CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 383 results for author: <span class="mathjax">Gao, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Gao%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gao, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gao%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gao, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.20809">arXiv:2502.20809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.20809">pdf</a>, <a href="https://arxiv.org/format/2502.20809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> PFD: Automatically Generating Machine Learning Force Fields from Universal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuxiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Hongyu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zhicheng Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.20809v1-abstract-short" style="display: inline;"> Universal force fields generalizable across the periodic table represent a new trend in computational materials science. However, the applications of universal force fields in material simulations are limited by their slow inference speed and the lack of first-principles accuracy. Instead of building a single model simultaneously satisfying these characteristics, a strategy that quickly generates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20809v1-abstract-full').style.display = 'inline'; document.getElementById('2502.20809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.20809v1-abstract-full" style="display: none;"> Universal force fields generalizable across the periodic table represent a new trend in computational materials science. However, the applications of universal force fields in material simulations are limited by their slow inference speed and the lack of first-principles accuracy. Instead of building a single model simultaneously satisfying these characteristics, a strategy that quickly generates material-specific models from the universal model may be more feasible. Here, we propose a new workflow pattern, PFD, which automatically generates machine-learning force fields for specific materials from a pre-trained universal model through fine-tuning and distillation. By fine-tuning the pre-trained model, our PFD workflow generates force fields with first-principles accuracy while requiring one to two orders of magnitude less training data compared to traditional methods. The inference speed of the generated force field is further improved through distillation, meeting the requirements of large-scale molecular simulations. Comprehensive testing across diverse materials including complex systems such as amorphous carbon, interface, etc., reveals marked enhancements in training efficiency, which suggests the PFD workflow a practical and reliable approach for force field generation in computational material sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.20809v1-abstract-full').style.display = 'none'; document.getElementById('2502.20809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19840">arXiv:2502.19840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.19840">pdf</a>, <a href="https://arxiv.org/format/2502.19840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Robust $s_\pm$-wave pairing in a bilayer two-orbital model of pressurized La$_3$Ni$_2$O$_7$ without the $纬$ Fermi surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yi Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19840v1-abstract-short" style="display: inline;"> We studied the superconducting pairing symmetry based on a newly constructed tight-binding model of La$_3$Ni$_2$O$_7$ under pressure, where the $纬$ band sinks below the Fermi level and does not form the Fermi surface. The superconducting pairing symmetry is $s_\pm$-wave and is robust against the variation of the interaction strength. In this model, although the $纬$ and $未$ bands are away from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19840v1-abstract-full').style.display = 'inline'; document.getElementById('2502.19840v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19840v1-abstract-full" style="display: none;"> We studied the superconducting pairing symmetry based on a newly constructed tight-binding model of La$_3$Ni$_2$O$_7$ under pressure, where the $纬$ band sinks below the Fermi level and does not form the Fermi surface. The superconducting pairing symmetry is $s_\pm$-wave and is robust against the variation of the interaction strength. In this model, although the $纬$ and $未$ bands are away from the Fermi level, the superconducting pairing function on them is not tiny. Instead, since the top of the $纬$ band and bottom of the $未$ band are both located at $\sim$500 meV away from the Fermi level, and they are almost nested by the peak structure in the spin fluctuation, thus by forming an anti-phase pairing function on them, these two bands act constructively to superconductivity. Finally with detailed derivation and numerical calculation, we demonstrate that the Fermi surface approximated Eliashberg equation may lead to deviation of the pairing symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19840v1-abstract-full').style.display = 'none'; document.getElementById('2502.19840v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2412.11429</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15463">arXiv:2502.15463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.15463">pdf</a>, <a href="https://arxiv.org/format/2502.15463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Mesons in a quantum Ising ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yunjing Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yunfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jianda Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15463v1-abstract-short" style="display: inline;"> When two transverse-field Ising chains (TFICs) with magnetic order are coupled, the original free excitations become confined, giving rise to meson-like bound states. In this work, we study such bound states systematically. The mesons are characterized by their fermion number parity and chain-exchanging properties, which lead to distinct sets of mesonic states. The meson masses are determined by s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15463v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15463v1-abstract-full" style="display: none;"> When two transverse-field Ising chains (TFICs) with magnetic order are coupled, the original free excitations become confined, giving rise to meson-like bound states. In this work, we study such bound states systematically. The mesons are characterized by their fermion number parity and chain-exchanging properties, which lead to distinct sets of mesonic states. The meson masses are determined by solving the Bethe-Salpter equation. An interesting observation is the additional degeneracy in the chain-exchanging odd sectors. Beyond the two particle approximation, we exploit the truncated free fermionic space approach to calculate the spectrum numerically. Corrections to the meson masses are obtained, and the degeneracy is further confirmed. The characterization and degeneracy can be connected to the situation when each chain is tuned to be quantum critical, where the system is described by the Ising$_h^2$ integrable model, a sine-Gordon theory with $\mathbb{Z}_2$ orbifold. Here we establish a clear correspondence between the particles in the bosonized form and their fermionic counterparts. Near this point, the stability of these particles is analyzed using the form factor perturbation scheme, where four particles are always present. Additionally, we calculate the evolution of the dominant dynamical structure factor for local spin operators, providing further insight into the low-energy excitations and their role in the system&#39;s behavior. The two-particle confinement framework as well as the parity classifications may inspire the study for other coupled bi-partite systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15463v1-abstract-full').style.display = 'none'; document.getElementById('2502.15463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07477">arXiv:2502.07477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07477">pdf</a>, <a href="https://arxiv.org/format/2502.07477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Robust zero modes in PbTe-Pb hybrid nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zeyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07477v1-abstract-short" style="display: inline;"> Majorana zero modes in tunneling conductance are expected to manifest as robust zero bias peaks (ZBPs). While ZBPs alone are not conclusive evidence of Majorana modes due to alternative explanations, robust ZBPs remain a crucial and necessary first-step indicator in the search for topological states. Here, we report the observation of robust ZBPs in PbTe-Pb hybrid nanowires. The peak height can re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07477v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07477v1-abstract-full" style="display: none;"> Majorana zero modes in tunneling conductance are expected to manifest as robust zero bias peaks (ZBPs). While ZBPs alone are not conclusive evidence of Majorana modes due to alternative explanations, robust ZBPs remain a crucial and necessary first-step indicator in the search for topological states. Here, we report the observation of robust ZBPs in PbTe-Pb hybrid nanowires. The peak height can reach $2e^2/h$, though it does not yet form a quantized plateau. Importantly, these ZBPs can remain non-split over sizable ranges in both magnetic field and gate voltage scans, highlighting their robustness. We discuss possible interpretations based on Majorana zero modes as well as Andreev bound states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07477v1-abstract-full').style.display = 'none'; document.getElementById('2502.07477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02137">arXiv:2502.02137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02137">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Undamped Soliton-like Domain Wall Motion in Sliding Ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yubai Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuxiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ri He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Binwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zhicheng Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02137v2-abstract-short" style="display: inline;"> Sliding ferroelectricity in bilayer van der Waals materials exhibits ultrafast switching speed and fatigue resistance during the polarization switching, offering an avenue for the design of memories and neuromorphic devices. The unique polarization switching behavior originates from the distinct characteristics of domain wall (DW), which possesses broader width and faster motion compared to conven&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02137v2-abstract-full').style.display = 'inline'; document.getElementById('2502.02137v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02137v2-abstract-full" style="display: none;"> Sliding ferroelectricity in bilayer van der Waals materials exhibits ultrafast switching speed and fatigue resistance during the polarization switching, offering an avenue for the design of memories and neuromorphic devices. The unique polarization switching behavior originates from the distinct characteristics of domain wall (DW), which possesses broader width and faster motion compared to conventional ferroelectrics. Herein, using machine-learning-assisted molecular dynamics simulations and field theory analysis, we predict an undamped soliton-like DW motion in sliding ferroelectrics. It is found that the DW in sliding ferroelectric bilayer 3R-MoS2 exhibits uniformly accelerated motion under an external field, with its velocity ultimately reaches the relativistic-like limit due to continuous acceleration. Remarkably, the DW velocity remains constant even after the external field removal, completely deviating from the velocity breakdown observed in conventional ferroelectrics. This work provides opportunities for applications of sliding ferroelectrics in memory devices based on DW engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02137v2-abstract-full').style.display = 'none'; document.getElementById('2502.02137v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08867">arXiv:2501.08867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08867">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Ising superconductivity in noncentrosymmetric bulk NbSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Volavka%2C+D">Dominik Volavka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pribulov%C3%A1%2C+Z">Zuzana Pribulov谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ka%C4%8Dmar%C4%8D%C3%ADk%2C+J">Jozef Ka膷mar膷铆k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%C5%A1ko%2C+T">Timon Mo拧ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stropkai%2C+B">Branislav Stropkai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bednar%C4%8D%C3%ADk%2C+J">Jozef Bednar膷铆k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yingzheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moulding%2C+O">Owen Moulding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%A9asson%2C+M">Marie-Aude M茅asson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marcenat%2C+C">Christophe Marcenat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+T">Thierry Klein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasaki%2C+S">Shunsuke Sasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cario%2C+L">Laurent Cario</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gmitra%2C+M">Martin Gmitra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samuely%2C+P">Peter Samuely</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samuely%2C+T">Tomas Samuely</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08867v1-abstract-short" style="display: inline;"> Ising superconductivity allows in-plane upper critical magnetic fields to vastly surpass Pauli limit by locking the antiparallel electron spins of Cooper pairs in the out-of-plane direction. It was first explicitly demonstrated in fully two-dimensional monolayers of transition metal dichalcogenides with large spin-orbit coupling and broken inversion symmetry. Since then, several studies have shown&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08867v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08867v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08867v1-abstract-full" style="display: none;"> Ising superconductivity allows in-plane upper critical magnetic fields to vastly surpass Pauli limit by locking the antiparallel electron spins of Cooper pairs in the out-of-plane direction. It was first explicitly demonstrated in fully two-dimensional monolayers of transition metal dichalcogenides with large spin-orbit coupling and broken inversion symmetry. Since then, several studies have shown that it can be present in layered bulk materials, too. In our previous study, we have clarified the underlying microscopic mechanism of Ising superconductivity in bulk, based on a reduced electronic coupling between superconducting layers due to intercalation by insulating layers and restricted inversion symmetry. But earlier studies suggest that in some transition metal dichalcogenide polytypes Pauli paramagnetic limit is violated even without intercalation. Here, using heat capacity measurements we unambiguously demonstrate, that the pristine noncentrosymmetric bulk 4Ha-NbSe2 polytype significantly violates the Pauli limit. The band structure parameters obtained from ab initio calculations using the experimentally determined crystal structure are used in the theoretical model which provides the microscopic mechanism of the Ising protection based solely on broken inversion symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08867v1-abstract-full').style.display = 'none'; document.getElementById('2501.08867v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Si Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free &#34;cluster&#34; Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04679">arXiv:2501.04679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04679">pdf</a>, <a href="https://arxiv.org/format/2501.04679">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exploring nontrivial topology at quantum criticality in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yujie Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanzhe Wang</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04679v1-abstract-short" style="display: inline;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04679v1-abstract-full" style="display: none;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimental challenge in statistical and condensed matter physics. Programmable quantum processors can directly prepare and manipulate exotic quantum many-body states, offering a powerful path for exploring the physics behind these states. Here, we present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits. We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study. Furthermore, by adapting the entanglement Hamiltonian tomography technique, we recognize two-fold topological degeneracy in the entanglement spectrum under periodic boundary condition, experimentally verifying the universal bulk-boundary correspondence in topological critical systems. Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'none'; document.getElementById('2501.04679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04345">arXiv:2501.04345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04345">pdf</a>, <a href="https://arxiv.org/format/2501.04345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Anisotropy of PbTe nanowires with and without a superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zeyu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04345v1-abstract-short" style="display: inline;"> We investigate the anisotropic behaviors in PbTe and PbTe-Pb hybrid nanowires. In previous studies on PbTe, wire-to-wire variations in anisotropy indicate poor device control, posing a serious challenge for applications. Here, we achieve reproducible anisotropy in PbTe nanowires through a substantial reduction of disorder. We then couple PbTe to a superconductor Pb, and observe a pronounced deviat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04345v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04345v1-abstract-full" style="display: none;"> We investigate the anisotropic behaviors in PbTe and PbTe-Pb hybrid nanowires. In previous studies on PbTe, wire-to-wire variations in anisotropy indicate poor device control, posing a serious challenge for applications. Here, we achieve reproducible anisotropy in PbTe nanowires through a substantial reduction of disorder. We then couple PbTe to a superconductor Pb, and observe a pronounced deviation in the anisotropy behavior compared to bare PbTe nanowires. This deviation is gate-tunable and attributed to spin-orbit interaction and orbital effect, controlled by charge transfer between Pb and PbTe. These results provide a guidance for the controlled engineering of exotic quantum states in this hybrid material platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04345v1-abstract-full').style.display = 'none'; document.getElementById('2501.04345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03204">arXiv:2501.03204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03204">pdf</a>, <a href="https://arxiv.org/format/2501.03204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Extrinsic Mechanisms of Phonon Magnetic Moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+R">Rui Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Z">Zhenhua Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03204v1-abstract-short" style="display: inline;"> We develop a general formalism of phonon magnetic moment by including the relaxation process. We then identify the skew-scattering and side-jump contributions to the phonon magnetic moment originating from the non-adiabaticity, both of which are related to the nonlocal phonon Berry curvature and are in close analogy to those in the electronic Hall effect. All contributions of the phonon magnetic m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03204v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03204v1-abstract-full" style="display: none;"> We develop a general formalism of phonon magnetic moment by including the relaxation process. We then identify the skew-scattering and side-jump contributions to the phonon magnetic moment originating from the non-adiabaticity, both of which are related to the nonlocal phonon Berry curvature and are in close analogy to those in the electronic Hall effect. All contributions of the phonon magnetic moment are exemplified in a honeycomb lattice, showing that the extrinsic contribution can be as important as the intrinsic one and that the resulting phonon angular momentum varies significantly across the Brillouin zone. Our work offers a systematic framework of the phonon chirality and paves the way of tuning the phonon magnetic moment through the non-adiabaticity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03204v1-abstract-full').style.display = 'none'; document.getElementById('2501.03204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02250">arXiv:2501.02250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02250">pdf</a>, <a href="https://arxiv.org/format/2501.02250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Generalized Onsager&#39;s Relation in Magnon Hall Effect and Its Implication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jikun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02250v2-abstract-short" style="display: inline;"> By analyzing the spin-group symmetry of magnons, we establish two generalized Onsager&#39;s relations in the magnon Hall effect, which reveals the rich and complicated structures of the magnon Berry curvature in the parameter space of different types of the exchange coupling. As an important consequence, we find that the isotropic exchange coupling is equally important as the DzyaloshinskiiMoriya (DM)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02250v2-abstract-full').style.display = 'inline'; document.getElementById('2501.02250v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02250v2-abstract-full" style="display: none;"> By analyzing the spin-group symmetry of magnons, we establish two generalized Onsager&#39;s relations in the magnon Hall effect, which reveals the rich and complicated structures of the magnon Berry curvature in the parameter space of different types of the exchange coupling. As an important consequence, we find that the isotropic exchange coupling is equally important as the DzyaloshinskiiMoriya (DM) interaction in determining the magnon Hall effect, and it can transform to the latter under proper gauge transformation. Moreover, the diagonal and off-diagonal part of the symmetric anisotropic exchange coupling together can support the magnon Hall effect without the DM interaction. Both features are exemplified in ferromagnetic honeycomb lattices. Our work lays the ground for decoding the coupling between magnon transport and different types of exchange interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02250v2-abstract-full').style.display = 'none'; document.getElementById('2501.02250v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13410">arXiv:2412.13410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13410">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The spin-switch scanning tunneling microscopy: an architecture to probe electron-phonon interactions in the atomic scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Dezhi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+F">Fuyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+J">Jiamin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haimin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Haiming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Ye-Ping Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13410v1-abstract-short" style="display: inline;"> On the spin-valve-like ferromagnet/spin glass/ferromagnet (FM/SG/FM) structure, the tunneling current is dominated by resistance switch (RS) instead of the local density of states according to the conventional tunneling theory. Here we show lattice-site dependent RS behaviors in one-quintuple-layer Bi2Te3 deposited on single MnBi2Te4 septuple layer, which comes from the difference in the efficienc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13410v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13410v1-abstract-full" style="display: none;"> On the spin-valve-like ferromagnet/spin glass/ferromagnet (FM/SG/FM) structure, the tunneling current is dominated by resistance switch (RS) instead of the local density of states according to the conventional tunneling theory. Here we show lattice-site dependent RS behaviors in one-quintuple-layer Bi2Te3 deposited on single MnBi2Te4 septuple layer, which comes from the difference in the efficiency of tunneling electrons to induce focused current or phonons at different sites, switching remotely the spin valve by spin-transfer torque or spin-phonon interactions. These lead to the observation of the dynamic 2-state lattice when the tip scans across the surface as well as the ability of scanning tunneling microscope (STM) to reveal atomic-scale features of electron-phonon (EP) interactions. Our work demonstrates the possibility of the spin-switch STM to image lattice-site dependent EP interactions of any materials deposited on the FM/SG/FM structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13410v1-abstract-full').style.display = 'none'; document.getElementById('2412.13410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures, including the supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12476">arXiv:2412.12476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12476">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Interfacial Perpendicular Magnetic Anisotropy of Ultrathin Fe(001) Film Grown on CoO(001) Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yunzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haoran Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hongyue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhen Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yuanfei Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+N">Nan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+W">Wentao Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yongwei Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuqiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guanhua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12476v1-abstract-short" style="display: inline;"> Exploring novel systems with perpendicular magnetic anisotropy (PMA) is vital for advancing memory devices. In this study, we report an intriguing PMA system involving an ultrathin Fe layer on an antiferromagnetic (AFM) CoO(001) surface. The measured perpendicular anisotropy field is inversely proportional to the Fe thickness, indicating an interfacial origin of PMA. Temperature-dependent measurem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12476v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12476v1-abstract-full" style="display: none;"> Exploring novel systems with perpendicular magnetic anisotropy (PMA) is vital for advancing memory devices. In this study, we report an intriguing PMA system involving an ultrathin Fe layer on an antiferromagnetic (AFM) CoO(001) surface. The measured perpendicular anisotropy field is inversely proportional to the Fe thickness, indicating an interfacial origin of PMA. Temperature-dependent measurements reveal that the antiferromagnetism of CoO has a negligible effect on the PMA. By leveraging the magneto-optical Kerr effect and birefringence effect, we achieved concurrent visualization of ferromagnetic (FM) and AFM domains. A pronounced coupling effect between these domains was observed near the spin reorientation transition, contrasting sharply with areas of stronger PMA that exhibited weak coupling. This research not only establishes a new FM/AFM bilayer PMA system but also significantly advances the understanding of FM/AFM interfacial interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12476v1-abstract-full').style.display = 'none'; document.getElementById('2412.12476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11429">arXiv:2412.11429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11429">pdf</a>, <a href="https://arxiv.org/format/2412.11429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Theoretical investigation of the superconducting pairing symmetry in a bilayer two-orbital model of pressurized La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yi Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11429v1-abstract-short" style="display: inline;"> We investigate the superconducting pairing symmetry in pressurized La$_3$Ni$_2$O$_7$ based on a bilayer two-orbital model. There are two symmetric bands $伪$ and $纬$, as well as two antisymmetric ones $尾$ and $未$. It is found that the $纬$ band induces considerable ferromagnetic spin fluctuation and prefers an odd-frequency, $s$-wave spin triplet pairing state. The addition of the other bands gradua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11429v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11429v1-abstract-full" style="display: none;"> We investigate the superconducting pairing symmetry in pressurized La$_3$Ni$_2$O$_7$ based on a bilayer two-orbital model. There are two symmetric bands $伪$ and $纬$, as well as two antisymmetric ones $尾$ and $未$. It is found that the $纬$ band induces considerable ferromagnetic spin fluctuation and prefers an odd-frequency, $s$-wave spin triplet pairing state. The addition of the other bands gradually suppresses the ferromagnetic spin fluctuation and enhances the antiferromagnetic ones. The superconducting pairing then evolves from a spin triplet into a $d$-wave spin singlet, and finally into an $s_\pm$-wave one. The competition between the $d$-wave and $s_\pm$-wave pairings relies on whether the ferromagnetic spin fluctuation is suppressed completely or not. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11429v1-abstract-full').style.display = 'none'; document.getElementById('2412.11429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10821">arXiv:2412.10821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10821">pdf</a>, <a href="https://arxiv.org/ps/2412.10821">ps</a>, <a href="https://arxiv.org/format/2412.10821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Graph Attention Hamiltonian Neural Networks: A Lattice System Analysis Model Based on Structural Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+R">Ru Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yixian Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zu%2C+J">Jian Zu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hong-Kun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10821v1-abstract-short" style="display: inline;"> A deep understanding of the intricate interactions between particles within a system is a key approach to revealing the essential characteristics of the system, whether it is an in-depth analysis of molecular properties in the field of chemistry or the design of new materials for specific performance requirements in materials science. To this end, we propose Graph Attention Hamiltonian Neural Netw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10821v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10821v1-abstract-full" style="display: none;"> A deep understanding of the intricate interactions between particles within a system is a key approach to revealing the essential characteristics of the system, whether it is an in-depth analysis of molecular properties in the field of chemistry or the design of new materials for specific performance requirements in materials science. To this end, we propose Graph Attention Hamiltonian Neural Network (GAHN), a neural network method that can understand the underlying structure of lattice Hamiltonian systems solely through the dynamic trajectories of particles. We can determine which particles in the system interact with each other, the proportion of interactions between different particles, and whether the potential energy of interactions between particles exhibits even symmetry or not. The obtained structure helps the neural network model to continue predicting the trajectory of the system and further understand the dynamic properties of the system. In addition to understanding the underlying structure of the system, it can be used for detecting lattice structural abnormalities, such as link defects, abnormal interactions, etc. These insights benefit system optimization, design, and detection of aging or damage. Moreover, this approach can integrate other components to deduce the link structure needed for specific parts, showcasing its scalability and potential. We tested it on a challenging molecular dynamics dataset, and the results proved its ability to accurately infer molecular bond connectivity, highlighting its scientific research potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10821v1-abstract-full').style.display = 'none'; document.getElementById('2412.10821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09857">arXiv:2412.09857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09857">pdf</a>, <a href="https://arxiv.org/format/2412.09857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orthogonal Geometry of Magneto-Optical Kerr Effect Enabled by Magnetization Multipole of Berry Curvature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+H">Haolin Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jixiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+M">Mingyue Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yanan Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Daxiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xintong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+W">Wenzhi Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Z">Zhenguo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+X">Xiao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zhigao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianzhe Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qinghui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+D">Dazhi Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09857v2-abstract-short" style="display: inline;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v2-abstract-full').style.display = 'inline'; document.getElementById('2412.09857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09857v2-abstract-full" style="display: none;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we introduce an orthogonal MOKE geometry in which the Kerr signal detects both the magnitude and direction of the magnetization component perpendicular to the Poynting vector. We demonstrate the broad applicability of this orthogonal geometry through the MOKE measurements in cubic ferromagnets and van der Waals ferromagnet. We theoretically show that the orthogonal MOKE geometry is enabled by the multipolar structure of Berry curvature in the magnetization space, which generally induces a Voigt vector orthogonal to the magnetization, thereby accounting for the unique magnetization angle dependence distinct from conventional MOKE. The establishment of the orthogonal MOKE geometry not only introduces a new paradigm for magneto-optical measurements but also provides a framework for exploring the magnetization multipoles of Berry curvature across the electromagnetic spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v2-abstract-full').style.display = 'none'; document.getElementById('2412.09857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03149">arXiv:2412.03149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03149">pdf</a>, <a href="https://arxiv.org/format/2412.03149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.214405">10.1103/PhysRevB.110.214405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Successive magnetic transitions in the spin-5/2 easy-axis triangular-lattice antiferromagnet Na$_2$BaMn(PO$_4$)$_2$: A neutron diffraction study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuandi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+J">Junsen Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+C">Cheng Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+P">Peijie Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+G">Gang Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+W">Wentao Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03149v1-abstract-short" style="display: inline;"> Motivated by the recent observations of various exotic quantum states in the equilateral triangular-lattice phosphates Na$_2$BaCo(PO$_4$)$_2$ with $J\rm_{eff}$ = 1/2 and Na$_2$BaNi(PO$_4$)$_2$ with $S$ = 1, the magnetic properties of spin-5/2 antiferromagnet Na$_2$BaMn(PO$_4$)$_2$, their classical counterpart, are comprehensively investigated experimentally. DC magnetization and specific heat meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03149v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03149v1-abstract-full" style="display: none;"> Motivated by the recent observations of various exotic quantum states in the equilateral triangular-lattice phosphates Na$_2$BaCo(PO$_4$)$_2$ with $J\rm_{eff}$ = 1/2 and Na$_2$BaNi(PO$_4$)$_2$ with $S$ = 1, the magnetic properties of spin-5/2 antiferromagnet Na$_2$BaMn(PO$_4$)$_2$, their classical counterpart, are comprehensively investigated experimentally. DC magnetization and specific heat measurements on polycrystalline samples indicate two successive magnetic transitions at $T\rm_{N1}$ $\approx$ 1.13 K and $T\rm_{N2}$ $\approx$ 1.28 K, respectively. Zero-field neutron powder diffraction measurement at 67 mK reveals a Y-like spin configuration as its ground-state magnetic structure, with both the $ab$-plane and $c$-axis components of the Mn$^{2+}$ moments long-range ordered. The incommensurate magnetic propagation vector $k$ shows a dramatic change for the intermediate phase between $T\rm_{N1}$ and $T\rm_{N2}$, in which the spin state is speculated to change into a collinear structure with only the $c$-axis moments ordered, as stabilized by thermal fluctuations. The successive magnetic transitions observed in Na$_2$BaMn(PO$_4$)$_2$ are in line with the expectation for a triangle-lattice antiferromagnet with an easy-axis magnetic anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03149v1-abstract-full').style.display = 'none'; document.getElementById('2412.03149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 214405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01989">arXiv:2412.01989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01989">pdf</a>, <a href="https://arxiv.org/format/2412.01989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Terahertz stimulated parametric downconversion of a magnon mode in an antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhuquan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+Y">Yu-Che Chien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+M+T">Man Tou Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F+Y">Frank Y. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zi-Jie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoxuan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+S">Shixun Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldini%2C+E">Edoardo Baldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+K+A">Keith A. Nelson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01989v1-abstract-short" style="display: inline;"> In condensed matter systems, interactions between collective modes offer avenues for nonlinear coherent manipulation of coupled excitations and quantum phases. Antiferromagnets, with their inherently coupled magnon modes, provide a promising platform for nonlinear control of microscopic spin waves and macroscopic magnetization. However, nonlinear magnon-magnon interactions have been only partially&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01989v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01989v1-abstract-full" style="display: none;"> In condensed matter systems, interactions between collective modes offer avenues for nonlinear coherent manipulation of coupled excitations and quantum phases. Antiferromagnets, with their inherently coupled magnon modes, provide a promising platform for nonlinear control of microscopic spin waves and macroscopic magnetization. However, nonlinear magnon-magnon interactions have been only partially elaborated, leaving key gaps in the prospects for potential ultrahigh-bandwidth magnonic signal processing. Here, we use a pair of intense terahertz pulses to sequentially excite two distinct coherent magnon modes in an antiferromagnet and find that the magnon mode with a lower frequency undergoes amplification when the higher-frequency mode is driven. We unveil the nonlinear excitation pathways of this stimulated parametric downconversion process by using polarization-selective two-dimensional terahertz spectroscopy. Our work provides fundamental insights into nonlinear magnonics in antiferromagnets, laying the groundwork for forthcoming spintronic and magnonic devices based on nonlinear magnon-magnon interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01989v1-abstract-full').style.display = 'none'; document.getElementById('2412.01989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00498">arXiv:2412.00498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00498">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Uni-Electrolyte: An Artificial Intelligence Platform for Designing Electrolyte Molecules for Rechargeable Batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mingkang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+S">Shiqiu Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu-Chen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00498v1-abstract-short" style="display: inline;"> Electrolyte is a very important part of rechargeable batteries such as lithium batteries. However, the electrolyte innovation is facing grand challenges due to the complicated solution chemistry and infinite molecular space (&gt;1060 for small molecules). This work reported an artificial intelligence (AI) platform, namely Uni-Electrolyte, for designing advanced electrolyte molecules, which mainly inc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00498v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00498v1-abstract-full" style="display: none;"> Electrolyte is a very important part of rechargeable batteries such as lithium batteries. However, the electrolyte innovation is facing grand challenges due to the complicated solution chemistry and infinite molecular space (&gt;1060 for small molecules). This work reported an artificial intelligence (AI) platform, namely Uni-Electrolyte, for designing advanced electrolyte molecules, which mainly includes three parts, i.e. EMolCurator, EMolForger, and EMolNetKnittor. New molecules can be designed by combining high-throughput screening and generative AI models from more than 100 million alternative molecules in the EMolCurator module. The molecule properties including frontier molecular orbital information, formation energy, binding energy with a Li ion, viscosity, and dielectric constant, can be adopted as the screening parameters. The EMolForger, and EMolNetKnittor module can predict the retrosynthesis pathway and reaction pathway with electrodes for a given molecule, respectively. With the assist of advanced AI methods, the Uni-Electrolyte is strongly supposed to discover new electrolyte molecules and chemical principles, promoting the practical application of next-generation rechargeable batteries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00498v1-abstract-full').style.display = 'none'; document.getElementById('2412.00498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12054">arXiv:2411.12054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12054">pdf</a>, <a href="https://arxiv.org/format/2411.12054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.245114">10.1103/PhysRevB.110.245114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Easy-plane ferromagnetic ordering and crystal-field ground state in the Kondo lattice CeCuSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+H">Hanshang Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moulding%2C+O">Owen Moulding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fettinger%2C+J+C">James C. Fettinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yingzheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klavins%2C+P">Peter Klavins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%A9asson%2C+M">Marie-Aude M茅asson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taufour%2C+V">Valentin Taufour</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12054v3-abstract-short" style="display: inline;"> We report the successful growth of CeCuSi single crystals using a metallic flux method and the physical properties using structural, magnetic, electrical transport, optical, and heat capacity measurements. CeCuSi crystallizes in a hexagonal-bar shape, and single crystal x-ray diffraction confirms the ZrBeSi-type structure (space group $P6_{3}/mmc$). CeCuSi orders ferromagnetically below&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12054v3-abstract-full').style.display = 'inline'; document.getElementById('2411.12054v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12054v3-abstract-full" style="display: none;"> We report the successful growth of CeCuSi single crystals using a metallic flux method and the physical properties using structural, magnetic, electrical transport, optical, and heat capacity measurements. CeCuSi crystallizes in a hexagonal-bar shape, and single crystal x-ray diffraction confirms the ZrBeSi-type structure (space group $P6_{3}/mmc$). CeCuSi orders ferromagnetically below $T_\textrm{C}=15.5$ K with easy magnetization direction within the basal plane. The Ce$^{3+}$ ions are situated within a triangular lattice with a point group of $D_{3d}$. We perform a detailed crystalline electric field (CEF) analysis of the anisotropic magnetic susceptibility, the Schottky anomaly in heat capacity, and the Raman-active excitations. The results indicate a ground state doublet with magnetic moment primarily in the basal plane, and a ferromagnetic interaction along both directions. The exponential behavior in resistivity and in heat capacity below $T_\textrm{C}$ can also be well explained by the ferromagnetic magnon model. We found that CeCuSi does not exhibit the CEF hard axis ordering observed in many ferromagnetic Kondo lattice (FM-KL) compounds. Our CEF analysis suggests that the exchange interactions along both axes are ferromagnetic, potentially explaining the absence of hard-axis ordering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12054v3-abstract-full').style.display = 'none'; document.getElementById('2411.12054v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, Accepted by Physics Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 110, 245114 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10350">arXiv:2411.10350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10350">pdf</a>, <a href="https://arxiv.org/format/2411.10350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Secondary Grain Boundary Dislocations Alter Segregation Energy Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xinren Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gon%C3%A7alves%2C+W">William Gon莽alves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yipeng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+P">Patrick Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S+M">Saurabh Mohan Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dehm%2C+G">Gerhard Dehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gault%2C+B">Baptiste Gault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ludwig%2C+W">Wolfgang Ludwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rauch%2C+E">Edgar Rauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+D">Dierk Raabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10350v1-abstract-short" style="display: inline;"> Grain boundaries (GBs) trigger structure-specific chemical segregation of solute atoms. According to the three-dimensional (3D) topology of grains, GBs - although defined as planar defects - cannot be free of curvature. This implies formation of topologically-necessary arrays of secondary GB dislocations. We report here that these pattern-forming secondary GB dislocations can have an additional an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10350v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10350v1-abstract-full" style="display: none;"> Grain boundaries (GBs) trigger structure-specific chemical segregation of solute atoms. According to the three-dimensional (3D) topology of grains, GBs - although defined as planar defects - cannot be free of curvature. This implies formation of topologically-necessary arrays of secondary GB dislocations. We report here that these pattern-forming secondary GB dislocations can have an additional and, in some cases, even a much stronger effect on GB segregation than defect-free GBs. Using nanoscale correlative tomography combining crystallography and chemical analysis, we quantified the relationship between secondary GB dislocations and their segregation energy spectra for a model Fe-W alloy. This discovery unlocks new design opportunities for advanced materials, leveraging the additional degrees of freedom provided by topologically-necessary secondary GB dislocations to modulate segregation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10350v1-abstract-full').style.display = 'none'; document.getElementById('2411.10350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10147">arXiv:2411.10147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10147">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous-Hall Neel textures in altermagnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H">Hui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+W">Wei Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Mengmeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianhui Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10147v1-abstract-short" style="display: inline;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10147v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10147v1-abstract-full" style="display: none;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferromagnets. However, the relationship between the AHE and the N茅el vector remains largely elusive. Here, we propose an &#34;extrinsic parameter&#34; method and further reveal diverse unconventional anomalous Hall textures in the N茅el vector space, dubbed anomalous-Hall N茅el textures (AHNTs), for altermagnets. Notably, we find that AHNTs resemble the spin textures in momentum space, and identify 10 types across four categories of AHNTs in altermagnets. Meanwhile, we examine our key discoveries in prototypical altermagnets. Our work can offer a methodology for detecting N茅el vectors via anomalous Hall transport, and provide useful guidelines for designing electronic and optoelectronic devices based on altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v1-abstract-full').style.display = 'none'; document.getElementById('2411.10147v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20365">arXiv:2410.20365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20365">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.molliq.2024.126190">10.1016/j.molliq.2024.126190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ionic Selectivity of Nanopores: Comparison among Cases under the Hydrostatic Pressure, Electric Field, and Concentration Gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+M">Mengnan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiuhua Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yinghao Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Yinghua Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20365v1-abstract-short" style="display: inline;"> The ionic selectivity of nanopores is crucial for the energy conversion based on nanoporous membranes. It can be significantly affected by various parameters of nanopores and the applied fields driving ions through porous membranes. Here, with finite element simulations, the selective transport of ions through nanopores is systematically investigated under three common fields, i.e. the electric fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20365v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20365v1-abstract-full" style="display: none;"> The ionic selectivity of nanopores is crucial for the energy conversion based on nanoporous membranes. It can be significantly affected by various parameters of nanopores and the applied fields driving ions through porous membranes. Here, with finite element simulations, the selective transport of ions through nanopores is systematically investigated under three common fields, i.e. the electric field (V), hydrostatic pressure (p), and concentration gradient (C). For negatively charged nanopores, through the quantitative comparison of the cation selectivity (t+) under the three fields, the cation selectivity of nanopores follows the order of t+V &gt; t+c &gt; t+p. This is due to the transport characteristics of cations and anions through the nanopores. Because of the strong transport of counterions in electric double layers under electric fields and concentration gradients, the nanopore exhibits a relatively higher selectivity to counterions. We also explored the modulation of t+ on the properties of nanopores and solutions. Under all three fields, t+ is directly proportional to the pore length and surface charge density, and inversely correlated to the pore diameter and salt concentration. Under both the electric field and hydrostatic pressure, t+ has almost no dependence on the applied field strength or ion species, which can affect t+ in the case of the concentration gradient. Our results provide detailed insights into the comparison and regulation of ionic selectivity of nanopores under three fields which can be useful for the design of high-performance devices for energy conversion based on nanoporous membranes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20365v1-abstract-full').style.display = 'none'; document.getElementById('2410.20365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Molecular Liquids, 2024, 414: 126190 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11173">arXiv:2410.11173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11173">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Ferroaxial phonons in chiral and polar NiCo2TeO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+V+A">V. A. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Y. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyzwa%2C+F">F. Lyzwa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Won%2C+C+J">C. J. Won</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+K">K. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiryukhin%2C+V">V. Kiryukhin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheong%2C+S">S-W. Cheong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sirenko%2C+A+A">A. A. Sirenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11173v1-abstract-short" style="display: inline;"> Perfect circular dichroism has been observed in the Raman scattering by the optical phonons in single chiral domain NiCo2TeO6 crystals. The selection rules for the optical phonons are determined by the combination of the chiral structure C and the electric polarization P along the c-axis. These two symmetry operations are equivalent to the ferroaxial order (C dot P) = A, so the observed optical ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11173v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11173v1-abstract-full" style="display: none;"> Perfect circular dichroism has been observed in the Raman scattering by the optical phonons in single chiral domain NiCo2TeO6 crystals. The selection rules for the optical phonons are determined by the combination of the chiral structure C and the electric polarization P along the c-axis. These two symmetry operations are equivalent to the ferroaxial order (C dot P) = A, so the observed optical phonons are referred to as &#34;ferroaxial&#34;. For a given Raman scattering geometry the observed effect may also be described as a complete non-reciprocal propagation of the optical phonons, whose preferable vector direction is determined by the sign of C dot P. The combination of Raman scattering and polarization plane rotation of the transmitted white light allows for identification of the direction of electric polarization P in mono domain chiral crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11173v1-abstract-full').style.display = 'none'; document.getElementById('2410.11173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02215">arXiv:2410.02215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02215">pdf</a>, <a href="https://arxiv.org/format/2410.02215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Fermionic tensor network contraction for arbitrary geometries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+H">Huanchen Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gray%2C+J">Johnnie Gray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+R">Ruojing Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+G">Gunhee Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wen-Yuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kj%C3%B8nstad%2C+E+F">Eirik F. Kj酶nstad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+G+K">Garnet Kin-Lic Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02215v2-abstract-short" style="display: inline;"> We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair states simulations of finite Hub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02215v2-abstract-full').style.display = 'inline'; document.getElementById('2410.02215v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02215v2-abstract-full" style="display: none;"> We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair states simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02215v2-abstract-full').style.display = 'none'; document.getElementById('2410.02215v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01665">arXiv:2409.01665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01665">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous curvature in two-dimensional van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuxiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+F">Fenglin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ri He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zhicheng Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01665v1-abstract-short" style="display: inline;"> Two-dimensional (2D) van der Waals (vdW) heterostructures consist of different 2D crystals with diverse properties, constituting the cornerstone of the new generation of 2D electronic devices. Yet interfaces in heterostructures inevitably break bulk symmetry and structural continuity, resulting in delicate atomic rearrangements and novel electronic structures. In this paper, we predict that 2D int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01665v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01665v1-abstract-full" style="display: none;"> Two-dimensional (2D) van der Waals (vdW) heterostructures consist of different 2D crystals with diverse properties, constituting the cornerstone of the new generation of 2D electronic devices. Yet interfaces in heterostructures inevitably break bulk symmetry and structural continuity, resulting in delicate atomic rearrangements and novel electronic structures. In this paper, we predict that 2D interfaces undergo spontaneous curvature, which means when two flat 2D layers approach each other, they inevitably experience out-of-plane curvature. Based on deep-learning-assisted large-scale molecular dynamics simulations, we observed significant out-of-plane displacements up to 3.8 angstrom in graphene/BN bilayers induced by curvature, producing a stable hexagonal moire pattern, which agrees well with experimentally observations. Additionally, the out-of-plane flexibility of 2D crystals enables the propagation of curvature throughout the system, thereby influencing the mechanical properties of the heterostructure. These findings offer fundamental insights into the atomic structure in 2D vdW heterostructures and pave the way for their applications in devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01665v1-abstract-full').style.display = 'none'; document.getElementById('2409.01665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages and 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12820">arXiv:2408.12820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12820">pdf</a>, <a href="https://arxiv.org/format/2408.12820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Chiral active systems near a substrate: Emergent damping length controlled by fluid friction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mecke%2C+J">Joscha Mecke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yongxiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gompper%2C+G">Gerhard Gompper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ripoll%2C+M">Marisol Ripoll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12820v1-abstract-short" style="display: inline;"> Chiral active fluids show the emergence of a turbulent behavior characterized by multiple dynamic vortices whose maximum size is specific for each experimental system. This is in contrast to hydrodynamic simulations in which the size of vortices is only limited by the system size. We propose and develop an approach to model the effect of friction close to a surface in a particle based hydrodynamic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12820v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12820v1-abstract-full" style="display: none;"> Chiral active fluids show the emergence of a turbulent behavior characterized by multiple dynamic vortices whose maximum size is specific for each experimental system. This is in contrast to hydrodynamic simulations in which the size of vortices is only limited by the system size. We propose and develop an approach to model the effect of friction close to a surface in a particle based hydrodynamic simulation method in two dimensions, in which the friction coefficient can be related to the system parameters and to the emergence of a damping length. This length limits the size of the emergent vortices, and influences other relevant system properties such as the actuated velocity, rotational diffusion, or the cutoff of the energy spectra. Comparison of simulation and experimental results show a good agreement which demonstrates the predictive capabilities of the approach, which can be applied to a wider class of quasi-two-dimensional systems with friction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12820v1-abstract-full').style.display = 'none'; document.getElementById('2408.12820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08810">arXiv:2408.08810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08810">pdf</a>, <a href="https://arxiv.org/ps/2408.08810">ps</a>, <a href="https://arxiv.org/format/2408.08810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Multipolar Anisotropy in Anomalous Hall Effect from Spin-Group Symmetry Breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+M">Mengjie Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+D">Dazhi Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08810v1-abstract-short" style="display: inline;"> Traditional view of the anomalous Hall effect~(AHE) in ferromagnets is that it arises from the magnetization perpendicular to the measurement plane and that there is a linear dependence on the latter. Underlying such a view is the thinking that the AHE is a time-reversal symmetry breaking phenomenon and can therefore be treated in terms of a power series in the magnetic order. However, this view i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08810v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08810v1-abstract-full" style="display: none;"> Traditional view of the anomalous Hall effect~(AHE) in ferromagnets is that it arises from the magnetization perpendicular to the measurement plane and that there is a linear dependence on the latter. Underlying such a view is the thinking that the AHE is a time-reversal symmetry breaking phenomenon and can therefore be treated in terms of a power series in the magnetic order. However, this view is squarely challenged by a number of experiments recently, urging for a thorough theoretical investigation on the fundamental level. We find that for strong magnets, it is more appropriate and fruitful to regard the AHE as a spin-group symmetry breaking phenomenon where the critical parameter is the spin-orbit interaction strength, which involves a much smaller energy scale. In ferromagnets, the spin-orbit coupling breaks the $\infty 2^\prime$ spin rotation symmetry, and the key to characterizing such symmetry breaking is the identification of spin-orbit vectors which transform regularly under spin group operations. Born out of our framework is a rich multi-polar relationship between the anomalous Hall conductivity and the magnetization direction, with each pole being expanded progressively in powers of the spin-orbit coupling strength. For the leading order contribution, i.e., the dipole, its isotropic part corresponds to the traditional view, and its anisotropic part can lead to the in-plane AHE where the magnetization lies within the measurement plane. Beyond the dipolar one, the octupolar structure offers the leading order source of nonlinearity and hence introduces unique anisotropy where the dipolar structure cannot. The dipolar and octupolar structure offers a unified explanation for the in-plane AHE recently observed in various ferromagnets, and our comprehensive analysis further extends the candidate material systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08810v1-abstract-full').style.display = 'none'; document.getElementById('2408.08810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02566">arXiv:2408.02566</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02566">pdf</a>, <a href="https://arxiv.org/format/2408.02566">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Magnetocaloric Effect of Topological Excitations in Kitaev Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+E">Enze Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+N">Ning Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+G">Gang Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02566v1-abstract-short" style="display: inline;"> Traditional magnetic sub-Kelvin cooling relies on the nearly free local moments in hydrate paramagnetic salts, whose utility is hampered by the dilute magnetic ions and low thermal conductivity. Here we propose to use instead fractional excitations inherent to quantum spin liquids (QSLs) as an alternative, which are sensitive to external fields and can induce a very distinctive magnetocaloric effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02566v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02566v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02566v1-abstract-full" style="display: none;"> Traditional magnetic sub-Kelvin cooling relies on the nearly free local moments in hydrate paramagnetic salts, whose utility is hampered by the dilute magnetic ions and low thermal conductivity. Here we propose to use instead fractional excitations inherent to quantum spin liquids (QSLs) as an alternative, which are sensitive to external fields and can induce a very distinctive magnetocaloric effect. With state-of-the-art tensor-network approach, we compute low-temperature properties of Kitaev honeycomb model. For the ferromagnetic case, strong demagnetization cooling effect is observed due to the nearly free $Z_2$ vortices via spin fractionalization, described by a paramagnetic equation of state with a renormalized Curie constant. For the antiferromagnetic Kitaev case, we uncover an intermediate-field gapless QSL phase with very large spin entropy, possibly due to the emergence of spinon Fermi surface. Potential realization of topological excitation cooling in Kitaev materials is also discussed, which may offer a promising pathway to circumvent existing limitations in the paramagnetic hydrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02566v1-abstract-full').style.display = 'none'; document.getElementById('2408.02566v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures; supplementary materials; to appear in Nat. Commun. (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00445">arXiv:2408.00445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00445">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sliding Flexoelectricity in Two-Dimensional van der Waals Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ri He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+F">Fenglin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuxiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Binwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yubai Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Run-Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zhicheng Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00445v1-abstract-short" style="display: inline;"> Two-dimensional sliding ferroelectrics, with their unique stacking degrees of freedom, offer a different approach to manipulate polarization by interlayer sliding. Bending sliding ferroelectrics inevitably leads to interlayer sliding motion, thus altering stacking orders and polarization properties. Here, by using machine-learning force field, we investigate the effects of bending deformation on g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00445v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00445v1-abstract-full" style="display: none;"> Two-dimensional sliding ferroelectrics, with their unique stacking degrees of freedom, offer a different approach to manipulate polarization by interlayer sliding. Bending sliding ferroelectrics inevitably leads to interlayer sliding motion, thus altering stacking orders and polarization properties. Here, by using machine-learning force field, we investigate the effects of bending deformation on geometries, stackings, energies, and polarizations in sliding ferroelectric bilayer h-BN and 3R-MoS2. We predict that bent ferroelectric bilayer forms irreversible kinks instead of arc when the bending angle exceeds a critical value. We demonstrate that the kinks originate from the competition between bending energy and interlayer van der Waals energy. The kink contains a ferroelectric domain wall that reverses the polarization, effectively inducing a flexoelectric effect. We term this phenomenon &#34;sliding flexoelectricity&#34; to distinguish it from conventional strain-gradient-induced flexoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00445v1-abstract-full').style.display = 'none'; document.getElementById('2408.00445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures in the maintext, 11 figures in the Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21302">arXiv:2407.21302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21302">pdf</a>, <a href="https://arxiv.org/format/2407.21302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> The possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tengdong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">Rui Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanling Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21302v1-abstract-short" style="display: inline;"> Transition metal dichalcogenides (TMDs), exhibit a range of crystal structures and topological quantum states. The 1$T$ phase, in particular, shows promise for superconductivity driven by electron-phonon coupling, strain, pressure, and chemical doping. In this theoretical investigation, we explore 1$T$-RhSeTe as a novel type of TMD superconductor with topological electronic states. The optimal dop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21302v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21302v1-abstract-full" style="display: none;"> Transition metal dichalcogenides (TMDs), exhibit a range of crystal structures and topological quantum states. The 1$T$ phase, in particular, shows promise for superconductivity driven by electron-phonon coupling, strain, pressure, and chemical doping. In this theoretical investigation, we explore 1$T$-RhSeTe as a novel type of TMD superconductor with topological electronic states. The optimal doping structure and atomic arrangement of 1$T$-RhSeTe are constructed. Phonon calculations validate the integrity of the constructed doping structure. The analysis of the electron-phonon coupling (EPC) using the Electron-phonon Wannier (EPW) method has confirmed the existence of a robust electron-phonon interaction in 1$T$-RhSeTe, resulting in total EPC constant $位$ = 2.02, the logarithmic average frequency $蠅_{\text{log}}$ = 3.15 meV and $T_c$ = 4.61 K, consistent with experimental measurements and indicative of its classification as a BCS superconductor. The band structure analysis revealed the presence of Dirac-like band crossing points. The topological non-trivial electronic structures of the 1$T$-RhSeTe are confirmed via the evolution of Wannier charge centers (WCCs). Collectively, these distinctive properties underscore 1$T$-RhSeTe as a possible candidate for a topological superconductor, warranting further investigation into its potential implications and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21302v1-abstract-full').style.display = 'none'; document.getElementById('2407.21302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20511">arXiv:2407.20511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20511">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s44160-025-00743-5">10.1038/s44160-025-00743-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Building spin-1/2 antiferromagnetic Heisenberg chains with diaza-nanographenes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xiaoshuai Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henriques%2C+J+C+G">Jo茫o C. G. Henriques</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yixuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palma%2C+C">Carlos-Andres Palma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+S">Shixuan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Ji Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fern%C3%A1ndez-Rossier%2C+J">Joaqu铆n Fern谩ndez-Rossier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xinliang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20511v1-abstract-short" style="display: inline;"> Understanding and engineering the coupling of spins in nanomaterials is of central importance for designing novel devices. Graphene nanostructures with 蟺-magnetism offer a chemically tunable platform to explore quantum magnetic interactions. However, realizing spin chains bearing controlled odd-even effects with suitable nanographene systems is challenging. Here, we demonstrate the successful on-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20511v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20511v1-abstract-full" style="display: none;"> Understanding and engineering the coupling of spins in nanomaterials is of central importance for designing novel devices. Graphene nanostructures with 蟺-magnetism offer a chemically tunable platform to explore quantum magnetic interactions. However, realizing spin chains bearing controlled odd-even effects with suitable nanographene systems is challenging. Here, we demonstrate the successful on-surface synthesis of spin-1/2 antiferromagnetic Heisenberg chains with parity-dependent magnetization based on antiaromatic diaza-hexa-peri-hexabenzocoronene (diaza-HBC) units. Using distinct synthetic strategies, two types of spin chains with different terminals were synthesized, both exhibiting a robust odd-even effect on the spin coupling along the chain. Combined investigations using scanning tunneling microscopy, non-contact atomic force microscopy, density functional theory calculations, and quantum spin models confirmed the structures of the diaza-HBC chains and revealed their magnetic properties, which has an S = 1/2 spin per unit through electron donation from the diaza-HBC core to the Au(111) substrate. Gapped excitations were observed in even-numbered chains, while enhanced Kondo resonance emerged in odd-numbered units of odd-numbered chains due to the redistribution of the unpaired spin along the chain. Our findings provide an effective strategy to construct nanographene spin chains and unveil the odd-even effect in their magnetic properties, offering potential applications in nanoscale spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20511v1-abstract-full').style.display = 'none'; document.getElementById('2407.20511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Synthesis (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18610">arXiv:2407.18610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18610">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Direct observation of quantum vortex fractionalization in multiband superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Quanxin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Haijiao Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timoshuk%2C+I">Igor Timoshuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hanxiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Ye Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+R">Rui Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grinenko%2C+V">Vadim Grinenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babaev%2C+E">Egor Babaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+N+F+Q">Noah F. Q. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Baiqing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C">Chi-Ming Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18610v3-abstract-short" style="display: inline;"> Magnetic field is expelled from a superconductor, unless it forms quantum vortices, consisting of a core singularity with current circulating around it. The London quantization condition implies that there is one core singularity per quantum of magnetic flux in single-component superconductors, while in multiband materials fractional vortices are possible. Here, we report the first observation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18610v3-abstract-full').style.display = 'inline'; document.getElementById('2407.18610v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18610v3-abstract-full" style="display: none;"> Magnetic field is expelled from a superconductor, unless it forms quantum vortices, consisting of a core singularity with current circulating around it. The London quantization condition implies that there is one core singularity per quantum of magnetic flux in single-component superconductors, while in multiband materials fractional vortices are possible. Here, we report the first observation of quantum vortex core fractionalization on the potassium terminated surface of multiband superconductor KFe2As2 by scanning tunneling microscopy. We observe splitting of an integer-flux vortex into several fractional vortices, leading to disparity between numbers of flux quanta and vortex cores. Our findings demonstrate that fractionalized core singularities are possible in a multiband superconductor, opening avenue for new experimental platforms with quasiparticles with fractional statistics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18610v3-abstract-full').style.display = 'none'; document.getElementById('2407.18610v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15145">arXiv:2407.15145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Janus MoSSe nanotubes on one-dimensional SWCNT-BNNT van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chunxia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Q">Qingyun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+Y">Yuta Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yanlin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yongjia Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tianyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yicheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+W">Wanyu Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruyama%2C+M">Mina Maruyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okada%2C+S">Susumu Okada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suenaga%2C+K">Kazu Suenaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruyama%2C+S">Shigeo Maruyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+R">Rong Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15145v2-abstract-short" style="display: inline;"> 2D Janus TMDC layers with broken mirror symmetry exhibit giant Rashba splitting and unique excitonic behavior. For their 1D counterparts, the Janus nanotubes possess curvature, which introduce an additional degree of freedom to break the structural symmetry. This could potentially enhance these effects or even give rise to novel properties. In addition, Janus MSSe nanotubes (M=W, Mo), with diamete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15145v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15145v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15145v2-abstract-full" style="display: none;"> 2D Janus TMDC layers with broken mirror symmetry exhibit giant Rashba splitting and unique excitonic behavior. For their 1D counterparts, the Janus nanotubes possess curvature, which introduce an additional degree of freedom to break the structural symmetry. This could potentially enhance these effects or even give rise to novel properties. In addition, Janus MSSe nanotubes (M=W, Mo), with diameters surpassing 40 脜 and Se positioned externally, consistently demonstrate lower energy states than their Janus monolayer counterparts. However, there have been limited studies on the preparation of Janus nanotubes, due to the synthesis challenge and limited sample quality. Here we first synthesized MoS2 nanotubes based on SWCNT-BNNT heterostructure and then explored the growth of Janus MoSSe nanotubes from MoS2 nanotubes with the assistance of H2 plasma at room temperature. The successful formation of the Janus structure was confirmed via Raman spectroscopy, and microscopic morphology and elemental distribution of the grown samples were further characterized. The synthesis of Janus MoSSe nanotubes based on SWCNT-BNNT enables the further exploration of novel properties in Janus TMDC nanotubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15145v2-abstract-full').style.display = 'none'; document.getElementById('2407.15145v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13230">arXiv:2407.13230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13230">pdf</a>, <a href="https://arxiv.org/format/2407.13230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Probing spin textures in atomically thin CrSBr through tunneling magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Ziqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Chengfeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuchen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zuxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+P">Pingfan Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yu Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13230v1-abstract-short" style="display: inline;"> The exploration of spin configurations and magnetoresistance in van der Waals magnetic semiconductors, particularly in the realm of thin-layer structures, holds paramount significance for the development of two-dimensional spintronic nanodevices. In this Letter, we conducted comprehensive magnetotransport measurements on a few-layer CrSBr using a vertical tunneling device configuration. Notably, o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13230v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13230v1-abstract-full" style="display: none;"> The exploration of spin configurations and magnetoresistance in van der Waals magnetic semiconductors, particularly in the realm of thin-layer structures, holds paramount significance for the development of two-dimensional spintronic nanodevices. In this Letter, we conducted comprehensive magnetotransport measurements on a few-layer CrSBr using a vertical tunneling device configuration. Notably, our investigation revealed that tunneling magnetoresistance possesses a distinctive capability to discern spin configurations that would otherwise remain indistinguishable through alternative techniques such as photoluminescence. We observed the existence of energy-degenerate states exhibiting identical net magnetization and comparable spin configurations, which could be differentiated based on their rectification properties, reminiscent of a diode-like behavior at positive and negative bias voltages. Specifically, in devices comprising 5-layer CrSBr, we observed an intriguing positive magnetoresistive state when subjected to an in-plane magnetic field along the $b$-axis. To gain a deeper understanding of the underlying mechanisms, we developed a one-dimensional linear chain model that successfully computed the magnetic state, thereby elucidating the underlying spin configurations responsible for the observed transport phenomena. These findings not only provide novel perspectives into the intricate spin textures of two-dimensional CrSBr but also underscore the sensitivity of tunneling as a probing technique for investigating the magnetic order in van der Waals materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13230v1-abstract-full').style.display = 'none'; document.getElementById('2407.13230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09129">arXiv:2407.09129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09129">pdf</a>, <a href="https://arxiv.org/format/2407.09129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Rotating dipole and quadrupole quantum droplets in binary Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Dongshuai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yanxia Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+D">Dianyuan Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lifu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09129v1-abstract-short" style="display: inline;"> Quantum droplets (QDs) are self-trapped modes stabilized by the Lee-Huang-Yang correction to the mean-field Hamiltonian of binary atomic Bose-Einstein condensates. The existence and stability of quiescent and rotating dipole-shaped and vortex QDs with vorticity $S=1$ (DQDs and VQDs, respectively) are numerically studied in the framework of the accordingly modified two-component system. The rotatin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09129v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09129v1-abstract-full" style="display: none;"> Quantum droplets (QDs) are self-trapped modes stabilized by the Lee-Huang-Yang correction to the mean-field Hamiltonian of binary atomic Bose-Einstein condensates. The existence and stability of quiescent and rotating dipole-shaped and vortex QDs with vorticity $S=1$ (DQDs and VQDs, respectively) are numerically studied in the framework of the accordingly modified two-component system. The rotating DQDs trapped in an annular potential are built of two crescent-like components, stretching along the azimuthal direction with the increase of the rotation frequency. Rotating quadrupole QDs (QQDs) bifurcate from the VQDs with $S=2$. Above a certain rotation frequency, they transform back into VQDs with a flat-top shape. Rotating DQDs and QQDs are stable in a broad interval of values of the chemical potential. The results provide the first example of stable modes which are intermediate states between the rotating DQDs and QQDs on the one hand, and VQDs on the other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09129v1-abstract-full').style.display = 'none'; document.getElementById('2407.09129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,8 figures;to be published in Physical Review Research</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19841">arXiv:2406.19841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19841">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> MOSP: A User-interface Package for Simulating Metal Nanoparticle Structure and Reactivity under Operando Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+L">Lei Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Beien Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yi Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19841v2-abstract-short" style="display: inline;"> Structures of metal nanoparticles (NPs) significantly influence their catalytic reactivities. Recent in situ experimental observations of dramatic structural changes in NPs have underscored the need to establish a dynamic structure-property relationship that accounts for the reconstruction of NPs in reactive environments. Here, we present the MOSP, a free and open-source graphical user interface (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19841v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19841v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19841v2-abstract-full" style="display: none;"> Structures of metal nanoparticles (NPs) significantly influence their catalytic reactivities. Recent in situ experimental observations of dramatic structural changes in NPs have underscored the need to establish a dynamic structure-property relationship that accounts for the reconstruction of NPs in reactive environments. Here, we present the MOSP, a free and open-source graphical user interface (GUI) package designed to simulate the structure and reactivity of metal NPs under operando conditions. MOSP integrates two models: the multiscale structure reconstruction (MSR) model predicting equilibrium metal NP structures under specific reaction conditions and the kinetic Monte Carlo (KMC) model simulating the reaction dynamics. This combination allows for the exploration of the dynamic structure-property relationships of NPs. MOSP enhances user accessibility through its intuitive GUI, facilitating easy input, post-processing, and visualization of simulation data. This article is the release note of MOSP, focusing on its implementation and functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19841v2-abstract-full').style.display = 'none'; document.getElementById('2406.19841v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18965">arXiv:2406.18965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18965">pdf</a>, <a href="https://arxiv.org/ps/2406.18965">ps</a>, <a href="https://arxiv.org/format/2406.18965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exotic 4f Correlated Electronic States of Ferromagnetic Kondo Lattice Compounds ReRh$_6$Ge$_4$ (Re=Ce, Ho, Er, Tm) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haiyan Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qiaoni Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18965v1-abstract-short" style="display: inline;"> CeRh$_6$Ge$_4$ stands out as the first stoichiometric metallic compound with a ferromagnetic quantum critical point, thereby garnering significant attention. Ferromagnetic Kondo lattice compounds ReRh$_6$Ge$_4$ (Re=Ce, Ho, Er, Tm) have been systematically investigated with density functional theory incorporating Coulomb interaction U and spin-orbital coupling. We determined the magnetic easy axis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18965v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18965v1-abstract-full" style="display: none;"> CeRh$_6$Ge$_4$ stands out as the first stoichiometric metallic compound with a ferromagnetic quantum critical point, thereby garnering significant attention. Ferromagnetic Kondo lattice compounds ReRh$_6$Ge$_4$ (Re=Ce, Ho, Er, Tm) have been systematically investigated with density functional theory incorporating Coulomb interaction U and spin-orbital coupling. We determined the magnetic easy axis of CeRh$_6$Ge$_4$ is within the ab plane, which is in agreement with previous magnetization measurements conducted under external magnetic field and muSR experiments. We also predicted the magnetic easy axes for the other three compounds. For TmRh$_6$Ge$_4$, the magnetic easy axis aligns along the c axis, thus preserving the $C_3$ rotational symmetry of the c axis. Especially, there are triply degenerate nodal points along the $螕-A$ direction in the band structure including spin-orbital coupling. A possible localized to itinerant crossover is revealed as $4f$ electrons increase from CeRh$_6$Ge$_4$ to TmRh$_6$Ge$_4$. Specifically, the $4f$ electrons of TmRh$_6$Ge$_4$ contribute to the formation of a large Fermi surface, indicating their participation in the conduction process. Conversely, the $4f$ electrons in HoRh$_6$Ge$_4$, ErRh$_6$Ge$_4$ and CeRh$_6$Ge$_4$ remain localized, which result in smaller Fermi surfaces for these compounds. These theoretical investigations on electronic structure and magnetic properties shed deep insight into the unique nature of $4f$ electrons, providing critical predictions for subsequent experimental studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18965v1-abstract-full').style.display = 'none'; document.getElementById('2406.18965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16663">arXiv:2406.16663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16663">pdf</a>, <a href="https://arxiv.org/format/2406.16663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Light-induced percolative topological phase transition in type-II Weyl semimetal WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+F">Fu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yifan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yi Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shulei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jingdi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16663v2-abstract-short" style="display: inline;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16663v2-abstract-full" style="display: none;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density of states near the Fermi level. Furthermore, the emergence of an unconventional temporal isosbestic point marks a dynamic universality, strongly suggesting a percolative interaction between the two topologically distinct phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'none'; document.getElementById('2406.16663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15956">arXiv:2406.15956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15956">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Decoupling Many-Body Interactions in CeO2 (111) Oxygen Vacancy Structure: Insights from Machine-Learning and Cluster Expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yujing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zhong-Kang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Beien Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaojuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troppenz%2C+M">Maria Troppenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riga-monti%2C+S">Santiago Riga-monti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Draxl%2C+C">Claudia Draxl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ganduglia-Pirovano%2C+M+V">M. Ver贸nica Ganduglia-Pirovano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yi Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15956v1-abstract-short" style="display: inline;"> Oxygen vacancies (VO&#39;s) are of paramount importance in influencing the properties and applications of ceria (CeO2). Yet, comprehending the distribution and nature of the VO&#39;s poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among VO&#39;s and polarons (Ce3+&#39;s). In this study, we employed a combination of LASSO regression in machine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15956v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15956v1-abstract-full" style="display: none;"> Oxygen vacancies (VO&#39;s) are of paramount importance in influencing the properties and applications of ceria (CeO2). Yet, comprehending the distribution and nature of the VO&#39;s poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among VO&#39;s and polarons (Ce3+&#39;s). In this study, we employed a combination of LASSO regression in machine learning, in conjunction with a cluster expansion model and first-principles calculations to decouple the interactions among the Ce3+&#39;s and VO&#39;s, thereby circumventing the limitations associated with sampling electronic configurations. By separating these interactions, we identified specific electronic configurations characterized by the most favorable VO-Ce3+ attractions and the least Ce3+-Ce3+/VO-VO repulsions, which are crucial in determining the stability of vacancy structures. Through more than 10^8 Metropolis Monte Carlo samplings of Vo&#39;s and Ce3+ in the near-surface of CeO2(111), we explored potential configurations within an 8x8 supercell. Our findings revealed that oxygen vacancies tend to aggregate and are most abundant in the third oxygen layer, primarily due to extensive geometric relaxation-an aspect previously overlooked. This behavior is notably dependent on the concentration of Vo. This work introduces a novel theoretical framework for unraveling the complex vacancy structures in metal oxides, with potential applications in redox and catalytic chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15956v1-abstract-full').style.display = 'none'; document.getElementById('2406.15956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 1 scheme, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15024">arXiv:2406.15024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15024">pdf</a>, <a href="https://arxiv.org/format/2406.15024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal activated detection of dark particles in a weakly coupled quantum Ising ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yunjing Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiahao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Huihang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jianda Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15024v1-abstract-short" style="display: inline;"> The Ising$_h^2$ integrable field theory, which emerges when two quantum critical Ising chains are weakly coupled, possesses eight types of relativistic particles whose mass spectrum and scattering matrices are organized by the $\mathcal{D}_8^{(1)}$ algebra. It is predicted that all odd-parity particles are dark and cannot be directly excited from the ground state. This makes these dark particles h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15024v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15024v1-abstract-full" style="display: none;"> The Ising$_h^2$ integrable field theory, which emerges when two quantum critical Ising chains are weakly coupled, possesses eight types of relativistic particles whose mass spectrum and scattering matrices are organized by the $\mathcal{D}_8^{(1)}$ algebra. It is predicted that all odd-parity particles are dark and cannot be directly excited from the ground state. This makes these dark particles hard to be detected. Here, we study the local dynamical spin structure factor of the model at low-frequencies and low-temperatures. In contrast to the invisibility of the dark particles in THz spectroscopy or inelastic neutron scattering measurement, we find that the lightest dark particle is detectable, manifested as a thermal activation gap in nuclear magnetic resonance measurements. Our results provide a practical criterion for verifying the existence of dark particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15024v1-abstract-full').style.display = 'none'; document.getElementById('2406.15024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11211">arXiv:2406.11211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11211">pdf</a>, <a href="https://arxiv.org/format/2406.11211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantized Andreev conductance in semiconductor nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yichun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Z">Zuhan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Z">Zhan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zehao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jiaye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fangting Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonglin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Ruidong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lining Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaoyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiao Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Tiantian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+Y">Yunyi Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+E">Dong E. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+R">Runan Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11211v1-abstract-short" style="display: inline;"> Clean one-dimensional electron systems can exhibit quantized conductance. The plateau conductance doubles if the transport is dominated by Andreev reflection. Here, we report quantized conductance observed in both Andreev and normal-state transports in PbTe-Pb and PbTe-In hybrid nanowires. The Andreev plateau is observed at $4e^2/h$, twice of the normal plateau value of $2e^2/h$. In comparison, An&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11211v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11211v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11211v1-abstract-full" style="display: none;"> Clean one-dimensional electron systems can exhibit quantized conductance. The plateau conductance doubles if the transport is dominated by Andreev reflection. Here, we report quantized conductance observed in both Andreev and normal-state transports in PbTe-Pb and PbTe-In hybrid nanowires. The Andreev plateau is observed at $4e^2/h$, twice of the normal plateau value of $2e^2/h$. In comparison, Andreev conductance in the best-optimized III-V nanowires is non-quantized due to mode-mixing induced dips (a disorder effect), despite the quantization of normal-state transport. The negligible mode mixing in PbTe hybrids indicates an unprecedented low-disorder transport regime for nanowire devices, beneficial for Majorana researches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11211v1-abstract-full').style.display = 'none'; document.getElementById('2406.11211v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09985">arXiv:2406.09985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09985">pdf</a>, <a href="https://arxiv.org/format/2406.09985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Spectral and Entanglement Properties of the Random Exchange Heisenberg Chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yilun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B6mer%2C+R+A">Rudolf A. R枚mer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09985v2-abstract-short" style="display: inline;"> We study the many-body localization problem in the non-abelian SU(2)-invariant random antiferromagnetic exchange model in 1D. Exact and sparse matrix diagonalization methods are used to calculate eigenvalues and eigenvectors of the Hamiltonian matrix. We investigate the behaviour of the energy level gap-ratio statistic, participation ratio, entanglement entropy and the entanglement spectral parame&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09985v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09985v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09985v2-abstract-full" style="display: none;"> We study the many-body localization problem in the non-abelian SU(2)-invariant random antiferromagnetic exchange model in 1D. Exact and sparse matrix diagonalization methods are used to calculate eigenvalues and eigenvectors of the Hamiltonian matrix. We investigate the behaviour of the energy level gap-ratio statistic, participation ratio, entanglement entropy and the entanglement spectral parameter as a function of disorder strength. Different distributions of random couplings are considered. We find, up to $L=24$, a clear distinction between our non-abelian model and the more often studied random field Heisenberg model: the regime of seemingly localized behaviour is much less pronounced in the random exchange model than in the field model case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09985v2-abstract-full').style.display = 'none'; document.getElementById('2406.09985v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures and a supplement with 11 additional figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09730">arXiv:2406.09730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09730">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultra-bright and energy-efficient quantum-dot LEDs by idealizing charge injection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yizhen Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiongzhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jianan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Zikang Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+H">Haiyan Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xiaogang Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09730v1-abstract-short" style="display: inline;"> Lighting and display, relying on electric and optical down-conversion emission with sluggish power efficiency, account for &gt;15% global electricity consumption1,2. In 2014, quantum-dot (QD) LEDs (QLEDs) with near-optimal external quantum efficiency emerged3 and promised a pathway to avoid the vast down-conversion energy loss4,5. Despite a decade of progress4-22, fabrication of energy-efficient QLED&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09730v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09730v1-abstract-full" style="display: none;"> Lighting and display, relying on electric and optical down-conversion emission with sluggish power efficiency, account for &gt;15% global electricity consumption1,2. In 2014, quantum-dot (QD) LEDs (QLEDs) with near-optimal external quantum efficiency emerged3 and promised a pathway to avoid the vast down-conversion energy loss4,5. Despite a decade of progress4-22, fabrication of energy-efficient QLEDs with application-relevant brightness remains elusive. Here, the main roadblock is identified as the oxidative species adsorbed in the nanocrystalline electron-injection layer of QLEDs, which is then addressed by a simple reductive treatment to simultaneously boosts electron conductivity and hole blockage of the electron-injection layer. The resulting sub-bandgap-driven QLEDs with optimal efficiency achieve ultra-high brightness across the entire visible spectrum at least 2.6-fold higher than existing benchmarks. The brightness fully satisfies the demands of various forms of lighting and display, which surges to a remarkable level sufficient for QD laser diodes with a moderate bias (~9 V). Optimized electron injection further enables new types of QD-blend LEDs for diffuse white-light sources surpassing the 2035 R&amp;D targets set by the U.S. Department of Energy. Our findings open a door for understanding and optimizing carrier transport in nanocrystalline semiconductors shared by various types of solution-processed optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09730v1-abstract-full').style.display = 'none'; document.getElementById('2406.09730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04891">arXiv:2406.04891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04891">pdf</a>, <a href="https://arxiv.org/format/2406.04891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dispersive Qubit Readout with Intrinsic Resonator Reset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jerger%2C+M">M. Jerger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Motzoi%2C+F">F. Motzoi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Y. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dickel%2C+C">C. Dickel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchmann%2C+L">L. Buchmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">A. Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tancredi%2C+G">G. Tancredi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Warren%2C+C+W">C. W. Warren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bylander%2C+J">J. Bylander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiVincenzo%2C+D">D. DiVincenzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barends%2C+R">R. Barends</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushev%2C+P+A">P. A. Bushev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04891v2-abstract-short" style="display: inline;"> A key challenge in quantum computing is speeding up measurement and initialization. Here, we experimentally demonstrate a dispersive measurement method for superconducting qubits that simultaneously measures the qubit and returns the readout resonator to its initial state. The approach is based on universal analytical pulses and requires knowledge of the qubit and resonator parameters, but needs n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04891v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04891v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04891v2-abstract-full" style="display: none;"> A key challenge in quantum computing is speeding up measurement and initialization. Here, we experimentally demonstrate a dispersive measurement method for superconducting qubits that simultaneously measures the qubit and returns the readout resonator to its initial state. The approach is based on universal analytical pulses and requires knowledge of the qubit and resonator parameters, but needs no direct optimization of the pulse shape, even when accounting for the nonlinearity of the system. Moreover, the method generalizes to measuring an arbitrary number of modes and states. For the qubit readout, we can drive the resonator to $\sim 10^2$ photons and back to $\sim 10^{-3}$ photons in less than $3 魏^{-1}$, while still achieving a $T_1$-limited assignment error below 1\%. We also present universal pulse shapes and experimental results for qutrit readout. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04891v2-abstract-full').style.display = 'none'; document.getElementById('2406.04891v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16079">arXiv:2405.16079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16079">pdf</a>, <a href="https://arxiv.org/format/2405.16079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic localized excitons in MoSe$_2$/CrSBr heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xinyue Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zhigang Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuchen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+P">Pingfan Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shiqi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zuxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yu Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16079v1-abstract-short" style="display: inline;"> We present a comprehensive investigation of optical properties in MoSe$_2$/CrSBr heterostructures, unveiling the presence of localized excitons represented by a new emission feature, X$^*$. We demonstrate through temperature- and power-dependent photoluminescence spectroscopy that X$^*$ originates from excitons confined by intrinsic defects within the CrSBr layer. The valley polarization of X$^*$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16079v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16079v1-abstract-full" style="display: none;"> We present a comprehensive investigation of optical properties in MoSe$_2$/CrSBr heterostructures, unveiling the presence of localized excitons represented by a new emission feature, X$^*$. We demonstrate through temperature- and power-dependent photoluminescence spectroscopy that X$^*$ originates from excitons confined by intrinsic defects within the CrSBr layer. The valley polarization of X$^*$ and trion peaks displays opposite polarity under a magnetic field, which closely correlates with the magnetic order of CrSBr. This is attributed to spin-dependent charge transfer mechanisms across the heterointerface, supported by density functional theory calculations revealing a type-II band alignment and spin-polarized band structures. Furthermore, the strong in-plane anisotropy of CrSBr induces unique polarization-dependent responses in MoSe$_2$ emissions. Our study highlights the crucial role of defects in shaping excitonic properties. It offers valuable insights into spectral-resolved proximity effects in van der Waals heterostructures between semiconductor and magnet, contributing to advancing spintronic and valleytronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16079v1-abstract-full').style.display = 'none'; document.getElementById('2405.16079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02549">arXiv:2405.02549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02549">pdf</a>, <a href="https://arxiv.org/format/2405.02549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Defect-Assisted Domain Nucleation Drives Unique Exchange Bias Phenomena in $\bf{MnBi_2Te_4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shiqi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaolong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yuchen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guzman%2C+R">Roger Guzman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+P">Pingfan Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tianlong Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yu Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02549v1-abstract-short" style="display: inline;"> The study of the mechanism of exchange bias phenomena and the achievement of its efficient control are of great importance, as it promotes the revelation of unique exchange interactions and the development of exotic applications. However, it is challenging due to the elusive interface between magnetic phases. In this study, we report an unprecedented exchange bias phenomenon observed in ultrathin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02549v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02549v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02549v1-abstract-full" style="display: none;"> The study of the mechanism of exchange bias phenomena and the achievement of its efficient control are of great importance, as it promotes the revelation of unique exchange interactions and the development of exotic applications. However, it is challenging due to the elusive interface between magnetic phases. In this study, we report an unprecedented exchange bias phenomenon observed in ultrathin uncompensated antiferromagnetic MnBi$_2$Te$_4$. The magnitude and direction of the exchange field can be intentionally controlled by designing a magnetic field sweep protocol without a field cooling process. The combined experimental and theoretical simulation results indicate that the spin-flip process assisted by the ubiquitous defect-induced pinning domain sites with varying inner exchange interactions might give rise to the emergence and robustness of this peculiar exchange bias. The temperature and thickness dependence of the exchange bias phenomena are systematically investigated for further study and exploitation of its unique properties. This mechanism hold promise for highly tunable exchange bias in prevalent magnetic systems by engineering the properties of domain structures, and also offers promising avenues for the design of spintronic devices combing its topology based on MnBi$_2$Te$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02549v1-abstract-full').style.display = 'none'; document.getElementById('2405.02549v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02028">arXiv:2405.02028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02028">pdf</a>, <a href="https://arxiv.org/ps/2405.02028">ps</a>, <a href="https://arxiv.org/format/2405.02028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Many-body Localization Transition of Ising Spin-1 Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Taotao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yining Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yiwen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaodan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+J">Jiameng Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuting Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02028v1-abstract-short" style="display: inline;"> In this paper, we theoretically investigate the many-body localization properties of one-dimensional Ising spin-1 chains by using the methods of exact matrix diagonalization. We compare it with the MBL properties of the Ising spin-1/2 chains. The results indicate that the one-dimensional Ising spin-1 chains can also undergo MBL phase transition. There are various forms of disorder, and we compare&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02028v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02028v1-abstract-full" style="display: none;"> In this paper, we theoretically investigate the many-body localization properties of one-dimensional Ising spin-1 chains by using the methods of exact matrix diagonalization. We compare it with the MBL properties of the Ising spin-1/2 chains. The results indicate that the one-dimensional Ising spin-1 chains can also undergo MBL phase transition. There are various forms of disorder, and we compare the effects of different forms of quasi-disorder and random disorder on many-body localization in this paper. First, we calculate the exctied-state fidelity to study the MBL phase transtion. By changing the form of the quasi-disorder, we study the MBL transition of the system with different forms of quasi-disorder and compare them with those of the random disordered system. The results show that both random disorder and quasi-disorder can cause the MBL phase transition in the one-dimensional Ising spin-1 chains. In order to study the effect of spin interactions, we compare Ising spin-1 chains and spin-1/2 chains with the next-nearest-neighbour(N-N) two-body interactions and the next-next-nearest-neighbour (N-N-N)interactions. The results show that the critical point increases with the addition of the interaction. Then we study the dynamical properties of the model by the dynamical behavior of diagonal entropy (DE), local magnetization and the time evolution of fidelity to further prove the occurrence of MBL phase transition in the disordered Ising spin-1 chains with the (N-N) coupling term and distinguish the ergodic phase (thermal phase) and the many-body localized phase. Lastly, we delve into the impact of periodic driving on one-dimensional Ising spin-1 chains. And we compare it with the results obtained from the Ising spin-1/2 chains. It shows that periodic driving can cause Ising spin-1 chains and Ising spin-1/2 chains to occur the MBL transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02028v1-abstract-full').style.display = 'none'; document.getElementById('2405.02028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10