CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 72 results for author: <span class="mathjax">Lemme, M C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Lemme%2C+M+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lemme, M C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lemme%2C+M+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lemme, M C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lemme%2C+M+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lemme%2C+M+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lemme%2C+M+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08663">arXiv:2412.08663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08663">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Contact Resistance Optimization in MoS${_2}$ Field-Effect Transistors through Reverse Sputtering-Induced Structural Modifications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fa%2C+Y">Yuan Fa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piacentini%2C+A">Agata Piacentini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macco%2C+B">Bart Macco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisch%2C+H">Holger Kalisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heuken%2C+M">Michael Heuken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescan%2C+A">Andrei Vescan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenxing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08663v1-abstract-short" style="display: inline;"> Two-dimensional material (2DM)-based field-effect transistors (FETs), such as molybdenum disulfide (MoS${_2}$)-FETs, have gained significant attention for their potential for ultra-short channels, thereby extending Moore&#39;s law. However, MoS${_2}$-FETs are prone to the formation of Schottky barriers at the metal-MoS${_2}$ interface, resulting in high contact resistance (R${_c}$) and, consequently,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08663v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08663v1-abstract-full" style="display: none;"> Two-dimensional material (2DM)-based field-effect transistors (FETs), such as molybdenum disulfide (MoS${_2}$)-FETs, have gained significant attention for their potential for ultra-short channels, thereby extending Moore&#39;s law. However, MoS${_2}$-FETs are prone to the formation of Schottky barriers at the metal-MoS${_2}$ interface, resulting in high contact resistance (R${_c}$) and, consequently, reduced transistor currents in the ON-state. Our study explores the modification of MoS${_2}$ to induce the formation of conductive 1T-MoS${_2}$ at the metal-MoS${_2}$ interface via reverse sputtering. MoS${_2}$-FETs exposed to optimized reverse sputtering conditions in the contact area show R${_c}$ values reduced to less than 50% of their untreated counterparts. This reduction translates into improvements in other electrical characteristics, such as higher ON-state currents. Since reverse sputtering is a standard semiconductor process that enhances the electrical performance of MoS${_2}$-FETs, it has great potential for broader application scenarios in 2DM-based microelectronic devices and circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08663v1-abstract-full').style.display = 'none'; document.getElementById('2412.08663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05618">arXiv:2412.05618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05618">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopic ellipsometry of CsPbCl${_3}$ perovskite thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+S">Sana Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cegielski%2C+P+J">Piotr J. Cegielski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Runkel%2C+M">Manuel Runkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riedl%2C+T">Thomas Riedl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohammadi%2C+M">Maryam Mohammadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05618v1-abstract-short" style="display: inline;"> Designing optoelectronic devices based on cesium lead chloride (CsPbCl${_3}$) perovskites requires accurate values of their optical constants. Unfortunately, experimental data for this material is very limited thus far. Therefore, here, we applied spectroscopic ellipsometry (SE) to measure the complex optical constants of thermally evaporated CsPbCl${_3}$ thin films with different thicknesses on S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05618v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05618v1-abstract-full" style="display: none;"> Designing optoelectronic devices based on cesium lead chloride (CsPbCl${_3}$) perovskites requires accurate values of their optical constants. Unfortunately, experimental data for this material is very limited thus far. Therefore, here, we applied spectroscopic ellipsometry (SE) to measure the complex optical constants of thermally evaporated CsPbCl${_3}$ thin films with different thicknesses on Si/SiO${_2}$ substrates. The data were corroborated with scanning electron microscopy (SEM) images and absorption spectroscopy. An optical dispersion model was developed to derive the complex optical constants and film thicknesses. The Tauc-Lorentz model, in conjunction with two harmonic oscillators, was used to extract the required parameters. The extinction coefficient spectrum exhibited a sharp absorption edge at 411 nm, consistent with the absorption spectrum. In addition, the optical bandgap of the film was calculated from the absorption spectra and SE data. The experimental values agree well with the simulation results, with values of $\sim$ 2.99 eV for different film thicknesses. This work provides fundamental information for designing and modeling CsPbCl3-based optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05618v1-abstract-full').style.display = 'none'; document.getElementById('2412.05618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02407">arXiv:2412.02407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dry Transfer Based on PMMA and Thermal Release Tape for Heterogeneous Integration of 2D-TMDC Layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ghiami%2C+A">Amir Ghiami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiadziushkin%2C+H">Hleb Fiadziushkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+T">Tianyishan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Songyao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yibing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+E">Eva Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+M">Jochen M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piacentini%2C+A">Agata Piacentini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heuken%2C+M">Michael Heuken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisch%2C+H">Holger Kalisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescan%2C+A">Andrei Vescan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02407v1-abstract-short" style="display: inline;"> A reliable and scalable transfer of 2D-TMDCs (two-dimensional transition metal dichalcogenides) from the growth substrate to a target substrate with high reproducibility and yield is a crucial step for device integration. In this work, we have introduced a scalable dry-transfer approach for 2D-TMDCs grown by MOCVD (metal-organic chemical vapor deposition) on sapphire. Transfer to a silicon/silicon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02407v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02407v1-abstract-full" style="display: none;"> A reliable and scalable transfer of 2D-TMDCs (two-dimensional transition metal dichalcogenides) from the growth substrate to a target substrate with high reproducibility and yield is a crucial step for device integration. In this work, we have introduced a scalable dry-transfer approach for 2D-TMDCs grown by MOCVD (metal-organic chemical vapor deposition) on sapphire. Transfer to a silicon/silicon dioxide (Si/SiO$_2$) substrate is performed using PMMA (poly(methyl methacrylate)) and TRT (thermal release tape) as sacrificial layer and carrier, respectively. Our proposed method ensures a reproducible peel-off from the growth substrate and better preservation of the 2D-TMDC during PMMA removal in solvent, without compromising its adhesion to the target substrate. A comprehensive comparison between the dry method introduced in this work and a standard wet transfer based on potassium hydroxide (KOH) solution shows improvement in terms of cleanliness and structural integrity for dry-transferred layer, as evidenced by X-ray photoemission and Raman spectroscopy, respectively. Moreover, fabricated field-effect transistors (FETs) demonstrate improvements in subthreshold slope, maximum drain current and device-to-device variability. The dry-transfer method developed in this work enables large-area integration of 2D-TMDC layers into (opto)electronic components with high reproducibility, while better preserving the as-grown properties of the layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02407v1-abstract-full').style.display = 'none'; document.getElementById('2412.02407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15286">arXiv:2411.15286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15286">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Versatile Top-Down Patterning of 3D, 2D and 0D Perovskites for On-Chip Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizi%2C+F">Federico Fabrizi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goudarzi%2C+S">Saeed Goudarzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+S">Sana Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohammad%2C+T">Tauheed Mohammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starodubtceva%2C+L">Liudmila Starodubtceva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cegielski%2C+P+J">Piotr J. Cegielski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller-Newen%2C+G">Gerhard M眉ller-Newen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anantharaman%2C+S+B">Surendra B. Anantharaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohammadi%2C+M">Maryam Mohammadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15286v1-abstract-short" style="display: inline;"> Metal-halide perovskites (MHPs) have exciting optoelectronic properties and are under investigation for various applications, such as photovoltaics, light-emitting diodes, and lasers. An essential step toward exploiting the full potential of this class of materials is their large-scale, on-chip integration with high-resolution, top-down patterning. The development of such patterning methods for pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15286v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15286v1-abstract-full" style="display: none;"> Metal-halide perovskites (MHPs) have exciting optoelectronic properties and are under investigation for various applications, such as photovoltaics, light-emitting diodes, and lasers. An essential step toward exploiting the full potential of this class of materials is their large-scale, on-chip integration with high-resolution, top-down patterning. The development of such patterning methods for perovskite films is challenging because of their ionic behavior and adverse reactions with the solvents used in standard lithography processes. Here, we introduce a versatile and precise method comprising photolithography and reactive ion etching (RIE) processes that can be tuned to accommodate different perovskite compositions and morphologies, including 3D, quasi-2D, and quasi-0D structures. Our method utilizes conventional photoresists at reduced temperatures to create micron-sized features down to 1 $渭$m, providing high reproducibility from chip to chip. The patterning technique is validated through atomic force microscopy (AFM), X-ray diffraction (XRD), optical spectroscopy, and scanning electron microscopy (SEM). It enables the scalable and high-throughput on-chip monolithic integration of MHPs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15286v1-abstract-full').style.display = 'none'; document.getElementById('2411.15286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01439">arXiv:2410.01439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01439">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Graphene MEMS and NEMS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">Chang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01439v1-abstract-short" style="display: inline;"> Graphene is being increasingly used as an interesting transducer membrane in micro- and nanoelectromechanical systems (MEMS and NEMS, respectively) due to its atomical thickness, extremely high carrier mobility, high mechanical strength and piezoresistive electromechanical transductions. NEMS devices based on graphene feature increased sensitivity, reduced size, and new functionalities. In this re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01439v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01439v1-abstract-full" style="display: none;"> Graphene is being increasingly used as an interesting transducer membrane in micro- and nanoelectromechanical systems (MEMS and NEMS, respectively) due to its atomical thickness, extremely high carrier mobility, high mechanical strength and piezoresistive electromechanical transductions. NEMS devices based on graphene feature increased sensitivity, reduced size, and new functionalities. In this review, we discuss the merits of graphene as a functional material for MEMS and NEMS, the related properties of graphene, the transduction mechanisms of graphene MEMS and NEMS, typical transfer methods for integrating graphene with MEMS substrates, methods for fabricating suspended graphene, and graphene patterning and electrical contact. Consequently, we provide an overview of devices based on suspended and nonsuspended graphene structures. Finally, we discuss the potential and challenges of applications of graphene in MEMS and NEMS. Owing to its unique features, graphene is a promising material for emerging MEMS, NEMS and sensor applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01439v1-abstract-full').style.display = 'none'; document.getElementById('2410.01439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09780">arXiv:2408.09780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09780">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Volatile MoS${_2}$ Memristors with Lateral Silver Ion Migration for Artificial Neuron Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cruces%2C+S">Sofia Cruces</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ganeriwala%2C+M+D">Mohit D. Ganeriwala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jimin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=V%C3%B6lkel%2C+L">Lukas V枚lkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braun%2C+D">Dennis Braun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grundmann%2C+A">Annika Grundmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+K">Ke Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mar%C3%ADn%2C+E+G">Enrique G. Mar铆n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisch%2C+H">Holger Kalisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heuken%2C+M">Michael Heuken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescan%2C+A">Andrei Vescan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+J">Joachim Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godoy%2C+A">Andr茅s Godoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daus%2C+A">Alwin Daus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09780v1-abstract-short" style="display: inline;"> Layered two-dimensional (2D) semiconductors have shown enhanced ion migration capabilities along their van der Waals (vdW) gaps and on their surfaces. This effect can be employed for resistive switching (RS) in devices for emerging memories, selectors, and neuromorphic computing. To date, all lateral molybdenum disulfide (MoS${_2}$)-based volatile RS devices with silver (Ag) ion migration have bee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09780v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09780v1-abstract-full" style="display: none;"> Layered two-dimensional (2D) semiconductors have shown enhanced ion migration capabilities along their van der Waals (vdW) gaps and on their surfaces. This effect can be employed for resistive switching (RS) in devices for emerging memories, selectors, and neuromorphic computing. To date, all lateral molybdenum disulfide (MoS${_2}$)-based volatile RS devices with silver (Ag) ion migration have been demonstrated using exfoliated, single-crystal MoS${_2}$ flakes requiring a forming step to enable RS. Here, we present volatile RS with multilayer MoS${_2}$ grown by metal-organic chemical vapor deposition (MOCVD) with repeatable forming-free operation. The devices show highly reproducible volatile RS with low operating voltages of approximately 2 V and fast switching times down to 130 ns considering their micrometer scale dimensions. We investigate the switching mechanism based on Ag ion surface migration through transmission electron microscopy, electronic transport modeling, and density functional theory. Finally, we develop a physics-based compact model and explore the implementation of our volatile memristors as artificial neurons in neuromorphic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09780v1-abstract-full').style.display = 'none'; document.getElementById('2408.09780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07183">arXiv:2408.07183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07183">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunable Doping and Mobility Enhancement in 2D Channel Field-Effect Transistors via Damage-Free Atomic Layer Deposition of AlOX Dielectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Esteki%2C+A">Ardeshir Esteki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riazimehr%2C+S">Sarah Riazimehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piacentini%2C+A">Agata Piacentini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knoops%2C+H">Harm Knoops</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macco%2C+B">Bart Macco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otto%2C+M">Martin Otto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rinke%2C+G">Gordon Rinke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenxing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+K">Ke Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+J">Joachim Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grundmann%2C+A">Annika Grundmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisch%2C+H">Holger Kalisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heuken%2C+M">Michael Heuken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescan%2C+A">Andrei Vescan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daus%2C+A">Alwin Daus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07183v1-abstract-short" style="display: inline;"> Two-dimensional materials (2DMs) have been widely investigated because of their potential for heterogeneous integration with modern electronics. However, several major challenges remain, such as the deposition of high-quality dielectrics on 2DMs and the tuning of the 2DM doping levels. Here, we report a scalable plasma-enhanced atomic layer deposition (PEALD) process for direct deposition of a non&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07183v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07183v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07183v1-abstract-full" style="display: none;"> Two-dimensional materials (2DMs) have been widely investigated because of their potential for heterogeneous integration with modern electronics. However, several major challenges remain, such as the deposition of high-quality dielectrics on 2DMs and the tuning of the 2DM doping levels. Here, we report a scalable plasma-enhanced atomic layer deposition (PEALD) process for direct deposition of a nonstoichiometric aluminum oxide (AlOX) dielectric, overcoming the damage issues associated with conventional methods. Furthermore, we control the thickness of the dielectric layer to systematically tune the doping level of 2DMs. The experimental results demonstrate successful deposition without detectable damage, as confirmed by Raman spectroscopy and electrical measurements. Our method enables tuning of the Dirac and threshold voltages of back-gated graphene and MoS${_2}$ field-effect transistors (FETs), respectively, while also increasing the charge carrier mobility in both device types. We further demonstrate the method in top-gated MoS${_2}$ FETs with double-stack dielectric layers (AlOX+Al${_2}$O${_3}$), achieving critical breakdown field strengths of 7 MV/cm and improved mobility compared with the back gate configuration. In summary, we present a PEALD process that offers a scalable and low-damage solution for dielectric deposition on 2DMs, opening new possibilities for precise tuning of device characteristics in heterogeneous electronic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07183v1-abstract-full').style.display = 'none'; document.getElementById('2408.07183v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01111">arXiv:2408.01111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01111">pdf</a>, <a href="https://arxiv.org/format/2408.01111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c02463">10.1021/acs.nanolett.4c02463 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-steep slope cryogenic FETs based on bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Icking%2C+E">E. Icking</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Emmerich%2C+D">D. Emmerich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">K. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beschoten%2C+B">B. Beschoten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">M. C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knoch%2C+J">J. Knoch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stampfer%2C+C">C. Stampfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01111v1-abstract-short" style="display: inline;"> Cryogenic field-effect transistors (FETs) offer great potential for a wide range of applications, the most notable example being classical control electronics for quantum information processors. In the latter context, on-chip FETs with low power consumption are a crucial requirement. This, in turn, requires operating voltages in the millivolt range, which are only achievable in devices with ultra-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01111v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01111v1-abstract-full" style="display: none;"> Cryogenic field-effect transistors (FETs) offer great potential for a wide range of applications, the most notable example being classical control electronics for quantum information processors. In the latter context, on-chip FETs with low power consumption are a crucial requirement. This, in turn, requires operating voltages in the millivolt range, which are only achievable in devices with ultra-steep subthreshold slopes. However, in conventional cryogenic metal-oxide-semiconductor (MOS)FETs based on bulk material, the experimentally achieved inverse subthreshold slopes saturate around a few mV/dec due to disorder and charged defects at the MOS interface. FETs based on two-dimensional materials offer a promising alternative. Here, we show that FETs based on Bernal stacked bilayer graphene encapsulated in hexagonal boron nitride and graphite gates exhibit inverse subthreshold slopes of down to 250 $渭$V/dec at 0.1 K, approaching the Boltzmann limit. This result indicates an effective suppression of band tailing in van-der-Waals heterostructures without bulk interfaces, leading to superior device performance at cryogenic temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01111v1-abstract-full').style.display = 'none'; document.getElementById('2408.01111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 24, 11454 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01868">arXiv:2404.01868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01868">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Integrated ultrafast all-optical polariton transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tassan%2C+P">Pietro Tassan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urbonas%2C+D">Darius Urbonas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chmielak%2C+B">Bartos Chmielak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bolten%2C+J">Jens Bolten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahlbrink%2C+T">Thorsten Wahlbrink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forster%2C+M">Michael Forster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherf%2C+U">Ullrich Scherf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahrt%2C+R+F">Rainer F. Mahrt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6ferle%2C+T">Thilo St枚ferle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01868v1-abstract-short" style="display: inline;"> The clock speed of electronic circuits has been stagnant at a few gigahertz for almost two decades because of the breakdown of Dennard scaling, which states that by shrinking the size of transistors they can operate faster while maintaining the same power consumption. Optical computing could overcome this roadblock, but the lack of materials with suitably strong nonlinear interactions needed to re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01868v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01868v1-abstract-full" style="display: none;"> The clock speed of electronic circuits has been stagnant at a few gigahertz for almost two decades because of the breakdown of Dennard scaling, which states that by shrinking the size of transistors they can operate faster while maintaining the same power consumption. Optical computing could overcome this roadblock, but the lack of materials with suitably strong nonlinear interactions needed to realize all-optical switches has, so far, precluded the fabrication of scalable architectures. Recently, microcavities in the strong light-matter interaction regime enabled all-optical transistors which, when used with an embedded organic material, can operate even at room temperature with sub-picosecond switching times, down to the single-photon level. However, the vertical cavity geometry prevents complex circuits with on-chip coupled transistors. Here, by leveraging silicon photonics technology, we show exciton-polariton condensation at ambient conditions in micrometer-sized, fully integrated high-index contrast grating microcavities filled with an optically active polymer. By coupling two resonators and exploiting seeded polariton condensation, we demonstrate ultrafast all-optical transistor action and cascadability. Our experimental findings open the way for scalable, compact all-optical integrated logic circuits that could process optical signals two orders of magnitude faster than their electrical counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01868v1-abstract-full').style.display = 'none'; document.getElementById('2404.01868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13900">arXiv:2309.13900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.13900">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Volatile Resistive Switching of Polymer Residues in 2D Material Memristors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Braun%2C+D">Dennis Braun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ganeriwala%2C+M+D">Mohit D. Ganeriwala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=V%C3%B6lkel%2C+L">Lukas V枚lkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+K">Ke Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukas%2C+S">Sebastian Lukas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mar%C3%ADn%2C+E+G">Enrique G. Mar铆n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartwig%2C+O">Oliver Hartwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prechtl%2C+M">Maximilian Prechtl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahlbrink%2C+T">Thorsten Wahlbrink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+J">Joachim Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godoy%2C+A">Andr茅s Godoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daus%2C+A">Alwin Daus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13900v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials are popular candidates for emerging nanoscale devices, including memristors. Resistive switching (RS) in such 2D material memristors has been attributed to the formation and dissolution of conductive filaments created by the diffusion of metal ions between the electrodes. However, the area-scalable fabrication of patterned devices involves polymers that are difficult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13900v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13900v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials are popular candidates for emerging nanoscale devices, including memristors. Resistive switching (RS) in such 2D material memristors has been attributed to the formation and dissolution of conductive filaments created by the diffusion of metal ions between the electrodes. However, the area-scalable fabrication of patterned devices involves polymers that are difficult to remove from the 2D material interfaces without damage. Remaining polymer residues are often overlooked when interpreting the RS characteristics of 2D material memristors. Here, we demonstrate that the parasitic residues themselves can be the origin of RS. We emphasize the necessity to fabricate appropriate reference structures and employ atomic-scale material characterization techniques to properly evaluate the potential of 2D materials as the switching layer in vertical memristors. Our polymer-residue-based memristors exhibit RS typical for a filamentary mechanism with metal ion migration, and their performance parameters are strikingly similar to commonly reported 2D material memristors. This reveals that the exclusive consideration of electrical data without a thorough verification of material interfaces can easily lead to misinterpretations about the potential of 2D materials for memristor applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13900v1-abstract-full').style.display = 'none'; document.getElementById('2309.13900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11233">arXiv:2309.11233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11233">pdf</a>, <a href="https://arxiv.org/format/2309.11233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Variability and Reliability of Graphene Field-Effect Transistors with CaF2 Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Illarionov%2C+Y+Y">Yury Yu. Illarionov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knobloch%2C+T">Theresia Knobloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzlu%2C+B">Burkay Uzlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banshikov%2C+A+G">Alexander G. Banshikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+I+A">Iliya A. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sverdlov%2C+V">Viktor Sverdlov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vexler%2C+M+I">Mikhail I. Vexler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waltl%2C+M">Michael Waltl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenxing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+B">Bibhas Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+N+S">Nikolai S. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grasser%2C+T">Tibor Grasser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11233v1-abstract-short" style="display: inline;"> Graphene is a promising material for applications as a channel in graphene field-effect transistors (GFETs) which may be used as a building block for optoelectronics, high-frequency devices and sensors. However, these devices require gate insulators which ideally should form atomically flat interfaces with graphene and at the same time contain small densities of traps to maintain high device stabi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11233v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11233v1-abstract-full" style="display: none;"> Graphene is a promising material for applications as a channel in graphene field-effect transistors (GFETs) which may be used as a building block for optoelectronics, high-frequency devices and sensors. However, these devices require gate insulators which ideally should form atomically flat interfaces with graphene and at the same time contain small densities of traps to maintain high device stability. Previously used amorphous oxides, such as SiO2 and Al2O3, however, typically suffer from oxide dangling bonds at the interface, high surface roughness and numerous border oxide traps. In order to address these challenges, here we use for the first time 2nm thick epitaxial CaF2 as a gate insulator in GFETs. By analyzing device-to-device variability for over 200 devices fabricated in two batches, we find that tens of them show similar gate transfer characteristics. Our statistical analysis of the hysteresis up to 175C has revealed that while an ambient-sensitive counterclockwise hysteresis can be present in some devices, the dominant mechanism is thermally activated charge trapping by border defects in CaF2 which results in the conventional clockwise hysteresis. We demonstrate that both the hysteresis and bias-temperature instabilities in our GFETs with CaF2 are comparable to similar devices with SiO2 and Al2O3. In particular, we achieve a small hysteresis below 0.01 V for equivalent oxide thickness (EOT) of about 1 nm at the electric fields up to 15 MV/cm and sweep times in the kilosecond range. Thus, our results demonstrate that crystalline CaF2 is a promising insulator for highly-stable GFETs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11233v1-abstract-full').style.display = 'none'; document.getElementById('2309.11233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01177">arXiv:2304.01177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01177">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41699-024-00471-y">10.1038/s41699-024-00471-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CVD Graphene Contacts for Lateral Heterostructure MoS${_2}$ Field Effect Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+D+S">Daniel S. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lucchesi%2C+L">Leonardo Lucchesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reato%2C+E">Eros Reato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piacentini%2C+A">Agata Piacentini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bolten%2C+J">Jens Bolten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marian%2C+D">Damiano Marian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marin%2C+E+G">Enrique G. Marin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radenovic%2C+A">Aleksandra Radenovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenxing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiori%2C+G">Gianluca Fiori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kis%2C+A">Andras Kis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iannaccone%2C+G">Giuseppe Iannaccone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01177v2-abstract-short" style="display: inline;"> Intensive research is carried out on two-dimensional materials, in particular molybdenum disulfide, towards high-performance transistors for integrated circuits. Fabricating transistors with ohmic contacts is challenging due to the high Schottky barrier that severely limits the transistors&#39; performance. Graphene-based heterostructures can be used in addition or as a substitute for unsuitable metal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01177v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01177v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01177v2-abstract-full" style="display: none;"> Intensive research is carried out on two-dimensional materials, in particular molybdenum disulfide, towards high-performance transistors for integrated circuits. Fabricating transistors with ohmic contacts is challenging due to the high Schottky barrier that severely limits the transistors&#39; performance. Graphene-based heterostructures can be used in addition or as a substitute for unsuitable metals. We present lateral heterostructure transistors made of scalable chemical vapor-deposited molybdenum disulfide and chemical vapor-deposited graphene with low contact resistances of about 9 k$惟$$渭$m and high on/off current ratios of 10${^8}$. We also present a theoretical model calibrated on our experiments showing further potential for scaling transistors and contact areas into the few nanometers range and the possibility of a strong performance enhancement by means of layer optimizations that would make transistors promising for use in future logic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01177v2-abstract-full').style.display = 'none'; document.getElementById('2304.01177v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj 2D Materials and Applications, 8, 35, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00406">arXiv:2303.00406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00406">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Graphene-Quantum Dot Hybrid Photodetectors from 200 mm Wafer Scale Processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sha Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenxing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robertz%2C+B">Bianca Robertz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Txoperena%2C+O">Oihana Txoperena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maestre%2C+A">Arantxa Maestre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zurutuza%2C+A">Amaia Zurutuza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bower%2C+C">Chris Bower</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rushton%2C+A">Ashley Rushton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yinglin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harris%2C+C">Chris Harris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bessonov%2C+A">Alexander Bessonov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malik%2C+S">Surama Malik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+M">Mark Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medina-Salazar%2C+I">Ivonne Medina-Salazar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryh%C3%A4nen%2C+T">Tapani Ryh盲nen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00406v1-abstract-short" style="display: inline;"> A 200 mm processing platform for the large-scale production of graphene field-effect transistor-quantum dot (GFET-QD) hybrid photodetectors is demonstrated. Comprehensive statistical analysis of electric data shows a high yield (96%) and low variation of the 200 mm scale fabrication. The GFET-QD devices deliver responsivities of 10${^5}$ - 10${^6}$ V/W in a wavelength range from 400 to 1800 nm, at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00406v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00406v1-abstract-full" style="display: none;"> A 200 mm processing platform for the large-scale production of graphene field-effect transistor-quantum dot (GFET-QD) hybrid photodetectors is demonstrated. Comprehensive statistical analysis of electric data shows a high yield (96%) and low variation of the 200 mm scale fabrication. The GFET-QD devices deliver responsivities of 10${^5}$ - 10${^6}$ V/W in a wavelength range from 400 to 1800 nm, at up to 100 frames per second. Spectral sensitivity compares well to that obtained using similar GFET-QD photodetectors. The device concept enables gate-tunable suppression or enhancement of the photovoltage, which may be exploited for electric shutter operation by toggling between the signal capture and shutter states. The devices show good stability at a wide operation range and external quantum efficiency of 20% in the short-wavelength infrared range. Furthermore, an integration solution with complementary metal-oxide-semiconductor technology is presented to realize image-sensor-array chips and a proof-of-concept image system. This work demonstrates the potential for the volume manufacture of infrared photodetectors for a wide range of imaging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00406v1-abstract-full').style.display = 'none'; document.getElementById('2303.00406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10158">arXiv:2301.10158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.10158">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202300428">10.1002/adfm.202300428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resistive Switching and Current Conduction Mechanisms in Hexagonal Boron Nitride Threshold Memristors with Nickel Electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=V%C3%B6lkel%2C+L">Lukas V枚lkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braun%2C+D">Dennis Braun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belete%2C+M">Melkamu Belete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahlbrink%2C+T">Thorsten Wahlbrink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+K">Ke Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kistermann%2C+K">Kevin Kistermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+J">Joachim Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menzel%2C+S">Stephan Menzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daus%2C+A">Alwin Daus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10158v2-abstract-short" style="display: inline;"> The two-dimensional (2D) insulating material hexagonal boron nitride (h BN) has attracted much attention as the active medium in memristive devices due to its favorable physical properties, among others, a wide bandgap that enables a large switching window. Metal filament formation is frequently suggested for h-BN devices as the resistive switching (RS) mechanism, usually supported by highly speci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10158v2-abstract-full').style.display = 'inline'; document.getElementById('2301.10158v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10158v2-abstract-full" style="display: none;"> The two-dimensional (2D) insulating material hexagonal boron nitride (h BN) has attracted much attention as the active medium in memristive devices due to its favorable physical properties, among others, a wide bandgap that enables a large switching window. Metal filament formation is frequently suggested for h-BN devices as the resistive switching (RS) mechanism, usually supported by highly specialized methods like conductive atomic force microscopy (C-AFM) or transmission electron microscopy (TEM). Here, we investigate the switching of multilayer hexagonal boron nitride (h-BN) threshold memristors with two nickel (Ni) electrodes through their current conduction mechanisms. Both the high and the low resistance states are analyzed through temperature-dependent current-voltage measurements. We propose the formation and retraction of nickel filaments along boron defects in the h-BN film as the resistive switching mechanism. We corroborate our electrical data with TEM analyses to establish temperature-dependent current-voltage measurements as a valuable tool for the analysis of resistive switching phenomena in memristors made of 2D materials. Our memristors exhibit a wide and tunable current operation range and low stand-by currents, in line with the state of the art in h-BN-based threshold switches, a low cycle-to-cycle variability of 5%, and a large On/Off ratio of 10${^7}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10158v2-abstract-full').style.display = 'none'; document.getElementById('2301.10158v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Functional Materials, 202300428, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04465">arXiv:2212.04465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.04465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsanm.3c02867">10.1021/acsanm.3c02867 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined Structural and Plasmonic Enhancement of Nanometer-Thin Film Photocatalysis for Solar-Driven Wastewater Treatment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Daskalova%2C+D">Desislava Daskalova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flores%2C+G+A">Gonzalo Aguila Flores</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plachetka%2C+U">Ulrich Plachetka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%B6ller%2C+M">Michael M枚ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolters%2C+J">Julia Wolters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wintgens%2C+T">Thomas Wintgens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04465v2-abstract-short" style="display: inline;"> Titanium dioxide (TiO$_2$) thin films are commonly used as photocatalytic materials. Here, we enhance the photocatalytic activity of devices based on TiO$_2$ by combining nanostructured glass substrates with metallic plasmonic nanostructures. We achieve a three-fold increase of the catalyst&#39;s surface area through nanoscale three-dimensional patterning of periodic conical grids, which creates a bro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04465v2-abstract-full').style.display = 'inline'; document.getElementById('2212.04465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04465v2-abstract-full" style="display: none;"> Titanium dioxide (TiO$_2$) thin films are commonly used as photocatalytic materials. Here, we enhance the photocatalytic activity of devices based on TiO$_2$ by combining nanostructured glass substrates with metallic plasmonic nanostructures. We achieve a three-fold increase of the catalyst&#39;s surface area through nanoscale three-dimensional patterning of periodic conical grids, which creates a broadband optical absorber. The addition of aluminum and gold activates the structures plasmonically and improves the optical absorption in the TiO$_2$ films to above 70% in the visible and NIR spectral range. We demonstrate the resulting enhancement of the photocatalytic activity with organic dye degradation tests under different light sources. Furthermore, the pharmaceutical drug Carbamazepine, a common water pollutant, is reduced in aqueous solution by up to 48% in 360 minutes. Our approach is scalable and potentially enables future solar-driven wastewater treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04465v2-abstract-full').style.display = 'none'; document.getElementById('2212.04465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Applied Nano Materials, 6, 15204-15212, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01877">arXiv:2212.01877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01877">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/andp.201700106">10.1002/andp.201700106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced intrinsic voltage gain in artificially stacked bilayer CVD graphene field effect transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+H">Himadri Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+J+D+A">Jorge Daniel Aguirre Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fregonese%2C+S">Sebastien Fregonese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Passi%2C+V">Vikram Passi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iannazzo%2C+M">Mario Iannazzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmer%2C+T">Thomas Zimmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarcon%2C+E">Eduard Alarcon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01877v1-abstract-short" style="display: inline;"> We report on electronic transport in dual-gate, artificially stacked bilayer graphene field effect transistors (BiGFETs) fabricated from large-area chemical vapor deposited (CVD) graphene. The devices show enhanced tendency to current saturation, which leads to reduced minimum output conductance values. This results in improved intrinsic voltage gain of the devices when compared to monolayer graph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01877v1-abstract-full').style.display = 'inline'; document.getElementById('2212.01877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01877v1-abstract-full" style="display: none;"> We report on electronic transport in dual-gate, artificially stacked bilayer graphene field effect transistors (BiGFETs) fabricated from large-area chemical vapor deposited (CVD) graphene. The devices show enhanced tendency to current saturation, which leads to reduced minimum output conductance values. This results in improved intrinsic voltage gain of the devices when compared to monolayer graphene FETs. We employ a physics based compact model originally developed for Bernal stacked bilayer graphene FETs (BSBGFETs) to explore the observed phenomenon. The improvement in current saturation may be attributed to increased charge carrier density in the channel and thus reduced saturation velocity due to carrier-carrier scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01877v1-abstract-full').style.display = 'none'; document.getElementById('2212.01877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Annalen der Physik, 529 (11), 1700106, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12415">arXiv:2211.12415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12415">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.sse.2016.07.008">10.1016/j.sse.2016.07.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Contact Resistance Study of Various Metal Electrodes with CVD Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gahoi%2C+A">Amit Gahoi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bablich%2C+A">Andreas Bablich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Passi%2C+V">Vikram Passi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12415v1-abstract-short" style="display: inline;"> In this study, the contact resistance of various metals to chemical vapour deposited (CVD) monolayer graphene is investigated. Transfer length method (TLM) structures with varying widths and separation between contacts have been fabricated and electrically characterized in ambient air and vacuum condition. Electrical contacts are made with five metals: gold, nickel, nickel/gold, palladium and plat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12415v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12415v1-abstract-full" style="display: none;"> In this study, the contact resistance of various metals to chemical vapour deposited (CVD) monolayer graphene is investigated. Transfer length method (TLM) structures with varying widths and separation between contacts have been fabricated and electrically characterized in ambient air and vacuum condition. Electrical contacts are made with five metals: gold, nickel, nickel/gold, palladium and platinum/gold. The lowest value of 92 惟渭m is observed for the contact resistance between graphene and gold, extracted from back-gated devices at an applied back-gate bias of -40 V. Measurements carried out under vacuum show larger contact resistance values when compared with measurements carried out in ambient conditions. Post processing annealing at 450掳C for 1 hour in argon-95% / hydrogen-5% atmosphere results in lowering the contact resistance value which is attributed to the enhancement of the adhesion between metal and graphene. The results presented in this work provide an overview for potential contact engineering for high performance graphene-based electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12415v1-abstract-full').style.display = 'none'; document.getElementById('2211.12415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Solid-State Electronics, Volume 125, November, Pages 234-239, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11601">arXiv:2208.11601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11601">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/admt.202100489">10.1002/admt.202100489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasma-enhanced atomic layer deposition of Al$_2$O$_3$ on graphene using monolayer hBN as interfacial layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Canto%2C+B">Barbara Canto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otto%2C+M">Martin Otto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Powell%2C+M+J">Michael J. Powell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babenko%2C+V">Vitaliy Babenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahony%2C+A+O">Aileen O Mahony</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knoops%2C+H">Harm Knoops</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sundaram%2C+R+S">Ravi S. Sundaram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+S">Stephan Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11601v1-abstract-short" style="display: inline;"> The deposition of dielectric materials on graphene is one of the bottlenecks for unlocking the potential of graphene in electronic applications. In this paper we demonstrate the plasma enhanced atomic layer deposition of 10 nm thin high quality Al$_2$O$_3$ on graphene using a monolayer of hBN as protection layer. Raman spectroscopy was performed to analyze possible structural changes of the graphe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11601v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11601v1-abstract-full" style="display: none;"> The deposition of dielectric materials on graphene is one of the bottlenecks for unlocking the potential of graphene in electronic applications. In this paper we demonstrate the plasma enhanced atomic layer deposition of 10 nm thin high quality Al$_2$O$_3$ on graphene using a monolayer of hBN as protection layer. Raman spectroscopy was performed to analyze possible structural changes of the graphene lattice caused by the plasma deposition. The results show that a monolayer of hBN in combination with an optimized deposition process can effectively protect graphene from damage, while significant damage was observed without an hBN layer. Electrical characterization of double gated graphene field effect devices confirms that the graphene did not degrade during the plasma deposition of Al$_2$O$_3$. The leakage current densities were consistently below 1 nA/mm for electric fields across the insulators of up to 8 MV/cm, with irreversible breakdown happening above. Such breakdown electric fields are typical for Al$_2$O$_3$ and can be seen as an indicator for high quality dielectric films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11601v1-abstract-full').style.display = 'none'; document.getElementById('2208.11601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. Technol.2021, 6, 2100489 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16759">arXiv:2203.16759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16759">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-022-00798-8">10.1038/s41928-022-00798-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How to Report and Benchmark Emerging Field-Effect Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihui Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+C">Chin-Sheng Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Peiqi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+S+T">Son T. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yanqing Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shahrjerdi%2C+D">Davood Shahrjerdi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radu%2C+I">Iuliana Radu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+L">Lian-Mao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+X">Xiangfeng Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhihong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Appenzeller%2C+J">Joerg Appenzeller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koester%2C+S+J">Steven J. Koester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pop%2C+E">Eric Pop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franklin%2C+A+D">Aaron D. Franklin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+C+A">Curt A. Richter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16759v5-abstract-short" style="display: inline;"> Emerging low-dimensional nanomaterials have been studied for decades in device applications as field-effect transistors (FETs). However, properly reporting and comparing device performance has been challenging due to the involvement and interlinking of multiple device parameters. More importantly, the interdisciplinarity of this research community results in a lack of consistent reporting and benc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16759v5-abstract-full').style.display = 'inline'; document.getElementById('2203.16759v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16759v5-abstract-full" style="display: none;"> Emerging low-dimensional nanomaterials have been studied for decades in device applications as field-effect transistors (FETs). However, properly reporting and comparing device performance has been challenging due to the involvement and interlinking of multiple device parameters. More importantly, the interdisciplinarity of this research community results in a lack of consistent reporting and benchmarking guidelines. Here we report a consensus among the authors regarding guidelines for reporting and benchmarking important FET parameters and performance metrics. We provide an example of this reporting and benchmarking process for a two-dimensional (2D) semiconductor FET. Our consensus will help promote an improved approach for assessing device performance in emerging FETs, thus aiding the field to progress more consistently and meaningfully. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16759v5-abstract-full').style.display = 'none'; document.getElementById('2203.16759v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 5 (2022) 416-423 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.08062">arXiv:2112.08062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.08062">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Stacking polymorphism in PtSe$_2$ drastically affects its electromechanical properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kempt%2C+R">Roman Kempt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukas%2C+S">Sebastian Lukas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartwig%2C+O">Oliver Hartwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prechtl%2C+M">Maximilian Prechtl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuc%2C+A">Agnieszka Kuc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brumme%2C+T">Thomas Brumme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sha Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G">Georg Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heine%2C+T">Thomas Heine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.08062v2-abstract-short" style="display: inline;"> PtSe$_2$ is one of the most promising materials for the next generation of piezoresistive sensors. However, the large-scale synthesis of homogeneous thin films with reproducible electromechanical properties is challenging due to polycrystallinity. We show that stacking phases other than the AA-stacking in the 1T phase become thermodynamically available at elevated temperatures. We show that these&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08062v2-abstract-full').style.display = 'inline'; document.getElementById('2112.08062v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.08062v2-abstract-full" style="display: none;"> PtSe$_2$ is one of the most promising materials for the next generation of piezoresistive sensors. However, the large-scale synthesis of homogeneous thin films with reproducible electromechanical properties is challenging due to polycrystallinity. We show that stacking phases other than the AA-stacking in the 1T phase become thermodynamically available at elevated temperatures. We show that these can make up a significant fraction in a polycrystalline thin film and discuss methods to characterize these stacking phases. Lastly, we estimate their gauge factors, which vary strongly and significantly impact the performance of a nanoelectromechanical device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08062v2-abstract-full').style.display = 'none'; document.getElementById('2112.08062v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12874">arXiv:2110.12874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12874">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.1c01517">10.1021/acsphotonics.1c01517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional Platinum Diselenide Waveguide-Integrated Infrared Photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Parhizkar%2C+S">Shayan Parhizkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prechtl%2C+M">Maximilian Prechtl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giesecke%2C+A+L">Anna Lena Giesecke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suckow%2C+S">Stephan Suckow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+S">Sophia Wahl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukas%2C+S">Sebastian Lukas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartwig%2C+O">Oliver Hartwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Negm%2C+N">Nour Negm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quellmalz%2C+A">Arne Quellmalz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gylfason%2C+K+B">Kristinn B. Gylfason</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schall%2C+D">Daniel Schall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wuttig%2C+M">Matthias Wuttig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12874v2-abstract-short" style="display: inline;"> Low cost, easily integrable photodetectors (PDs) for silicon (Si) photonics are still a bottleneck for photonic integrated circuits (PICs), especially for wavelengths above 1.8 $渭$m. Multilayered platinum diselenide (PtSe$_2$) is a semi-metallic two-dimensional (2D) material that can be synthesized below 450$掳$C. We integrate PtSe$_2$ based PDs directly by conformal growth on Si waveguides. The PD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12874v2-abstract-full').style.display = 'inline'; document.getElementById('2110.12874v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12874v2-abstract-full" style="display: none;"> Low cost, easily integrable photodetectors (PDs) for silicon (Si) photonics are still a bottleneck for photonic integrated circuits (PICs), especially for wavelengths above 1.8 $渭$m. Multilayered platinum diselenide (PtSe$_2$) is a semi-metallic two-dimensional (2D) material that can be synthesized below 450$掳$C. We integrate PtSe$_2$ based PDs directly by conformal growth on Si waveguides. The PDs operate at 1550 nm wavelength with a maximum responsivity of 11 mA/W and response times below 8.4 $渭$s. Fourier transform infrared spectroscopy (FTIR) in the wavelength range from 1.25 $渭$m to 28 $渭$m indicates the suitability of PtSe$_2$ for PDs far into the infrared wavelength range. Our PtSe$_2$ PDs integrated by direct growth outperform PtSe$_2$ PDs manufactured by standard 2D layer transfer. The combination of IR responsivity, chemical stability, selective and conformal growth at low temperatures, and the potential for high carrier mobility, make PtSe$_2$ an attractive 2D material for optoelectronics and PICs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12874v2-abstract-full').style.display = 'none'; document.getElementById('2110.12874v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics, 9, 859-867, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.08172">arXiv:2104.08172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.08172">pdf</a>, <a href="https://arxiv.org/format/2104.08172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-022-00768-0">10.1038/s41928-022-00768-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing the Stability of FETs Based on Two-Dimensional Materials by Fermi Level Tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Knobloch%2C+T">Theresia Knobloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzlu%2C+B">Burkay Uzlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Illarionov%2C+Y+Y">Yury Yu. Illarionov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenxing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otto%2C+M">Martin Otto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filipovic%2C+L">Lado Filipovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waltl%2C+M">Michael Waltl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grasser%2C+T">Tibor Grasser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.08172v3-abstract-short" style="display: inline;"> Despite the enormous progress achieved during the past decade, nanoelectronic devices based on two-dimensional (2D) semiconductors still suffer from a limited electrical stability. This limited stability has been shown to result from the interaction of charge carriers originating from the 2D semiconductors with defects in the surrounding insulating materials. The resulting dynamically trapped char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.08172v3-abstract-full').style.display = 'inline'; document.getElementById('2104.08172v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.08172v3-abstract-full" style="display: none;"> Despite the enormous progress achieved during the past decade, nanoelectronic devices based on two-dimensional (2D) semiconductors still suffer from a limited electrical stability. This limited stability has been shown to result from the interaction of charge carriers originating from the 2D semiconductors with defects in the surrounding insulating materials. The resulting dynamically trapped charges are particularly relevant in field effect transistors (FETs) and can lead to a large hysteresis, which endangers stable circuit operation. Based on the notion that charge trapping is highly sensitive to the energetic alignment of the channel Fermi-level with the defect band in the insulator, we propose to optimize device stability by deliberately tuning the channel Fermi-level. Our approach aims to minimize the amount of electrically active border traps without modifying the total number of traps in the insulator. We demonstrate the applicability of this idea by using two differently doped graphene layers in otherwise identical FETs with Al$_2$O$_3$ as a gate oxide mounted on a flexible substrate. Our results clearly show that by increasing the distance of the Fermi-level to the defect band, the hysteresis is significantly reduced. Furthermore, since long-term reliability is also very sensitive to trapped charges, a corresponding improvement in reliability is both expected theoretically and demonstrated experimentally. Our study paves the way for the construction of more stable and reliable 2D FETs in which the channel material is carefully chosen and tuned to maximize the energetic distance between charge carriers in the channel and the defect bands in the insulator employed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.08172v3-abstract-full').style.display = 'none'; document.getElementById('2104.08172v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05473">arXiv:2104.05473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.05473">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/IRMMW-THz.2017.8067212">10.1109/IRMMW-THz.2017.8067212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Material-Dependencies of the THz Emission from Plasmonic Graphene-Based Photoconductive Antenna Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Suessmeier%2C+C">Christoph Suessmeier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abadal%2C+S">Sergi Abadal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+D">Daniel Stock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schaeffer%2C+S">Stephan Schaeffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarc%C3%B3n%2C+E">Eduard Alarc贸n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosseininejad%2C+S+E">Seyed Ehsan Hosseininejad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wigger%2C+A+K">Anna Katharina Wigger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cabellos-Aparicio%2C+A">Albert Cabellos-Aparicio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bol%C3%ADvar%2C+P+H">Peter Haring Bol铆var</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05473v1-abstract-short" style="display: inline;"> Graphene supports surface plasmon polaritons with comparatively slow propagation velocities in the THz region, which becomes increasingly interesting for future communication technologies. This ability can be used to realize compact antennas, which are up to two orders of magnitude smaller than their metallic counterparts. For a proper functionality of these antennas some minimum material requirem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05473v1-abstract-full').style.display = 'inline'; document.getElementById('2104.05473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05473v1-abstract-full" style="display: none;"> Graphene supports surface plasmon polaritons with comparatively slow propagation velocities in the THz region, which becomes increasingly interesting for future communication technologies. This ability can be used to realize compact antennas, which are up to two orders of magnitude smaller than their metallic counterparts. For a proper functionality of these antennas some minimum material requirements have to be fulfilled, which are presently difficult to achieve, since the fabrication and transfer technologies for graphene are still evolving. In this work we analyze available graphene materials experimentally and extract intrinsic characteristics at THz frequencies, in order to predict the dependency of the THz signal emission threshold as a function of the graphene relaxation time tau_r and the chemical potential mu_c. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05473v1-abstract-full').style.display = 'none'; document.getElementById('2104.05473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 pages, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.03636">arXiv:2104.03636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.03636">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202102929">10.1002/adfm.202102929 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlating Nanocrystalline Structure with Electronic Properties in 2D Platinum Diselenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lukas%2C+S">Sebastian Lukas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartwig%2C+O">Oliver Hartwig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prechtl%2C+M">Maximilian Prechtl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capraro%2C+G">Giovanna Capraro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bolten%2C+J">Jens Bolten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meledin%2C+A">Alexander Meledin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+J">Joachim Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.03636v1-abstract-short" style="display: inline;"> Platinum diselenide (PtSe${_2}$) is a two-dimensional (2D) material with outstanding electronic and piezoresistive properties. The material can be grown at low temperatures in a scalable manner which makes it extremely appealing for many potential electronics, photonics, and sensing applications. Here, we investigate the nanocrystalline structure of different PtSe${_2}$ thin films grown by thermal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03636v1-abstract-full').style.display = 'inline'; document.getElementById('2104.03636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.03636v1-abstract-full" style="display: none;"> Platinum diselenide (PtSe${_2}$) is a two-dimensional (2D) material with outstanding electronic and piezoresistive properties. The material can be grown at low temperatures in a scalable manner which makes it extremely appealing for many potential electronics, photonics, and sensing applications. Here, we investigate the nanocrystalline structure of different PtSe${_2}$ thin films grown by thermally assisted conversion (TAC) and correlate them with their electronic and piezoresistive properties. We use scanning transmission electron microscopy for structural analysis, X-ray photoelectron spectroscopy (XPS) for chemical analysis, and Raman spectroscopy for phase identification. Electronic devices are fabricated using transferred PtSe${_2}$ films for electrical characterization and piezoresistive gauge factor measurements. The variations of crystallite size and their orientations are found to have a strong correlation with the electronic and piezoresistive properties of the films, especially the sheet resistivity and the effective charge carrier mobility. Our findings may pave the way for tuning and optimizing the properties of TAC-grown PtSe${_2}$ towards numerous applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03636v1-abstract-full').style.display = 'none'; document.getElementById('2104.03636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Functional Material, 2102929, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.14880">arXiv:2103.14880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.14880">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssa.201400049">10.1002/pssa.201400049 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical vapor deposited graphene: From synthesis to applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruhkopf%2C+J">Jasper Ruhkopf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gahoi%2C+A">Aamit Gahoi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+H">Himadri Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bornemann%2C+R">Rainer Bornemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaziri%2C+S">Sam Vaziri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A+D">Anderson D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96stling%2C+M">Mikael 脰stling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.14880v1-abstract-short" style="display: inline;"> Graphene is a material with enormous potential for numerous applications. Therefore, significant efforts are dedicated to large-scale graphene production using a chemical vapor deposition (CVD) technique. In addition, research is directed at developing methods to incorporate graphene in established production technologies and process flows. In this paper, we present a brief review of available CVD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14880v1-abstract-full').style.display = 'inline'; document.getElementById('2103.14880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.14880v1-abstract-full" style="display: none;"> Graphene is a material with enormous potential for numerous applications. Therefore, significant efforts are dedicated to large-scale graphene production using a chemical vapor deposition (CVD) technique. In addition, research is directed at developing methods to incorporate graphene in established production technologies and process flows. In this paper, we present a brief review of available CVD methods for graphene synthesis. We also discuss scalable methods to transfer graphene onto desired substrates. Finally, we discuss potential applications that would benefit from a fully scaled, semiconductor technology compatible production process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.14880v1-abstract-full').style.display = 'none'; document.getElementById('2103.14880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> physica status solidi (a), 211 (11), 2439-2449, 2014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.11920">arXiv:2007.11920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.11920">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.34133/2020/8748602">10.34133/2020/8748602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoelectromechanical Sensors based on Suspended 2D Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kangho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verbiest%2C+G+J">Gerard J. Verbiest</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wittmann%2C+S">Sebastian Wittmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukas%2C+S">Sebastian Lukas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dolleman%2C+R+J">Robin J. Dolleman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niklaus%2C+F">Frank Niklaus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Zant%2C+H+S+J">Herre S. J. van der Zant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steeneken%2C+P+G">Peter G. Steeneken</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.11920v1-abstract-short" style="display: inline;"> The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11920v1-abstract-full').style.display = 'inline'; document.getElementById('2007.11920v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.11920v1-abstract-full" style="display: none;"> The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11920v1-abstract-full').style.display = 'none'; document.getElementById('2007.11920v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Research, vol. 2020, Article ID 8748602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10658">arXiv:2005.10658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.10658">pdf</a>, <a href="https://arxiv.org/ps/2005.10658">ps</a>, <a href="https://arxiv.org/format/2005.10658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.0c04848">10.1021/acsnano.0c04848 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Graphene-Quantum Dots Hybrid Photodetectors with Low Dark-Current Readout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Fazio%2C+D">D. De Fazio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzlu%2C+B">B. Uzlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torre%2C+I">I. Torre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monasterio%2C+C">C. Monasterio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+S">S. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khodkov%2C+T">T. Khodkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+Y">Y. Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otto%2C+M">M. Otto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">M. C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goossens%2C+S">S. Goossens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">D. Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koppens%2C+F+H+L">F. H. L. Koppens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10658v1-abstract-short" style="display: inline;"> Graphene-based photodetectors have shown responsivities up to 10$^8$A/W and photoconductive gains up to 10$^{8}$ electrons per photon. These photodetectors rely on a highly absorbing layer in close proximity of graphene, which induces a shift of the graphene chemical potential upon absorption, hence modifying its channel resistance. However, due to the semi-metallic nature of graphene, the readout&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10658v1-abstract-full').style.display = 'inline'; document.getElementById('2005.10658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10658v1-abstract-full" style="display: none;"> Graphene-based photodetectors have shown responsivities up to 10$^8$A/W and photoconductive gains up to 10$^{8}$ electrons per photon. These photodetectors rely on a highly absorbing layer in close proximity of graphene, which induces a shift of the graphene chemical potential upon absorption, hence modifying its channel resistance. However, due to the semi-metallic nature of graphene, the readout requires dark currents of hundreds of $渭$A up to mA, leading to high power consumption needed for the device operation. Here we propose a novel approach for highly responsive graphene-based photodetectors with orders of magnitude lower dark current levels. A shift of the graphene chemical potential caused by light absorption in a layer of colloidal quantum dots, induces a variation of the current flowing across a metal-insulator-graphene diode structure. Owing to the low density of states of graphene near the neutrality point, the light-induced shift in chemical potential can be relatively large, dramatically changing the amount of current flowing across the insulating barrier, and giving rise to a novel type of gain mechanism. This readout requires dark currents of hundreds of nA up to few $渭$A, orders of magnitude lower than other graphene-based photodetectors, while keeping responsivities of $\sim$70A/W in the infrared, almost two orders of magnitude higher compared to established germanium on silicon and indium gallium arsenide infrared photodetectors. This makes the device appealing for applications where high responsivity and low power consumption are required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10658v1-abstract-full').style.display = 'none'; document.getElementById('2005.10658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 14 11897 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08296">arXiv:2003.08296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.08296">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b01759">10.1021/acs.nanolett.9b01759 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suspended graphene membranes with attached silicon proof masses as piezoresistive NEMS accelerometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forsberg%2C+F">Fredrik Forsberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A+D">Anderson D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6der%2C+S">Stephan Schr枚der</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96stling%2C+M">Mikael 脰stling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niklaus%2C+F">Frank Niklaus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08296v1-abstract-short" style="display: inline;"> Graphene is an atomically thin material that features unique electrical and mechanical properties, which makes it an extremely promising material for future nanoelectromechanical systems (NEMS). Recently, basic NEMS accelerometer functionality has been demonstrated by utilizing piezoresistive graphene ribbons with suspended silicon proof masses. However, the proposed graphene ribbons have limitati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08296v1-abstract-full').style.display = 'inline'; document.getElementById('2003.08296v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08296v1-abstract-full" style="display: none;"> Graphene is an atomically thin material that features unique electrical and mechanical properties, which makes it an extremely promising material for future nanoelectromechanical systems (NEMS). Recently, basic NEMS accelerometer functionality has been demonstrated by utilizing piezoresistive graphene ribbons with suspended silicon proof masses. However, the proposed graphene ribbons have limitations regarding mechanical robustness, manufacturing yield and the maximum measurement current that can be applied across the ribbons. Here, we report on suspended graphene membranes that are fully-clamped at their circumference and that have attached silicon proof masses. We demonstrate their utility as piezoresistive NEMS accelerometers and they are found to be more robust, have longer life span and higher manufacturing yield, can withstand higher measurement currents and are able to suspend larger silicon proof masses, as compared to the previously graphene ribbon devices. These findings are an important step towards bringing ultra-miniaturized piezoresistive graphene NEMS closer towards deployment in emerging applications such as in wearable electronics, biomedical implants and internet of things (IoT) devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08296v1-abstract-full').style.display = 'none'; document.getElementById('2003.08296v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 5 figures. arXiv admin note: text overlap with arXiv:2003.07115</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett.19 10 (2019) 6788-6799 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.07247">arXiv:2003.07247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.07247">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41378-019-0128-4">10.1038/s41378-019-0128-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manufacture and Characterization of Graphene Membranes with Suspended Silicon Proof Masses for MEMS and NEMS Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A+D">Anderson D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forsberg%2C+F">Fredrik Forsberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6der%2C+S">Stephan Schr枚der</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akbari%2C+S+S+A">Sayedeh Shirin Afyouni Akbari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+A+C">Andreas C. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villanueva%2C+L+G">Luis Guillermo Villanueva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96stling%2C+M">Mikael 脰stling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niklaus%2C+F">Frank Niklaus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.07247v1-abstract-short" style="display: inline;"> Unparalleled strength, chemical stability, ultimate surface-to-volume ratio and excellent electronic properties of graphene make it an ideal candidate as a material for membranes in micro- and nanoelectromechanical systems (MEMS and NEMS). However, the integration of graphene into MEMS or NEMS devices and suspended structures such as proof masses on graphene membranes raises several technological&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07247v1-abstract-full').style.display = 'inline'; document.getElementById('2003.07247v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.07247v1-abstract-full" style="display: none;"> Unparalleled strength, chemical stability, ultimate surface-to-volume ratio and excellent electronic properties of graphene make it an ideal candidate as a material for membranes in micro- and nanoelectromechanical systems (MEMS and NEMS). However, the integration of graphene into MEMS or NEMS devices and suspended structures such as proof masses on graphene membranes raises several technological challenges, including collapse and rupture of the graphene. We have developed a robust route for realizing membranes made of double-layer CVD graphene and suspending large silicon proof masses on membranes with high yields. We have demonstrated the manufacture of square graphene membranes with side lengths from 7 micro meter to 110 micro meter and suspended proof masses consisting of solid silicon cubes that are from 5 micro meter multiply 5 micro meter multiply 16.4 micro meter to 100 micro meter multiply 100 micro meter multiply 16.4 micro meter in size. Our approach is compatible with wafer-scale MEMS and semiconductor manufacturing technologies, and the manufacturing yields of the graphene membranes with suspended proof masses were greater than 90%, with more than 70% of the graphene membranes having more than 90% graphene area without visible defects. The graphene membranes with suspended proof masses were extremely robust and were able to withstand indentation forces from an atomic force microscope (AFM) tip of up to ~7000 nN. The measured resonance frequencies of the realized structures ranged from tens to hundreds of kHz, with quality factors ranging from 63 to 148. The proposed approach for the reliable and large-scale manufacture of graphene membranes with suspended proof masses will enable the development and study of innovative NEMS devices with new functionalities and improved performances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07247v1-abstract-full').style.display = 'none'; document.getElementById('2003.07247v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10763">arXiv:2002.10763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.10763">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Capacitance-Voltage (C-V) Characterization of Graphene-Silicon Heterojunction Photodiodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Riazimehr%2C+S">Sarah Riazimehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belete%2C+M">Melkamu Belete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engstr%C3%B6m%2C+O">Olof Engstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max Christian Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10763v1-abstract-short" style="display: inline;"> Heterostructures of two-dimensional (2D) and three-dimensional (3D) materials form efficient devices for utilizing the properties of both classes of materials. Graphene/silicon (G/Si) Schottky diodes have been studied extensively with respect to their optoelectronic properties. Here, we introduce a method to analyze measured capacitance-voltage data of G/Si Schottky diodes connected in parallel wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10763v1-abstract-full').style.display = 'inline'; document.getElementById('2002.10763v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10763v1-abstract-full" style="display: none;"> Heterostructures of two-dimensional (2D) and three-dimensional (3D) materials form efficient devices for utilizing the properties of both classes of materials. Graphene/silicon (G/Si) Schottky diodes have been studied extensively with respect to their optoelectronic properties. Here, we introduce a method to analyze measured capacitance-voltage data of G/Si Schottky diodes connected in parallel with G/silicon dioxide/Si (GIS) capacitors. We also demonstrate the accurate extraction of the built-in potential ($桅$$_{bi}$) and the Schottky barrier height from the measurement data independent of the Richardson constant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10763v1-abstract-full').style.display = 'none'; document.getElementById('2002.10763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.10723">arXiv:1912.10723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.10723">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electron Transport across Vertical Silicon / MoS${_2}$ / Graphene Heterostructures: Towards Efficient Emitter Diodes for Graphene-Base Hot Electron Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belete%2C+M">Melkamu Belete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engstr%C3%B6m%2C+O">Olof Engstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaziri%2C+S">Sam Vaziri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lippert%2C+G">Gunther Lippert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukosius%2C+M">Mindaugas Lukosius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.10723v1-abstract-short" style="display: inline;"> Heterostructures comprising of silicon (Si), molybdenum disulfide (MoS${_2}$) and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature dependent asymmetric current, indicating thermally activated charge carrier transport. The data is compared and fitted to a current transport model that confirms&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10723v1-abstract-full').style.display = 'inline'; document.getElementById('1912.10723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.10723v1-abstract-full" style="display: none;"> Heterostructures comprising of silicon (Si), molybdenum disulfide (MoS${_2}$) and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature dependent asymmetric current, indicating thermally activated charge carrier transport. The data is compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across the devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS${_2}$ is linearly temperature dependent for T = 200 to 300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS${_2}$, strain at the Si/MoS${_2}$ interface or different electron effective masses in Si and MoS${_2}$, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS${_2}$. The low barrier formed between Si and MoS${_2}$ and the resultant thermionic emission demonstrated here makes the present devices potential candidates as the emitter diode of graphene-base hot electron transistors for future high-speed electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10723v1-abstract-full').style.display = 'none'; document.getElementById('1912.10723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.04090">arXiv:1912.04090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.04090">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0359-7">10.1038/s41563-019-0359-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrating Graphene into Semiconductor Fabrication Lines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pindl%2C+S">Stephan Pindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.04090v1-abstract-short" style="display: inline;"> Electronic and photonic devices based on the two-dimensional material graphene have unique properties, leading to outstanding performance figures-of-merit. Mastering the integration of this new and unconventional material into an established semiconductor fabrication line represents a critical step for pushing it forward towards commercialization. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.04090v1-abstract-full" style="display: none;"> Electronic and photonic devices based on the two-dimensional material graphene have unique properties, leading to outstanding performance figures-of-merit. Mastering the integration of this new and unconventional material into an established semiconductor fabrication line represents a critical step for pushing it forward towards commercialization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04090v1-abstract-full').style.display = 'none'; document.getElementById('1912.04090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07058">arXiv:1909.07058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07058">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-54489-0">10.1038/s41598-019-54489-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Uzlu%2C+B">Burkay Uzlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenxing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukas%2C+S">Sebastian Lukas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otto%2C+M">Martin Otto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumaier%2C+D">Daniel Neumaier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07058v1-abstract-short" style="display: inline;"> We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: 1) The sensor sensitivity can be doubled by utilizing both n- and p-type conductance. 2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07058v1-abstract-full').style.display = 'inline'; document.getElementById('1909.07058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07058v1-abstract-full" style="display: none;"> We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: 1) The sensor sensitivity can be doubled by utilizing both n- and p-type conductance. 2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. 3) The off-set voltage in the Hall signal can be reduced. This significantly increases the signal-to-noise ratio compared to Hall sensors without a gate electrode. A minimal detectable magnetic field Bmin down to 290 nT/sqrt(Hz) and sensitivity up to 0.55 V/VT was found for Hall sensors fabricated on flexible foil. This clearly outperforms state-of-the-art flexible Hall sensors and is comparable to the values obtained by the best rigid III/V semiconductor Hall sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07058v1-abstract-full').style.display = 'none'; document.getElementById('1909.07058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports, 9:18059, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.09592">arXiv:1907.09592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.09592">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.9b00337">10.1021/acsphotonics.9b00337 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Few-Layer MoS$_2$/a-Si:H Heterojunction pin-Photodiodes for extended Infrared Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bablich%2C+A">Andreas Bablich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+D+S">Daniel S. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kienitz%2C+P">Paul Kienitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C">Chanyoung Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEvoy%2C+N">Niall McEvoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engstrom%2C+O">Olof Engstrom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+J">Julian M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakalli%2C+Y">Yilmaz Sakalli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butz%2C+B">Benjamin Butz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bol%C3%ADvar%2C+P+H">Peter Haring Bol铆var</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.09592v1-abstract-short" style="display: inline;"> Few-layer molybdenum disulfide (FL-MoS$_2$) films have been integrated into amorphous silicon (a-Si:H) pin photodetectors. To achieve this, vertical a-Si:H photodiodes were grown by plasma-enhanced chemical vapor deposition (PE-CVD) on top of large-scale synthesized and transferred homogeneous FL-MoS$_2$. This novel detector array exhibits long-term stability (more than six month) and outperforms&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09592v1-abstract-full').style.display = 'inline'; document.getElementById('1907.09592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.09592v1-abstract-full" style="display: none;"> Few-layer molybdenum disulfide (FL-MoS$_2$) films have been integrated into amorphous silicon (a-Si:H) pin photodetectors. To achieve this, vertical a-Si:H photodiodes were grown by plasma-enhanced chemical vapor deposition (PE-CVD) on top of large-scale synthesized and transferred homogeneous FL-MoS$_2$. This novel detector array exhibits long-term stability (more than six month) and outperforms conventional silicon-based pin photodetectors in the infrared range (IR, $位$ = 2120 nm) in terms of sensitivities by up to 50 mAW$^{-1}$. Photodetectivities of up to 2 x 10$^{10}$ Jones and external quantum efficiencies of 3 % are achieved. The detectors further feature the additional functionality of bias-dependent responsivity switching between the different spectral ranges. The realization of such scalable detector arrays is an essential step towards pixelated and wavelength-selective sensors operating in the IR spectral range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.09592v1-abstract-full').style.display = 'none'; document.getElementById('1907.09592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 6 (6), 1372-1378, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08058">arXiv:1907.08058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08058">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b02811">10.1021/acs.nanolett.8b02811 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cegielski%2C+P+J">Piotr J Cegielski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giesecke%2C+A+L">Anna Lena Giesecke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neutzner%2C+S">Stefanie Neutzner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porschatis%2C+C">Caroline Porschatis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gandini%2C+M">Marina Gandini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schall%2C+D">Daniel Schall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perini%2C+C+A">Carlo AR Perini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bolten%2C+J">Jens Bolten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suckow%2C+S">Stephan Suckow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chmielak%2C+B">Bartos Chmielak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahlbrink%2C+T">Thorsten Wahlbrink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrozza%2C+A">Annamaria Petrozza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08058v1-abstract-short" style="display: inline;"> Metal-halide perovskites are promising lasing materials for realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low temperature processing leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through cost&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08058v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08058v1-abstract-full" style="display: none;"> Metal-halide perovskites are promising lasing materials for realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low temperature processing leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through costly and inefficient hybrid integration of III-V semiconductors. Until now however, due to the chemical sensitivity of perovskites, no microfabrication process based on optical lithography and therefore on existing semiconductor manufacturing infrastructure has been established. Here, the first methylammonium lead iodide perovskite micro-disc lasers monolithically integrated into silicon nitride PICs by such a top-down process is presented. The lasers show a record low lasing threshold of 4.7 $渭$Jcm$^{-2}$ at room temperature for monolithically integrated lasers, which are CMOS compatible and can be integrated in the back-end-of-line (BEOL) processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08058v1-abstract-full').style.display = 'none'; document.getElementById('1907.08058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 18(11): 6915-6923, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.11894">arXiv:1903.11894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.11894">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> PtSe2 grown directly on polymer foil for use as a robust piezoresistive sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boland%2C+C+S">Conor S. Boland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coile%C3%A1in%2C+C+%C3%93">Cormac 脫 Coile谩in</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McManus%2C+J+B">John B. McManus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cullen%2C+C+P">Conor P. Cullen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEvoy%2C+N">Niall McEvoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.11894v1-abstract-short" style="display: inline;"> Robust strain gauges are fabricated by growing PtSe2 layers directly on top of flexible polyimide foils. These PtSe2 layers are grown by low-temperature, thermally-assisted conversion of predeposited Pt layers. Under applied flexure the PtSe2 layers show a decrease in electrical resistance signifying a negative gauge factor. The influence of the growth temperature and film thickness on the electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11894v1-abstract-full').style.display = 'inline'; document.getElementById('1903.11894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.11894v1-abstract-full" style="display: none;"> Robust strain gauges are fabricated by growing PtSe2 layers directly on top of flexible polyimide foils. These PtSe2 layers are grown by low-temperature, thermally-assisted conversion of predeposited Pt layers. Under applied flexure the PtSe2 layers show a decrease in electrical resistance signifying a negative gauge factor. The influence of the growth temperature and film thickness on the electromechanical properties of the PtSe2 layers is investigated. The best-performing strain gauges fabricated have a superior gauge factor to that of commercial metal-based strain gauges. Notably, the strain gauges offer good cyclability and are very robust, surviving repeated peel tests and immersion in water. Furthermore, preliminary results indicate that the stain gauges also show potential for high-frequency operation. This host of advantageous properties, combined with the possibility of further optimization and channel patterning, indicate that PtSe2 grown directly on polyimide holds great promise for future applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11894v1-abstract-full').style.display = 'none'; document.getElementById('1903.11894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07592">arXiv:1807.07592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.07592">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsanm.8b01412">10.1021/acsanm.8b01412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dielectric Properties and Ion Transport in Layered MoS_{2} Grown by Vapor-Phase Sulfurization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belete%2C+M">M. Belete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">S. Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koch%2C+U">U. Koch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kruth%2C+M">M. Kruth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engelhard%2C+C">C. Engelhard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayer%2C+J">J. Mayer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engstr%C3%B6m%2C+O">O. Engstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">M. C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07592v1-abstract-short" style="display: inline;"> Electronic and dielectric properties of vapor-phase grown MoS_{2} have been investigated in metal/MoS_{2}/silicon capacitor structures by capacitance-voltage and conductancevoltage techniques. Analytical methods confirm the MoS_{2} layered structure, the presence of interfacial silicon oxide (SiO_{x}) and the composition of the films. Electrical characteristics in combination with theoretical cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07592v1-abstract-full').style.display = 'inline'; document.getElementById('1807.07592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07592v1-abstract-full" style="display: none;"> Electronic and dielectric properties of vapor-phase grown MoS_{2} have been investigated in metal/MoS_{2}/silicon capacitor structures by capacitance-voltage and conductancevoltage techniques. Analytical methods confirm the MoS_{2} layered structure, the presence of interfacial silicon oxide (SiO_{x}) and the composition of the films. Electrical characteristics in combination with theoretical considerations quantify the concentration of electron states at the interface between Si and a 2.5 - 3 nm thick silicon oxide interlayer between Si and MoS_{2}. Measurements under electric field stress indicate the existence of mobile ions in MoS_{2} that interact with interface states. Based on time-offlight secondary ion mass spectrometry, we propose OH^{-} ions as probable candidates responsible for the observations. The dielectric constant of the vapor-phase grown MoS_{2} extracted from CV measurements at 100 KHz is in the range of 2.6 to 2.9. The present study advances the understanding of defects and interface states in MoS_{2}. It also indicates opportunities for ion-based plasticity in 2D material devices for neuromorphic computing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07592v1-abstract-full').style.display = 'none'; document.getElementById('1807.07592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, manuscript and supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Applied Nano Materials, 1(11): 6197-6204, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07155">arXiv:1803.07155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.07155">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.8b0111">10.1021/acsami.8b0111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field Effect Transistors based on Networks of Highly Aligned, Chemically Synthesized N=7 Armchair Graphene Nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Passi%2C+V">Vikram Passi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gahoi%2C+A">Amit Gahoi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senkovskiy%2C+B+V">Boris V. Senkovskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haberer%2C+D">Danny Haberer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+F+R">Felix R. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%BCneis%2C+A">Alexander Gr眉neis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07155v1-abstract-short" style="display: inline;"> We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07155v1-abstract-full').style.display = 'inline'; document.getElementById('1803.07155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07155v1-abstract-full" style="display: none;"> We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum I$_{ON}$/I$_{OFF}$ current ratio of 87.5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07155v1-abstract-full').style.display = 'none'; document.getElementById('1803.07155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Applied Materials &amp; Interfaces, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07151">arXiv:1803.07151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.07151">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b00928">10.1021/acs.nanolett.8b00928 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe$_{2}$ films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C">Chanyoung Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEvoy%2C+N">Niall McEvoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yokaribas%2C+V">Volkan Yokaribas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuc%2C+A">Agnieszka Kuc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pindl%2C+S">Stephan Pindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fritzen%2C+C">Claus-Peter Fritzen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heine%2C+T">Thomas Heine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07151v1-abstract-short" style="display: inline;"> Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe$_{2}$), an exciting and unexplored 2D transition metal dichalcogenides (TMD) material, is particularly interesting because its scalable and low temperature growth process is compatible with silicon technology. Here, we explore the poten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07151v1-abstract-full').style.display = 'inline'; document.getElementById('1803.07151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07151v1-abstract-full" style="display: none;"> Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe$_{2}$), an exciting and unexplored 2D transition metal dichalcogenides (TMD) material, is particularly interesting because its scalable and low temperature growth process is compatible with silicon technology. Here, we explore the potential of thin PtSe$_{2}$ films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe$_{2}$ films grown by thermally assisted conversion of Pt at a CMOS-compatible temperature of 400掳C. We report high negative gauge factors of up to -84.8 obtained experimentally from PtSe$_{2}$ strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe$_{2}$ membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory (DFT) calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe$_{2}$ as a very promising candidate for future NEMS applications, including integration into CMOS production lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07151v1-abstract-full').style.display = 'none'; document.getElementById('1803.07151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 5 figures, including supporting information with 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 18, 3738-3745, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03857">arXiv:1708.03857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03857">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.6b02533">10.1021/acsnano.6b02533 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A+D">Anderson D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niklaus%2C+F">Frank Niklaus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paussa%2C+A">Alan Paussa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6der%2C+S">Stephan Schr枚der</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+A+C">Andreas C. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sterner%2C+M">Mikael Sterner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaziri%2C+S">Sam Vaziri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forsberg%2C+F">Fredrik Forsberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esseni%2C+D">David Esseni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96stling%2C+M">Mikael 脰stling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03857v1-abstract-short" style="display: inline;"> Graphene membranes act as highly sensitive transducers in nanoelectromechanical devices due to their ultimate thinness. Previously, the piezoresistive effect has been experimentally verified in graphene using uniaxial strain in graphene. Here we report experimental and theoretical data on the uni- and biaxial piezoresistive properties of suspended graphene membranes applied to piezoresistive press&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03857v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03857v1-abstract-full" style="display: none;"> Graphene membranes act as highly sensitive transducers in nanoelectromechanical devices due to their ultimate thinness. Previously, the piezoresistive effect has been experimentally verified in graphene using uniaxial strain in graphene. Here we report experimental and theoretical data on the uni- and biaxial piezoresistive properties of suspended graphene membranes applied to piezoresistive pressure sensors. A detailed model that utilizes a linearized Boltzman transport equation describes accurately the charge carrier density and mobility in strained graphene, and hence the gauge factor. The gauge factor is found to be practically independent of the doping concentration and crystallographic orientation of the graphene films. These investigations provide deeper insight into the piezoresistive behavior of graphene membranes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03857v1-abstract-full').style.display = 'none'; document.getElementById('1708.03857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano, 2016, 10 (11), pp 9879-9886 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03855">arXiv:1708.03855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03855">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C7NR02828H">10.1039/C7NR02828H <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flexible hybrid graphene/a-Si:H multispectral photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+D+S">Daniel S. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bablich%2C+A">Andreas Bablich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03855v1-abstract-short" style="display: inline;"> We report on the integration of large area CVD grown single- and bilayer graphene transparent conductive electrodes (TCEs) on amorphous silicon multispectral photodetectors. The broadband transmission of graphene results in 440% enhancement of the detectors&#39; spectral response in the ultraviolet (UV) region at 位 = 320 nm compared to reference devices with conventional aluminum doped zinc oxide (ZnO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03855v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03855v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03855v1-abstract-full" style="display: none;"> We report on the integration of large area CVD grown single- and bilayer graphene transparent conductive electrodes (TCEs) on amorphous silicon multispectral photodetectors. The broadband transmission of graphene results in 440% enhancement of the detectors&#39; spectral response in the ultraviolet (UV) region at 位 = 320 nm compared to reference devices with conventional aluminum doped zinc oxide (ZnO:Al) electrodes. The maximum responsivity of the multispectral photodetectors can be tuned in their wavelength from 320 nm to 510 nm by an external bias voltage, allowing single pixel detection of UV to visible light. Graphene electrodes further enable fully flexible diodes on polyimide substrates. Here, an upgrade from single to bilayer graphene boosts the maximum photoresponsivity from 134 mA $W^{-1}$ to 239 mA $W^{-1}$. Interference patterns that are present in conventional TCE devices are suppressed as a result of the atomically thin graphene electrodes. The proposed detectors may be of interest in fields of UV/VIS spectroscopy or for biomedical and life science applications, where the extension to the UV range can be essential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03855v1-abstract-full').style.display = 'none'; document.getElementById('1708.03855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 2017, 9, 8573-8579 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.06824">arXiv:1707.06824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.06824">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrical characterization of structured platinum diselenide devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C">Chanyoung Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Passi%2C+V">Vikram Passi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pallechi%2C+C+%C3%93+C+E">Cormac 脫 Coile谩in Emiliano Pallechi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fadil%2C+D">Dalal Fadil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEvoy%2C+N">Niall McEvoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.06824v1-abstract-short" style="display: inline;"> Platinum diselenide (PtSe2) is an exciting new member of the two-dimensional (2D) transition metal dichalcogenide (TMD) family. it has a semimetal to semiconductor transition when approaching monolayer thickness and has already shown significant potential for use in device applications. Notably, PtSe2 can be grown at low temperature making it potentially suitable for industrial usage. Here, we add&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06824v1-abstract-full').style.display = 'inline'; document.getElementById('1707.06824v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.06824v1-abstract-full" style="display: none;"> Platinum diselenide (PtSe2) is an exciting new member of the two-dimensional (2D) transition metal dichalcogenide (TMD) family. it has a semimetal to semiconductor transition when approaching monolayer thickness and has already shown significant potential for use in device applications. Notably, PtSe2 can be grown at low temperature making it potentially suitable for industrial usage. Here, we address thickness dependent transport properties and investigate electrical contacts to PtSe2, a crucial and universal element of TMD-based electronic devices. PtSe2 films have been synthesized at various thicknesses and structured to allow contact engineering and the accurate extraction of electrical properties. Contact resistivity and sheet resistance extracted from transmission line method (TLM) measurements are compared for different contact metals and different PtSe2 film thicknesses. Furthermore, the transition from semimetal to semiconductor in PtSe2 has been indirectly verified by electrical characterization of field-effect devices. Finally, the influence of edge contacts at the metal - PtSe2 interface has been studied by nanostructuring the contact area using electron beam lithography. By increasing the edge contact length, the contact resistivity was improved by up to 70% compared to devices with conventional top contacts. The results presented here represent crucial steps towards realizing high-performance nanoelectronic devices based on group-10 TMDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06824v1-abstract-full').style.display = 'none'; document.getElementById('1707.06824v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.00360">arXiv:1703.00360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.00360">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/admi.201700031">10.1002/admi.201700031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth-Induced Strain in Chemical Vapor Deposited Monolayer MoS2: Experimental and Theoretical Investigation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cusati%2C+T">Teresa Cusati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fortunelli%2C+A">Alessandro Fortunelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iannaccone%2C+G">Giuseppe Iannaccone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+H">Himadri Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiori%2C+G">Gianluca Fiori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.00360v1-abstract-short" style="display: inline;"> Monolayer molybdenum disulphide (MoS$_2$) is a promising two-dimensional (2D) material for nanoelectronic and optoelectronic applications. The large-area growth of MoS$_2$ has been demonstrated using chemical vapor deposition (CVD) in a wide range of deposition temperatures from 600 掳C to 1000 掳C. However, a direct comparison of growth parameters and resulting material properties has not been made&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.00360v1-abstract-full').style.display = 'inline'; document.getElementById('1703.00360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.00360v1-abstract-full" style="display: none;"> Monolayer molybdenum disulphide (MoS$_2$) is a promising two-dimensional (2D) material for nanoelectronic and optoelectronic applications. The large-area growth of MoS$_2$ has been demonstrated using chemical vapor deposition (CVD) in a wide range of deposition temperatures from 600 掳C to 1000 掳C. However, a direct comparison of growth parameters and resulting material properties has not been made so far. Here, we present a systematic experimental and theoretical investigation of optical properties of monolayer MoS$_2$ grown at different temperatures. Micro-Raman and photoluminescence (PL) studies reveal observable inhomogeneities in optical properties of the as-grown single crystalline grains of MoS$_2$. Close examination of the Raman and PL features clearly indicate that growth-induced strain is the main source of distinct optical properties. We carry out density functional theory calculations to describe the interaction of growing MoS$_2$ layers with the growth substrate as the origin of strain. Our work explains the variation of band gap energies of CVD-grown monolayer MoS$_2$, extracted using PL spectroscopy, as a function of deposition temperature. The methodology has general applicability to model and predict the influence of growth conditions on strain in 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.00360v1-abstract-full').style.display = 'none'; document.getElementById('1703.00360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 6 figures, 10 figures in supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.07534">arXiv:1702.07534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.07534">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.6b04546">10.1021/acs.nanolett.6b04546 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-invasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+S">Stefan Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dieing%2C+T">Thomas Dieing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Centeno%2C+A">Alba Centeno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zurutuza%2C+A">Amaia Zurutuza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A+D">Anderson D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96stling%2C+M">Mikael 脰stling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.07534v1-abstract-short" style="display: inline;"> Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale charact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07534v1-abstract-full').style.display = 'inline'; document.getElementById('1702.07534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.07534v1-abstract-full" style="display: none;"> Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07534v1-abstract-full').style.display = 'none'; document.getElementById('1702.07534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 17(3): 1504-1511, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01272">arXiv:1702.01272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.01272">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.7b00285">10.1021/acsphotonics.7b00285 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Photocurrent in Gated Graphene-Silicon Hybrid Photodiodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Riazimehr%2C+S">Sarah Riazimehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bornemann%2C+R">Rainer Bornemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bolivar%2C+P+H">Peter Haring Bolivar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruiz%2C+F+J+G">Francisco Javier Garcia Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engstr%C3%B6m%2C+O">Olof Engstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godoy%2C+A">Andres Godoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max Christian Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01272v2-abstract-short" style="display: inline;"> Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photodetectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typically in parallel with gated G/silicon dioxide (SiO$_2$)/Si areas, where the graphene is contacted. Here, we utilize scanning photocurrent measurements to investigate the spatial dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01272v2-abstract-full').style.display = 'inline'; document.getElementById('1702.01272v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01272v2-abstract-full" style="display: none;"> Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photodetectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typically in parallel with gated G/silicon dioxide (SiO$_2$)/Si areas, where the graphene is contacted. Here, we utilize scanning photocurrent measurements to investigate the spatial distribution and explain the physical origin of photocurrent generation in these devices. We observe distinctly higher photocurrents underneath the isolating region of graphene on SiO$_2$ adjacent to the Schottky junction of G/Si. A certain threshold voltage (V$_T$) is required before this can be observed, and its origins are similar to that of the threshold voltage in metal oxide semiconductor field effect transistors. A physical model serves to explain the large photocurrents underneath SiO$_2$ by the formation of an inversion layer in Si. Our findings contribute to a basic understanding of graphene / semiconductor hybrid devices which, in turn, can help in designing efficient optoelectronic devices and systems based on such 2D/3D heterojunctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01272v2-abstract-full').style.display = 'none'; document.getElementById('1702.01272v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics, 4(6): 1506-1514, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06430">arXiv:1608.06430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.06430">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/c6nr03954e">10.1039/c6nr03954e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-organized Growth of Graphene Nanomesh with Increased Gas Sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6nig%2C+M">Matthias K枚nig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruhl%2C+G">G眉nther Ruhl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batke%2C+J">Joerg-Martin Batke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06430v1-abstract-short" style="display: inline;"> A bottom-up chemical vapor deposition (CVD) process for the growth of graphene nanomesh films is demonstrated. The process relies on silicon nanospheres to block nucleation sites for graphene CVD on copper substrates. These spheres are formed in a self-organized way through silicon diffusion through a 5 $渭$m copper layer on a silicon wafer coated with 400 nm of silicon nitride. The temperature dur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06430v1-abstract-full').style.display = 'inline'; document.getElementById('1608.06430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06430v1-abstract-full" style="display: none;"> A bottom-up chemical vapor deposition (CVD) process for the growth of graphene nanomesh films is demonstrated. The process relies on silicon nanospheres to block nucleation sites for graphene CVD on copper substrates. These spheres are formed in a self-organized way through silicon diffusion through a 5 $渭$m copper layer on a silicon wafer coated with 400 nm of silicon nitride. The temperature during the growth process disintegrates the $Si_3$$N_4$ layer and silicon atoms diffuse to the copper surface, where they form the nanospheres. After graphene nanomesh growth, the Si nanospheres can be removed by a simple hydrofluoric acid etch, leaving holes in the graphene film. The nanomesh films have been successfully transferred to different substrates, including gas sensor test structures, and verified and characterized by Auger, TEM and SEM measurements. Electrical/gas-exposure measurements show a 2-fold increase in ammonia sensitivity compared to plain graphene sensors. This improvement can be explained by a higher adsorption site density (edge sites). This new method for nanopatterned graphene is scalable, inexpensive and can be carried out in standard semiconductor industry equipment. Furthermore, the substrates are reusable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06430v1-abstract-full').style.display = 'none'; document.getElementById('1608.06430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 8: 15490, 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.08673">arXiv:1606.08673</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.08673">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.6b04898">10.1021/acsnano.6b04898 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C">Chanyoung Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kangho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEvoy%2C+N">Niall McEvoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brien%2C+M+O">Maria O Brien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riazimehr%2C+S">Sarah Riazimehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berner%2C+N+C">Nina C. Berner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cullen%2C+C+P">Conor P. Cullen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotakoski%2C+J">Jani Kotakoski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+J+C">Jannik C. Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.08673v2-abstract-short" style="display: inline;"> Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe2), a thus far scarcely investigated transition metal dichalcogenide. Importantly, the synthesis by thermal assisted conversion is performed at 400 掳C, representing a breakthrough for the direct integr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08673v2-abstract-full').style.display = 'inline'; document.getElementById('1606.08673v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.08673v2-abstract-full" style="display: none;"> Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe2), a thus far scarcely investigated transition metal dichalcogenide. Importantly, the synthesis by thermal assisted conversion is performed at 400 掳C, representing a breakthrough for the direct integration of this novel material with silicon (Si) technology. Besides the thorough characterization of this new 2D material, we demonstrate its promise for applications in high-performance gas sensing with extremely short response and recovery times observed due to the 2D nature of the films. Furthermore, we realized vertically-stacked heterostructures of PtSe2 on Si which act as both photodiodes and photovoltaic cells. Thus this study establishes PtSe2 as a potential candidate for next-generation sensors and (opto-)electronic devices, using fabrication protocols compatible with established Si technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08673v2-abstract-full').style.display = 'none'; document.getElementById('1606.08673v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.07229">arXiv:1510.07229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.07229">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C5NR06038A">10.1039/C5NR06038A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resistive Graphene Humidity Sensors with Rapid and Direct Electrical Readout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A+D">Anderson David Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elgammal%2C+K">Karim Elgammal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niklaus%2C+F">Frank Niklaus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Delin%2C+A">Anna Delin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+A">Andreas Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaziri%2C+S">Sam Vaziri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forsberg%2C+F">Fredrik Forsberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%A5sander%2C+M">Mikael R氓sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hugosson%2C+H+W">H氓kan W. Hugosson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergqvist%2C+L">Lars Bergqvist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6der%2C+S">Stephan Schr枚der</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96stling%2C+M">Mikael 脰stling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.07229v1-abstract-short" style="display: inline;"> We demonstrate humidity sensing using a change of electrical resistance of a single- layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07229v1-abstract-full').style.display = 'inline'; document.getElementById('1510.07229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.07229v1-abstract-full" style="display: none;"> We demonstrate humidity sensing using a change of electrical resistance of a single- layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. Results from the interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate, which in turn leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical read out and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07229v1-abstract-full').style.display = 'none'; document.getElementById('1510.07229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nanoscale, 2015</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale 7 (45), 19099-19109, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.01025">arXiv:1509.01025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.01025">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ssc.2015.08.012">10.1016/j.ssc.2015.08.012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Going Ballistic: Graphene Hot Electron Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaziri%2C+S">Sam Vaziri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A+D">Anderson D. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96stling%2C+M">Mikael 脰stling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupina%2C+G">Grzegorz Lupina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dabrowski%2C+J">Jarek Dabrowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lippert%2C+G">Gunther Lippert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Driussi%2C+F">Francesco Driussi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venica%2C+S">Stefano Venica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Lecce%2C+V">Valerio Di Lecce</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gnudi%2C+A">Antonio Gnudi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6nig%2C+M">Matthias K枚nig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruhl%2C+G">G眉nther Ruhl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belete%2C+M">Melkamu Belete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.01025v1-abstract-short" style="display: inline;"> This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01025v1-abstract-full').style.display = 'inline'; document.getElementById('1509.01025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.01025v1-abstract-full" style="display: none;"> This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01025v1-abstract-full').style.display = 'none'; document.getElementById('1509.01025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Solid State Communications 224, 64-75, 2015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.01021">arXiv:1509.01021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.01021">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.sse.2015.08.023">10.1016/j.sse.2015.08.023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral Sensitivity of Graphene/Silicon Heterojunction Photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Riazimehr%2C+S">Sarah Riazimehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bablich%2C+A">Andreas Bablich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+D">Daniel Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataria%2C+S">Satender Kataria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Passi%2C+V">Vikram Passi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C">Chanyoung Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duesberg%2C+G+S">Georg S. Duesberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.01021v1-abstract-short" style="display: inline;"> We have studied the optical properties of two-dimensional (2D) Schottky photodiode heterojunctions made of chemical vapor deposited (CVD) graphene on n- and p-type Silicon (Si) substrates. Much better rectification behavior is observed from the diodes fabricated on n- Si substrates in comparison with the devices on p-Si substrates in dark condition. Also, graphene/n-Si photodiodes show a considera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01021v1-abstract-full').style.display = 'inline'; document.getElementById('1509.01021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.01021v1-abstract-full" style="display: none;"> We have studied the optical properties of two-dimensional (2D) Schottky photodiode heterojunctions made of chemical vapor deposited (CVD) graphene on n- and p-type Silicon (Si) substrates. Much better rectification behavior is observed from the diodes fabricated on n- Si substrates in comparison with the devices on p-Si substrates in dark condition. Also, graphene/n-Si photodiodes show a considerable responsivity of 270 mA/W within the silicon spectral range in DC reverse bias condition. The present results are furthermore compared with that of a molybdenum disulfide (MoS2)/p-type silicon photodiodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01021v1-abstract-full').style.display = 'none'; document.getElementById('1509.01021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Solid-State Electronics, 115, 207-212, 2016 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lemme%2C+M+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lemme%2C+M+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lemme%2C+M+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10