CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 251 results for author: <span class="mathjax">Schneider, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Schneider%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Schneider, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Schneider%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Schneider, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02407">arXiv:2412.02407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dry Transfer Based on PMMA and Thermal Release Tape for Heterogeneous Integration of 2D-TMDC Layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ghiami%2C+A">Amir Ghiami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiadziushkin%2C+H">Hleb Fiadziushkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+T">Tianyishan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Songyao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yibing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+E">Eva Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piacentini%2C+A">Agata Piacentini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heuken%2C+M">Michael Heuken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisch%2C+H">Holger Kalisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescan%2C+A">Andrei Vescan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02407v1-abstract-short" style="display: inline;"> A reliable and scalable transfer of 2D-TMDCs (two-dimensional transition metal dichalcogenides) from the growth substrate to a target substrate with high reproducibility and yield is a crucial step for device integration. In this work, we have introduced a scalable dry-transfer approach for 2D-TMDCs grown by MOCVD (metal-organic chemical vapor deposition) on sapphire. Transfer to a silicon/silicon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02407v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02407v1-abstract-full" style="display: none;"> A reliable and scalable transfer of 2D-TMDCs (two-dimensional transition metal dichalcogenides) from the growth substrate to a target substrate with high reproducibility and yield is a crucial step for device integration. In this work, we have introduced a scalable dry-transfer approach for 2D-TMDCs grown by MOCVD (metal-organic chemical vapor deposition) on sapphire. Transfer to a silicon/silicon dioxide (Si/SiO$_2$) substrate is performed using PMMA (poly(methyl methacrylate)) and TRT (thermal release tape) as sacrificial layer and carrier, respectively. Our proposed method ensures a reproducible peel-off from the growth substrate and better preservation of the 2D-TMDC during PMMA removal in solvent, without compromising its adhesion to the target substrate. A comprehensive comparison between the dry method introduced in this work and a standard wet transfer based on potassium hydroxide (KOH) solution shows improvement in terms of cleanliness and structural integrity for dry-transferred layer, as evidenced by X-ray photoemission and Raman spectroscopy, respectively. Moreover, fabricated field-effect transistors (FETs) demonstrate improvements in subthreshold slope, maximum drain current and device-to-device variability. The dry-transfer method developed in this work enables large-area integration of 2D-TMDC layers into (opto)electronic components with high reproducibility, while better preserving the as-grown properties of the layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02407v1-abstract-full').style.display = 'none'; document.getElementById('2412.02407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23185">arXiv:2410.23185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23185">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> In-situ Study of Understanding the Resistive Switching Mechanisms of Nitride-based Memristor Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhall%2C+R">Rohan Dhall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+M">Matthew M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chengyu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+H">Hongyi Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunwar%2C+S">Sundar Kunwar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazzie%2C+N+R">Natanii R. Yazzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ciston%2C+J">Jim Ciston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cucciniello%2C+N+G">Nicholas G. Cucciniello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+P">Pinku Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pettes%2C+M+T">Michael T. Pettes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watt%2C+J">John Watt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuo%2C+W">Winson Kuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCabe%2C+R+J">Rodney J. McCabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Aiping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23185v1-abstract-short" style="display: inline;"> Interface-type resistive switching (RS) devices with lower operation current and more reliable switching repeatability exhibits great potential in the applications for data storage devices and ultra-low-energy computing. However, the working mechanism of such interface-type RS devices are much less studied compared to that of the filament-type devices, which hinders the design and application of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23185v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23185v1-abstract-full" style="display: none;"> Interface-type resistive switching (RS) devices with lower operation current and more reliable switching repeatability exhibits great potential in the applications for data storage devices and ultra-low-energy computing. However, the working mechanism of such interface-type RS devices are much less studied compared to that of the filament-type devices, which hinders the design and application of the novel interface-type devices. In this work, we fabricate a metal/TiOx/TiN/Si (001) thin film memristor by using a one-step pulsed laser deposition. In situ transmission electron microscopy (TEM) imaging and current-voltage (I-V) characteristic demonstrate that the device is switched between high resistive state (HRS) and low resistive state (LRS) in a bipolar fashion with sweeping the applied positive and negative voltages. In situ scanning transmission electron microscopy (STEM) experiments with electron energy loss spectroscopy (EELS) reveal that the charged defects (such as oxygen vacancies) can migrate along the intrinsic grain boundaries of TiOx insulating phase under electric field without forming obvious conductive filaments, resulting in the modulation of Schottky barriers at the metal/semiconductor interfaces. The fundamental insights gained from this study presents a novel perspective on RS processes and opens up new technological opportunities for fabricating ultra-low-energy nitride-based memristive devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23185v1-abstract-full').style.display = 'none'; document.getElementById('2410.23185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20607">arXiv:2410.20607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20607">pdf</a>, <a href="https://arxiv.org/format/2410.20607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital Topology of Chiral Crystals for Orbitronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hagiwara%2C+K">Kenta Hagiwara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Ying-Jiun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Go%2C+D">Dongwook Go</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+X+L">Xin Liang Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grytsiuk%2C+S">Sergii Grytsiuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K+O">Kui-Hon Ou Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+G">Guo-Jiun Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+J">Jing Chien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yi-Hsin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiang-Lin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+F">Fang-Cheng Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cojocariu%2C+I">Iulia Cojocariu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feyer%2C+V">Vitaliy Feyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Minn-Tsong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mokrousov%2C+Y">Yuriy Mokrousov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tusche%2C+C">Christian Tusche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20607v1-abstract-short" style="display: inline;"> Chirality is ubiquitous in nature and manifests in a wide range of phenomena including chemical reactions, biological processes, and quantum transport of electrons. In quantum materials, the chirality of fermions, given by the relative directions between the electron spin and momentum, is connected to the band topology of electronic states. Here, we show that in structurally chiral materials like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20607v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20607v1-abstract-full" style="display: none;"> Chirality is ubiquitous in nature and manifests in a wide range of phenomena including chemical reactions, biological processes, and quantum transport of electrons. In quantum materials, the chirality of fermions, given by the relative directions between the electron spin and momentum, is connected to the band topology of electronic states. Here, we show that in structurally chiral materials like CoSi, the orbital angular momentum (OAM) serves as the main driver of a nontrivial band topology in this new class of unconventional topological semimetals, even when spin-orbit coupling is negligible. A nontrivial orbital-momentum locking of multifold chiral fermions in the bulk leads to a pronounced OAM texture of the helicoid Fermi arcs at the surface. Our findings highlight the pivotal role of the orbital degree of freedom for the chirality and topology of electron states, in general, and pave the way towards the application of topological chiral semimetals in orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20607v1-abstract-full').style.display = 'none'; document.getElementById('2410.20607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19652">arXiv:2410.19652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19652">pdf</a>, <a href="https://arxiv.org/format/2410.19652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Scattering makes a difference in circular dichroic angle-resolved photoemission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boban%2C+H">Honey Boban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qahosh%2C+M">Mohammed Qahosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xiao Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sobol%2C+T">Tomasz Sobol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beyer%2C+E">Edyta Beyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szczepanik%2C+M">Magdalena Szczepanik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baranowski%2C+D">Daniel Baranowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mearini%2C+S">Simone Mearini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feyer%2C+V">Vitaliy Feyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mokrousov%2C+Y">Yuriy Mokrousov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Keda Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wichmann%2C+T">Tobias Wichmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez-Castro%2C+J">Jose Martinez-Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ternes%2C+M">Markus Ternes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tautz%2C+F+S">F. Stefan Tautz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCpke%2C+F">Felix L眉pke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henk%2C+J">J眉rgen Henk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plucinski%2C+L">Lukasz Plucinski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19652v1-abstract-short" style="display: inline;"> Recent years have witnessed a steady progress towards blending 2D quantum materials into technology, with future applications often rooted in the electronic structure. Since crossings and inversions of electronic bands with different orbital characters determine intrinsic quantum transport properties, knowledge of the orbital character is essential. Here, we benchmark angle-resolved photoelectron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19652v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19652v1-abstract-full" style="display: none;"> Recent years have witnessed a steady progress towards blending 2D quantum materials into technology, with future applications often rooted in the electronic structure. Since crossings and inversions of electronic bands with different orbital characters determine intrinsic quantum transport properties, knowledge of the orbital character is essential. Here, we benchmark angle-resolved photoelectron emission spectroscopy (ARPES) as a tool to experimentally derive orbital characters. For this purpose we study the valence electronic structure of two technologically relevant quantum materials, graphene and WSe$_2$, and focus on circular dichroism that is believed to provide sensitivity to the orbital angular momentum. We analyze the contributions related to angular atomic photoionization profiles, interatomic interference, and multiple scattering. Regimes in which initial-state properties could be disentangled from the ARPES maps are critically discussed and the potential of using circular-dichroic ARPES as a tool to investigate the spin polarization of initial bands is explored. For the purpose of generalization, results from two additional materials, GdMn$_6$Sn$_6$ and PtTe$_2$ are presented in addition. This research demonstrates rich complexity of the underlying physics of circular-dichroic ARPES, providing new insights that will shape the interpretation of both past and future circular-dichroic ARPES studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19652v1-abstract-full').style.display = 'none'; document.getElementById('2410.19652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18687">arXiv:2409.18687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18687">pdf</a>, <a href="https://arxiv.org/format/2409.18687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Beyond Fundamental Building Blocks: Plasticity in Structurally Complex Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stollenwerk%2C+T">Tobias Stollenwerk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huckfeldt%2C+P+C">Pia Carlotta Huckfeldt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulumuddin%2C+N+Z+Z">Nisa Zakia Zahra Ulumuddin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Malik Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhuocheng Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korte-Kerzel%2C+S">Sandra Korte-Kerzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18687v1-abstract-short" style="display: inline;"> Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. We investigate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18687v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18687v1-abstract-full" style="display: none;"> Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. We investigate SmCo$_2$ and SmCo$_5$ as fundamental building blocks and compare them to the structurally related SmCo$_3$ and Sm$_2$Co$_{17}$ phases. Nanoindentation and micropillar compression tests were performed to characterize the primary slip systems, complemented by generalized stacking fault energy calculations via atomic-scale modeling. Our results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal&#39;s building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18687v1-abstract-full').style.display = 'none'; document.getElementById('2409.18687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13079">arXiv:2408.13079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13079">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Sub-wavelength localized all-optical helicity-independent magnetic switching using plasmonic gold nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sidiropoulos%2C+T">Themistoklis Sidiropoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+P">Puloma Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noll%2C+T">Tino Noll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sommer%2C+D">Denny Sommer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinbach%2C+F">Felix Steinbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+I">Ingo Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">Bastian Pfau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmising%2C+C+v+K">Clemens von Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">Stefan Eisebitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13079v1-abstract-short" style="display: inline;"> All-optical helicity-independent switching (AO-HIS) is of interest for ultrafast and energy efficient magnetic switching in future magnetic data storage approaches. Yet, to achieve high bit density magnetic recording it is necessary to reduce the size of the magnetic bits addressed by laser pulses at well-controlled positions. Metallic nanostructures that support localized surface plasmons enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13079v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13079v1-abstract-full" style="display: none;"> All-optical helicity-independent switching (AO-HIS) is of interest for ultrafast and energy efficient magnetic switching in future magnetic data storage approaches. Yet, to achieve high bit density magnetic recording it is necessary to reduce the size of the magnetic bits addressed by laser pulses at well-controlled positions. Metallic nanostructures that support localized surface plasmons enable spatial electromagnetic confinement well below the diffraction limit and rare-earth transition metal alloys such as GdTbCo have demonstrated nanometre-sized stable domains. Here, we deposit plasmonic gold nanostructures on a GdTbCo film and probe the magnetic state using magnetic force microscopy. We observe localized AO-HIS down to a critical dimension of 240 nm after excitation of the gold nanostructures by a single 370 fs long laser pulse with a centre wavelength of 1030 nm. We demonstrate that the strong localization of optical fields through plasmonic nanostructures enables reproducible localized nanoscale AO-HIS at sub-wavelength length scales. We study the influence of the localized electromagnetic field enhancement by the plasmonic nanostructures on the required fluence to switch the magnetization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13079v1-abstract-full').style.display = 'none'; document.getElementById('2408.13079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14226">arXiv:2407.14226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14226">pdf</a>, <a href="https://arxiv.org/format/2407.14226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Initial tensor construction and dependence of the tensor renormalization group on initial tensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nakayama%2C+K">Katsumasa Nakayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Manuel Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14226v1-abstract-short" style="display: inline;"> We propose a method to construct a tensor network representation of partition functions without singular value decompositions nor series expansions. The approach is demonstrated for one- and two-dimensional Ising models and we study the dependence of the tensor renormalization group (TRG) on the form of the initial tensors and their symmetries. We further introduce variants of several tensor renor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14226v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14226v1-abstract-full" style="display: none;"> We propose a method to construct a tensor network representation of partition functions without singular value decompositions nor series expansions. The approach is demonstrated for one- and two-dimensional Ising models and we study the dependence of the tensor renormalization group (TRG) on the form of the initial tensors and their symmetries. We further introduce variants of several tensor renormalization algorithms. Our benchmarks reveal a significant dependence of various TRG algorithms on the choice of initial tensors and their symmetries. However, we show that the boundary TRG technique can eliminate the initial tensor dependence for all TRG methods. The numerical results of TRG calculations can thus be made significantly more robust with only a few changes in the code. Furthermore, we study a three-dimensional $\mathbb{Z}_2$ gauge theory without gauge-fixing and confirm the applicability of the initial tensor construction. Our method can straightforwardly be applied to systems with longer range and multi-site interactions, such as the next-nearest neighbor Ising model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14226v1-abstract-full').style.display = 'none'; document.getElementById('2407.14226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 28 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18774">arXiv:2404.18774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18774">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Self-training superconducting neuromorphic circuits using reinforcement learning rules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+L">M. L. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%C3%A9%2C+E+M">E. M. Ju茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pufall%2C+M+R">M. R. Pufall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Segall%2C+K">K. Segall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anderson%2C+C+W">C. W. Anderson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18774v1-abstract-short" style="display: inline;"> Reinforcement learning algorithms are used in a wide range of applications, from gaming and robotics to autonomous vehicles. In this paper we describe a set of reinforcement learning-based local weight update rules and their implementation in superconducting hardware. Using SPICE circuit simulations, we implement a small-scale neural network with a learning time of order one nanosecond. This netwo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18774v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18774v1-abstract-full" style="display: none;"> Reinforcement learning algorithms are used in a wide range of applications, from gaming and robotics to autonomous vehicles. In this paper we describe a set of reinforcement learning-based local weight update rules and their implementation in superconducting hardware. Using SPICE circuit simulations, we implement a small-scale neural network with a learning time of order one nanosecond. This network can be trained to learn new functions simply by changing the target output for a given set of inputs, without the need for any external adjustments to the network. In this implementation the weights are adjusted based on the current state of the overall network response and locally stored information about the previous action. This removes the need to program explicit weight values in these networks, which is one of the primary challenges that analog hardware implementations of neural networks face. The adjustment of weights is based on a global reinforcement signal that obviates the need for circuitry to back-propagate errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18774v1-abstract-full').style.display = 'none'; document.getElementById('2404.18774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19190">arXiv:2403.19190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19190">pdf</a>, <a href="https://arxiv.org/format/2403.19190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Prediction and identification of point defect fingerprints in the X-ray photoelectron spectra of TiN$_x$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCmmerl%2C+P">Pauline K眉mmerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holec%2C+D">David Holec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Va%C5%A1ina%2C+P">Petr Va拧ina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19190v1-abstract-short" style="display: inline;"> We investigate the effect of selected N and Ti point defects in $B$1 TiN on N 1s and Ti 2p$_{3/2}$ binding energies (BE) by experiments and ab initio calculations. X-ray photoelectron spectroscopy (XPS) measurements of Ti-deficient TiN films reveal additional N 1s spectral components at lower binding energies. Ab initio calculations predict that these components are caused by either Ti vacancies,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19190v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19190v1-abstract-full" style="display: none;"> We investigate the effect of selected N and Ti point defects in $B$1 TiN on N 1s and Ti 2p$_{3/2}$ binding energies (BE) by experiments and ab initio calculations. X-ray photoelectron spectroscopy (XPS) measurements of Ti-deficient TiN films reveal additional N 1s spectral components at lower binding energies. Ab initio calculations predict that these components are caused by either Ti vacancies, which induce a N 1s BE shift of $-0.53$ eV in its first N neighbors, and/or N tetrahedral interstitials, which have their N 1s BE shifted by $-1.18$ eV and also shift BE of their first N neighbors by $-0.53$ eV. However, the {\it ab initio} calculations also reveal that the tetrahedral N interstitial is unstable at room temperature. We, therefore, unambiguously attribute the detected signal to Ti vacancies. Furthermore, the vacancy concentration in Ti-deficient TiN was quantified with XPS supported by ab initio calculations. The largest BE shifts of $-1.53$, $-1.80$ and $-2.28$ eV for Ti 2p$_{3/2}$ electrons are predicted for the Ti tetrahedral, split (10$\overline{1}$)-aligned and split (111)-aligned interstitial atoms, respectively, and we, therefore, propose XPS could detect them. Other defects such as N vacancy or N split (10$\overline{1}$)-aligned interstitial introduce smaller N 1s and Ti 2p$_{3/2}$ BE shifts and are unlikely to be detectable experimentally. Our work highlights the potential of ab initio-guided XPS measurements in detecting and quantifying point defects in $B$1 TiN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19190v1-abstract-full').style.display = 'none'; document.getElementById('2403.19190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03564">arXiv:2403.03564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03564">pdf</a>, <a href="https://arxiv.org/ps/2403.03564">ps</a>, <a href="https://arxiv.org/format/2403.03564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.susc.2024.122519">10.1016/j.susc.2024.122519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tellurization of Pd(111): absence of PdTe$_2$ but formation of a TePd$_2$ surface alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+E">Eric Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wegerich%2C+A">Alexander Wegerich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabgrund%2C+A">Andreas Raabgrund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+A">M. Alexander Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03564v1-abstract-short" style="display: inline;"> In a recent publication [2D Materials, 8, 045033 (2021), arXiv:2103.11403], it was reported that the growth of a monolayer PdTe$_2$ in ultra-high vacuum could be achieved by deposition of tellurium on a palladium (111) crystal surface and subsequent thermal annealing. By means of low-energy electron diffraction intensity (LEED-IV) structural analysis, we show that the obtained&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03564v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03564v1-abstract-full" style="display: none;"> In a recent publication [2D Materials, 8, 045033 (2021), arXiv:2103.11403], it was reported that the growth of a monolayer PdTe$_2$ in ultra-high vacuum could be achieved by deposition of tellurium on a palladium (111) crystal surface and subsequent thermal annealing. By means of low-energy electron diffraction intensity (LEED-IV) structural analysis, we show that the obtained $\left(\sqrt{3}\times \sqrt{3} \right)\textrm{R30}^\circ$ superstructure is in fact a TePd$_2$ surface alloy. Attempts to produce a PdTe$_2$ layer in ultra-high vacuum by increasing the Te content on the surface were not successful. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03564v1-abstract-full').style.display = 'none'; document.getElementById('2403.03564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Surface Science 748, 122519 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04302">arXiv:2402.04302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04302">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast terahertz field control of the emergent magnetic and electronic interactions at oxide interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Derrico%2C+A+M">A. M. Derrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basini%2C+M">M. Basini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Unikandanunni%2C+V">V. Unikandanunni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paudel%2C+J+R">J. R. Paudel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kareev%2C+M">M. Kareev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terilli%2C+M">M. Terilli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T+-">T. -C. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alostaz%2C+A">A. Alostaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klewe%2C+C">C. Klewe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">P. Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gloskovskii%2C+A">A. Gloskovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+C">C. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">C. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakhalian%2C+J">J. Chakhalian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+S">S. Bonetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gray%2C+A+X">A. X. Gray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04302v1-abstract-short" style="display: inline;"> Ultrafast electric-field control of emergent electronic and magnetic states at oxide interfaces offers exciting prospects for the development of new generations of energy-efficient devices. Here, we demonstrate that the electronic structure and emergent ferromagnetic interfacial state in epitaxial LaNiO3/CaMnO3 superlattices can be effectively controlled using intense single-cycle THz electric-fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04302v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04302v1-abstract-full" style="display: none;"> Ultrafast electric-field control of emergent electronic and magnetic states at oxide interfaces offers exciting prospects for the development of new generations of energy-efficient devices. Here, we demonstrate that the electronic structure and emergent ferromagnetic interfacial state in epitaxial LaNiO3/CaMnO3 superlattices can be effectively controlled using intense single-cycle THz electric-field pulses. We employ a combination of polarization-dependent X-ray absorption spectroscopy with magnetic circular dichroism and X-ray resonant magnetic reflectivity to measure a detailed magneto-optical profile and thickness of the ferromagnetic interfacial layer. Then, we use time-resolved and temperature-dependent magneto-optical Kerr effect, along with transient optical reflectivity and transmissivity measurements, to disentangle multiple correlated electronic and magnetic processes driven by ultrafast high-field (~1 MV/cm) THz pulses. These processes include an initial sub-picosecond electronic response, consistent with non-equilibrium Joule heating; a rapid (~270 fs) demagnetization of the ferromagnetic interfacial layer, driven by THz-field-induced nonequilibrium spin-polarized currents; and subsequent multi-picosecond dynamics, possibly indicative of a change in the magnetic state of the superlattice due to the transfer of spin angular momentum to the lattice. Our findings shed light on the intricate interplay of electronic and magnetic phenomena in this strongly correlated material system, suggesting a promising avenue for efficient control of two-dimensional ferromagnetic states at oxide interfaces using ultrafast electric-field pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04302v1-abstract-full').style.display = 'none'; document.getElementById('2402.04302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12130">arXiv:2401.12130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12130">pdf</a>, <a href="https://arxiv.org/format/2401.12130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Time-Resolved Imaging Reveals Transiently Chaotic Spin-Orbit-Torque-Driven Dynamics Under Controlled Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+L">Lisa-Marie Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litzius%2C+K">Kai Litzius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinhart%2C+V">Victor Deinhart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klose%2C+C">Christopher Klose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlinger%2C+K">Kathinka Gerlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Battistelli%2C+R">Riccardo Battistelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Meng-Jie Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6flich%2C+K">Katja H枚flich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCttner%2C+F">Felix B眉ttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">Stefan Eisebitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">Bastian Pfau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12130v1-abstract-short" style="display: inline;"> Spin-orbit torques (SOTs) act as efficient drivers for nanoscale magnetic systems, such as in magnetic tunnel junctions, nano-oscillators and racetrack geometries. In particular, in combination with materials exhibiting high Dzyaloshinskii--Moriya interaction, SOTs are considered to result in well-controlled deterministic magnetisation dynamics and are, therefore, used as robust drives to move and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12130v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12130v1-abstract-full" style="display: none;"> Spin-orbit torques (SOTs) act as efficient drivers for nanoscale magnetic systems, such as in magnetic tunnel junctions, nano-oscillators and racetrack geometries. In particular, in combination with materials exhibiting high Dzyaloshinskii--Moriya interaction, SOTs are considered to result in well-controlled deterministic magnetisation dynamics and are, therefore, used as robust drives to move and create magnetic skyrmions. In contrast to these expectations, we here find unpredictable, transiently chaotic dynamics induced by SOT at an artificial anisotropy-engineered defect in a magnetic racetrack. Based on these controlled conditions, we directly observe the nanoscale dynamics with holography-based, time-resolved x-ray imaging. In concert with micromagnetic simulations, we disclose a regime of violent picosecond fluctuations, including topological instabilities that, remarkably, result in deterministic final configurations. In addition, our images expose previously unseen skyrmion shedding and highlight the potential of transiently chaotic pathways for topological switching. Our approach offers new perspectives for the investigation and application of highly non-linear SOT dynamics in spintronics materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12130v1-abstract-full').style.display = 'none'; document.getElementById('2401.12130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01921">arXiv:2401.01921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01921">pdf</a>, <a href="https://arxiv.org/format/2401.01921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The Cytnx Library for Tensor Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K">Kai-Hsin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chang-Teng Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+K">Ke Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+H">Hao-Ti Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Manuel Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+C">Chia-Min Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+Y">Ying-Jer Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Pochung Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01921v1-abstract-short" style="display: inline;"> We introduce a tensor network library designed for classical and quantum physics simulations called Cytnx (pronounced as sci-tens). This library provides almost an identical interface and syntax for both C++ and Python, allowing users to effortlessly switch between two languages. Aiming at a quick learning process for new users of tensor network algorithms, the interfaces resemble the popular Pyth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01921v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01921v1-abstract-full" style="display: none;"> We introduce a tensor network library designed for classical and quantum physics simulations called Cytnx (pronounced as sci-tens). This library provides almost an identical interface and syntax for both C++ and Python, allowing users to effortlessly switch between two languages. Aiming at a quick learning process for new users of tensor network algorithms, the interfaces resemble the popular Python scientific libraries like NumPy, Scipy, and PyTorch. Not only multiple global Abelian symmetries can be easily defined and implemented, Cytnx also provides a new tool called Network that allows users to store large tensor networks and perform tensor network contractions in an optimal order automatically. With the integration of cuQuantum, tensor calculations can also be executed efficiently on GPUs. We present benchmark results for tensor operations on both devices, CPU and GPU. We also discuss features and higher-level interfaces to be added in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01921v1-abstract-full').style.display = 'none'; document.getElementById('2401.01921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17715">arXiv:2312.17715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17715">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harmon%2C+K+J">Katherine J. Harmon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zachman%2C+M+J">Michael J. Zachman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+P">Ping Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Doyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cucciniello%2C+N">Nickolas Cucciniello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markland%2C+R">Reid Markland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ssennyimba%2C+K+W">Ken William Ssennyimba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brahlek%2C+M">Matthew Brahlek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+M">Matthew M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazza%2C+A+R">Alessandro R. Mazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hughes%2C+Z">Zach Hughes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Somodi%2C+C">Chase Somodi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freiman%2C+B">Benjamin Freiman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pooley%2C+S">Sarah Pooley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunwar%2C+S">Sundar Kunwar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+P">Pinku Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Q">Qing Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCabe%2C+R+J">Rodney J. McCabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Aiping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17715v1-abstract-short" style="display: inline;"> Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17715v1-abstract-full').style.display = 'inline'; document.getElementById('2312.17715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17715v1-abstract-full" style="display: none;"> Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3 (BCT) and Ba(Zr0.2Ti0.8)O3 (BZT) phases with continuous variation of composition and layer thickness. High-resolution X-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the optimal property point achieved at the morphotropic phase boundary (MPB) with a composition of 48BZT-52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT-BZT}N superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17715v1-abstract-full').style.display = 'none'; document.getElementById('2312.17715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12235">arXiv:2312.12235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12235">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the role of Grain Boundary Character in the Stress Corrosion Cracking of Nanoporous Gold Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saksena%2C+A">Aparna Saksena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=El-Zoka%2C+A">Ayman El-Zoka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saxena%2C+A">Alaukik Saxena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatipoglu%2C+E">Ezgi Hatipoglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gault%2C+B">Baptiste Gault</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12235v1-abstract-short" style="display: inline;"> For its potential as a catalyst, nanoporous gold (NPG) prepared through dealloying of bulk Ag-Au alloys has been extensively investigated. NPG thin films can offer ease of handling, better tunability of the chemistry and microstructure of the nanoporous structure, and represent a more sustainable usage of scarce resources. These films are however prone to intergranular cracking during dealloying,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12235v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12235v1-abstract-full" style="display: none;"> For its potential as a catalyst, nanoporous gold (NPG) prepared through dealloying of bulk Ag-Au alloys has been extensively investigated. NPG thin films can offer ease of handling, better tunability of the chemistry and microstructure of the nanoporous structure, and represent a more sustainable usage of scarce resources. These films are however prone to intergranular cracking during dealloying, limiting their stability and potential applications. Here, we set out to systematically investigate the grain boundaries in Au28Ag72 thin films. We observe that a sample synthesized at 400 掳C is at least 2.5 times less prone to cracking compared to a sample synthesized at room temperature. This correlates with a higher density of coincident site lattice grain boundaries, especially the density of coherent sigma 3, increased, which appear resistant against cracking. Nanoscale compositional analysis of random high-angle grain boundaries reveals prominent Ag enrichment up to 77 at.%, whereas sigma 3 coherent twin boundaries show Au enrichment of up to 30 at.%. The misorientation and the chemistry of grain boundaries hence affect their dealloying behavior, which in turn controls the cracking, and the possible longevity of NPG thin films for application in electrocatalysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12235v1-abstract-full').style.display = 'none'; document.getElementById('2312.12235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05378">arXiv:2312.05378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05378">pdf</a>, <a href="https://arxiv.org/format/2312.05378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Kink in cuprates: the role of the low-energy density of states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zonno%2C+M">M. Zonno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+M+X">M. X. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">M. Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorovikov%2C+S">S. Gorovikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J">J. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">S. Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+A+K">A. K. Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">G. Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+D+J">D. J. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">C. Giannetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05378v1-abstract-short" style="display: inline;"> The 40-70 meV band-structure renormalization (so-called kink) in high-temperature cuprate superconductors - which has been mainly interpreted in terms of electron-boson coupling - is observed to be strongly suppressed both above the superconducting transition temperature and under optical excitation. We employ equilibrium and time- and angle-resolved photoemission spectroscopy, in combination with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05378v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05378v1-abstract-full" style="display: none;"> The 40-70 meV band-structure renormalization (so-called kink) in high-temperature cuprate superconductors - which has been mainly interpreted in terms of electron-boson coupling - is observed to be strongly suppressed both above the superconducting transition temperature and under optical excitation. We employ equilibrium and time- and angle-resolved photoemission spectroscopy, in combination with Migdal-Eliashberg simulations, to investigate the suppression of the near-nodal kink in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$. We show that the $\sim$30$\%$ decrease of the kink strength across the superconducting-to-normal-state phase transition can be entirely accounted for by the filling of the superconducting gap, without additional consideration of temperature-dependent electron-boson coupling. Our findings demonstrate that consideration of changes in the density of states is essential to quantitatively account for the band structure renormalization effects in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05378v1-abstract-full').style.display = 'none'; document.getElementById('2312.05378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16688">arXiv:2311.16688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16688">pdf</a>, <a href="https://arxiv.org/format/2311.16688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Coherent phonon-magnon interactions detected by micro-focused Brillouin light scattering spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kunz%2C+Y">Yannik Kunz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BC%C3%9F%2C+M">Matthias K眉脽</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geilen%2C+M">Moritz Geilen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albrecht%2C+M">Manfred Albrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weiler%2C+M">Mathias Weiler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16688v1-abstract-short" style="display: inline;"> We investigated the interaction of surface acoustic waves and spin waves with spatial resolution by micro-focused Brillouin light scattering spectroscopy in a Co$_{40}$Fe$_{40}$B$_{20}$ ferromagnetic layer on a LiNbO$_{3}$-piezoelectric substrate. We experimentally demonstrate that the magnetoelastic excitation of magnons by phonons is coherent by studying the interfering BLS-signals of the phonon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16688v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16688v1-abstract-full" style="display: none;"> We investigated the interaction of surface acoustic waves and spin waves with spatial resolution by micro-focused Brillouin light scattering spectroscopy in a Co$_{40}$Fe$_{40}$B$_{20}$ ferromagnetic layer on a LiNbO$_{3}$-piezoelectric substrate. We experimentally demonstrate that the magnetoelastic excitation of magnons by phonons is coherent by studying the interfering BLS-signals of the phonons and magnons during their conversion process.We find a pronounced spatial dependence of the phonon annihilation and magnon excitation which we map as a function of the magnetic field. The coupling efficiency of the surface acoustic waves (SAWs) and the spin waves (SWs) is characterized by a magnetic field dependent decay of the SAWs amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16688v1-abstract-full').style.display = 'none'; document.getElementById('2311.16688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09964">arXiv:2309.09964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09964">pdf</a>, <a href="https://arxiv.org/format/2309.09964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coherent x-ray magnetic imaging with 5 nm resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Battistelli%2C+R">Riccardo Battistelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metternich%2C+D">Daniel Metternich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+L">Lisa-Marie Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litzius%2C+K">Kai Litzius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuchs%2C+J">Josefin Fuchs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klose%2C+C">Christopher Klose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlinger%2C+K">Kathinka Gerlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bagschik%2C+K">Kai Bagschik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ropers%2C+C">Claus Ropers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">Stefan Eisebitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">Bastian Pfau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCttner%2C+F">Felix B眉ttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zayko%2C+S">Sergey Zayko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09964v1-abstract-short" style="display: inline;"> Soft x-ray microscopy plays an important role in modern spintronics. However, the achievable resolution of most x-ray magnetic imaging experiments is above 10 nm, limiting access to fundamental and technologically relevant length scales. Here, we demonstrate x-ray magnetic microscopy with 5 nm resolution by combining holography-assisted coherent diffractive imaging with heterodyne amplification of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09964v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09964v1-abstract-full" style="display: none;"> Soft x-ray microscopy plays an important role in modern spintronics. However, the achievable resolution of most x-ray magnetic imaging experiments is above 10 nm, limiting access to fundamental and technologically relevant length scales. Here, we demonstrate x-ray magnetic microscopy with 5 nm resolution by combining holography-assisted coherent diffractive imaging with heterodyne amplification of the weak magnetic signal. The gain in resolution and contrast allows direct access to key magnetic properties, including domain wall profiles and the position of pinning sites. The ability to detect and map such properties with photons opens new horizons for element-specific, time-resolved, and in-operando research on magnetic materials and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09964v1-abstract-full').style.display = 'none'; document.getElementById('2309.09964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07588">arXiv:2309.07588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07588">pdf</a>, <a href="https://arxiv.org/format/2309.07588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/smll.202308233">10.1002/smll.202308233 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Selective Electron Transport Through Single Chiral Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Safari%2C+M+R">Mohammad Reza Safari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matthes%2C+F">Frank Matthes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ernst%2C+K">Karl-Heinz Ernst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCrgler%2C+D+E">Daniel E. B眉rgler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07588v1-abstract-short" style="display: inline;"> The interplay between chirality and magnetism has been a source of fascination among scientists for over a century. In recent years, chirality-induced spin selectivity (CISS) has attracted renewed interest. It has been observed that electron transport through layers of homochiral molecules leads to a significant spin polarization of several tens of percent. Despite the abundant experimental eviden&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07588v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07588v1-abstract-full" style="display: none;"> The interplay between chirality and magnetism has been a source of fascination among scientists for over a century. In recent years, chirality-induced spin selectivity (CISS) has attracted renewed interest. It has been observed that electron transport through layers of homochiral molecules leads to a significant spin polarization of several tens of percent. Despite the abundant experimental evidence gathered through mesoscopic transport measurements, the exact mechanism behind CISS remains elusive. In this study, we report spin-selective electron transport through single helical aromatic hydrocarbons that were sublimed in vacuo onto ferromagnetic cobalt surfaces and examined with spin-polarized scanning tunneling microscopy (SP-STM) at a temperature of 5 K. Direct comparison of two enantiomers under otherwise identical conditions revealed magnetochiral conductance asymmetries of up to 50% when either the molecular handedness was exchanged or the magnetization direction of the STM tip or Co substrate was reversed. Importantly, our results rule out electron-phonon coupling and ensemble effects as primary mechanisms responsible for CISS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07588v1-abstract-full').style.display = 'none'; document.getElementById('2309.07588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, plus Supporting Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Small 20, 2308233 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06408">arXiv:2308.06408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06408">pdf</a>, <a href="https://arxiv.org/format/2308.06408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Transcending the MAX phases concept of nanolaminated early transition metal carbides/nitrides -- the ZIA phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tunes%2C+M+A">M. A. Tunes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drewry%2C+S+M">S. M. Drewry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+F">F. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valdez%2C+J+A">J. A. Valdez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+M">M. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohnert%2C+C+A">C. A. Kohnert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saleh%2C+T+A">T. A. Saleh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%B6n%2C+C+G">C. G. Sch枚n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fensin%2C+S">S. Fensin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=El-Atwani%2C+O">O. El-Atwani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goossens%2C+N">N. Goossens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">S. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vleugls%2C+J">J. Vleugls</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maloy%2C+S+A">S. A. Maloy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambrinou%2C+K">K. Lambrinou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06408v1-abstract-short" style="display: inline;"> A new potential class of nanolaminated and structurally complex materials, herein conceived as the Zigzag IntermetAllic (ZIA) phases, is proposed. A study of the constituent phases of a specific Nb--Si--Ni intermetallic alloy revealed that its ternary H-phase, \textit{i.e.}, the Nb$_3$SiNi$_2$ intermetallic compound (IMC), is a crystalline solid with the close-packed \textit{fcc} Bravais lattice,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06408v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06408v1-abstract-full" style="display: none;"> A new potential class of nanolaminated and structurally complex materials, herein conceived as the Zigzag IntermetAllic (ZIA) phases, is proposed. A study of the constituent phases of a specific Nb--Si--Ni intermetallic alloy revealed that its ternary H-phase, \textit{i.e.}, the Nb$_3$SiNi$_2$ intermetallic compound (IMC), is a crystalline solid with the close-packed \textit{fcc} Bravais lattice, the 312 MAX phase stoichiometry and a layered atomic arrangement that may define an entire class of nanolaminated IMCs analogous to the nanolaminated ceramic compounds known today as the MAX phases. The electron microscopy investigation of the Nb$_{3}$SiNi$_{2}$ compound -- the first candidate ZIA phase -- revealed a remarkable structural complexity, as its ordered unit cell is made of 96 atoms. The ZIA phases extend the concept of nanolaminated crystalline solids well beyond the MAX phases family of early transition metal carbides/nitrides, most likely broadening the spectrum of achievable material properties into domains typically not covered by the MAX phases. Furthermore, this work uncovers that both families of nanolaminated crystalline solids, \textit{i.e.}, the herein introduced \textit{fcc} ZIA phases and all known variants of the \textit{hcp} MAX phases, obey the same overarching stoichiometric rule $P_{x+y}A_xN_y$, where $x$ and $y$ are integers ranging from 1 to 6. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06408v1-abstract-full').style.display = 'none'; document.getElementById('2308.06408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02372">arXiv:2308.02372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02372">pdf</a>, <a href="https://arxiv.org/format/2308.02372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Strongly Anisotropic Spin and Orbital Rashba Effect at a Tellurium - Noble Metal Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Geldiyev%2C+B">B. Geldiyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%9Cnzelmann%2C+M">M. 脺nzelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eck%2C+P">P. Eck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ki%C3%9Flinger%2C+T">T. Ki脽linger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schusser%2C+J">J. Schusser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Figgemeier%2C+T">T. Figgemeier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kagerer%2C+P">P. Kagerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tezak%2C+N">N. Tezak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivenkov%2C+M">M. Krivenkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicola%C3%AF%2C+L">L. Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyamoto%2C+K">K. Miyamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okuda%2C+T">T. Okuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimada%2C+K">K. Shimada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Sante%2C+D">D. Di Sante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+G">G. Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammer%2C+L">L. Hammer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+A">M. A. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bentmann%2C+H">H. Bentmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">F. Reinert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02372v1-abstract-short" style="display: inline;"> We study the interplay of lattice, spin and orbital degrees of freedom in a two-dimensional model system: a flat square lattice of Te atoms on a Au(100) surface. The atomic structure of the Te monolayer is determined by scanning tunneling microscopy (STM) and quantitative low-energy electron diffraction (LEED-IV). Using spin- and angle-resolved photoelectron spectroscopy (ARPES) and density functi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02372v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02372v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02372v1-abstract-full" style="display: none;"> We study the interplay of lattice, spin and orbital degrees of freedom in a two-dimensional model system: a flat square lattice of Te atoms on a Au(100) surface. The atomic structure of the Te monolayer is determined by scanning tunneling microscopy (STM) and quantitative low-energy electron diffraction (LEED-IV). Using spin- and angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT), we observe a Te-Au interface state with highly anisotropic Rashba-type spin-orbit splitting at the X point of the Brillouin zone. Based on a profound symmetry and tight-binding analysis, we show how in-plane square lattice symmetry and broken inversion symmetry at the Te-Au interface together enforce a remarkably anisotropic orbital Rashba effect which strongly modulates the spin splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02372v1-abstract-full').style.display = 'none'; document.getElementById('2308.02372v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15866">arXiv:2306.15866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.15866">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Noise-dependent bias in quantitative STEM-EMCD experiments revealed by bootstrapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+H">Hasan Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusz%2C+J">Jan Rusz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCrgler%2C+D+E">Daniel E. B眉rgler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adam%2C+R">Roman Adam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tai%2C+C+W">Cheuk Wai Tai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thersleff%2C+T">Thomas Thersleff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15866v2-abstract-short" style="display: inline;"> Electron magnetic circular dichroism (EMCD) is a powerful technique for estimating element-specific magnetic moments of materials on nanoscale with the potential to reach atomic resolution in transmission electron microscopes. However, the fundamentally weak EMCD signal strength complicates quantification of magnetic moments, as this requires very high precision, especially in the denominator of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15866v2-abstract-full').style.display = 'inline'; document.getElementById('2306.15866v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15866v2-abstract-full" style="display: none;"> Electron magnetic circular dichroism (EMCD) is a powerful technique for estimating element-specific magnetic moments of materials on nanoscale with the potential to reach atomic resolution in transmission electron microscopes. However, the fundamentally weak EMCD signal strength complicates quantification of magnetic moments, as this requires very high precision, especially in the denominator of the sum rules. Here, we employ a statistical resampling technique known as bootstrapping to an experimental EMCD dataset to produce an empirical estimate of the noise dependent error distribution resulting from application of EMCD sum rules to bcc iron in a 3 beam orientation. We observe clear experimental evidence that noisy EMCD signals preferentially bias the estimation of magnetic moments, further supporting this with error distributions produced by Monte-Carlo simulations. Finally, we propose guidelines for the recognition and minimization of this bias in the estimation of magnetic moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15866v2-abstract-full').style.display = 'none'; document.getElementById('2306.15866v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02238">arXiv:2306.02238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02238">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Excitonic Signatures in a Nanoscale van der Waals Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chandrasekaran%2C+V">Vigneshwaran Chandrasekaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeLaney%2C+C+R">Christopher R. DeLaney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parobek%2C+D">David Parobek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lane%2C+C+A">Christopher A. Lane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiangzhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Huan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trinh%2C+C+T">Cong Tai Trinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campbell%2C+M+A">Marshall A. Campbell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+A+C">Andrew C. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+M">Matthew M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watt%2C+J">John Watt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pettes%2C+M+T">Michael T. Pettes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+S+A">Sergei A. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piryatinski%2C+A">Andrei Piryatinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunlap%2C+D+H">David H. Dunlap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Htoon%2C+H">Han Htoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02238v1-abstract-short" style="display: inline;"> Composite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS3 flakes to tens of nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02238v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02238v1-abstract-full" style="display: none;"> Composite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS3 flakes to tens of nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-infrared (1.47 eV) and activate visible-range (1.8 to 2.2 eV) transitions with charge-transfer character. These ultra-sharp lines (&lt;120 ueV at 4.2 K) share the spin-correlated nature of the bulk exciton by displaying a Neel temperature dependent linear polarization. Furthermore, exciton photoluminescence lineshape analysis reveals a polaronic character via coupling with at-least 3 phonon modes and a comb-like Stark effect through discretization of charges in each layer. These findings augment the knowledge on the many-body nature of excitonic quasi-particles in correlated antiferromagnets and also establish the nanoscale platform as promising for maturing integrated magneto-optic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02238v1-abstract-full').style.display = 'none'; document.getElementById('2306.02238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17539">arXiv:2305.17539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17539">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Valence electron concentration- and N vacancy-induced elasticity in cubic early transition metal nitrides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loefler%2C+L">Lukas Loefler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sua%2C+H+H">Heng Han Sua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+D+M">Damian M. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Febvrier%2C+A+l">Arnaud le Febvrier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17539v1-abstract-short" style="display: inline;"> Motivated by frequently reported deviations from stoichiometry in cubic transition metal nitride (TMNx) thin films, the effect of N-vacancy concentration on the elastic properties of cubic TiNx, ZrNx, VNx, NbNx, and MoNx (0.72&lt;x&lt;1.00) is systematically studied by density functional theory (DFT) calculations. The predictions are validated experimentally for VNx (0.77&lt;x&lt;0.97). The DFT results indica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17539v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17539v1-abstract-full" style="display: none;"> Motivated by frequently reported deviations from stoichiometry in cubic transition metal nitride (TMNx) thin films, the effect of N-vacancy concentration on the elastic properties of cubic TiNx, ZrNx, VNx, NbNx, and MoNx (0.72&lt;x&lt;1.00) is systematically studied by density functional theory (DFT) calculations. The predictions are validated experimentally for VNx (0.77&lt;x&lt;0.97). The DFT results indicate that the elastic behavior of the TMNx depends on both the N-vacancy concentration and the valence electron concentration (VEC) of the transition metal: While TiNx and ZrNx exhibit vacancy-induced reductions in elastic modulus, VNx and NbNx show an increase. These trends can be rationalized by considering vacancy-induced changes in elastic anisotropy and bonding. While introduction of N-vacancies in TiNx results in a significant reduction of elastic modulus along all directions and a lower average bond strength of Ti-N, the vacancy-induced reduction in [001] direction of VNx is overcompensated by the higher stiffness along [011] and [111] directions, resulting in a higher average bond strength of V-N. To validate the predicted vacancy-induced changes in elasticity experimentally, close-to-single-crystal VNx (0.77&lt;x&lt;0.97) are grown on MgO(001) substrates. As the N-content is reduced, the relaxed lattice parameter a0, as probed by X-ray diffraction, decreases from 4.128 A to 4.096 A. This reduction in lattice parameter is accompanied by an anomalous 11% increase in elastic modulus, as determined by nanoindentation. As the experimental data agree with the predictions, the elasticity enhancement in VNx upon N-vacancy formation can be understood based on the concomitant changes in elastic anisotropy and bonding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17539v1-abstract-full').style.display = 'none'; document.getElementById('2305.17539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 8 figures in the manuscript, 1 figure in supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17459">arXiv:2305.17459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17459">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Large-area deposition of protective (Ti,Al)N coatings onto polycarbonate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kollmann%2C+S">Sabrina Kollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arcos%2C+T+d+l">Teresa de los Arcos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jende%2C+L">Leonie Jende</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+D+M">Damian M. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+S+A">Sameer Aman Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grundmeier%2C+G">Guido Grundmeier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17459v1-abstract-short" style="display: inline;"> Polycarbonate (PC) and protective (Ti,Al)N coatings exhibit extremely different material properties, specifically crystal structure, thermal stability, elastic and plastic behavior as well as thermal expansion coefficients. These differences present formidable challenges for the deposition process development as low-temperature synthesis routes have to be explored to avoid a thermal overload of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17459v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17459v1-abstract-full" style="display: none;"> Polycarbonate (PC) and protective (Ti,Al)N coatings exhibit extremely different material properties, specifically crystal structure, thermal stability, elastic and plastic behavior as well as thermal expansion coefficients. These differences present formidable challenges for the deposition process development as low-temperature synthesis routes have to be explored to avoid a thermal overload of the polymer substrate. Here, a large-area sputtering process is developed to address the challenges by systematically adjusting target peak power density and duty cycle. Adhering (Ti,Al)N coatings with a critical residual tensile stress of 2.2 +/- 0.2 GPa are obtained in the pulsed direct current magnetron sputtering range, whereas depositions at higher target peak power densities, realized by high power pulsed magnetron sputtering, lead to stress-induced adhesive and/or cohesive failure. The stress-optimized (Ti,Al)N coatings deposited onto PC with a target peak power density of 0.036 kW cm-2 and a duty cycle of 5.3% were investigated by cross-cut test confirming adhesion. By investigating the bond formation at the PC | (Ti,Al)N interface, mostly interfacial CNx bonds and a small fraction of (C-O)-(Ti,Al) bonds are identified by X-ray photoelectron spectroscopy, indicating reactions at the hydrocarbon and the carbonate groups during deposition. Nanoindentation reveals an elastic modulus of 296 +/- 18 GPa for the (Ti,Al)N coating, while a Ti-Al-O layer is formed during electrochemical impedance spectroscopy in a borate buffer solution, indicating protective passivation. This work demonstrates that the challenge posed by the extremely different material properties at the interface of soft polymer substrates and hard coatings can be addressed by systematical variation of the pulsing parameters to reduce the residual film stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17459v1-abstract-full').style.display = 'none'; document.getElementById('2305.17459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17430">arXiv:2305.17430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.17430">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Bond formation at polycarbonate | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$) studied by theory and experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%B6llmann%2C+P+J">Peter J. P枚llmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Va%C5%A1ina%2C+P">Petr Va拧ina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17430v1-abstract-short" style="display: inline;"> Interfacial bond formation during sputter deposition of metal oxide thin films onto polycarbonate (PC) is investigated by ab initio molecular dynamics simulations and X-ray photoelectron spectroscopy (XPS) analysis of PC | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$). Generally, the predicted bond formation is consistent with the experimental data. For all three interfaces, the majority of b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17430v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17430v1-abstract-full" style="display: none;"> Interfacial bond formation during sputter deposition of metal oxide thin films onto polycarbonate (PC) is investigated by ab initio molecular dynamics simulations and X-ray photoelectron spectroscopy (XPS) analysis of PC | X interfaces (X = Al$_2$O$_3$, TiO$_2$, TiAlO$_2$). Generally, the predicted bond formation is consistent with the experimental data. For all three interfaces, the majority of bonds identified by XPS are (C-O)-metal bonds, whereas C-metal bonds are the minority. Compared to the PC | Al$_2$O$_3$ interface, the PC | TiO$_2$ and PC | TiAlO$_2$ interfaces exhibit a reduction in the measured interfacial bond density by ~ 75 and ~ 65%, respectively. Multiplying the predicted bond strength with the corresponding experimentally determined interfacial bond density shows that Al$_2$O$_3$ exhibits the strongest interface with PC, while TiO$_2$ and TiAlO$_2$ exhibit ~ 70 and ~ 60% weaker interfaces, respectively. This can be understood by considering the complex interplay between the metal oxide composition, the bond strength as well as the population of bonds that are formed across the interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17430v1-abstract-full').style.display = 'none'; document.getElementById('2305.17430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16715">arXiv:2305.16715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.16715">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Correlative Theoretical and Experimental Study of the Polycarbonate | X Interfacial Bond Formation (X = AlN, TiN, TiAlN) during Magnetron Sputtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patterer%2C+L">Lena Patterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mr%C3%A1z%2C+S">Stanislav Mr谩z</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aghda%2C+S+K">Soheil Karimi Aghda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%B6llmann%2C+P+J">Peter J. P枚llmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+Y">Yu-Ping Chien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16715v1-abstract-short" style="display: inline;"> To understand the interfacial bond formation between polycarbonate (PC) and magnetron-sputtered metal nitride thin films, PC | X interfaces (X = AlN, TiN, TiAlN) are comparatively investigated by ab initio simulations as well as X-ray photoelectron spectroscopy. The simulations predict significant differences at the interface, as N and Ti form bonds with all functional groups of the polymer, while&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16715v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16715v1-abstract-full" style="display: none;"> To understand the interfacial bond formation between polycarbonate (PC) and magnetron-sputtered metal nitride thin films, PC | X interfaces (X = AlN, TiN, TiAlN) are comparatively investigated by ab initio simulations as well as X-ray photoelectron spectroscopy. The simulations predict significant differences at the interface, as N and Ti form bonds with all functional groups of the polymer, while Al reacts selectively only with the carbonate group of pristine PC. In good agreement with simulations, experimental data reveal that the PC | AlN and the PC | TiAlN interfaces are mainly defined by interfacial C-N bonds, whereas for PC | TiN, the interface formation is also characterized by numerous C-Ti and (C-O)-Ti bonds. Bond strength calculations combined with the measured interfacial bond density indicate the strongest interface for PC | TiAlN followed by PC | AlN, whereas the weakest is predicted for PC | TiN due to its lower density of strong interfacial C-N bonds. This study shows that the employed computational strategy enables prediction of the interfacial bond formation between PC and metal nitrides and that it is reasonable to assume that the research strategy proposed herein can be readily adapted to other organic | inorganic interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16715v1-abstract-full').style.display = 'none'; document.getElementById('2305.16715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12775">arXiv:2303.12775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12775">pdf</a>, <a href="https://arxiv.org/format/2303.12775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> System-specific parameter optimization for non-polarizable and polarizable force fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaojuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+K+S">Kazi S. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Markus Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+C">Carmay Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salahub%2C+D">Dennis Salahub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldauf%2C+C">Carsten Baldauf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12775v2-abstract-short" style="display: inline;"> The accuracy of classical force fields (FFs) has been shown to be limited for the simulation of cation-protein systems despite their importance in understanding the processes of life. Improvements can result from optimizing the parameters of classical FFs or by extending the FF formulation by terms describing charge transfer and polarization effects. In this work, we introduce our implementation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12775v2-abstract-full').style.display = 'inline'; document.getElementById('2303.12775v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12775v2-abstract-full" style="display: none;"> The accuracy of classical force fields (FFs) has been shown to be limited for the simulation of cation-protein systems despite their importance in understanding the processes of life. Improvements can result from optimizing the parameters of classical FFs or by extending the FF formulation by terms describing charge transfer and polarization effects. In this work, we introduce our implementation of the CTPOL model in OpenMM, which extends the classical additive FF formula by adding charge transfer (CT) and polarization (POL). Furthermore, we present an open-source parameterization tool, called FFAFFURR that enables the (system specific) parameterization of OPLS-AA and CTPOL models. The performance of our workflow was evaluated by its ability to reproduce quantum chemistry energies and by molecular dynamics simulations of a Zinc finger protein. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12775v2-abstract-full').style.display = 'none'; document.getElementById('2303.12775v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">62 pages and 25 figures (including SI), manuscript to be submitted soon</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10266">arXiv:2303.10266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10266">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> On the determination of the thermal shock parameter of MAX phases: A combined experimental-computational study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fekete%2C+M">Matej Fekete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Azina%2C+C">Clio Azina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ondra%C4%8Dka%2C+P">Pavel Ondra膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B6fler%2C+L">Lukas L枚fler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogdanovski%2C+D">Dimitri Bogdanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10266v2-abstract-short" style="display: inline;"> Thermal shock resistance is one of the performance-defining properties for applications where extreme temperature gradients are required. The thermal shock resistance of a material can be described by means of the thermal shock parameter RT. Here, the thermo-mechanical properties required for the calculation of RT are quantum-mechanically predicted, experimentally determined, and compared for Ti3A&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10266v2-abstract-full').style.display = 'inline'; document.getElementById('2303.10266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10266v2-abstract-full" style="display: none;"> Thermal shock resistance is one of the performance-defining properties for applications where extreme temperature gradients are required. The thermal shock resistance of a material can be described by means of the thermal shock parameter RT. Here, the thermo-mechanical properties required for the calculation of RT are quantum-mechanically predicted, experimentally determined, and compared for Ti3AlC2 and Cr2AlC MAX phases. The coatings are synthesized utilizing direct current magnetron sputtering without additional heating, followed by vacuum annealing. It is shown that the RT of both Ti3AlC2 and Cr2AlC obtained via simulations are in good agreement with the experimentally obtained ones. Comparing the MAX phase coatings, both experiments and simulations indicate superior thermal shock behavior of Ti3AlC2 compared to Cr2AlC, attributed primarily to the larger linear coefficient of thermal expansion of Cr2AlC. The results presented herein underline the potential of ab initio calculations for predicting the thermal shock behavior of ionically-covalently bonded materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10266v2-abstract-full').style.display = 'none'; document.getElementById('2303.10266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Journal of the European Ceramic Society, 6 figures, 4 tables, 37 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09465">arXiv:2303.09465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.09465">pdf</a>, <a href="https://arxiv.org/format/2303.09465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Constructing phase diagrams for defects by correlated atomic-scale characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathews%2C+P">Prince Mathews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berkels%2C+B">Benjamin Berkels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahmad%2C+S">Saba Ahmad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alhassan%2C+A+S+A">Amel Shamseldeen Ali Alhassan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keuter%2C+P">Philipp Keuter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+D">Dierk Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neugebauer%2C+J">J枚rg Neugebauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dehm%2C+G">Gerhard Dehm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hickel%2C+T">Tilmann Hickel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheu%2C+C">Christina Scheu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Siyuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09465v2-abstract-short" style="display: inline;"> Phase transformations and crystallographic defects are two essential tools to drive innovations in materials. Bulk materials design via tuning chemical compositions has been systematized using phase diagrams. We show here that the same thermodynamic concept can be applied to understand the chemistry at defects. We present a combined experimental and modelling approach to scope and build phase diag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09465v2-abstract-full').style.display = 'inline'; document.getElementById('2303.09465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09465v2-abstract-full" style="display: none;"> Phase transformations and crystallographic defects are two essential tools to drive innovations in materials. Bulk materials design via tuning chemical compositions has been systematized using phase diagrams. We show here that the same thermodynamic concept can be applied to understand the chemistry at defects. We present a combined experimental and modelling approach to scope and build phase diagrams for defects. The discovery was enabled by triggering phase transformations of individual defects through local alloying, and sequentially imaging the structural and chemical changes using atomic-resolution scanning transmission electron microscopy. By observing atomic-scale phase transformations of a Mg grain boundary through Ga alloying, we exemplified the method to construct a grain boundary phase diagram using ab initio simulations and thermodynamic principles. The methodology enables a systematic development of defect phase diagrams to propel a new paradigm for materials design utilizing chemical complexity and phase transformations at defects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09465v2-abstract-full').style.display = 'none'; document.getElementById('2303.09465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07763">arXiv:2303.07763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.07763">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Chemical and structural characterization of the native oxide scale on a Mg-based alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neu%C3%9F%2C+D">Deborah Neu脽</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCarroll%2C+I+E">Ingrid E. McCarroll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Siyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+E">Eric Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delis%2C+W+J">Wassilios J. Delis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanure%2C+L">Leandro Tanure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springer%2C+H">Hauke Springer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sandl%C3%B6bes%2C+S">Stefanie Sandl枚bes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Todorova%2C+M">Mira Todorova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zander%2C+D">Daniela Zander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheu%2C+C">Christina Scheu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07763v3-abstract-short" style="display: inline;"> In this study, the structure and composition of the native oxide forming on the basal plane (0001) of Mg-2Al-0.1Ca is investigated by a correlative approach, combining scanning transmission electron microscopy (STEM) and atom probe tomography (APT). Atom probe specimens were prepared conventionally in a Ga focused ion beam (FIB) as well as a Xe plasma FIB in a cryogenic setup and subsequently clea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07763v3-abstract-full').style.display = 'inline'; document.getElementById('2303.07763v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07763v3-abstract-full" style="display: none;"> In this study, the structure and composition of the native oxide forming on the basal plane (0001) of Mg-2Al-0.1Ca is investigated by a correlative approach, combining scanning transmission electron microscopy (STEM) and atom probe tomography (APT). Atom probe specimens were prepared conventionally in a Ga focused ion beam (FIB) as well as a Xe plasma FIB in a cryogenic setup and subsequently cleaned in the atom probe to remove surface contamination before oxidation. While thermal energy input from the laser and longer atmospheric exposure time increased the measured hydrogen content in the specimen&#39;s apex region, cryo preparation revealed, that the hydrogen uptake in magnesium is independent of the employment of conventional or cryogenic FIB preparation. TEM measurements demonstrated the growth of a (111) MgO oxide layer with 3-4 nm thickness on the basal (0001) plane of the Mg atom probe specimen. APT data further revealed the formation of an aluminum-rich region between bulk Mg and the native oxide. The aluminum enrichment of up to ~20 at.% at the interface is consistent with an inward growth of the oxide scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07763v3-abstract-full').style.display = 'none'; document.getElementById('2303.07763v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04480">arXiv:2303.04480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04480">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/ma16062417">10.3390/ma16062417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CALPHAD-based modelling of the temperature-composition-structure relationship during physical vapor deposition of Mg-Ca thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Keuter%2C+P">Philipp Keuter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baben%2C+M+t">Moritz to Baben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aliramaji%2C+S">Shamsa Aliramaji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04480v1-abstract-short" style="display: inline;"> The temperature-dependent composition and phase formation during physical vapor deposition (PVD) of Mg-Ca thin films is modelled using a CALPHAD-based approach. Considering the Mg and Ca sublimation fluxes calculated based on the vapor pressure obtained by employing equilibrium thermochemical calculations, experimentally observed synthesis temperature trends in thin film composition and phase form&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04480v1-abstract-full').style.display = 'inline'; document.getElementById('2303.04480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04480v1-abstract-full" style="display: none;"> The temperature-dependent composition and phase formation during physical vapor deposition (PVD) of Mg-Ca thin films is modelled using a CALPHAD-based approach. Considering the Mg and Ca sublimation fluxes calculated based on the vapor pressure obtained by employing equilibrium thermochemical calculations, experimentally observed synthesis temperature trends in thin film composition and phase formation are reproduced. The model is a significant step towards understanding how synthesis parameters control composition and thereby phase formation in PVD of metals with high vapor pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04480v1-abstract-full').style.display = 'none'; document.getElementById('2303.04480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02645">arXiv:2302.02645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.02645">pdf</a>, <a href="https://arxiv.org/format/2302.02645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0151240">10.1063/5.0151240 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The out-of-plane magnetoresistance in a Van der Waals thin film of WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y+S">Y. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">H. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C+W">C. W. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">T. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">C. M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02645v1-abstract-short" style="display: inline;"> We report the magneto-transport measurements of thin film devices of the topological Weyl semimetal WTe2 with the applied current along and vertical to the in-plane directions. The device is composed of a Van der Waals thin film of WTe2 sandwiched between top and bottom Au electrodes.At low temperatures, we found a large unsaturated in-plane magnetoresistance and a saturated out-of-plane magnetore&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02645v1-abstract-full').style.display = 'inline'; document.getElementById('2302.02645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02645v1-abstract-full" style="display: none;"> We report the magneto-transport measurements of thin film devices of the topological Weyl semimetal WTe2 with the applied current along and vertical to the in-plane directions. The device is composed of a Van der Waals thin film of WTe2 sandwiched between top and bottom Au electrodes.At low temperatures, we found a large unsaturated in-plane magnetoresistance and a saturated out-of-plane magnetoresistance when the external magnetic fields are applied perpendicular to the plane. By analysis of Shubnikov-de Haas oscillations, one oscillation peak is found in the out-of-plane magnetoresistance, in contrast to four oscillation peaks in the in-plane magnetoresistance.Our work provides new insight into the origin of the unsaturated magnetoresistance in WTe2 and may inspire non-planar engineering to reach higher integration in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02645v1-abstract-full').style.display = 'none'; document.getElementById('2302.02645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03143">arXiv:2212.03143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03143">pdf</a>, <a href="https://arxiv.org/format/2212.03143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust scenario for the generation of non-equilibrium topological fluctuation states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gerlinger%2C+K">Kathinka Gerlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liefferink%2C+R">Rein Liefferink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+L">Lisa-Marie Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klose%2C+C">Christopher Klose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metternich%2C+D">Daniel Metternich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capotondi%2C+F">Flavio Capotondi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Angelis%2C+D">Dario De Angelis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersoli%2C+E">Emanuele Pedersoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCttner%2C+F">Felix B眉ttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">Stefan Eisebitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mentink%2C+J+H">Johan H. Mentink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">Bastian Pfau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03143v1-abstract-short" style="display: inline;"> The recently discovered topological fluctuation state provides a fascinating new perspective on the ultrafast emergence of topology in condensed matter systems. However, rather little is known about the physics of this state and the origin of the topological fluctuations. Using time-resolved small-angle x-ray scattering, we observe that topological fluctuation states appear after laser excitation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03143v1-abstract-full').style.display = 'inline'; document.getElementById('2212.03143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03143v1-abstract-full" style="display: none;"> The recently discovered topological fluctuation state provides a fascinating new perspective on the ultrafast emergence of topology in condensed matter systems. However, rather little is known about the physics of this state and the origin of the topological fluctuations. Using time-resolved small-angle x-ray scattering, we observe that topological fluctuation states appear after laser excitation even if the final state does not host stable skyrmions. Simulations support these findings and reveal that the fluctuations originate from the competition between spontaneous nucleation and decay of skyrmions, consistent with Arrhenius-like activation over a potential barrier. Stable skyrmions can freeze out of such fluctuations when the effective temperature of the system relaxes faster than the decay time of the skyrmions. Our results reveal a robust scenario for the generation of topological fluctuation states, potentially enabling their study in a wide variety of magnetic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03143v1-abstract-full').style.display = 'none'; document.getElementById('2212.03143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17210">arXiv:2211.17210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17210">pdf</a>, <a href="https://arxiv.org/format/2211.17210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41699-023-00420-1">10.1038/s41699-023-00420-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twist angle dependent interlayer transfer of valley polarization from excitons to free charge carriers in WSe$_2$/MoSe$_2$ heterobilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Volmer%2C+F">Frank Volmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ersfeld%2C+M">Manfred Ersfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Junior%2C+P+E+F">Paulo E. Faria Junior</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waldecker%2C+L">Lutz Waldecker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parashar%2C+B">Bharti Parashar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rathmann%2C+L">Lars Rathmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubey%2C+S">Sudipta Dubey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cojocariu%2C+I">Iulia Cojocariu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feyer%2C+V">Vitaliy Feyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plucinski%2C+L">Lukasz Plucinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stampfer%2C+C">Christoph Stampfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabian%2C+J">Jaroslav Fabian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beschoten%2C+B">Bernd Beschoten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17210v2-abstract-short" style="display: inline;"> We identify an optical excitation mechanism that transfers a valley polarization from photo-excited electron-hole pairs to free charge carriers in twisted WSe$_2$/MoSe$_2$ heterobilayers. For small twist angles, the valley lifetimes of the charge carriers are surprisingly short, despite the occurrence of interlayer excitons with their presumably long recombination and polarization lifetimes. For l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17210v2-abstract-full').style.display = 'inline'; document.getElementById('2211.17210v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17210v2-abstract-full" style="display: none;"> We identify an optical excitation mechanism that transfers a valley polarization from photo-excited electron-hole pairs to free charge carriers in twisted WSe$_2$/MoSe$_2$ heterobilayers. For small twist angles, the valley lifetimes of the charge carriers are surprisingly short, despite the occurrence of interlayer excitons with their presumably long recombination and polarization lifetimes. For large twist angles, we measure an increase in both the valley polarization and its respective lifetime by more than two orders of magnitude. Interestingly, in such heterobilayers we observe an interlayer transfer of valley polarization from the WSe$_2$ layer into the MoSe$_2$ layer. This mechanism enables the creation of a photo-induced valley polarization of free charge carriers in MoSe$_2$, which amplitude scales with the gate-induced charge carrier density. This is in contrast to monolayer MoSe$_2$, where such a gate-tunable valley polarization cannot be achieved. By combining time-resolved Kerr rotation, photoluminesence and angle-resolved photoemission spectroscopy measurements with first principles calculations, we show that these findings can be explained by twist angle dependent interlayer scattering mechanisms involving the Q- and $螕$-valleys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17210v2-abstract-full').style.display = 'none'; document.getElementById('2211.17210v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj 2D Mater. Appl. 7, 58 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12976">arXiv:2211.12976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12976">pdf</a>, <a href="https://arxiv.org/format/2211.12976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202308666">10.1002/adma.202308666 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enantioselective adsorption on magnetic surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Safari%2C+M+R">Mohammad Reza Safari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matthes%2C+F">Frank Matthes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caciuc%2C+V">Vasile Caciuc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atodiresei%2C+N">Nicolae Atodiresei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ernst%2C+K">Karl-Heinz Ernst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCrgler%2C+D+E">Daniel E. B眉rgler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12976v3-abstract-short" style="display: inline;"> From the beginning of molecular theory, the interplay of chirality and magnetism has intrigued scientists. There is still the question if enantiospecific adsorption of chiral molecules occurs on magnetic surfaces. Enantiomer discrimination was conjectured to arise from chirality-induced spin separation within the molecules and exchange interaction with the substrate&#39;s magnetization. Here we show t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12976v3-abstract-full').style.display = 'inline'; document.getElementById('2211.12976v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12976v3-abstract-full" style="display: none;"> From the beginning of molecular theory, the interplay of chirality and magnetism has intrigued scientists. There is still the question if enantiospecific adsorption of chiral molecules occurs on magnetic surfaces. Enantiomer discrimination was conjectured to arise from chirality-induced spin separation within the molecules and exchange interaction with the substrate&#39;s magnetization. Here we show that single helical aromatic hydrocarbons undergo enantioselective adsorption on ferromagnetic cobalt surfaces. Spin and chirality sensitive scanning tunneling microscopy reveals that molecules of opposite handedness prefer adsorption onto cobalt islands with opposite out-of-plane magnetization. As mobility ceases in the final chemisorbed state, it is concluded that enantioselection must occur in a physisorbed transient precursor state. State-of-the-art spin-resolved ab initio simulations support this scenario by refuting enantio-dependent chemisorption energies. These findings demonstrate that van der Waals interaction should also include spin-fluctuations which are crucial for molecular magnetochiral processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12976v3-abstract-full').style.display = 'none'; document.getElementById('2211.12976v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures, plus Supporting Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 36, 2308666 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07199">arXiv:2211.07199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07199">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Unitary response of solvatochromic dye to pulse excitation in lipid and cell membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fabiunke%2C+S">Simon Fabiunke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fillafer%2C+C">Christian Fillafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+F">Matthias F. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07199v1-abstract-short" style="display: inline;"> The existence of acoustic pulse propagation in lipid monolayers at the air-water interface is well known. These pulses are controlled by the thermodynamic state of the lipid membrane. Nevertheless, the role of acoustic pulses for intra- and intercellular communication are still a matter of debate. Herein, we used the dye di 4- -ANEPPDHQ, which is known to be sensitive to the physical state and tra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07199v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07199v1-abstract-full" style="display: none;"> The existence of acoustic pulse propagation in lipid monolayers at the air-water interface is well known. These pulses are controlled by the thermodynamic state of the lipid membrane. Nevertheless, the role of acoustic pulses for intra- and intercellular communication are still a matter of debate. Herein, we used the dye di 4- -ANEPPDHQ, which is known to be sensitive to the physical state and transmembrane potential of membranes, in order to gain insight into compression waves in lipid-based membrane interfaces. The dye was incorporated into lipid monolayers made of phosphatidylserine or phosphatidylcholine at the air-water-interface. A significant blue shift of the emission spectrum was detected when the state of the monolayer was changed from the liquid expanded (LE) to the liquid condensed (LC) phase. This transition-sensitivity of di-4-ANEPPDHQ was generalized in experiments with the bulk solvent dimethyl sulfoxide (DMSO). Upon crystallization of solvent, the emission spectrum also underwent a blue shift. During compression pulses in lipid monolayers, a significant fluorescence response was only observed when in the main transition regime. The optical signature of these waves, in terms of sign and magnitude, was identical to the response of di-4-ANEPPDHQ during action potentials in neurons and excitable plant cells. These findings corroborated the suggestion that action potentials are nonlinear state changes that propagate in the cell membrane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07199v1-abstract-full').style.display = 'none'; document.getElementById('2211.07199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Langmuir 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07189">arXiv:2211.07189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07189">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2117521119">10.1073/pnas.2117521119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sharp, localized phase transitions in single neuronal cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fedosejevs%2C+C+S">Carina S. Fedosejevs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+F">Matthias F. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07189v1-abstract-short" style="display: inline;"> The origin of nonlinear responses in cells has been suggested to be crucial for various cell functions including the propagation of the nervous impulse. In physics nonlinear behavior often originates from phase transitions. Evidence for such transitions on the single cell level, however, has so far not been provided leaving the field unattended by the biological community. Here we demonstrate that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07189v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07189v1-abstract-full" style="display: none;"> The origin of nonlinear responses in cells has been suggested to be crucial for various cell functions including the propagation of the nervous impulse. In physics nonlinear behavior often originates from phase transitions. Evidence for such transitions on the single cell level, however, has so far not been provided leaving the field unattended by the biological community. Here we demonstrate that single cells of a human neuronal cell line, display all optical features of a sharp, highly nonlinear phase transition within their membrane. The transition is reversible and does not origin from protein denaturation. Triggered by temperature and modified by pH here, a thermodynamic approach, strongly suggests, that similar nonlinear state changes can be induced by other variables such as calcium or mechanical stress. At least in lipid membranes such state changes are accompanied by significant changes in permeability, enzyme activity, elastic and electrical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07189v1-abstract-full').style.display = 'none'; document.getElementById('2211.07189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12p 4 fig</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published in PNAS 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01230">arXiv:2211.01230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01230">pdf</a>, <a href="https://arxiv.org/format/2211.01230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/4.0000167">10.1063/4.0000167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pump--probe x-ray microscopy of photo-induced magnetization dynamics at MHz repetition rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gerlinger%2C+K">Kathinka Gerlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">Bastian Pfau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hennecke%2C+M">Martin Hennecke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+L">Lisa-Marie Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+I">Ingo Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noll%2C+T">Tino Noll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weigand%2C+M">Markus Weigand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%A4fe%2C+J">Joachim Gr盲fe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tr%C3%A4ger%2C+N">Nick Tr盲ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCtz%2C+G">Gisela Sch眉tz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">Stefan Eisebitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01230v2-abstract-short" style="display: inline;"> We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds time scale. Controlling the heat load on the sample via additional reflector and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01230v2-abstract-full').style.display = 'inline'; document.getElementById('2211.01230v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01230v2-abstract-full" style="display: none;"> We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds time scale. Controlling the heat load on the sample via additional reflector and heat-sink layers allows us to conduct destruction-free measurements at a repetition rate of \SI{50}{\mega\hertz}. Near-field enhancement of the photo-excitation and controlled annealing effects lead to laterally heterogeneous magnetization dynamics which we trace with \SI{30}{\nano\meter} spatial resolution. Our work opens new opportunities to study photo-induced dynamics on the nanometer scale, with access to picosecond to nanosecond timescales, which is of technological relevance, especially in the field of magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01230v2-abstract-full').style.display = 'none'; document.getElementById('2211.01230v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10870">arXiv:2210.10870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10870">pdf</a>, <a href="https://arxiv.org/format/2210.10870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.146401">10.1103/PhysRevLett.130.146401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry-induced spin-filtering in photoemission maps from WTe$_2$ surface states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heider%2C+T">Tristan Heider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bihlmayer%2C+G">Gustav Bihlmayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schusser%2C+J">Jakub Schusser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">Friedrich Reinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plucinski%2C+L">Lukasz Plucinski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10870v1-abstract-short" style="display: inline;"> We demonstrate that an important quantum material WTe$_2$ exhibits a new type of geometry-induced spin-filtering effect in photoemission, stemming from low symmetry that is responsible for its exotic transport properties. Through the laser-driven spin-polarized angle-resolved photoemission Fermi surface mapping, we showcase highly asymmetric spin textures of electrons photoemitted from the surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10870v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10870v1-abstract-full" style="display: none;"> We demonstrate that an important quantum material WTe$_2$ exhibits a new type of geometry-induced spin-filtering effect in photoemission, stemming from low symmetry that is responsible for its exotic transport properties. Through the laser-driven spin-polarized angle-resolved photoemission Fermi surface mapping, we showcase highly asymmetric spin textures of electrons photoemitted from the surface states of WTe$_2$. Such asymmetries are not present in the initial state spin textures, which are bound by the time-reversal and crystal lattice mirror plane symmetries. The findings are reproduced qualitatively by theoretical modeling within the one-step model photoemission formalism. The effect could be understood within the free-electron final state model as an interference due to emission from different atomic sites. The observed effect is a manifestation of time-reversal symmetry breaking of the initial state in the photoemission process, and as such it cannot be eliminated, but only its magnitude influenced, by special experimental geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10870v1-abstract-full').style.display = 'none'; document.getElementById('2210.10870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07119">arXiv:2209.07119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07119">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1111/jace.18931">10.1111/jace.18931 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Yttrium incorporation in Cr2AlC: On the metastable phase formation and decomposition of (Cr,Y)2AlC MAX phase thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Azina%2C+C">Clio Azina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartsch%2C+T">Tim Bartsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+D+M">Damian M. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dahlqvist%2C+M">Martin Dahlqvist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosen%2C+J">Johanna Rosen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%B6fler%2C+L">Lukas L枚fler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mendez%2C+A+S+J">Alba San Jose Mendez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hans%2C+M">Marcus Hans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Primetzhofer%2C+D">Daniel Primetzhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07119v1-abstract-short" style="display: inline;"> Herein we report on the synthesis of a metastable (Cr,Y)2AlC MAX phase solid solution by co-sputtering from a composite Cr-Al-C and elemental Y target, at room temperature, followed by annealing. While direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room temperature depositions, followed by annealing to 760 掳C led to the formation of phas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07119v1-abstract-full').style.display = 'inline'; document.getElementById('2209.07119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07119v1-abstract-full" style="display: none;"> Herein we report on the synthesis of a metastable (Cr,Y)2AlC MAX phase solid solution by co-sputtering from a composite Cr-Al-C and elemental Y target, at room temperature, followed by annealing. While direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room temperature depositions, followed by annealing to 760 掳C led to the formation of phase pure (Cr,Y)2AlC by diffusion. Higher annealing temperatures caused decomposition of the metastable phase into Cr2AlC, Y5Al3 , and Cr-carbides. In contrast to pure Cr2AlC, the Y-containing phase crystallizes directly in the MAX phase structure instead of first forming a disordered solid solution. Furthermore, the crystallization temperature was shown to be Y-content dependent and was increased by ~200 掳C for 5 at.% Y compared to Cr2AlC. Calculations predicting the metastable phase formation of (Cr,Y)2AlC and its decomposition are in excellent agreement with the experimental findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07119v1-abstract-full').style.display = 'none'; document.getElementById('2209.07119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Journal of the American Ceramic Society, 9 Figures, 30 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11455">arXiv:2208.11455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11455">pdf</a>, <a href="https://arxiv.org/format/2208.11455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.156701">10.1103/PhysRevLett.131.156701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stimulated amplification of propagating spin waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Breitbach%2C+D">David Breitbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinz%2C+B">Bj枚rn Heinz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohl%2C+F">Felix Kohl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maskill%2C+J">Jan Maskill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheuer%2C+L">Laura Scheuer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serha%2C+R+O">Rostyslav O. Serha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Br%C3%A4cher%2C+T">Thomas Br盲cher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A4gel%2C+B">Bert L盲gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubs%2C+C">Carsten Dubs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiberkevich%2C+V+S">Vasil S. Tiberkevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slavin%2C+A+N">Andrei N. Slavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serga%2C+A+A">Alexander A. Serga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillebrands%2C+B">Burkard Hillebrands</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chumak%2C+A+V">Andrii V. Chumak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pirro%2C+P">Philipp Pirro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11455v2-abstract-short" style="display: inline;"> Spin-wave amplification techniques are key to the realization of magnon-based computing concepts. We introduce a novel mechanism to amplify spin waves in magnonic nanostructures. Using the technique of rapid cooling, we create a non-equilibrium state in excess of high-energy magnons and demonstrate the stimulated amplification of an externally seeded, propagating spin wave. Using an extended kinet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11455v2-abstract-full').style.display = 'inline'; document.getElementById('2208.11455v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11455v2-abstract-full" style="display: none;"> Spin-wave amplification techniques are key to the realization of magnon-based computing concepts. We introduce a novel mechanism to amplify spin waves in magnonic nanostructures. Using the technique of rapid cooling, we create a non-equilibrium state in excess of high-energy magnons and demonstrate the stimulated amplification of an externally seeded, propagating spin wave. Using an extended kinetic model, we qualitatively show that the amplification is mediated by an effective energy flux of high energy magnons into the low energy propagating mode, driven by a non-equilibrium magnon distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11455v2-abstract-full').style.display = 'none'; document.getElementById('2208.11455v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 131, 156701 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02570">arXiv:2208.02570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02570">pdf</a>, <a href="https://arxiv.org/format/2208.02570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Reversible Tuning of Collinear versus Chiral Magnetic Order by Chemical Stimulus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+J">Jing Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+P+M">Paula M. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ki%C3%9Flinger%2C+T">Tilman Ki脽linger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammer%2C+L">Lutz Hammer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+A">M. Alexander Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bode%2C+M">Matthias Bode</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02570v1-abstract-short" style="display: inline;"> The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction mediates collinear magnetic interactions via the conduction electrons of a non-magnetic spacer, resulting in a ferro- or antiferromagnetic magnetization in magnetic multilayers. The resulting spin-polarized charge transport effects have found numerous applications. Recently it has been discovered that heavy non-magnetic spacers are able to media&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02570v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02570v1-abstract-full" style="display: none;"> The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction mediates collinear magnetic interactions via the conduction electrons of a non-magnetic spacer, resulting in a ferro- or antiferromagnetic magnetization in magnetic multilayers. The resulting spin-polarized charge transport effects have found numerous applications. Recently it has been discovered that heavy non-magnetic spacers are able to mediate an indirect magnetic coupling that is non-collinear and chiral. This Dzyaloshinskii-Moriya-enhanced RKKY (DME-RKKY) interaction causes the emergence of a variety of interesting magnetic structures, such as skyrmions and spin spirals. Applications using these magnetic quasi-particles require a thorough understanding and fine-tuning of the balance between the Dzyaloshinskii-Moriya interaction and other magnetic interactions, e.g., the exchange interaction and magnetic anisotropy contributions. Here, we show by spin-polarized scanning tunneling microscopy that the spin structure of manganese oxide chains on Ir(001) can reproducibly be switched from chiral to collinear antiferromagnetic interchain interactions by increasing the oxidation state of MnO$_2$ while the reverse process can be induced by thermal reduction. The underlying structural change is revealed by low-energy electron diffraction intensity data (LEED-IV) analysis. Density functional theory calculations suggest that the magnetic transition may be caused by a significant increase of the Heisenberg exchange upon oxidation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02570v1-abstract-full').style.display = 'none'; document.getElementById('2208.02570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14063">arXiv:2207.14063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14063">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jallcom.2022.165999">10.1016/j.jallcom.2022.165999 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inner relaxations in equiatomic single-phase high-entropy cantor alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smekhova%2C+A">Alevtina Smekhova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuzmin%2C+A">Alexei Kuzmin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemensmeyer%2C+K">Konrad Siemensmeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abrudan%2C+R">Radu Abrudan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinholz%2C+U">Uwe Reinholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buzanich%2C+A+G">Ana Guilherme Buzanich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Mike Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laplanche%2C+G">Guillaume Laplanche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yusenko%2C+K+V">Kirill V. Yusenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14063v1-abstract-short" style="display: inline;"> The superior properties of high-entropy multi-functional materials are strongly connected with their atomic heterogeneity through many different local atomic interactions. The detailed element-specific studies on a local scale can provide insight into the primary arrangements of atoms in multicomponent systems and benefit to unravel the role of individual components in certain macroscopic properti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14063v1-abstract-full').style.display = 'inline'; document.getElementById('2207.14063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14063v1-abstract-full" style="display: none;"> The superior properties of high-entropy multi-functional materials are strongly connected with their atomic heterogeneity through many different local atomic interactions. The detailed element-specific studies on a local scale can provide insight into the primary arrangements of atoms in multicomponent systems and benefit to unravel the role of individual components in certain macroscopic properties of complex compounds. Herein, multi-edge X-ray absorption spectroscopy combined with reverse Monte Carlo simulations was used to explore a homogeneity of the local crystallographic ordering and specific structure relaxations of each constituent in the equiatomic single-phase face-centered cubic CrMnFeCoNi high-entropy alloy at room temperature. Within the considered fitting approach, all five elements of the alloy were found to be distributed at the nodes of the fcc lattice without any signatures of the additional phases at the atomic scale and exhibit very close statistically averaged interatomic distances (2.54-2.55 脜) with their nearest-neighbors. Enlarged structural displacements were found solely for Cr atoms. The macroscopic magnetic properties probed by conventional magnetometry demonstrate no opening of the hysteresis loops at 5 K and illustrate a complex character of the long-range magnetic order after field-assisted cooling in $\pm$5 T. The observed magnetic behavior is assigned to effects related to structural relaxations of Cr. Besides, the advantages and limitations of the reverse Monte Carlo approach to studies of multicomponent systems like high-entropy alloys are highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14063v1-abstract-full').style.display = 'none'; document.getElementById('2207.14063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Alloys and Compounds 920 (2022) 165999 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14315">arXiv:2206.14315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14315">pdf</a>, <a href="https://arxiv.org/format/2206.14315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10853-022-07667-x">10.1007/s10853-022-07667-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A New Methodology for Radiation Effects Studies in Solids using the Plasma Focused Ion Beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tunes%2C+M+A">M. A. Tunes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+M">M. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+C+A">C. A. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saleh%2C+T+A">T. A. Saleh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14315v1-abstract-short" style="display: inline;"> A new methodology for fundamental studies of radiation effects in solids is herein introduced by using a plasma Focused Ion Beam (PFIB). The classical example of ion-induced amorphization of single-crystalline pure Si is used as a proof-of-concept experiment that delineates the advantages and limitations of this new technique. We demonstrate both the feasibility and invention of a new ion irradiat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14315v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14315v1-abstract-full" style="display: none;"> A new methodology for fundamental studies of radiation effects in solids is herein introduced by using a plasma Focused Ion Beam (PFIB). The classical example of ion-induced amorphization of single-crystalline pure Si is used as a proof-of-concept experiment that delineates the advantages and limitations of this new technique. We demonstrate both the feasibility and invention of a new ion irradiation mode consisting of irradiating a single-specimen in multiple areas, at multiple doses, in specific sites. This present methodology suggests a very precise control of the ion beam over the specimen, with an error in the flux on the order of only 1%. In addition, the proposed methodology allows the irradiation of specimens with higher dose rates when compared with conventional ion accelerators and implanters. This methodology is expected to open new research frontiers beyond the scope of materials at extremes such as in nanopatterning and nanodevices fabrication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14315v1-abstract-full').style.display = 'none'; document.getElementById('2206.14315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15252">arXiv:2205.15252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15252">pdf</a>, <a href="https://arxiv.org/format/2205.15252">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Link between Weyl-fermion chirality and spin texture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hagiwara%2C+K">Kenta Hagiwara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BC%C3%9Fmann%2C+P">Philipp R眉脽mann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+X+L">Xin Liang Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Ying-Jiun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueno%2C+K">Keiji Ueno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feyer%2C+V">Vitaliy Feyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zamborlini%2C+G">Giovanni Zamborlini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jugovac%2C+M">Matteo Jugovac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suga%2C+S">Shigemasa Suga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+M">Claus Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tusche%2C+C">Christian Tusche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15252v1-abstract-short" style="display: inline;"> Topological semimetals have recently attracted great attention due to prospective applications governed by their peculiar Fermi surfaces. Weyl semimetals host chiral fermions that manifest as pairs of non-degenerate massless Weyl points in their electronic structure, giving rise to novel macroscopic quantum phenomena such as the chiral anomaly, an unusual magnetoresistance, and various kinds of Ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15252v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15252v1-abstract-full" style="display: none;"> Topological semimetals have recently attracted great attention due to prospective applications governed by their peculiar Fermi surfaces. Weyl semimetals host chiral fermions that manifest as pairs of non-degenerate massless Weyl points in their electronic structure, giving rise to novel macroscopic quantum phenomena such as the chiral anomaly, an unusual magnetoresistance, and various kinds of Hall effects These properties enable the engineering of non-local electric transport devices, magnetic sensors and memories, and spintronics devices. Nevertheless, little is known about the underlying spin- and orbital-degrees of freedom of the electron wave functions in Weyl semimetals, that govern the electric transport. Here, we give evidence that the chirality of the Weyl points in the Type-II Weyl semimetal MoTe$_2$ is directly linked to the spin texture and orbital angular momentum of the electron wave functions. By means of state-of-the-art spin- and momentum-resolved photoemission spectroscopy the spin- and orbital texture in the Fermi surface is directly resolved. Supported by first-principles calculations, we examined the relationship between the topological chiral charge and spin texture, which significantly contributes to the understanding of the electronic structure in topological quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15252v1-abstract-full').style.display = 'none'; document.getElementById('2205.15252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13275">arXiv:2205.13275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13275">pdf</a>, <a href="https://arxiv.org/format/2205.13275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.054435">10.1103/PhysRevB.106.054435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring Optical Excitation to Control Magnetic Skyrmion Nucleation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+L">Lisa-Marie Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">Bastian Pfau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlinger%2C+K">Kathinka Gerlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinhart%2C+V">Victor Deinhart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wittrock%2C+S">Steffen Wittrock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sidiropoulos%2C+T">Themistoklis Sidiropoulos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+D">Dieter Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+I">Ingo Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litzius%2C+K">Kai Litzius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wintz%2C+S">Sebastian Wintz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weigand%2C+M">Markus Weigand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCttner%2C+F">Felix B眉ttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">Stefan Eisebitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13275v2-abstract-short" style="display: inline;"> In ferromagnetic multilayers, a single laser pulse with a fluence above an optical nucleation threshold can create magnetic skyrmions, which are randomly distributed over the area of the laser spot. However, in order to study the dynamics of skyrmions and for their application in future data technology, a controllable localization of the skyrmion nucleation sites is crucial. Here, it is demonstrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13275v2-abstract-full').style.display = 'inline'; document.getElementById('2205.13275v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13275v2-abstract-full" style="display: none;"> In ferromagnetic multilayers, a single laser pulse with a fluence above an optical nucleation threshold can create magnetic skyrmions, which are randomly distributed over the area of the laser spot. However, in order to study the dynamics of skyrmions and for their application in future data technology, a controllable localization of the skyrmion nucleation sites is crucial. Here, it is demonstrated that patterned reflective masks behind a thin magnetic film can be designed to locally tailor the optical excitation amplitudes reached, leading to spatially controlled skyrmion nucleation on the nanometer scale. Using x-ray microscopy, the influence of nanopatterned back-side aluminum masks on the optical excitation is studied in two sample geometries with varying layer sequence of substrate and magnetic Co/Pt multilayer. Surprisingly, the masks&#39; effect on suppressing or enhancing skymion nucleation reverses when changing this sequence. Moreover, optical near-field enhancements additionally affect the spatial arrangement of the nucleated skyrmions. Simulations of the spatial modulation of the laser excitation, and the following heat transfer across the interfaces in the two sample geometries are employed to explain these observations. The results demonstrate a reliable approach to add nanometer-scale spatial control to optically induced magnetization processes on ultrafast timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13275v2-abstract-full').style.display = 'none'; document.getElementById('2205.13275v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10999">arXiv:2204.10999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10999">pdf</a>, <a href="https://arxiv.org/format/2204.10999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abm5180">10.1126/sciadv.abm5180 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triggering a global density wave instability in graphene via local symmetry-breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+A+C">Amy C. Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nigge%2C+P">Pascal Nigge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Link%2C+S">Stefan Link</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+G">Giorgio Levy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michiardi%2C+M">Matteo Michiardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spandar%2C+P+L">Parsa L. Spandar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matth%C3%A9%2C+T">Tiffany Matth茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Michael Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhdanovich%2C+S">Sergey Zhdanovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starke%2C+U">Ulrich Starke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guti%C3%A9rrez%2C+C">Christopher Guti茅rrez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10999v1-abstract-short" style="display: inline;"> Two-dimensional quantum materials offer a robust platform for investigating the emergence of symmetry-broken ordered phases owing to the high tuneability of their electronic properties. For instance, the ability to create new electronic band structures in graphene through moir茅 superlattices from stacked and twisted structures has led to the discovery of several correlated and topological phases.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10999v1-abstract-full').style.display = 'inline'; document.getElementById('2204.10999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10999v1-abstract-full" style="display: none;"> Two-dimensional quantum materials offer a robust platform for investigating the emergence of symmetry-broken ordered phases owing to the high tuneability of their electronic properties. For instance, the ability to create new electronic band structures in graphene through moir茅 superlattices from stacked and twisted structures has led to the discovery of several correlated and topological phases. Here we report an alternative method to induce an incipient symmetry-broken phase in graphene at the millimetre scale. We show that an extremely dilute concentration ($&lt;\!0.3\% $) of surface adatoms can self-assemble and trigger the collapse of the graphene atomic lattice into a distinct Kekul茅 bond density wave phase, whereby the carbon C-C bond symmetry is broken globally. Using complementary momentum-resolved techniques such as angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED), we directly probe the presence of this density wave phase and confirm the opening of an energy gap at the Dirac point. We further show that this Kekul茅 density wave phase occurs for various Fermi surface sizes and shapes, suggesting that this lattice instability is driven by strong electron-lattice interactions. Our results demonstrate that dilute concentrations of self-assembled adsorbed atoms offer an attractive alternative route towards designing novel quantum phases in two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10999v1-abstract-full').style.display = 'none'; document.getElementById('2204.10999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances, 8, eabm5180 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12057">arXiv:2202.12057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.12057">pdf</a>, <a href="https://arxiv.org/format/2202.12057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c00670">10.1021/acs.nanolett.2c00670 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deterministic Generation and Guided Motion of Magnetic Skyrmions by Focused He$^+$-Ion Irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+L+-">L. -M. Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">B. Pfau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deinhart%2C+V">V. Deinhart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klose%2C+C">C. Klose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerlinger%2C+K">K. Gerlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wittrock%2C+S">S. Wittrock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+D">D. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+I">I. Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">C. M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liefferink%2C+R">R. Liefferink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mentink%2C+J+H">J. H. Mentink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wintz%2C+S">S. Wintz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weigand%2C+M">M. Weigand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M+-">M. -J. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Battistelli%2C+R">R. Battistelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metternich%2C+D">D. Metternich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCttner%2C+F">F. B眉ttner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6flich%2C+K">K. H枚flich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">S. Eisebitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12057v2-abstract-short" style="display: inline;"> Magnetic skyrmions are quasiparticles with non-trivial topology, envisioned to play a key role in next-generation data technology while simultaneously attracting fundamental research interest due to their emerging topological charge. In chiral magnetic multilayers, current-generated spin-orbit torques or ultrafast laser excitation can be used to nucleate isolated skyrmions on a picosecond timescal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12057v2-abstract-full').style.display = 'inline'; document.getElementById('2202.12057v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12057v2-abstract-full" style="display: none;"> Magnetic skyrmions are quasiparticles with non-trivial topology, envisioned to play a key role in next-generation data technology while simultaneously attracting fundamental research interest due to their emerging topological charge. In chiral magnetic multilayers, current-generated spin-orbit torques or ultrafast laser excitation can be used to nucleate isolated skyrmions on a picosecond timescale. Both methods, however, produce randomly arranged skyrmions, which inherently limits the precision on the location at which the skyrmions are nucleated. Here, we show that nanopatterning of the anisotropy landscape with a He$^+$-ion beam creates well-defined skyrmion nucleation sites, thereby transforming the skyrmion localization into a deterministic process. This approach allows to realize control of individual skyrmion nucleation as well as guided skyrmion motion with nanometer-scale precision, which is pivotal for both future fundamental studies of skyrmion dynamics and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12057v2-abstract-full').style.display = 'none'; document.getElementById('2202.12057v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11053">arXiv:2202.11053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.11053">pdf</a>, <a href="https://arxiv.org/format/2202.11053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.susc.2022.122044">10.1016/j.susc.2022.122044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adsorption, self-assembly and self-metalation of tetra-cyanophenyl porphyrins on semiconducting CoO(100) films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ammon%2C+M">Maximilian Ammon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabgrund%2C+A">Andreas Raabgrund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M+A">M. Alexander Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11053v1-abstract-short" style="display: inline;"> The adsorption properties of free base 5,10,15,20-tetrakis(p-cyanophenyl)porphyrin (2H-TCNPP) on thin films of rock salt (rs) CoO(100) on Au(111) was studied in ultra-high vacuum by a combination of low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT). Films of rs-CoO(100) on Au(111) are prepared with excellent quality in a suitable thickness&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11053v1-abstract-full').style.display = 'inline'; document.getElementById('2202.11053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11053v1-abstract-full" style="display: none;"> The adsorption properties of free base 5,10,15,20-tetrakis(p-cyanophenyl)porphyrin (2H-TCNPP) on thin films of rock salt (rs) CoO(100) on Au(111) was studied in ultra-high vacuum by a combination of low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT). Films of rs-CoO(100) on Au(111) are prepared with excellent quality in a suitable thickness range. Particularly, we found that films of only 1 nm thickness show a semiconducting energy gap of $E_\mathrm{g}=(2.5\pm 0.2)\,\textrm{eV}$. Upon deposition at 300 K, 2H-TCNPP adsorbs flat-lying and self-assembles in a long-range ordered superstructure that is stable at 80 K. The adsorption geometry of the molecules on the surface and within the self-assembly is analyzed by DFT. We find that the self-assemblies are stabilized by hydrogen bridge bonding via the functional cyano groups. Our STS data shows molecular states within the fundamental gap of the CoO. By comparison with the calculated DOS we determine the energetic positions of the frontier orbitals and find that the first three LUMO states 2H-TCNPP are located within the band gap, whereas the HOMO is shifted 1 eV below the CoO conduction band edge. Upon annealing to 420 K the molecules change their appearance in STM images and a new prominent electronic state located at the center of the molecule is formed. We interpret this changed configuration as Co-TCNPP created by self-metalation on the oxide surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11053v1-abstract-full').style.display = 'none'; document.getElementById('2202.11053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures. Journal version published by Elsevier was processed without proof reading and contains errors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Surface Science, Volume 720, June 2022, 122044 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+M&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10