealing. This technique allows continuous emission energy tuning of up to 15 meV while maintaining the qualities of SPEs. Additionally, we showcase the precise spectral alignment of three distinct SPEs in a single WSe2 monolayer to the same wavelength. The tunability of 2D SPEs represents a solid step towards the on-chip integrated photonics with 2D materials for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17654v1-abstract-full').style.display = 'none'; document.getElementById('2410.17654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15350">arXiv:2410.15350</a> <span> [<a href="https://arxiv.org/pdf/2410.15350">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Li$_{14}$Mn$_{2}$S$_{9}$ and Li$_{10}$Si$_{2}$S$_{9}$ as a pair of all-electrochem-active electrode and solid-state electrolyte with chemical compatibility and low interface resistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Q">Qifan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+J">Jing Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+X">Xiao Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+J">Jingchen Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Liqi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+X">Xuhe Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zibin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+R">Ruijuan Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15350v1-abstract-short" style="display: inline;"> In solid-state batteries (SSBs), improving the physical contact at the electrode-electrolyte interface is essential for achieving better performance and durability. On the one hand, it is necessary to look for solid-state electrolytes (SSEs) with high ionic conductivity and no reaction with the electrode, on the other hand, to design the all-electrochem-active (AEA) electrodes that contain no SSEs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15350v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15350v1-abstract-full" style="display: none;"> In solid-state batteries (SSBs), improving the physical contact at the electrode-electrolyte interface is essential for achieving better performance and durability. On the one hand, it is necessary to look for solid-state electrolytes (SSEs) with high ionic conductivity and no reaction with the electrode, on the other hand, to design the all-electrochem-active (AEA) electrodes that contain no SSEs and other non-active substances. In this work, we proposed a pair of AEA-electrode and SSE with the same structural framework and excellent interface compatibility, Li$_{14}$Mn$_{2}$S$_{9}$ and Li$_{10}$Si$_{2}$S$_{9}$, and confirmed the feasibility by ab-initio molecular dynamics (AIMD) simulations and machine learning interatomic potential based molecular dynamics (MLIP-based MD) simulations, providing a new approach to promote interfacial stability in SSBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15350v1-abstract-full').style.display = 'none'; document.getElementById('2410.15350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10539">arXiv:2410.10539</a> <span> [<a href="https://arxiv.org/pdf/2410.10539">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Incommensurate Transverse Peierls Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F+Z">F. Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+K+F">K. F. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Weizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+X">Xiaoyu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Meier%2C+W+R">W. R. Meier</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+H">H. Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H+X">H. X. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lozano%2C+P+M">P. Mercado Lozano</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+C">C. Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T+T">T. T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&query=McGuire%2C+M+A">M. A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&query=Juneja%2C+R">R. Juneja</a>, <a href="/search/cond-mat?searchtype=author&query=Lindsay%2C+L">L. Lindsay</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+H+N">H. N. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+J+-">J. -M. Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+M+F">M. F. Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">H. Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10539v1-abstract-short" style="display: inline;"> In one-dimensional quantum materials, conducting electrons and the underlying lattices can undergo a spontaneous translational symmetry breaking, known as Peierls transition. For nearly a century, the Peierls transition has been understood within the paradigm of electron-electron interactions mediated by longitudinal acoustic phonons. This classical picture has recently been revised in topological… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10539v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10539v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10539v1-abstract-full" style="display: none;"> In one-dimensional quantum materials, conducting electrons and the underlying lattices can undergo a spontaneous translational symmetry breaking, known as Peierls transition. For nearly a century, the Peierls transition has been understood within the paradigm of electron-electron interactions mediated by longitudinal acoustic phonons. This classical picture has recently been revised in topological semimetals, where transverse acoustic phonons can couple with conducting p-orbital electrons and give rise to an unconventional Fermi surface instability, dubbed the transverse Peierls transition (TPT). Most interestingly, the TPT induced lattice distortions can further break rotation or mirror/inversion symmetries, leading to nematic or chiral charge density waves (CDWs). Quantum materials that host the TPT, however, have not been experimentally established. Here, we report the experimental discovery of an incommensurate TPT in the tetragonal Dirac semimetal EuAl$_4$. Using inelastic x-ray scattering with meV resolution, we observe the complete softening of a transverse acoustic phonon at the CDW wavevector upon cooling, whereas the longitudinal acoustic phonon is nearly unchanged. Combining with first principles calculations, we show that the incommensurate CDW wavevector matches the calculated charge susceptibility peak and connects the nested Dirac bands with Al 3$p_{x}$ and 3$p_{y}$ orbitals. Supplemented by second harmonic generation measurements, we show that the CDW induced lattice distortions break all vertical and diagonal mirrors whereas the four-fold rotational symmetry is retained below the CDW transition. Our observations strongly suggest a chiral CDW in EuAl$_4$ and highlight the TPT as a new avenue for chiral quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10539v1-abstract-full').style.display = 'none'; document.getElementById('2410.10539v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary materials are available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09333">arXiv:2410.09333</a> <span> [<a href="https://arxiv.org/pdf/2410.09333">pdf</a>, <a href="https://arxiv.org/format/2410.09333">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Effects of localized laser-induced heating in the photoluminescence of silicon-vacancy color centers in 4H-SiC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Misiara%2C+A">Adolfo Misiara</a>, <a href="/search/cond-mat?searchtype=author&query=Revesz%2C+S">Stephen Revesz</a>, <a href="/search/cond-mat?searchtype=author&query=Boulares%2C+I">Ibrahim Boulares</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hebin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09333v1-abstract-short" style="display: inline;"> Silicon vacancy ($\mathrm{V_{Si}}$) color centers in 4H-SiC are optically accessible through their zero-phonon line (ZPL) photoluminescence (PL), which is sensitive to the sample temperature. We report the effects of localized laser-induced heating in 4H-SiC by measuring the PL spectra of $\mathrm{V_{Si}}$ color centers. The effects of laser-induced heating manifest as the decrease in the peak hei… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09333v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09333v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09333v1-abstract-full" style="display: none;"> Silicon vacancy ($\mathrm{V_{Si}}$) color centers in 4H-SiC are optically accessible through their zero-phonon line (ZPL) photoluminescence (PL), which is sensitive to the sample temperature. We report the effects of localized laser-induced heating in 4H-SiC by measuring the PL spectra of $\mathrm{V_{Si}}$ color centers. The effects of laser-induced heating manifest as the decrease in the peak height, redshift, and broadening of the ZPLs in the PL spectrum. The local temperature in the sample can be determined from the center energy of the ZPLs by using the Varshni equation. The sample temperature can be modeled as a system in contact with a thermal reservoir while being heated by a laser beam. This work highlights the importance of considering laser-induced heating in the optical properties of color centers in 4H-SiC and their potential applications. The result also suggests that the sharp and bright ZPLs of color centers can be used as local temperature probes in 4H-SiC devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09333v1-abstract-full').style.display = 'none'; document.getElementById('2410.09333v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05387">arXiv:2410.05387</a> <span> [<a href="https://arxiv.org/pdf/2410.05387">pdf</a>, <a href="https://arxiv.org/format/2410.05387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Valley polarization, magnetization, and superconductivity in bilayer graphene near the van Hove singularity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Friedlan%2C+A">Alex Friedlan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Heqiu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kee%2C+H">Hae-Young Kee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05387v1-abstract-short" style="display: inline;"> The discovery of Mott insulators and superconductivity in twisted bilayer graphene has ignited intensive research into strong correlation effects in other stacking geometries. Bernal-stacked bilayer graphene (BBG), when subjected to a perpendicular electric field, exhibits phase transitions to a variety of broken-symmetry states. Notably, superconductivity emerges when BBG is in proximity to a hea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05387v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05387v1-abstract-full" style="display: none;"> The discovery of Mott insulators and superconductivity in twisted bilayer graphene has ignited intensive research into strong correlation effects in other stacking geometries. Bernal-stacked bilayer graphene (BBG), when subjected to a perpendicular electric field, exhibits phase transitions to a variety of broken-symmetry states. Notably, superconductivity emerges when BBG is in proximity to a heavy transition-metal dichalcogenide, highlighting the role of spin-orbit coupling (SOC). Here we investigate the origin of Ising SOC and its role in the competition between superconductivity and spin- and valley-polarized states in BBG. Starting from strong electron-electron interactions on the BBG lattice, we derive a low-energy effective model near the valleys that incorporates both density-density and spin-spin interactions. Using self-consistent mean-field theory, we map out the BBG phase diagram. Our findings reveal that near the van Hove filling, a mixed spin- and valley-polarized phase dominates over superconductivity. Away from the van Hove filling, a spin-polarized, spin-triplet superconducting state arises, characterized by an in-plane orientation of the magnetic moment and an out-of-plane orientation of the d-vector. Contrary to previous proposals, we find that Ising SOC favours spin-valley order while suppressing superconductivity near the van Hove singularity. We discuss other potential proximity effects and suggest directions for future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05387v1-abstract-full').style.display = 'none'; document.getElementById('2410.05387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03116">arXiv:2410.03116</a> <span> [<a href="https://arxiv.org/pdf/2410.03116">pdf</a>, <a href="https://arxiv.org/format/2410.03116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Predicting macroscopic properties of amorphous monolayer carbon via pair correlation function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+M">Mouyang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chenyan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+C">Chenxin Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuxiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qingyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Ji Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03116v1-abstract-short" style="display: inline;"> Establishing the structure-property relationship in amorphous materials has been a long-term grand challenge due to the lack of a unified description of the degree of disorder. In this work, we develop SPRamNet, a neural network based machine-learning pipeline that effectively predicts structure-property relationship of amorphous material via global descriptors. Applying SPRamNet on the recently d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03116v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03116v1-abstract-full" style="display: none;"> Establishing the structure-property relationship in amorphous materials has been a long-term grand challenge due to the lack of a unified description of the degree of disorder. In this work, we develop SPRamNet, a neural network based machine-learning pipeline that effectively predicts structure-property relationship of amorphous material via global descriptors. Applying SPRamNet on the recently discovered amorphous monolayer carbon, we successfully predict the thermal and electronic properties. More importantly, we reveal that a short range of pair correlation function can readily encode sufficiently rich information of the structure of amorphous material. Utilizing powerful machine learning architectures, the encoded information can be decoded to reconstruct macroscopic properties involving many-body and long-range interactions. Establishing this hidden relationship offers a unified description of the degree of disorder and eliminates the heavy burden of measuring atomic structure, opening a new avenue in studying amorphous materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03116v1-abstract-full').style.display = 'none'; document.getElementById('2410.03116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00768">arXiv:2410.00768</a> <span> [<a href="https://arxiv.org/pdf/2410.00768">pdf</a>, <a href="https://arxiv.org/format/2410.00768">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High Mobility SiGe/Ge 2DHG Heterostructure Quantum Wells for Semiconductor Hole Spin Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kong%2C+Z">Zhenzhen Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zonghu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yuchen Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Gang Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Ou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+J">Jiale Su</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinbiao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Junfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+C">Chao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+T">Tianchun Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guilei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00768v1-abstract-short" style="display: inline;"> Strong spin-orbit coupling and relatively weak hyperfine interactions make germanium hole spin qubits a promising candidate for semiconductor quantum processors. The two-dimensional hole gas structure of strained Ge quantum wells serves as the primary material platform for spin hole qubits.A low disorder material environment is essential for this process. In this work, we fabricated a Ge/SiGe hete… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00768v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00768v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00768v1-abstract-full" style="display: none;"> Strong spin-orbit coupling and relatively weak hyperfine interactions make germanium hole spin qubits a promising candidate for semiconductor quantum processors. The two-dimensional hole gas structure of strained Ge quantum wells serves as the primary material platform for spin hole qubits.A low disorder material environment is essential for this process. In this work, we fabricated a Ge/SiGe heterojunction with a 60 nm buried quantum well layer on a Si substrate using reduced pressure chemical vapor deposition technology. At a temperature of 16 mK, when the carrier density is 1.87*10^11/cm2, we obtained a mobility as high as 308.64*10^4cm2/Vs. Concurrently, double quantum dot and planar germanium coupling with microwave cavities were also successfully achieved.This fully demonstrates that this structure can be used for the preparation of higher-performance hole spin qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00768v1-abstract-full').style.display = 'none'; document.getElementById('2410.00768v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18843">arXiv:2409.18843</a> <span> [<a href="https://arxiv.org/pdf/2409.18843">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal Conductivity of Cubic Silicon Carbide Single Crystals Heavily Doped by Nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yunfan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+D">Da Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zixuan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Runsheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+R">Ru Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zhe Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18843v1-abstract-short" style="display: inline;"> High-purity cubic silicon carbide possesses the second-highest thermal conductivity among large-scale crystals, surpassed only by diamond, making it crucial for practical applications of thermal management. Recent theoretical studies predict that heavy doping reduces the thermal conductivity of 3C-SiC via phonon-defect and phonon-electron scattering. However, experimental evidence has been limited… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18843v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18843v1-abstract-full" style="display: none;"> High-purity cubic silicon carbide possesses the second-highest thermal conductivity among large-scale crystals, surpassed only by diamond, making it crucial for practical applications of thermal management. Recent theoretical studies predict that heavy doping reduces the thermal conductivity of 3C-SiC via phonon-defect and phonon-electron scattering. However, experimental evidence has been limited. In this work, we report the thermal conductivity of heavily nitrogen doped 3C SiC single crystals, grown using the top-seeded solution growth method, measured via time domain thermoreflectance. Our results show that a significant reduction (up to 30%) in thermal conductivity is observed with nitrogen doping concentrations around 1020 cm-3. A comparison with theoretical calculations indicates less intensive scatterings are observed in the measured thermal conductivity. We speculate that the electron-phonon scattering may have a smaller impact than previously anticipated or the distribution of defects are nonuniform which leads to less intensive scatterings. These findings shed light on understanding the doping effects on thermal transport in semiconductors and support further exploration of 3C SiC for thermal management in electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18843v1-abstract-full').style.display = 'none'; document.getElementById('2409.18843v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16979">arXiv:2409.16979</a> <span> [<a href="https://arxiv.org/pdf/2409.16979">pdf</a>, <a href="https://arxiv.org/format/2409.16979">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Fate of pseudo mobility-edge and multi-states in non-Hermitian Wannier-Stark lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yu-Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han-Ze Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J+-">J. -X. Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16979v1-abstract-short" style="display: inline;"> The interplay between non-Hermiticity and disorder-free localization has recently become an intriguing and open question. In this work, we explore the impact of non-Hermiticity on pseudo mobility edges (MEs) and multi-states in disorder-free systems. We focus on a one-dimensional (1D) mosaic lattice with a finite-height Wannier-Stark potential under non-reciprocal non-Hermitian modulation. Using t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16979v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16979v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16979v1-abstract-full" style="display: none;"> The interplay between non-Hermiticity and disorder-free localization has recently become an intriguing and open question. In this work, we explore the impact of non-Hermiticity on pseudo mobility edges (MEs) and multi-states in disorder-free systems. We focus on a one-dimensional (1D) mosaic lattice with a finite-height Wannier-Stark potential under non-reciprocal non-Hermitian modulation. Using the transfer matrix techniques, we study how pseudo-MEs evolve under the influence of non-reciprocity. We then combine this with the perspective of similarity transformations to understand the changes in the emergent multi-states. Finally, we present the dynamical patterns of these multi-states. These findings expand the understanding of localization phenomena in non-Hermitian systems, offering new insights into the interplay between non-Hermiticity and disorder-free localization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16979v1-abstract-full').style.display = 'none'; document.getElementById('2409.16979v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Any comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16762">arXiv:2409.16762</a> <span> [<a href="https://arxiv.org/pdf/2409.16762">pdf</a>, <a href="https://arxiv.org/format/2409.16762">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Post-$GW$ theory and its application to pseudogap in strongly correlated system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+Y">Yingze Su</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+J">Junnian Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Haiqing Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Huaqing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Dingping Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16762v1-abstract-short" style="display: inline;"> The $GW$ approximation is a widely used framework for studying correlated materials, but it struggles with certain limitations, such as its inability to explain pseudogap phenomena. To overcome these problems, we propose a systematic theoretical framework for Green's function corrections and apply it specifically to the $GW$ approximation. In this new theory, the screened potential is reconnected… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16762v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16762v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16762v1-abstract-full" style="display: none;"> The $GW$ approximation is a widely used framework for studying correlated materials, but it struggles with certain limitations, such as its inability to explain pseudogap phenomena. To overcome these problems, we propose a systematic theoretical framework for Green's function corrections and apply it specifically to the $GW$ approximation. In this new theory, the screened potential is reconnected to the physical response function, i.e. the covariant response function proposed in \cite{cGW_2023}, rather than using the RPA formula. We apply our scheme to calculate Green's function, the spectral function, and the charge compressibility in the two-dimensional Hubbard model. Our scheme yields significant qualitative and quantitative improvements over the standard $GW$ method and successfully captures the pseudogap behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16762v1-abstract-full').style.display = 'none'; document.getElementById('2409.16762v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14843">arXiv:2409.14843</a> <span> [<a href="https://arxiv.org/pdf/2409.14843">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Creation of independently controllable and long lifetime polar skyrmion textures in ferroelectric-metallic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+F">Fei Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+J">Jianhua Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongfang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+J">Jianwei Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Hui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianyi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Linjie Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+M">Mengjun Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaoyue Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenpeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Weijin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Y">Yue Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14843v1-abstract-short" style="display: inline;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14843v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14843v1-abstract-full" style="display: none;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a metallic contact undergo a topological phase transition and stabilize a broad family of skyrmion-like textures (e.g., skyrmion bubbles, multiple 蟺-twist target skyrmions, and skyrmion bags) with independent controllability, analogous to those reported in magnetic systems. Weakly-interacted skyrmion arrays with a density over 300 Gb/inch2 are successfully written, erased and read-out by local electrical and mechanical stimuli of a scanning probe. Interestingly, in contrast to the relatively short lifetime <20 hours of the skyrmion bubbles, the multiple 蟺-twist target skyrmions and skyrmion bags show topology-enhanced stability with lifetime over two weeks. Experimental and theoretical analysis implies the heterostructures carry electric Dzyaloshinskii-Moriya interaction mediated by oxygen octahedral tiltings. Our results demonstrate ferroelectric-metallic heterostructures as fertile playground for topological states and emergent phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'none'; document.getElementById('2409.14843v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13384">arXiv:2409.13384</a> <span> [<a href="https://arxiv.org/pdf/2409.13384">pdf</a>, <a href="https://arxiv.org/format/2409.13384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.104802">10.1103/PhysRevMaterials.8.104802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing enhanced superconductivity in van der Waals polytypes of V$_x$TaS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pudelko%2C+W+R">Wojciech R. Pudelko</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Huanlong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Petocchi%2C+F">Francesco Petocchi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Guedes%2C+E+B">Eduardo Bonini Guedes</a>, <a href="/search/cond-mat?searchtype=author&query=K%C3%BCspert%2C+J">Julia K眉spert</a>, <a href="/search/cond-mat?searchtype=author&query=von+Arx%2C+K">Karin von Arx</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wagner%2C+R+C">Ron Cohn Wagner</a>, <a href="/search/cond-mat?searchtype=author&query=Polley%2C+C+M">Craig M. Polley</a>, <a href="/search/cond-mat?searchtype=author&query=Leandersson%2C+M">Mats Leandersson</a>, <a href="/search/cond-mat?searchtype=author&query=Osiecki%2C+J">Jacek Osiecki</a>, <a href="/search/cond-mat?searchtype=author&query=Thiagarajan%2C+B">Balasubramanian Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&query=Radovi%C4%87%2C+M">Milan Radovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&query=Schilling%2C+A">Andreas Schilling</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+J">Johan Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Plumb%2C+N+C">Nicholas C. Plumb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13384v2-abstract-short" style="display: inline;"> Layered transition metal dichalcogenides (TMDs) stabilize in multiple structural forms with profoundly distinct and exotic electronic phases. Interfacing different layer types is a promising route to manipulate TMDs' properties, not only as a means to engineer quantum devices, but also as a route to explore fundamental physics in complex matter. Here we use angle-resolved photoemission (ARPES) to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13384v2-abstract-full').style.display = 'inline'; document.getElementById('2409.13384v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13384v2-abstract-full" style="display: none;"> Layered transition metal dichalcogenides (TMDs) stabilize in multiple structural forms with profoundly distinct and exotic electronic phases. Interfacing different layer types is a promising route to manipulate TMDs' properties, not only as a means to engineer quantum devices, but also as a route to explore fundamental physics in complex matter. Here we use angle-resolved photoemission (ARPES) to investigate a strong layering-dependent enhancement of superconductivity in TaS$_2$, in which the superconducting transition temperature, $T_c$, of its $2H$ structural phase is nearly tripled when insulating $1T$ layers are inserted into the system. The study is facilitated by a novel vanadium-intercalation approach to synthesizing various TaS$_2$ polytypes, which improves the quality of ARPES data while leaving key aspects of the electronic structure and properties intact. The spectra show the clear opening of the charge density wave gap in the pure $2H$ phase and its suppression when $1T$ layers are introduced to the system. Moreover, in the mixed-layer $4Hb$ system, we observe a strongly momentum-anisotropic increase in electron-phonon coupling near the Fermi level relative to the $2H$ phase. Both phenomena help to account for the increased $T_c$ in mixed $2H$/$1T$ layer structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13384v2-abstract-full').style.display = 'none'; document.getElementById('2409.13384v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11791">arXiv:2409.11791</a> <span> [<a href="https://arxiv.org/pdf/2409.11791">pdf</a>, <a href="https://arxiv.org/format/2409.11791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Multifold Majorana corner modes arising from multiple pairs of helical edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiwei Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Haoshu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Z">Zhongbo Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+S">Shaolong Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11791v2-abstract-short" style="display: inline;"> Quantum spin Hall insulators with a pair of helical edge states and proximity-induced superconductivity have been shown to support second-order topological superconductors with Majorana corner modes. As the Majorana corner modes are originated from the helical edge states of the quantum spin Hall insulators, whether quantum spin Hall insulators with multiple pairs of helical edge states and proxim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11791v2-abstract-full').style.display = 'inline'; document.getElementById('2409.11791v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11791v2-abstract-full" style="display: none;"> Quantum spin Hall insulators with a pair of helical edge states and proximity-induced superconductivity have been shown to support second-order topological superconductors with Majorana corner modes. As the Majorana corner modes are originated from the helical edge states of the quantum spin Hall insulators, whether quantum spin Hall insulators with multiple pairs of helical edge states and proximity-induced superconductivity can give rise to second-order topological superconductors with multifold Majorana corner modes is an interesting question to address. In this work, we consider a quantum spin Hall insulator with two pairs of helical edge states. We find robust twofold Majorana corner modes can be achieved when the helical edge states are gapped by a combined action of a magnetic exchange field and an $s$-wave pairing, or an $s+p$ mixed-parity pairing. The stability of two Majorana zero modes per corner under the action of magnetic exchange fields is attributed to the protection from the chiral symmetry. Our study reveals that heterostructures composed of superconductors and quantum spin Hall insulators with multiple pairs of helical edge states could serve as a platform to pursue multifold Majorana corner modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11791v2-abstract-full').style.display = 'none'; document.getElementById('2409.11791v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09761">arXiv:2409.09761</a> <span> [<a href="https://arxiv.org/pdf/2409.09761">pdf</a>, <a href="https://arxiv.org/format/2409.09761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c02345">10.1021/acs.nanolett.4c02345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly tunable 2D silicon quantum dot array with coupling beyond nearest neighbors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+J">Jia-Min Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+W">Wen-Long Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shao-Min Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">You-Jia Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Ou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Gang Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Bao-Chuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09761v1-abstract-short" style="display: inline;"> Scaling up quantum dots to two-dimensional (2D) arrays is a crucial step for advancing semiconductor quantum computation. However, maintaining excellent tunability of quantum dot parameters, including both nearest-neighbor and next-nearest-neighbor couplings, during 2D scaling is challenging, particularly for silicon quantum dots due to their relatively small size. Here, we present a highly contro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09761v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09761v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09761v1-abstract-full" style="display: none;"> Scaling up quantum dots to two-dimensional (2D) arrays is a crucial step for advancing semiconductor quantum computation. However, maintaining excellent tunability of quantum dot parameters, including both nearest-neighbor and next-nearest-neighbor couplings, during 2D scaling is challenging, particularly for silicon quantum dots due to their relatively small size. Here, we present a highly controllable and interconnected 2D quantum dot array in planar silicon, demonstrating independent control over electron fillings and the tunnel couplings of nearest-neighbor dots. More importantly, we also demonstrate the wide tuning of tunnel couplings between next-nearest-neighbor dots,which plays a crucial role in 2D quantum dot arrays. This excellent tunability enables us to alter the coupling configuration of the array as needed. These results open up the possibility of utilizing silicon quantum dot arrays as versatile platforms for quantum computing and quantum simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09761v1-abstract-full').style.display = 'none'; document.getElementById('2409.09761v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09747">arXiv:2409.09747</a> <span> [<a href="https://arxiv.org/pdf/2409.09747">pdf</a>, <a href="https://arxiv.org/format/2409.09747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0230605">10.1063/5.0230605 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pursuing high-fidelity control of spin qubits in natural Si/SiGe quantum dot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shao-Min Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Run-Ze Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+J">Jia-Min Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+W">Wen-Long Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Ou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Gang Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Bao-Chuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09747v1-abstract-short" style="display: inline;"> Electron spin qubits in silicon are a promising platform for fault-tolerant quantum computing. Low-frequency noise, including nuclear spin fluctuations and charge noise, is a primary factor limiting gate fidelities. Suppressing this noise is crucial for high-fidelity qubit operations. Here, we report on a two-qubit quantum device in natural silicon with universal qubit control, designed to investi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09747v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09747v1-abstract-full" style="display: none;"> Electron spin qubits in silicon are a promising platform for fault-tolerant quantum computing. Low-frequency noise, including nuclear spin fluctuations and charge noise, is a primary factor limiting gate fidelities. Suppressing this noise is crucial for high-fidelity qubit operations. Here, we report on a two-qubit quantum device in natural silicon with universal qubit control, designed to investigate the upper limits of gate fidelities in a non-purified Si/SiGe quantum dot device. By employing advanced device structures, qubit manipulation techniques, and optimization methods, we have achieved single-qubit gate fidelities exceeding 99% and a two-qubit Controlled-Z (CZ) gate fidelity of 91%. Decoupled CZ gates are used to prepare Bell states with a fidelity of 91%, typically exceeding previously reported values in natural silicon devices. These results underscore that even natural silicon has the potential to achieve high-fidelity gate operations, particularly with further optimization methods to suppress low-frequency noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09747v1-abstract-full').style.display = 'none'; document.getElementById('2409.09747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09393">arXiv:2409.09393</a> <span> [<a href="https://arxiv.org/pdf/2409.09393">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Scalable Reshaping of Diamond Particles via Programmable Nanosculpting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+T">Tongtong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+F">Fuqiang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yaorong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yingchi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhongqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+K+H">Kwai Hei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Ye Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+L">Lei Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Wong%2C+N">Ngai Wong</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+D">Dangyuan Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yuan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09393v1-abstract-short" style="display: inline;"> Diamond particles have many interesting properties and possible applications. However, producing diamond particles with well-defined shapes at scale is challenging because diamonds are chemically inert and extremely hard. Here, we show air oxidation, a routine method for purifying diamonds, can be used to precisely shape diamond particles at scale. By exploiting the distinct reactivities of differ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09393v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09393v1-abstract-full" style="display: none;"> Diamond particles have many interesting properties and possible applications. However, producing diamond particles with well-defined shapes at scale is challenging because diamonds are chemically inert and extremely hard. Here, we show air oxidation, a routine method for purifying diamonds, can be used to precisely shape diamond particles at scale. By exploiting the distinct reactivities of different crystal facets and defects inside the diamond, layer-by-layer outward-to-inward and inward-to-outward oxidation produced diverse diamond shapes including sphere, twisted surface, pyramidal islands, inverted pyramids, nano-flowers, and hollow polygons. The nanosculpted diamonds had more and finer features that enabled them to outperform the original raw diamonds in various applications. Using experimental observations and Monte Carlo simulations, we built a shape library that guides the design and fabrication of diamond particles with well-defined shapes and functional value. Our study presents a simple, economical and scalable way to produce shape-customized diamonds for various photonics, catalysis, quantum and information technology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09393v1-abstract-full').style.display = 'none'; document.getElementById('2409.09393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06921">arXiv:2409.06921</a> <span> [<a href="https://arxiv.org/pdf/2409.06921">pdf</a>, <a href="https://arxiv.org/format/2409.06921">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Voltage Mining for (De)lithiation-stabilized Cathodes and a Machine Learning Model for Li-ion Cathode Voltage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H+H">Haoming Howard Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Qian Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ceder%2C+G">Gerbrand Ceder</a>, <a href="/search/cond-mat?searchtype=author&query=Persson%2C+K+A">Kristin A. Persson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06921v1-abstract-short" style="display: inline;"> Advances in lithium-metal anodes have inspired interest in discovery of Li-free cathodes, most of which are natively found in their charged state. This is in contrast to today's commercial lithium-ion battery cathodes, which are more stable in their discharged state. In this study, we combine calculated cathode voltage information from both categories of cathode materials, covering 5577 and 2423 t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06921v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06921v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06921v1-abstract-full" style="display: none;"> Advances in lithium-metal anodes have inspired interest in discovery of Li-free cathodes, most of which are natively found in their charged state. This is in contrast to today's commercial lithium-ion battery cathodes, which are more stable in their discharged state. In this study, we combine calculated cathode voltage information from both categories of cathode materials, covering 5577 and 2423 total unique structure pairs, respectively. The resulting voltage distributions with respect to the redox pairs and anion types for both classes of compounds emphasize design principles for high-voltage cathodes, which favor later Period 4 transition metals in their higher oxidation states and more electronegative anions like fluorine or polyaion groups. Generally, cathodes that are found in their charged, delithiated state are shown to exhibit voltages lower than those that are most stable in their lithiated state, in agreement with thermodynamic expectations. Deviations from this trend are found to originate from different anion distributions between redox pairs. In addition, a machine learning model for voltage prediction based on chemical formulae is constructed, and shows state-of-the-art performance when compared to two established composition-based ML models for materials properties predictions, Roost and CrabNet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06921v1-abstract-full').style.display = 'none'; document.getElementById('2409.06921v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06337">arXiv:2409.06337</a> <span> [<a href="https://arxiv.org/pdf/2409.06337">pdf</a>, <a href="https://arxiv.org/ps/2409.06337">ps</a>, <a href="https://arxiv.org/format/2409.06337">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.094405">10.1103/PhysRevMaterials.8.094405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of itinerant ferromagnetism in a cobalt-based oxypnictide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hua-Xun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yi-Qiang Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jia-Xin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">Shi-Jie Song</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Q">Qin-Qing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guang-Han Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06337v1-abstract-short" style="display: inline;"> We report a layered transition-metal-ordered oxypnictide Sr$_{2}$CrCoAsO$_{3}$. The new material was synthesized by solid-state reactions under vacuum. It has an intergrowth structure with a perovskite-like Sr$_3$Cr$_2$O$_6$ unit and ThCr$_2$Si$_2$-type SrCo$_2$As$_2$ block stacking coherently along the crystallographic $c$ axis. The measurements of electrical resistivity, magnetic susceptibility,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06337v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06337v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06337v1-abstract-full" style="display: none;"> We report a layered transition-metal-ordered oxypnictide Sr$_{2}$CrCoAsO$_{3}$. The new material was synthesized by solid-state reactions under vacuum. It has an intergrowth structure with a perovskite-like Sr$_3$Cr$_2$O$_6$ unit and ThCr$_2$Si$_2$-type SrCo$_2$As$_2$ block stacking coherently along the crystallographic $c$ axis. The measurements of electrical resistivity, magnetic susceptibility, and specific heat indicate metallic conductivity from the CoAs layers and short-range antiferromagnetic ordering in the CrO$_{2}$ planes. No itinerant-electron ferromagnetism expected in CoAs layers is observed. This result, combined with the first-principles calculations and the previous reports of other CoAs-layer-based materials, suggests that the Co$-$Co bondlength plays a crucial role in the emergence of itinerant ferromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06337v1-abstract-full').style.display = 'none'; document.getElementById('2409.06337v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Mater. 8, 094405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05306">arXiv:2409.05306</a> <span> [<a href="https://arxiv.org/pdf/2409.05306">pdf</a>, <a href="https://arxiv.org/format/2409.05306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Investigating Material Interface Diffusion Phenomena through Graph Neural Networks in Applied Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zirui Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Feng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05306v2-abstract-short" style="display: inline;"> Understanding and predicting interface diffusion phenomena in materials is crucial for various industrial applications, including semiconductor manufacturing, battery technology, and catalysis. In this study, we propose a novel approach utilizing Graph Neural Networks (GNNs) to investigate and model material interface diffusion. We begin by collecting experimental and simulated data on diffusion c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05306v2-abstract-full').style.display = 'inline'; document.getElementById('2409.05306v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05306v2-abstract-full" style="display: none;"> Understanding and predicting interface diffusion phenomena in materials is crucial for various industrial applications, including semiconductor manufacturing, battery technology, and catalysis. In this study, we propose a novel approach utilizing Graph Neural Networks (GNNs) to investigate and model material interface diffusion. We begin by collecting experimental and simulated data on diffusion coefficients, concentration gradients, and other relevant parameters from diverse material systems. The data are preprocessed, and key features influencing interface diffusion are extracted. Subsequently, we construct a GNN model tailored to the diffusion problem, with a graph representation capturing the atomic structure of materials. The model architecture includes multiple graph convolutional layers for feature aggregation and update, as well as optional graph attention layers to capture complex relationships between atoms. We train and validate the GNN model using the preprocessed data, achieving accurate predictions of diffusion coefficients, diffusion rates, concentration profiles, and potential diffusion pathways. Our approach offers insights into the underlying mechanisms of interface diffusion and provides a valuable tool for optimizing material design and engineering. Additionally, our method offers possible strategies to solve the longstanding problems related to materials interface diffusion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05306v2-abstract-full').style.display = 'none'; document.getElementById('2409.05306v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04983">arXiv:2409.04983</a> <span> [<a href="https://arxiv.org/pdf/2409.04983">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Testing Adam-Gibbs relationship in tapped Granular Packings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ai%2C+X">Xinyu Ai</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+H">Houfei Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Z">Zhikun Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hanyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+C">Chengjie Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yujie Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04983v1-abstract-short" style="display: inline;"> Disordered granular packings share many similarities with supercooled liquids, particu-larly in the rapid increase of structural relaxation time within a narrow range of temperature or packing fraction. However, it is unclear whether the dynamics of granular materials align with those of their corresponding thermal hard sphere liquids, and the particular influence of friction of a granular system… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04983v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04983v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04983v1-abstract-full" style="display: none;"> Disordered granular packings share many similarities with supercooled liquids, particu-larly in the rapid increase of structural relaxation time within a narrow range of temperature or packing fraction. However, it is unclear whether the dynamics of granular materials align with those of their corresponding thermal hard sphere liquids, and the particular influence of friction of a granular system remains largely unexplored. Here, we experimentally study the slow relaxation and the steady state of monodisperse granular sphere packings with X-ray tomography. We first quantify the thermodynamic parameters under the Edwards' ensemble, (i.e., effective temperature and configurational entropy), of granular spheres with varying friction, and measure their characteristic relaxation time during compaction processes. We then demonstrate a unified picture of the relaxation process in granular systems in which the Adam-Gibbs (AG) relationship is generally followed. These results clarify the close relation-ship between granular materials and the ideal frictionless hard sphere model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04983v1-abstract-full').style.display = 'none'; document.getElementById('2409.04983v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02952">arXiv:2409.02952</a> <span> [<a href="https://arxiv.org/pdf/2409.02952">pdf</a>, <a href="https://arxiv.org/format/2409.02952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deep learning-driven evaluation and prediction of ion-doped NASICON materials for enhanced solid-state battery performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zirui Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Si Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+P">Pengfei Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Q">Qian Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">Guanping Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+K">Kaitong Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hai-Feng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02952v2-abstract-short" style="display: inline;"> We developed a convolutional neural network (CNN) model capable of predicting the performance of various ion-doped NASICON compounds by leveraging extensive datasets from prior experimental investigation.The model demonstrated high accuracy and efficiency in predicting ionic conductivity and electrochemical properties. Key findings include the successful synthesis and validation of three NASICON m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02952v2-abstract-full').style.display = 'inline'; document.getElementById('2409.02952v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02952v2-abstract-full" style="display: none;"> We developed a convolutional neural network (CNN) model capable of predicting the performance of various ion-doped NASICON compounds by leveraging extensive datasets from prior experimental investigation.The model demonstrated high accuracy and efficiency in predicting ionic conductivity and electrochemical properties. Key findings include the successful synthesis and validation of three NASICON materials predicted by the model, with experimental results closely matching the model predictions. This research not only enhances the understanding of ion-doping effects in NASICON materials but also establishes a robust framework for material design and practical applications. It bridges the gap between theoretical predictions and experimental validations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02952v2-abstract-full').style.display = 'none'; document.getElementById('2409.02952v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; I.2.8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01682">arXiv:2409.01682</a> <span> [<a href="https://arxiv.org/pdf/2409.01682">pdf</a>, <a href="https://arxiv.org/format/2409.01682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Deep Band Crossings Enhanced Nonlinear Optical Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zou%2C+N">Nianlong Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Haowei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+M">Minghui Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+R">Ruiping Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yizhou Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+B">Bing-Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01682v1-abstract-short" style="display: inline;"> Nonlinear optical (NLO) effects in materials with band crossings have attracted significant research interests due to the divergent band geometric quantities around these crossings. Most current research has focused on band crossings between the valence and conduction bands. However, such crossings are absent in insulators, which are more relevant for NLO applications. In this work, we demonstrate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01682v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01682v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01682v1-abstract-full" style="display: none;"> Nonlinear optical (NLO) effects in materials with band crossings have attracted significant research interests due to the divergent band geometric quantities around these crossings. Most current research has focused on band crossings between the valence and conduction bands. However, such crossings are absent in insulators, which are more relevant for NLO applications. In this work, we demonstrate that NLO effects can be significantly enhanced by band crossings within the valence or conduction bands, which we designate as "deep band crossings" (DBCs). As an example, in two dimensions, we show that shift conductivity can be substantially enhanced or even divergent due to a mirror-protected "deep Dirac nodal point". In three dimensions, we propose GeTe as an ideal material where shift conductivity is enhanced by "deep Dirac nodal lines". The ubiquity of this enhancement is further confirmed by high-throughput calculations. Other types of DBCs and NLO effects are also discussed. By manipulating band crossings between arbitrary bands, our work offers a simple, practical, and universal way to greatly enhance NLO effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01682v1-abstract-full').style.display = 'none'; document.getElementById('2409.01682v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01613">arXiv:2409.01613</a> <span> [<a href="https://arxiv.org/pdf/2409.01613">pdf</a>, <a href="https://arxiv.org/ps/2409.01613">ps</a>, <a href="https://arxiv.org/format/2409.01613">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad77ed">10.1088/1367-2630/ad77ed <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vector rogue waves in spin-1 Bose-Einstein condensates with spin-orbit coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jun-Tao He</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hui-Jun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+J">Ji Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Malomed%2C+B+A">Boris A. Malomed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01613v2-abstract-short" style="display: inline;"> We analytically and numerically study three-component rogue waves (RWs) in spin-1 Bose-Einstein condensates with Raman-induced spin-orbit coupling (SOC). Using the multiscale perturbative method, we obtain approximate analytical solutions for RWs with positive and negative effective masses, determined by the effective dispersion of the system. The solutions include RWs with smooth and striped shap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01613v2-abstract-full').style.display = 'inline'; document.getElementById('2409.01613v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01613v2-abstract-full" style="display: none;"> We analytically and numerically study three-component rogue waves (RWs) in spin-1 Bose-Einstein condensates with Raman-induced spin-orbit coupling (SOC). Using the multiscale perturbative method, we obtain approximate analytical solutions for RWs with positive and negative effective masses, determined by the effective dispersion of the system. The solutions include RWs with smooth and striped shapes, as well as higher-order RWs. The analytical solutions demonstrate that the RWs in the three components of the system exhibit different velocities and their maximum peaks appear at the same spatiotemporal position, which is caused by SOC and interactions. The accuracy of the approximate analytical solutions is corroborated by comparison with direct numerical simulations of the underlying system. Additionally, we systematically explore existence domains for the RWs determined by the baseband modulational instability (BMI). Numerical simulations corroborate that, under the action of BMI, plane waves with random initial perturbations excite RWs, as predicted by the approximate analytical solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01613v2-abstract-full').style.display = 'none'; document.getElementById('2409.01613v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, to be published in New Journal of Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 26, 093020 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00929">arXiv:2409.00929</a> <span> [<a href="https://arxiv.org/pdf/2409.00929">pdf</a>, <a href="https://arxiv.org/format/2409.00929">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Unified Investigation of Rapid Hall Coefficient Changes in Cuprates: Pseudogap and Fermi Surface Influences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Su%2C+Y">Yingze Su</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Huaqing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Dingping Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00929v1-abstract-short" style="display: inline;"> High-$T_c$ cuprates are characterized by strong spin fluctuations, which give rise to antiferromagnetic and pseudogap phases and may be key to the high superconducting critical temperatures observed in these materials. Experimental studies have revealed significant changes in the Hall coefficient $R_H$ across these phases, a phenomenon closely related to both spin fluctuations and changes in the F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00929v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00929v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00929v1-abstract-full" style="display: none;"> High-$T_c$ cuprates are characterized by strong spin fluctuations, which give rise to antiferromagnetic and pseudogap phases and may be key to the high superconducting critical temperatures observed in these materials. Experimental studies have revealed significant changes in the Hall coefficient $R_H$ across these phases, a phenomenon closely related to both spin fluctuations and changes in the Fermi surface morphology. Using the perturbation correction to Gaussian approximation (PCGA), we investigate the two-dimensional(2D) square-lattice single-band Hubbard model and obtain the self-energy with a finite imaginary part due to scattering. We calculate the density dependence of the Hall number $n_H=1/(qR_H)$. For small hole (or electron) doping $p$ (or $x$), our numerical results show that $n_H$ transitions from $p$ to $1+p$ for hole-doped systems, and from $-x$ to $1-x$ for electron-doped systems -- both in agreement with experimental findings. Furthermore, we discuss the correlation between phase boundaries and the observed peculiar changes in the Hall number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00929v1-abstract-full').style.display = 'none'; document.getElementById('2409.00929v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17147">arXiv:2408.17147</a> <span> [<a href="https://arxiv.org/pdf/2408.17147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Microscopic Structural Study on the Growth History of Granular Heaps Prepared by the Raining Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hanyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+H">Houfei Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Z">Zhikun Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chijin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ai%2C+X">Xinyu Ai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yujie Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17147v1-abstract-short" style="display: inline;"> Granular heaps are critical in both industrial applications and natural processes, exhibiting complex behaviors that have sparked significant research interest. The stress dip phenomenon observed beneath granular heaps continues to be a topic of significant debate. Current models based on force transmission often assume that the packing is near the isostatic point, overlooking the critical influen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17147v1-abstract-full').style.display = 'inline'; document.getElementById('2408.17147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17147v1-abstract-full" style="display: none;"> Granular heaps are critical in both industrial applications and natural processes, exhibiting complex behaviors that have sparked significant research interest. The stress dip phenomenon observed beneath granular heaps continues to be a topic of significant debate. Current models based on force transmission often assume that the packing is near the isostatic point, overlooking the critical influence of internal structure and formation history on the mechanical properties of granular heaps. Consequently, these models fail to fully account for diverse observations. In this study, we experimentally explore the structural evolution of three dimensional (3D) granular heaps composed of monodisperse spherical particles prepared using the raining method. Our results reveal the presence of two distinct regions within the heaps, characterized by significant differences in structural properties such as packing fraction, contact number, and contact anisotropy. We attribute these structural variations to the differing formation mechanisms during heap growth. Our findings emphasize the substantial influence of the preparation protocols on the internal structure of granular heaps and provide valuable insights into stress distribution within granular materials. This research may contribute to the development of more accurate constitutive relations for granular materials by informing and refining future modeling approaches <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17147v1-abstract-full').style.display = 'none'; document.getElementById('2408.17147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16874">arXiv:2408.16874</a> <span> [<a href="https://arxiv.org/pdf/2408.16874">pdf</a>, <a href="https://arxiv.org/format/2408.16874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> The onset of temperature chaos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongze Li</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Jiaming He</a>, <a href="/search/cond-mat?searchtype=author&query=Orbach%2C+R+L">Raymond L. Orbach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16874v2-abstract-short" style="display: inline;"> Temperature chaos (TC) in spin glasses has been claimed to exist no matter how small the temperature change, $螖T$. However, experimental studies have exhibited a finite value of $螖T$ for a transition to TC. This paper explores the onset of TC with much higher resolution than before and over a larger temperature range. We find that TC is always present, though small at the smallest $螖T$ that we can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16874v2-abstract-full').style.display = 'inline'; document.getElementById('2408.16874v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16874v2-abstract-full" style="display: none;"> Temperature chaos (TC) in spin glasses has been claimed to exist no matter how small the temperature change, $螖T$. However, experimental studies have exhibited a finite value of $螖T$ for a transition to TC. This paper explores the onset of TC with much higher resolution than before and over a larger temperature range. We find that TC is always present, though small at the smallest $螖T$ that we can reliably measure. However, it grows rapidly as $螖T$ increases, the region of rapid growth coinciding with the $螖T$ predicted from renormalization group arguments and observed experimentally. We are able to transcend the full range of TC, from reversible (TC = 0) to fully chaotic (complete TC). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16874v2-abstract-full').style.display = 'none'; document.getElementById('2408.16874v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15431">arXiv:2408.15431</a> <span> [<a href="https://arxiv.org/pdf/2408.15431">pdf</a>, <a href="https://arxiv.org/format/2408.15431">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Integer Topological Defects Reveal Anti-Symmetric Forces in Active Nematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zihui Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yisong Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">He Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yongfeng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yujia Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hepeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chat%27e%2C+H">Hugues Chat'e</a>, <a href="/search/cond-mat?searchtype=author&query=Sano%2C+M">Masaki Sano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15431v2-abstract-short" style="display: inline;"> Cell layers are often categorized as contractile or extensile active nematics but recent experiments on neural progenitor cells with induced $+1$ topological defects challenge this classification. In a bottom-up approach, we first study a relevant particle-level model and then analyze a continuous theory derived from it. We show that both model and theory account qualitatively for the main experim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15431v2-abstract-full').style.display = 'inline'; document.getElementById('2408.15431v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15431v2-abstract-full" style="display: none;"> Cell layers are often categorized as contractile or extensile active nematics but recent experiments on neural progenitor cells with induced $+1$ topological defects challenge this classification. In a bottom-up approach, we first study a relevant particle-level model and then analyze a continuous theory derived from it. We show that both model and theory account qualitatively for the main experimental result, i.e. accumulation of cells at the core of any type of +1 defect. We argue that cell accumulation is essentially due to two generally ignored 'effective active forces'. We finally discuss the relevance and consequences of our findings in the context of other cellular active nematics experiments and previously proposed theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15431v2-abstract-full').style.display = 'none'; document.getElementById('2408.15431v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, plus Supplemental Information, in revision: typo corrected, references added, Figure 5a corrected, Supplement III modified</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span> [<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05878">arXiv:2408.05878</a> <span> [<a href="https://arxiv.org/pdf/2408.05878">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Drone based superconducting single photon detection system with detection efficiency more than 90% </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+R">Ruoyan Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhimin Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+D">Dai Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">Xiaojun Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y">You Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">ChengJun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+J">Jiamin Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jia Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xingyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+L">Liangliang Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaofu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+L">Lixing You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05878v1-abstract-short" style="display: inline;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05878v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05878v1-abstract-full" style="display: none;"> Bounded by the size, weight, and power consumption (SWaP) of conventional superconducting single photon detectors (SSPD), applications of SSPDs were commonly confined in the laboratory. However, booming demands for high efficiency single photon detector incorporated with avionic platforms arise with the development of remote imaging and sensing or long-haul quantum communication without topographical constraints. We herein designed and manufactured the first drone based SSPD system with a SDE as high as 91.8%. This drone based SSPD system is established with high performance NbTiN SSPDs, self-developed miniature liquid helium dewar, and homemade integrated electric setups, which is able to be launched in complex topographical conditions. Such a drone based SSPD system may open the use of SSPDs for applications that demand high-SDE in complex environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05878v1-abstract-full').style.display = 'none'; document.getElementById('2408.05878v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04410">arXiv:2408.04410</a> <span> [<a href="https://arxiv.org/pdf/2408.04410">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c06448">10.1021/acsnano.4c06448 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-Like Reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Settele%2C+S">Simon Settele</a>, <a href="/search/cond-mat?searchtype=author&query=Stammer%2C+F">Florian Stammer</a>, <a href="/search/cond-mat?searchtype=author&query=Lindenthal%2C+S">Sebastian Lindenthal</a>, <a href="/search/cond-mat?searchtype=author&query=Wald%2C+S+R">Simon R. Wald</a>, <a href="/search/cond-mat?searchtype=author&query=Sebastian%2C+F+L">Finn L. Sebastian</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Flavel%2C+B+S">Benjamin S. Flavel</a>, <a href="/search/cond-mat?searchtype=author&query=Zaumseil%2C+J">Jana Zaumseil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04410v1-abstract-short" style="display: inline;"> The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in-vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04410v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04410v1-abstract-full" style="display: none;"> The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in-vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restricted window of reaction conditions or the necessity for controlled irradiation with ultraviolet light. Here we report a method for introducing luminescent oxygen defects via a Fenton-like reaction that uses benign and inexpensive chemicals without light irradiation. (6,5) SWNTs in aqueous dispersion functionalized with this method show bright $E_{11}$* emission (1105 nm) with 3.2-times higher peak intensities than the pristine $E_{11}$ emission and a reproducible photoluminescence quantum yield of 3%. The functionalization can be performed within a wide range of reaction parameters and even with unsorted nanotube raw material at high concentrations (100 mg/L), giving access to large amounts of brightly luminescent SWNTs. We further find that the introduced oxygen defects rearrange under light irradiation, which gives additional insights into the structure and dynamics of oxygen defects. Finally, the functionalization of ultra-short SWNTs with oxygen defects also enables high photoluminescence quantum yields and their excellent emission properties are retained after surfactant exchange with biocompatible pegylated phospholipids or single-stranded DNA to make them suitable for in-vivo NIR-II imaging and dopamine sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04410v1-abstract-full').style.display = 'none'; document.getElementById('2408.04410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2024, 18, 20667-20678 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03791">arXiv:2408.03791</a> <span> [<a href="https://arxiv.org/pdf/2408.03791">pdf</a>, <a href="https://arxiv.org/format/2408.03791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Microwave-optics entanglement via coupled opto- and magnomechanical microspheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hao-Tian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+Z">Zhi-Yuan Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+H">Huai-Bing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Gr%C3%B6blacher%2C+S">Simon Gr枚blacher</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03791v1-abstract-short" style="display: inline;"> Microwave-optics entanglement plays a crucial role in building hybrid quantum networks with quantum nodes working in the microwave and optical frequency bands. However, there are limited efficient ways to produce such entanglement due to the large frequency mismatch between the two regimes. Here, we present a new mechanism to prepare microwave-optics entanglement based on a hybrid system of two co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03791v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03791v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03791v1-abstract-full" style="display: none;"> Microwave-optics entanglement plays a crucial role in building hybrid quantum networks with quantum nodes working in the microwave and optical frequency bands. However, there are limited efficient ways to produce such entanglement due to the large frequency mismatch between the two regimes. Here, we present a new mechanism to prepare microwave-optics entanglement based on a hybrid system of two coupled opto- and magnomechanical microspheres, i.e., a YIG sphere and a silica sphere. The YIG sphere holds a magnon mode and a vibration mode induced by magnetostriction, while the silica sphere supports an optical whispering-gallery mode and a mechanical mode coupled via an optomechanical interaction. The two mechanical modes are close in frequency and directly coupled via physical contact of the two microspheres. We show that by simultaneously activating the magnomechanical (optomechanical) Stokes (anti-Stokes) scattering, stationary entanglement can be established between the magnon and optical modes via mechanics-mechanics coupling. This leads to stationary microwave-optics entanglement by further coupling the YIG sphere to a microwave cavity and utilizing the magnon-microwave state swapping. Our protocol is within reach of current technology and may become a promising new approach for preparing microwave-optics entanglement, which finds unique applications in hybrid quantum networks and quantum information processing with hybrid quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03791v1-abstract-full').style.display = 'none'; document.getElementById('2408.03791v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02566">arXiv:2408.02566</a> <span> [<a href="https://arxiv.org/pdf/2408.02566">pdf</a>, <a href="https://arxiv.org/format/2408.02566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Magnetocaloric Effect of Topological Excitations in Kitaev Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+E">Enze Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Xi%2C+N">Ning Xi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+G">Gang Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02566v1-abstract-short" style="display: inline;"> Traditional magnetic sub-Kelvin cooling relies on the nearly free local moments in hydrate paramagnetic salts, whose utility is hampered by the dilute magnetic ions and low thermal conductivity. Here we propose to use instead fractional excitations inherent to quantum spin liquids (QSLs) as an alternative, which are sensitive to external fields and can induce a very distinctive magnetocaloric effe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02566v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02566v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02566v1-abstract-full" style="display: none;"> Traditional magnetic sub-Kelvin cooling relies on the nearly free local moments in hydrate paramagnetic salts, whose utility is hampered by the dilute magnetic ions and low thermal conductivity. Here we propose to use instead fractional excitations inherent to quantum spin liquids (QSLs) as an alternative, which are sensitive to external fields and can induce a very distinctive magnetocaloric effect. With state-of-the-art tensor-network approach, we compute low-temperature properties of Kitaev honeycomb model. For the ferromagnetic case, strong demagnetization cooling effect is observed due to the nearly free $Z_2$ vortices via spin fractionalization, described by a paramagnetic equation of state with a renormalized Curie constant. For the antiferromagnetic Kitaev case, we uncover an intermediate-field gapless QSL phase with very large spin entropy, possibly due to the emergence of spinon Fermi surface. Potential realization of topological excitation cooling in Kitaev materials is also discussed, which may offer a promising pathway to circumvent existing limitations in the paramagnetic hydrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02566v1-abstract-full').style.display = 'none'; document.getElementById('2408.02566v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures; supplementary materials; to appear in Nat. Commun. (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01957">arXiv:2408.01957</a> <span> [<a href="https://arxiv.org/pdf/2408.01957">pdf</a>, <a href="https://arxiv.org/format/2408.01957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Emergent quantum disordered phase in Na$_2$Co$_2$TeO$_6$ under intermediate magnetic field along $c$ axis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xu-Guang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C">Chaebin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuo%2C+A">Akira Matsuo</a>, <a href="/search/cond-mat?searchtype=author&query=Mehlawat%2C+K">Kavita Mehlawat</a>, <a href="/search/cond-mat?searchtype=author&query=Matsui%2C+K">Kazuki Matsui</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Z">Zhuo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Miyata%2C+A">Atsuhiko Miyata</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+G">Gang Su</a>, <a href="/search/cond-mat?searchtype=author&query=Kindo%2C+K">Koichi Kindo</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+J">Je-Geun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Kohama%2C+Y">Yoshimitsu Kohama</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuda%2C+Y+H">Yasuhiro H. Matsuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01957v1-abstract-short" style="display: inline;"> Identifying the exotic quantum spin liquid phase in Kitaev magnets has garnered great research interests and remains a significant challenge. In experiments, most of the proposed candidate materials exhibit an antiferromagnetic (AFM) order at low temperatures, thus the challenge transforms into the searching for a field-driven disordered phase that is distinct from the partially polarized paramagn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01957v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01957v1-abstract-full" style="display: none;"> Identifying the exotic quantum spin liquid phase in Kitaev magnets has garnered great research interests and remains a significant challenge. In experiments, most of the proposed candidate materials exhibit an antiferromagnetic (AFM) order at low temperatures, thus the challenge transforms into the searching for a field-driven disordered phase that is distinct from the partially polarized paramagnetic phase after suppressing the AFM order. Recently, Na$_2$Co$_2$TeO$_6$ has been proposed as one of the prime candidates, where the Kitaev interaction is realized by the high-spin $t^{5}_{2g}e^2_g$ configuration, and spin-orbit entangled $J_{\rm eff} = 1/2$ state in a bond-edge shared honeycomb lattice. In this study, we identify an emergent intermediate disordered phase induced by an external field along the $c$-axis of the honeycomb plane. This phase is characterized through magnetization and magnetocaloric effect experiments in high magnetic fields. To explain the experimental results, we propose an effective spin model with large AFM Kitaev interaction, which yields results in good agreement with both our findings and previously reported data. We determine that the effective $K$-$J$-$螕$-$螕'$ model for Na$_2$Co$_2$TeO$_6$ is nearly dual to that of $伪$-RuCl$_3$ under an unitary transformation. Given the insignificant fragility of Na$_2$Co$_2$TeO$_6$ sample, further high-field experiments can be conducted to explore this intermediate-field quantum spin disordered phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01957v1-abstract-full').style.display = 'none'; document.getElementById('2408.01957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00469">arXiv:2408.00469</a> <span> [<a href="https://arxiv.org/pdf/2408.00469">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-50833-9">10.1038/s41467-024-50833-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of electron interaction with an unidentified bosonic mode in superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+S">Sen Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhicheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Huaxun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+S">Shiwu Su</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiakang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Ziyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huai%2C+L">Linwei Huai</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+S">Shengtao Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+Y">Yajun Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00469v1-abstract-short" style="display: inline;"> The kink structure in band dispersion usually refers to a certain electron-boson interaction, which is crucial in understanding the pairing in unconventional superconductors. Here we report the evidence of the observation of a kink structure in Fe-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ using angle-resolved photoemission spectroscopy. The kink shows an orbital selective and momentum depende… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00469v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00469v1-abstract-full" style="display: none;"> The kink structure in band dispersion usually refers to a certain electron-boson interaction, which is crucial in understanding the pairing in unconventional superconductors. Here we report the evidence of the observation of a kink structure in Fe-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ using angle-resolved photoemission spectroscopy. The kink shows an orbital selective and momentum dependent behavior, which is located at 15 meV below Fermi level along the Gamma-M direction at the band with dxz orbital character and vanishes when approaching the Gamma-X direction, correlated with a slight decrease of the superconducting gap. Most importantly, this kink structure disappears when the superconducting gap closes, indicating that the corresponding bosonic mode (9 meV) is closely related to superconductivity. However, the origin of this mode remains unidentified, since it cannot be related to phonons or the spin resonance mode (15 meV) observed by inelastic neutron scattering. The behavior of this mode is rather unique and challenges our present understanding of the superconducting paring mechanism of the bilayer FeAs-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00469v1-abstract-full').style.display = 'none'; document.getElementById('2408.00469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15,2024,6433 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00363">arXiv:2408.00363</a> <span> [<a href="https://arxiv.org/pdf/2408.00363">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of large anomalous Hall effect and topological magnetic skyrmions in a Weyl nodal ring ferromagnet Mn5Ge3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+F">Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+B">Bei Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jie Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+L">Linxuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wenyun Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+Y">Yong-Chang Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinbo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yong Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00363v2-abstract-short" style="display: inline;"> Topological magnetic materials are expected to show multiple transport responses because of their unusual bulk electronic topology in momentum space and topological spin texture in real space. However, such multiple topological properties-hosting materials are rare in nature. In this work, we reveal the coexistence of a large tunable anomalous Hall effect and topological magnetic skyrmions in a We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00363v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00363v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00363v2-abstract-full" style="display: none;"> Topological magnetic materials are expected to show multiple transport responses because of their unusual bulk electronic topology in momentum space and topological spin texture in real space. However, such multiple topological properties-hosting materials are rare in nature. In this work, we reveal the coexistence of a large tunable anomalous Hall effect and topological magnetic skyrmions in a Weyl nodal ring ferromagnet Mn5Ge3, by using electrical transport and Lorentz transmission electronic microscope (TEM) measurements. It was found that the intrinsic anomalous Hall conductivity (AHC) can reach up to 979.7 S/cm with current along [120] and magnetic field along [001] of the Mn5Ge3 single crystals. Our theoretical calculations reveal that the large AHC is closely related with two Weyl nodal rings in band structure near the Fermi level and is strongly modified by the content of Ge. Moreover, our Lorentz-TEM images and micromagnetic simulation results, together with the sizable topological Hall effect clearly point to the robust formation of magnetic skyrmions over a wide temperature-magnetic field region. These results prove Mn5Ge3 as a rare magnetic topological nodal-line semimetal with great significance to explore novel multiple topological phenomena, which facilitates the development of spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00363v2-abstract-full').style.display = 'none'; document.getElementById('2408.00363v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00320">arXiv:2408.00320</a> <span> [<a href="https://arxiv.org/pdf/2408.00320">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a metallic room-temperature d-wave altermagnet KV2Se2O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+J">Jianli Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Ziyin Song</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+C">Chao Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenliang Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Z">Zhongxu Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yujie Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zheng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Genfu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Qian%2C+T">Tian Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00320v2-abstract-short" style="display: inline;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00320v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00320v2-abstract-full" style="display: none;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter physics research and practical device applications. Spin-polarized band structures have been recently observed in semiconductors MnTe and MnTe2 with vanishing net magnetization, confirming the existence of this unconventional magnetic order. Metallic altermagnets have unique advantages for exploring novel physical phenomena related to low-energy quasiparticle excitations and for applications in spintronics as electrical conductivity in metals allows the direct manipulation of spin current through electric field. Here, through comprehensive characterization and analysis of the magnetic and electronic structures of KV2Se2O, we have unambiguously demonstrated a metallic room-temperature altermaget with d-wave spin-momentum locking. The highly anisotropic spin-polarized Fermi surfaces and the spin-density-wave order emerging in the altermagnetic phase make it an extraordinary platform for designing high-performance spintronic devices and studying many-body effects coupled with the unconventional magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'none'; document.getElementById('2408.00320v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18485">arXiv:2407.18485</a> <span> [<a href="https://arxiv.org/pdf/2407.18485">pdf</a>, <a href="https://arxiv.org/format/2407.18485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yingchao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+R">Rui Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">Miao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hongrong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Hong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zubairy%2C+M+S">M. Suhail Zubairy</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Fuli Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+B">Bo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18485v1-abstract-short" style="display: inline;"> The non-Bloch topology leads to the emergence of various counter-intuitive phenomena in non-Hermitian systems under the open boundary condition (OBC), which can not find a counterpart in Hermitian systems. However, in the non-Hermitian system without chiral symmetry, being ubiquitous in nature, exploring its non-Bloch topology has so far eluded experimental effort. Here by introducing the concept… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18485v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18485v1-abstract-full" style="display: none;"> The non-Bloch topology leads to the emergence of various counter-intuitive phenomena in non-Hermitian systems under the open boundary condition (OBC), which can not find a counterpart in Hermitian systems. However, in the non-Hermitian system without chiral symmetry, being ubiquitous in nature, exploring its non-Bloch topology has so far eluded experimental effort. Here by introducing the concept of non-chiral non-Bloch invariants, we theoretically predict and experimentally identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry in discrete-time non-unitary quantum walks of single photons. Interestingly, we find that such topological invariants not only can distinguish topologically distinct gapped phases, but also faithfully capture the corresponding gap closing in open-boundary spectrum at the phase boundary. Different topological regions are experimentally identified by measuring the featured discontinuities of the higher moments of the walker's displacement, which amazingly match excellently with our defined non-Bloch invariants. Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18485v1-abstract-full').style.display = 'none'; document.getElementById('2407.18485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, including Supplementary Material</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Li%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>