CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 81 results for author: <span class="mathjax">Jin, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Jin%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jin, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jin%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jin, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jin%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54332-9">10.1038/s41467-024-54332-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10115 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03754">arXiv:2411.03754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03754">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic order induced truly chiral phonons in a ferromagnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+M">Mengqian Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinxuan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yunpeng Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bingru Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sang%2C+W">Wenbo Sang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+T">Tao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tiantian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03754v1-abstract-short" style="display: inline;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03754v1-abstract-full" style="display: none;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectroscopy, we observe the spontaneous splitting of the doubly degenerate in-plane Eg modes into two distinct chiral phonon modes of opposite helicity when the sample is zero-field cooled below the Curie temperature, without the application of an external magnetic field. As we sweep the out-of-plane magnetic field, this Eg phonon splitting exhibits a well-defined hysteresis loop directly correlated with the material&#39;s magnetization. The observed spontaneous splitting reaches up to 1.27 cm-1 at low temperatures and diminishes with increasing temperature, ultimately vanishing at the Curie temperature. Our findings highlight the role of the magnetic order in inducing chiral phonons, paving the way for novel methods to manipulate chiral phonons through magnetization and vice versa. Additionally, our work introduces new possibilities for controlling chiral Weyl fermions using chiral phonons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'none'; document.getElementById('2411.03754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18522">arXiv:2410.18522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18522">pdf</a>, <a href="https://arxiv.org/format/2410.18522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043061">10.1103/PhysRevResearch.6.043061 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystalline electric field excitations and their nonlinear splitting under magnetic fields in YbOCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">Xijing Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jing Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+W">Weizhen Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M">Mingtai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18522v2-abstract-short" style="display: inline;"> Recently reported van der Waals layered honeycomb rare-earth chalcohalides REChX (RE = rare earth, Ch = chalcogen, and X = halogen) are considered to be promising Kitaev spin liquid (KSL) candidates. The high-quality single crystals of YbOCl, a representative member of the family with an effective spin of 1/2, are available now. The crystalline electric field (CEF) excitations in a rare-earth spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18522v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18522v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18522v2-abstract-full" style="display: none;"> Recently reported van der Waals layered honeycomb rare-earth chalcohalides REChX (RE = rare earth, Ch = chalcogen, and X = halogen) are considered to be promising Kitaev spin liquid (KSL) candidates. The high-quality single crystals of YbOCl, a representative member of the family with an effective spin of 1/2, are available now. The crystalline electric field (CEF) excitations in a rare-earth spin system are fundamentally important for understanding both finite-temperature and ground-state magnetism, but remain unexplored in YbOCl so far. In this paper, we conduct a comprehensive Raman scattering study to unambiguously identify the CEF excitations in YbOCl and determine the CEF parameters and wave functions. Our Raman experiments further reveal the anomalous nonlinear CEF splitting under magnetic fields. We have grown single crystals of YbOCl, the nonmagnetic LuOCl, and the diluted magnetic Lu_{0.86}Yb_{0.14}OCl to make a completely comparative investigation. Polarized Raman spectra on the samples at 1.8 K allow us to clearly assign all the Raman-active phonon modes and explicitly identify the CEF excitations in YbOCl. The CEF excitations are further examined using temperature-dependent Raman measurements and careful symmetry analysis based on Raman tensors related to CEF excitations. By applying the CEF Hamiltonian to the experimentally determined CEF excitations, we extract the CEF parameters and eventually determine the CEF wave functions. The study experimentally pins down the CEF excitations in the Kitaev compound YbOCl and sets a foundation for understanding its finite-temperature magnetism and exploring the possible nontrivial spin ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18522v2-abstract-full').style.display = 'none'; document.getElementById('2410.18522v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043061 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10275">arXiv:2410.10275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10275">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing the Meissner effect in pressurized bilayer nickelate superconductors using diamond quantum sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Junyan Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Ze-Xu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Tenglong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Liucheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Miao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing-Wei Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaobing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+X">Xin-Yu Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gang-Qin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaohui Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10275v1-abstract-short" style="display: inline;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10275v1-abstract-full" style="display: none;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized $\mathrm{La_{3}Ni_{2}O_{7-未}}$ due to the low superconducting volume fraction and limited magnetic measurement techniques under high pressure conditions. Here, using shallow nitrogen-vacancy centers implanted on the culet of diamond anvils as in-situ quantum sensors, we observe convincing evidence for the Meissner effect in polycrystalline samples $\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$: the magnetic field expulsion during both field cooling and field warming processes. The correlated measurements of Raman spectra and NV-based magnetic imaging indicate an incomplete structural transformation related to the displacement of oxygen ions emerging in the non-superconducting region. Furthermore, comparative experiments on different pressure transmitting media (silicone oil and KBr) and nickelates ($\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$) reveal that an improved hydrostatic pressure conditions and the substitution of La by Pr in $\mathrm{La_{3}Ni_{2}O_{7-未}}$ can dramatically increase the superconductivity. Our work clarifies the controversy about the Meissner effect of bilayer nickelate and contributes to a deeper understanding of the mechanism of nickelate high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'none'; document.getElementById('2410.10275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10515">arXiv:2408.10515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10515">pdf</a>, <a href="https://arxiv.org/format/2408.10515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033274">10.1103/PhysRevResearch.6.033274 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground State Magnetic Structure and Magnetic Field Effects in the Layered Honeycomb Antiferromagnet YbOCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+J">Jinlong Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jing Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roessli%2C+B">Bertrand Roessli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10515v1-abstract-short" style="display: inline;"> YbOCl is a representative member of the van der Waals layered honeycomb rare-earth chalcohalide REChX (RE = rare earth, Ch = O, S, Se, and Te, and X = F, Cl, Br, and I) family reported recently. Its spin ground state remains to be explored experimentally. In this paper, we have grown high-quality single crystals of YbOCl and conducted comprehensive thermodynamic, elastic, and inelastic neutron sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10515v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10515v1-abstract-full" style="display: none;"> YbOCl is a representative member of the van der Waals layered honeycomb rare-earth chalcohalide REChX (RE = rare earth, Ch = O, S, Se, and Te, and X = F, Cl, Br, and I) family reported recently. Its spin ground state remains to be explored experimentally. In this paper, we have grown high-quality single crystals of YbOCl and conducted comprehensive thermodynamic, elastic, and inelastic neutron scattering experiments down to 50 mK. The experiments reveal an antiferromagnetic phase below 1.3 K, which is identified as a spin ground state with an intralayer ferromagnetic and interlayer antiferromagnetic ordering. By applying sophisticated numerical techniques to a honeycomb (nearest-neighbor)-triangle (next-nearest-neighbor) model Hamiltonian which accurately describes the highly anisotropic spin system, we are able to well simulate the experiments and determine the diagonal and off-diagonal spin-exchange interactions. The simulations give an antiferromagnetic Kitaev term comparable to the Heisenberg one. The experiments under magnetic fields allow us to establish a magnetic field-temperature phase diagram around the spin ground state. Most interestingly, a relatively small magnetic field (~ 0.3 to 3 T) can significantly suppress the antiferromagnetic order, suggesting an intriguing interplay of the Kitaev interaction and magnetic fields in the spin system. The present study provides fundamental insights into the highly anisotropic spin systems and opens a new window to look into Kitaev spin physics in a rare-earth-based system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10515v1-abstract-full').style.display = 'none'; document.getElementById('2408.10515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 6, 033274 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09670">arXiv:2408.09670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09670">pdf</a>, <a href="https://arxiv.org/format/2408.09670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/9/097503">10.1088/0256-307X/41/9/097503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite Temperature Magnetism in the Triangular Lattice Antiferromagnet KErTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Weiwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhitao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09670v1-abstract-short" style="display: inline;"> After the discovery of the ARECh2 (A=alkali or monovalent ions, RE=rare-earth, Ch= chalcogen) triangular lattice quantum spin liquid (QSL) family, a series of its oxide, sulfide, and selenide counterparts has been consistently reported and extensively investigated. While KErTe2 represents the initial synthesized telluride member, preserving its triangular spin lattice, it was anticipated that the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09670v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09670v1-abstract-full" style="display: none;"> After the discovery of the ARECh2 (A=alkali or monovalent ions, RE=rare-earth, Ch= chalcogen) triangular lattice quantum spin liquid (QSL) family, a series of its oxide, sulfide, and selenide counterparts has been consistently reported and extensively investigated. While KErTe2 represents the initial synthesized telluride member, preserving its triangular spin lattice, it was anticipated that the substantial tellurium ions could impart more pronounced magnetic attributes and electronic structures to this material class. This study delves into the magnetism of KErTe2 at finite temperatures through magnetization and electron spin resonance (ESR) measurements. Based on the angular momentum $\hat{J}$ after spin-orbit coupling (SOC) and symmetry analysis, we obtain the magnetic effective Hamiltonian to describe the magnetism of Er3+ in R-3m space group. Applying the mean-field approximation to the Hamiltonian, we can simulate the magnetization and magnetic heat capacity of KErTe2 in paramagnetic state and determine the crystalline electric field (CEF) parameters and partial exchange interactions. The relatively narrow energy gaps between CEF ground state and excited states exert a significant influence on the magnetism. For example, small CEF excitations can result in a significant broadening of the ESR linewidth at 2 K. For the fitted exchange interactions, although the values are small, given a large angular momentum J = 15/2 after SOC, they still have a noticeable effect at finite temperatures. Notably, the heat capacity data under different magnetic fields along the c-axis direction also roughly match our calculated results, further validating the reliability of our analytical approach. These derived parameters serve as crucial tools for future investigations into the ground state magnetism of KErTe2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09670v1-abstract-full').style.display = 'none'; document.getElementById('2408.09670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 41, 097503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14718">arXiv:2406.14718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14718">pdf</a>, <a href="https://arxiv.org/format/2406.14718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Stirring the false vacuum via interacting quantized bubbles on a 5564-qubit quantum annealer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vodeb%2C+J">Jaka Vodeb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Desaules%2C+J">Jean-Yves Desaules</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallam%2C+A">Andrew Hallam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rava%2C+A">Andrea Rava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Humar%2C+G">Gregor Humar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Willsch%2C+D">Dennis Willsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Fengping Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Willsch%2C+M">Madita Willsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michielsen%2C+K">Kristel Michielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papi%C4%87%2C+Z">Zlatko Papi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14718v1-abstract-short" style="display: inline;"> False vacuum decay is a potential mechanism governing the evolution of the early Universe, with profound connections to non-equilibrium quantum physics, including quenched dynamics, the Kibble-Zurek mechanism, and dynamical metastability. The non-perturbative character of the false vacuum decay and the scarcity of its experimental probes make the effect notoriously difficult to study, with many ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14718v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14718v1-abstract-full" style="display: none;"> False vacuum decay is a potential mechanism governing the evolution of the early Universe, with profound connections to non-equilibrium quantum physics, including quenched dynamics, the Kibble-Zurek mechanism, and dynamical metastability. The non-perturbative character of the false vacuum decay and the scarcity of its experimental probes make the effect notoriously difficult to study, with many basic open questions, such as how the bubbles of true vacuum form, move and interact with each other. Here we utilize a quantum annealer with 5564 superconducting flux qubits to directly observe quantized bubble formation in real time -- the hallmark of false vacuum decay dynamics. Moreover, we develop an effective model that describes the initial bubble creation and subsequent interaction effects. We demonstrate that the effective model remains accurate in the presence of dissipation, showing that our annealer can access coherent scaling laws in driven many-body dynamics of 5564 qubits for over $1渭$s, i.e., more than 1000 intrinsic qubit time units. This work sets the stage for exploring late-time dynamics of the false vacuum at computationally intractable system sizes, dimensionality, and topology in quantum annealer platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14718v1-abstract-full').style.display = 'none'; document.getElementById('2406.14718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10642">arXiv:2406.10642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10642">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01658">10.1021/acs.nanolett.4c01658 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interlayer Fermi polarons of excited exciton states in quantizing magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">Huiying Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Qianying Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Liguo Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongqing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10642v1-abstract-short" style="display: inline;"> The study of exciton-polarons has offered profound insights into the many-body interactions between bosonic excitations and their immersed Fermi sea within layered heterostructures. However, little is known about the properties of exciton polarons with interlayer interactions. Here through magneto-optical reflectance contrast measurements, we experimentally investigate interlayer Fermi polarons fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10642v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10642v1-abstract-full" style="display: none;"> The study of exciton-polarons has offered profound insights into the many-body interactions between bosonic excitations and their immersed Fermi sea within layered heterostructures. However, little is known about the properties of exciton polarons with interlayer interactions. Here through magneto-optical reflectance contrast measurements, we experimentally investigate interlayer Fermi polarons for 2s excitons in WSe$_2$/graphene heterostructures, where the excited exciton states (2s) in the WSe$_2$ layer are dressed by free charge carriers of the adjacent graphene layer in the Landau quantization regime. First, such a system enables an optical detection of integer and fractional quantum Hall states (e.g. $谓=\pm1/3$, $\pm$2/3) of monolayer graphene. Furthermore, we observe that the 2s state evolves into two distinct branches, denoted as attractive and repulsive polarons, when graphene is doped out of the incompressible quantum Hall gaps. Our work paves the way for the understanding of the excited composite quasiparticles and Bose-Fermi mixtures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10642v1-abstract-full').style.display = 'none'; document.getElementById('2406.10642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, and supporting information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 24, 7077-7083 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04819">arXiv:2406.04819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04819">pdf</a>, <a href="https://arxiv.org/ps/2406.04819">ps</a>, <a href="https://arxiv.org/format/2406.04819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2427-2">10.1007/s11433-024-2427-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism of $\mathrm{NaYbS_2}$: From finite temperatures to ground state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+W">Weizhen Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M">Mingtai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04819v1-abstract-short" style="display: inline;"> Rare-earth chalcogenide compounds $\mathrm{ARECh_2}$ (A = alkali or monovalent metal, RE = rare earth, Ch = O, S, Se, Te) are a large family of quantum spin liquid (QSL) candidate materials. $\mathrm{NaYbS_2}$ is a representative member of the family. Several key issues on $\mathrm{NaYbS_2}$, particularly how to determine the highly anisotropic spin Hamiltonian and describe the magnetism at finite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04819v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04819v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04819v1-abstract-full" style="display: none;"> Rare-earth chalcogenide compounds $\mathrm{ARECh_2}$ (A = alkali or monovalent metal, RE = rare earth, Ch = O, S, Se, Te) are a large family of quantum spin liquid (QSL) candidate materials. $\mathrm{NaYbS_2}$ is a representative member of the family. Several key issues on $\mathrm{NaYbS_2}$, particularly how to determine the highly anisotropic spin Hamiltonian and describe the magnetism at finite temperatures and the ground state, remain to be addressed. In this paper, we conducted an in-depth and comprehensive study on the magnetism of $\mathrm{NaYbS_2}$ from finite temperatures to the ground state. Firstly, we successfully detected three crystalline electric field (CEF) excitation energy levels using low-temperature Raman scattering technique. Combining them with the CEF theory and magnetization data, we worked out the CEF parameters, CEF energy levels, and CEF wavefunctions. We further determined a characteristic temperature of $\sim$40 K, above which the magnetism is dominated by CEF excitations while below which the spin-exchange interactions play a main role. The characteristic temperature has been confirmed by the temperature-dependent electron spin resonance (ESR) linewidth. Low-temperature ESR experiments on the dilute magnetic doped crystal of $\mathrm{NaYb_{0.1}Lu_{0.9}S_2}$ further helped us to determine the accurate $g$-factor. Next, we quantitatively obtained the spin-exchange interactions in the spin Hamiltonian by consistently simulating the magnetization and specific heat data. Finally, the above studies allow us to explore the ground state magnetism of $\mathrm{NaYbS_2}$ by using the density matrix renormalization group. We combined numerical calculations and experimental results to demonstrate that the ground state of $\mathrm{NaYbS_2}$ is a Dirac-like QSL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04819v1-abstract-full').style.display = 'none'; document.getElementById('2406.04819v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 107411 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19791">arXiv:2405.19791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19791">pdf</a>, <a href="https://arxiv.org/format/2405.19791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.116903">10.1103/PhysRevLett.133.116903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trembling Motion of Exciton-Polaritons Close to the Rashba-Dresselhaus Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+W">Wen Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jie Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Huawen Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubo%2C+Y+G">Yuri G. Rubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liew%2C+T+C+H">Timothy C. H. Liew</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+R">Rui Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19791v1-abstract-short" style="display: inline;"> We report the experimental emulation of trembling quantum motion, or Zitterbewegung, of exciton polaritons in a perovskite microcavity at room temperature. By introducing liquid crystal molecules into the microcavity, we achieve spinor states with synthetic Rashba-Dresselhaus spin-orbit coupling and tunable energy splitting. Under a resonant excitation, the polariton fluid exhibits clear trembling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19791v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19791v1-abstract-full" style="display: none;"> We report the experimental emulation of trembling quantum motion, or Zitterbewegung, of exciton polaritons in a perovskite microcavity at room temperature. By introducing liquid crystal molecules into the microcavity, we achieve spinor states with synthetic Rashba-Dresselhaus spin-orbit coupling and tunable energy splitting. Under a resonant excitation, the polariton fluid exhibits clear trembling motion perpendicular to its flowing direction, accompanied by a unique spin pattern resembling interlocked fingers. Furthermore, leveraging on the sizable tunability of energy gaps by external electrical voltages, we observe the continuous transition of polariton Zitterbewegung from relativistic (small gaps) to non-relativistic (large gaps) regimes. Our findings pave the way for using exciton polaritons in the emulation of relativistic quantum physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19791v1-abstract-full').style.display = 'none'; document.getElementById('2405.19791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 116903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16087">arXiv:2405.16087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16087">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of perovskite topological valley exciton-polaritons at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+S">Subhaskar Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhenhan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jinqi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+W">Wen Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jiahao Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Baile Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liew%2C+T+C+H">Timothy C. H. Liew</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Q">Qihua Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+R">Rui Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16087v1-abstract-short" style="display: inline;"> Topological exciton-polaritons are a burgeoning class of topological photonic systems distinguished by their hybrid nature as part-light, part-matter quasiparticles. Their further control over novel valley degree of freedom (DOF) has offered considerable potential for developing active topological optical devices towards information processing. However, the experimental demonstration of propagatin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16087v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16087v1-abstract-full" style="display: none;"> Topological exciton-polaritons are a burgeoning class of topological photonic systems distinguished by their hybrid nature as part-light, part-matter quasiparticles. Their further control over novel valley degree of freedom (DOF) has offered considerable potential for developing active topological optical devices towards information processing. However, the experimental demonstration of propagating topological exciton-polaritons with valley DOF remains elusive at room temperature. Here, employing a two-dimensional (2D) valley-Hall perovskite lattice, we report the experimental observation of valley-polarized topological exciton-polaritons and their valley-dependent propagations at room temperature. The 2D valley-Hall perovskite lattice consists of two mutually inverted honeycomb lattices with broken inversion symmetry. By measuring their band structure with angle-resolved photoluminescence spectra, we experimentally verify the existence of valley-polarized polaritonic topological kink states with a large gap opening of ~ 9 meV in the bearded interface at room temperature. Moreover, these valley-polarized states exhibit counter-propagating behaviors under a resonant excitation at room temperature. Our results not only expand the landscape of realizing topological exciton-polaritons, but also pave the way for the development of topological valleytronic devices employing exciton-polaritons with valley DOF at room temperature <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16087v1-abstract-full').style.display = 'none'; document.getElementById('2405.16087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18360">arXiv:2404.18360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18360">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Perovskite topological exciton-polariton disclination laser at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandal%2C+S">Subhaskar Mandal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xutong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Baile Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+R">Rui Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18360v1-abstract-short" style="display: inline;"> Topologically nontrivial systems can be protected by band topology in momentum space, as seen in topological insulators and semimetals, or real-space topology, such as in lattice deformations known as topological disclinations (TDs). TDs, with inherent chiral symmetry, can support localized states pinned spectrally to the middle of the topological gap, preventing hybridization with bulk bands, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18360v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18360v1-abstract-full" style="display: none;"> Topologically nontrivial systems can be protected by band topology in momentum space, as seen in topological insulators and semimetals, or real-space topology, such as in lattice deformations known as topological disclinations (TDs). TDs, with inherent chiral symmetry, can support localized states pinned spectrally to the middle of the topological gap, preventing hybridization with bulk bands, and making them promising for topological lasers. Here, we experimentally realize a C4v symmetric TD laser based on perovskite exciton-polariton lattices at room temperature. Protected by the chiral and point group symmetries of the lattice, the TD state emerges in the middle of the gap and at the core of the perovskite lattice. Under a non-resonant pulsed excitation, coherent polariton lasing occurs precisely at the TD state with a low threshold of 9.5 uJ/cm2, as confirmed by momentum space and real space spectra measurements. This study not only introduces a class of symmetry-protected topological lasers, but also expands the landscape for exploring exciton-polariton light-matter interactions with novel topological structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18360v1-abstract-full').style.display = 'none'; document.getElementById('2404.18360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06085">arXiv:2403.06085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06085">pdf</a>, <a href="https://arxiv.org/format/2403.06085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> van Hove Singularity-Driven Emergence of Multiple Flat Bands in Kagome Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hailan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yun-Peng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yuhao Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Chengmin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+B">Bo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+Y">Yingjie Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06085v1-abstract-short" style="display: inline;"> The newly discovered Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb and Cs) continue to bring surprises in generating unusual phenomena and physical properties, including anomalous Hall effect, unconventional charge density wave, electronic nematicity and time-reversal symmetry breaking. Here we report an unexpected emergence of multiple flat bands in the AV$_3$Sb$_5$ superconductors. By performing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06085v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06085v1-abstract-full" style="display: none;"> The newly discovered Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb and Cs) continue to bring surprises in generating unusual phenomena and physical properties, including anomalous Hall effect, unconventional charge density wave, electronic nematicity and time-reversal symmetry breaking. Here we report an unexpected emergence of multiple flat bands in the AV$_3$Sb$_5$ superconductors. By performing high-resolution angle-resolved photoemission (ARPES) measurements, we observed four branches of flat bands that span over the entire momentum space. The appearance of the flat bands is not anticipated from the band structure calculations and cannot be accounted for by the known mechanisms of flat band generation. It is intimately related to the evolution of van Hove singularities. It is for the first time to observe such emergence of multiple flat bands in solid materials. Our findings provide new insights in revealing the underlying mechanism that governs the unusual behaviors in the Kagome superconductors. They also provide a new pathway in producing flat bands and set a platform to study the flat bands related physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06085v1-abstract-full').style.display = 'none'; document.getElementById('2403.06085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04391">arXiv:2403.04391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04391">pdf</a>, <a href="https://arxiv.org/format/2403.04391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.066501">10.1103/PhysRevLett.132.066501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $蟺$ Phase Interlayer Shift and Stacking Fault in the Kagome Superconductor CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+M">Mingshu Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M">Mingtai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bingru Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04391v1-abstract-short" style="display: inline;"> The stacking degree of freedom is a crucial factor in tuning material properties and has been extensively investigated in layered materials. The kagome superconductor CsV$_3$Sb$_5$ was recently discovered to exhibit a three-dimensional CDW phase below TCDW ~94 K. Despite the thorough investigation of in-plane modulation, the out-of-plane modulation has remained ambiguous. Here, our polarization- a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04391v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04391v1-abstract-full" style="display: none;"> The stacking degree of freedom is a crucial factor in tuning material properties and has been extensively investigated in layered materials. The kagome superconductor CsV$_3$Sb$_5$ was recently discovered to exhibit a three-dimensional CDW phase below TCDW ~94 K. Despite the thorough investigation of in-plane modulation, the out-of-plane modulation has remained ambiguous. Here, our polarization- and temperature-dependent Raman measurements reveal the breaking of C$_6$ rotational symmetry and the presence of three distinct domains oriented at approximately 120掳to each other. The observations demonstrate that the CDW phase can be naturally explained as a 2c staggered order phase with adjacent layers exhibiting a relative $蟺$ phase shift. Further, we discover a first-order structural phase transition at approximately 65 K and suggest that it is a stacking order-disorder phase transition due to stacking fault, supported by the thermal hysteresis behavior of a Cs-related phonon mode. Our findings highlight the significance of the stacking degree of freedom in CsV$_3$Sb$_5$ and offer structural insights to comprehend the entanglement between superconductivity and CDW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04391v1-abstract-full').style.display = 'none'; document.getElementById('2403.04391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript was published in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 132, 066501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18177">arXiv:2402.18177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18177">pdf</a>, <a href="https://arxiv.org/format/2402.18177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023251">10.1103/PhysRevResearch.6.023251 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lindblad dynamics from spatio-temporal correlation functions in nonintegrable spin-1/2 chains with different boundary conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kraft%2C+M">Markus Kraft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+J">Jonas Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Fengping Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nandy%2C+S">Sourav Nandy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herbrych%2C+J">Jacek Herbrych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michielsen%2C+K">Kristel Michielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Raedt%2C+H">Hans De Raedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gemmer%2C+J">Jochen Gemmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinigeweg%2C+R">Robin Steinigeweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18177v2-abstract-short" style="display: inline;"> We investigate the Lindblad equation in the context of boundary-driven magnetization transport in spin-$1/2$ chains. Our central question is whether the nonequilibrium steady state of the open system, including its buildup in time, can be described on the basis of the dynamics in the closed system. To this end, we rely on a previous work [Phys. Rev. B 108, L201119 (2023)], where a description in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18177v2-abstract-full').style.display = 'inline'; document.getElementById('2402.18177v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18177v2-abstract-full" style="display: none;"> We investigate the Lindblad equation in the context of boundary-driven magnetization transport in spin-$1/2$ chains. Our central question is whether the nonequilibrium steady state of the open system, including its buildup in time, can be described on the basis of the dynamics in the closed system. To this end, we rely on a previous work [Phys. Rev. B 108, L201119 (2023)], where a description in terms of spatio-temporal correlation functions has been suggested in the case of weak driving and small system-bath coupling. Because this work has focused on integrable systems and periodic boundary conditions, we here extend the analysis in three directions: We (i) consider nonintegrable systems, (ii) take into account open boundary conditions and other bath-coupling geometries, and (iii) provide a comparison to time-evolving block decimation. While we find that nonintegrability plays a minor role, the choice of the specific boundary conditions can be crucial, due to potentially nondecaying edge modes. Our large-scale numerical simulations suggest that a description based on closed-system correlation functions is an useful alternative to already existing state-of-the-art approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18177v2-abstract-full').style.display = 'none'; document.getElementById('2402.18177v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 023251 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00936">arXiv:2402.00936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00936">pdf</a>, <a href="https://arxiv.org/format/2402.00936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48791-3">10.1038/s41467-024-48791-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced quantum state transfer: Circumventing quantum chaotic behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+A">Alexander Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Partridge%2C+J">Justine Partridge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondaini%2C+R">Rubem Mondaini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scalettar%2C+R+T">Richard T. Scalettar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00936v1-abstract-short" style="display: inline;"> The ability to realize high-fidelity quantum communication is one of the many facets required to build generic quantum computing devices. In addition to quantum processing, sensing, and storage, transferring the resulting quantum states demands a careful design that finds no parallel in classical communication. Existing experimental demonstrations of quantum information transfer in solid-state qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00936v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00936v1-abstract-full" style="display: none;"> The ability to realize high-fidelity quantum communication is one of the many facets required to build generic quantum computing devices. In addition to quantum processing, sensing, and storage, transferring the resulting quantum states demands a careful design that finds no parallel in classical communication. Existing experimental demonstrations of quantum information transfer in solid-state quantum systems are largely confined to small chains with few qubits, often relying upon non-generic schemes. Here, by using a large-scale superconducting quantum circuit featuring thirty-six tunable qubits, accompanied by general optimization procedures deeply rooted in overcoming quantum chaotic behavior, we demonstrate a scalable protocol for transferring few-particle quantum states in a two-dimensional quantum network. These include single-qubit excitation and also two-qubit entangled states, and two excitations for which many-body effects are present. Our approach, combined with the quantum circuit&#39;s versatility, paves the way to short-distance quantum communication for connecting distributed quantum processors or registers, even if hampered by inherent imperfections in actual quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00936v1-abstract-full').style.display = 'none'; document.getElementById('2402.00936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures (main text); 14 pages, 20 figures (supplementary materials)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08284">arXiv:2401.08284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.08284">pdf</a>, <a href="https://arxiv.org/format/2401.08284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53140-5">10.1038/s41467-024-53140-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang-Ren Liu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08284v2-abstract-short" style="display: inline;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'inline'; document.getElementById('2401.08284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08284v2-abstract-full" style="display: none;"> Greenberger-Horne-Zeilinger (GHZ) states, also known as two-component Schr枚dinger cats, play vital roles in the foundation of quantum physics and, more attractively, in future quantum technologies such as fault-tolerant quantum computation. Enlargement in size and coherent control of GHZ states are both crucial for harnessing entanglement in advanced computational tasks with practical advantages, which unfortunately pose tremendous challenges as GHZ states are vulnerable to noise. Here we propose a general strategy for creating, preserving, and manipulating large-scale GHZ entanglement, and demonstrate a series of experiments underlined by high-fidelity digital quantum circuits. For initialization, we employ a scalable protocol to create genuinely entangled GHZ states with up to 60 qubits, almost doubling the previous size record. For protection, we take a new perspective on discrete time crystals (DTCs), originally for exploring exotic nonequilibrium quantum matters, and embed a GHZ state into the eigenstates of a tailor-made cat scar DTC to extend its lifetime. For manipulation, we switch the DTC eigenstates with in-situ quantum gates to modify the effectiveness of the GHZ protection. Our findings establish a viable path towards coherent operations on large-scale entanglement, and further highlight superconducting processors as a promising platform to explore nonequilibrium quantum matters and emerging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08284v2-abstract-full').style.display = 'none'; document.getElementById('2401.08284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 8823 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04333">arXiv:2401.04333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04333">pdf</a>, <a href="https://arxiv.org/format/2401.04333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53077-9">10.1038/s41467-024-53077-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-lived topological time-crystalline order on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04333v1-abstract-short" style="display: inline;"> Topologically ordered phases of matter elude Landau&#39;s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04333v1-abstract-full" style="display: none;"> Topologically ordered phases of matter elude Landau&#39;s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomenon -- a prethermal topologically ordered time crystal -- with programmable superconducting qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface-code Hamiltonian, we observe discrete time-translation symmetry breaking dynamics that is only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy and studying its subsequent dynamics. Our results demonstrate the potential to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'none'; document.getElementById('2401.04333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages (main text), 16 pages (supplementary information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14455">arXiv:2312.14455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14455">pdf</a>, <a href="https://arxiv.org/format/2312.14455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.14.011046">10.1103/PhysRevX.14.011046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for an Excitonic Insulator State in Ta$_2$Pd$_3$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jierui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+J">Jingyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+X">Xincheng Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jiacheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhaopeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yupeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhenyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+C">Congcong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+M">Mojun Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Famin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junde Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S">Shunye Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoyan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+C">Chenxia Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14455v2-abstract-short" style="display: inline;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical invest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14455v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14455v2-abstract-full" style="display: none;"> The excitonic insulator (EI) is an exotic ground state of narrow-gap semiconductors and semimetals arising from spontaneous condensation of electron-hole pairs bound by attractive Coulomb interaction. Despite research on EIs dating back to half a century ago, their existence in real materials remains a subject of ongoing debate. In this study, through systematic experimental and theoretical investigations, we provide evidence for the existence of an EI ground state in a van der Waals compound Ta$_2$Pd$_3$Te$_5$. Density-functional-theory calculations suggest that it is a semimetal with a small band overlap, whereas various experiments exhibit an insulating ground state with a clear band gap. Upon incorporating electron-hole Coulomb interaction into our calculations, we obtain an EI phase where the electronic symmetry breaking opens a many-body gap. Angle-resolved photoemission spectroscopy measurements exhibit that the band gap is closed with a significant change in the dispersions as the number of thermally excited charge carriers becomes sufficiently large in both equilibrium and nonequilibrium states. Structural measurements reveal a slight breaking of crystal symmetry with exceptionally small lattice distortion in the insulating state, which cannot account for the significant gap opening. Therefore, we attribute the insulating ground state with a gap opening in Ta$_2$Pd$_3$Te$_5$ to exciton condensation, where the coupling to the symmetry-breaking electronic state induces a subtle change in the crystal structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14455v2-abstract-full').style.display = 'none'; document.getElementById('2312.14455v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 14, 011046, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14966">arXiv:2307.14966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14966">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Super-tetragonal Sr4Al2O7: a versatile sacrificial layer for high-integrity freestanding oxide membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+T">Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+A">Ao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaochao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q">Qingyu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+H">Huan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jingdi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Z">Zhengguo Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shengru Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+M">Minghui Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+E">Er-Jia Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Z">Zhenlin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+L">Liang Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingfei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14966v2-abstract-short" style="display: inline;"> Releasing the epitaxial oxide heterostructures from substrate constraints leads to the emergence of various correlated electronic phases and paves the way for integrations with advanced semiconductor technologies. Identifying a suitable water-soluble sacrificial layer, compatible with the high-quality epitaxial growth of oxide heterostructures, is currently the key to the development of large-scal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14966v2-abstract-full').style.display = 'inline'; document.getElementById('2307.14966v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14966v2-abstract-full" style="display: none;"> Releasing the epitaxial oxide heterostructures from substrate constraints leads to the emergence of various correlated electronic phases and paves the way for integrations with advanced semiconductor technologies. Identifying a suitable water-soluble sacrificial layer, compatible with the high-quality epitaxial growth of oxide heterostructures, is currently the key to the development of large-scale freestanding oxide membranes. In this study, we unveil the super-tetragonal Sr4Al2O7 (SAOT) as a promising water-soluble sacrificial layer. The distinct low-symmetric crystal structure of SAOT enables a superior capability to sustain epitaxial strain, thus allowing for broad tunability in lattice constants. The resultant structural coherency and defect-free interface in perovskite ABO3/SAOT heterostructures effectively restrain crack formations during the water-assisted release of freestanding oxide membranes. For a variety of non-ferroelectric oxide membranes, the crack-free areas can span up to a few millimeters in length scale. These compelling features, combined with the inherent high-water solubility, make SAOT a versatile and feasible sacrificial layer for producing high-quality freestanding oxide membranes, thereby boosting their potential for innovative oxide electronics and flexible device designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14966v2-abstract-full').style.display = 'none'; document.getElementById('2307.14966v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures and SI, it is the second version of this manuscript</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13881">arXiv:2307.13881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13881">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/7/077501">10.1088/0256-307X/40/7/077501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly Tunable Perpendicular Magnetic Anisotropy and Anisotropic Magnetoresistance in Ru-doped La0.67Sr0.33MnO3 Epitaxial Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+E">Enda Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+K">Kunjie Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+H">Huan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jingdi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13881v1-abstract-short" style="display: inline;"> As a prototypical half-metallic ferromagnet, La0.67Sr0.33MnO3 (LSMO) has been extensively studied due to its versatile physical properties and great potential in spintronic applications. However, the weak perpendicular magnetic anisotropy (PMA) limits the controllability and detection of magnetism in LSMO, thus hindering the realization of oxide-based spintronic devices with low energy consumption&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13881v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13881v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13881v1-abstract-full" style="display: none;"> As a prototypical half-metallic ferromagnet, La0.67Sr0.33MnO3 (LSMO) has been extensively studied due to its versatile physical properties and great potential in spintronic applications. However, the weak perpendicular magnetic anisotropy (PMA) limits the controllability and detection of magnetism in LSMO, thus hindering the realization of oxide-based spintronic devices with low energy consumption and high integration level. Motivated by this challenge, we develop an experimental approach to enhance the PMA of LSMO epitaxial films. By cooperatively introducing 4d Ru doping and a moderate compressive strain, the maximum uniaxial magnetic anisotropy in Ru-doped LSMO can reach 3.0 to 1E5 J/m3 at 10 K. Furthermore, we find a significant anisotropic magnetoresistance effect in these Ru-doped LSMO films, which is dominated by the strong PMA. Our findings offer an effective pathway to harness and detect the orientations of magnetic moments in LSMO films, thus promoting the feasibility of oxide-based spintronic devices, such as spin valves and magnetic tunnel junctions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13881v1-abstract-full').style.display = 'none'; document.getElementById('2307.13881v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12253">arXiv:2307.12253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12253">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ru doping induced spin frustration and enhancement of the room-temperature anomalous Hall effect in La2/3Sr1/3MnO3 films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+E">Enda Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+L">Liang Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+K">Kunjie Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+H">Huan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jingdi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12253v1-abstract-short" style="display: inline;"> In transition-metal-oxide heterostructures, the anomalous Hall effect (AHE) is a powerful tool for detecting the magnetic state and revealing intriguing interfacial magnetic orderings. However, achieving a larger AHE at room temperature in oxide heterostructures is still challenging due to the dilemma of mutually strong spin-orbit coupling and magnetic exchange interactions. Here, we exploit the R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12253v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12253v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12253v1-abstract-full" style="display: none;"> In transition-metal-oxide heterostructures, the anomalous Hall effect (AHE) is a powerful tool for detecting the magnetic state and revealing intriguing interfacial magnetic orderings. However, achieving a larger AHE at room temperature in oxide heterostructures is still challenging due to the dilemma of mutually strong spin-orbit coupling and magnetic exchange interactions. Here, we exploit the Ru doping-enhanced AHE in LSMRO epitaxial films. As the B-site Ru doping level increases up to 20 percent, the anomalous Hall resistivity at room temperature can be enhanced from nOhmcm to uOhmcm scale. Ru doping leads to strong competition between ferromagnetic double-exchange interaction and antiferromagnetic super-exchange interaction. The resultant spin frustration and spin-glass state facilitate a strong skew-scattering process, thus significantly enhancing the extrinsic AHE. Our findings could pave a feasible approach for boosting the controllability and reliability of oxide-based spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12253v1-abstract-full').style.display = 'none'; document.getElementById('2307.12253v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 34, 2206685 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09844">arXiv:2303.09844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.09844">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adh1506">10.1126/science.adh1506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Rydberg moir茅 excitons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Qianying Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+Z">Zhen Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">Huiying Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yalei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhichuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+X">Xuewei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wu-Ming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">Fengcheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S">Shengjun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09844v1-abstract-short" style="display: inline;"> Rydberg excitons, the solid-state counterparts of Rydberg atoms, have sparked considerable interest in harnessing their quantum application potentials, whereas a major challenge is realizing their spatial confinement and manipulation. Lately, the rise of two-dimensional moir茅 superlattices with highly tunable periodic potentials provides a possible pathway. Here, we experimentally demonstrate this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09844v1-abstract-full').style.display = 'inline'; document.getElementById('2303.09844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09844v1-abstract-full" style="display: none;"> Rydberg excitons, the solid-state counterparts of Rydberg atoms, have sparked considerable interest in harnessing their quantum application potentials, whereas a major challenge is realizing their spatial confinement and manipulation. Lately, the rise of two-dimensional moir茅 superlattices with highly tunable periodic potentials provides a possible pathway. Here, we experimentally demonstrate this capability through the observation of Rydberg moir茅 excitons (XRM), which are moir茅 trapped Rydberg excitons in monolayer semiconductor WSe2 adjacent to twisted bilayer graphene. In the strong coupling regime, the XRM manifest as multiple energy splittings, pronounced redshift, and narrowed linewidth in the reflectance spectra, highlighting their charge-transfer character where electron-hole separation is enforced by the strongly asymmetric interlayer Coulomb interactions. Our findings pave the way for pursuing novel physics and quantum technology exploitation based on the excitonic Rydberg states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09844v1-abstract-full').style.display = 'none'; document.getElementById('2303.09844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, including 4 figures and 6 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00430">arXiv:2303.00430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00430">pdf</a>, <a href="https://arxiv.org/format/2303.00430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L201119">10.1103/PhysRevB.108.L201119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-1/2 XXZ chain coupled to two Lindblad baths: Constructing nonequilibrium steady states from equilibrium correlation functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heitmann%2C+T">Tjark Heitmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+J">Jonas Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Fengping Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nandy%2C+S">Sourav Nandy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenar%C4%8Di%C4%8D%2C+Z">Zala Lenar膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herbrych%2C+J">Jacek Herbrych</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michielsen%2C+K">Kristel Michielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Raedt%2C+H">Hans De Raedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gemmer%2C+J">Jochen Gemmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinigeweg%2C+R">Robin Steinigeweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00430v3-abstract-short" style="display: inline;"> State-of-the-art approaches to extract transport coefficients of many-body quantum systems broadly fall into two categories: (i) they target the linear-response regime in terms of equilibrium correlation functions of the closed system; or (ii) they consider an open-system situation typically modeled by a Lindblad equation, where a nonequilibrium steady state emerges from driving the system at its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00430v3-abstract-full').style.display = 'inline'; document.getElementById('2303.00430v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00430v3-abstract-full" style="display: none;"> State-of-the-art approaches to extract transport coefficients of many-body quantum systems broadly fall into two categories: (i) they target the linear-response regime in terms of equilibrium correlation functions of the closed system; or (ii) they consider an open-system situation typically modeled by a Lindblad equation, where a nonequilibrium steady state emerges from driving the system at its boundaries. While quantitative agreement between (i) and (ii) has been found for selected model and parameter choices, also disagreement has been pointed out in the literature. Studying magnetization transport in the spin-1/2 XXZ chain, we here demonstrate that at weak driving, the nonequilibrium steady state in an open system, including its buildup in time, can remarkably be constructed just on the basis of correlation functions in the closed system. We numerically illustrate this direct correspondence of closed-system and open-system dynamics, and show that it allows the treatment of comparatively large open systems, usually only accessible to matrix product state simulations. We also point out potential pitfalls when extracting transport coefficients from nonequilibrium steady states in finite systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00430v3-abstract-full').style.display = 'none'; document.getElementById('2303.00430v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures (+ 4 pages, 4 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L201119 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09802">arXiv:2211.09802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09802">pdf</a>, <a href="https://arxiv.org/format/2211.09802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/6/060301">10.1088/0256-307X/40/6/060301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital simulation of non-Abelian anyons with 68 programmable superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng-Zhi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Weikang Li</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09802v2-abstract-short" style="display: inline;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'inline'; document.getElementById('2211.09802v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09802v2-abstract-full" style="display: none;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto, in spite of various theoretical proposals. Here, we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice. By implementing the ground states of the toric-code model with twists through quantum circuits, we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons, i.e., the Ising anyons. In particular, we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type, and can be explored to encode topological logical qubits. Furthermore, we demonstrate how to implement both single- and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits. Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons, offering a new lens into the study of such peculiar quasiparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'none'; document.getElementById('2211.09802v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 40 060301 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05803">arXiv:2211.05803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05803">pdf</a>, <a href="https://arxiv.org/format/2211.05803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02133-0">10.1038/s41567-023-02133-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of many-body Fock space dynamics in two dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yunyan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zexian Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yong-Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+H">Haohai Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondaini%2C+R">Rubem Mondaini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+J+Q">J. Q. You</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05803v1-abstract-short" style="display: inline;"> Quantum many-body simulation provides a straightforward way to understand fundamental physics and connect with quantum information applications. However, suffering from exponentially growing Hilbert space size, characterization in terms of few-body probes in real space is often insufficient to tackle challenging problems such as quantum critical behavior and many-body localization (MBL) in higher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05803v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05803v1-abstract-full" style="display: none;"> Quantum many-body simulation provides a straightforward way to understand fundamental physics and connect with quantum information applications. However, suffering from exponentially growing Hilbert space size, characterization in terms of few-body probes in real space is often insufficient to tackle challenging problems such as quantum critical behavior and many-body localization (MBL) in higher dimensions. Here, we experimentally employ a new paradigm on a superconducting quantum processor, exploring such elusive questions from a Fock space view: mapping the many-body system onto an unconventional Anderson model on a complex Fock space network of many-body states. By observing the wave packet propagating in Fock space and the emergence of a statistical ergodic ensemble, we reveal a fresh picture for characterizing representative many-body dynamics: thermalization, localization, and scarring. In addition, we observe a quantum critical regime of anomalously enhanced wave packet width and deduce a critical point from the maximum wave packet fluctuations, which lend support for the two-dimensional MBL transition in finite-sized systems. Our work unveils a new perspective of exploring many-body physics in Fock space, demonstrating its practical applications on contentious MBL aspects such as criticality and dimensionality. Moreover, the entire protocol is universal and scalable, paving the way to finally solve a broader range of controversial many-body problems on future larger quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05803v1-abstract-full').style.display = 'none'; document.getElementById('2211.05803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02383">arXiv:2207.02383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02383">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.033006">10.1103/PhysRevResearch.4.033006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic exchange coupling and ground state phase diagram of Kitaev compound YbOCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jing Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+Z">Zhongwen Ouyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhitao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02383v1-abstract-short" style="display: inline;"> Rare-earth chalcohalide REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) is a newly reported family of Kitaev spin liquid candidates. The family offers a platform where a strong spin-orbit coupling meets a van der Waals layered and undistorted honeycomb spin lattice, which outputs highly anisotropic exchange couplings required by the Kitaev model. YbOCl is the first single crystal of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02383v1-abstract-full').style.display = 'inline'; document.getElementById('2207.02383v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02383v1-abstract-full" style="display: none;"> Rare-earth chalcohalide REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) is a newly reported family of Kitaev spin liquid candidates. The family offers a platform where a strong spin-orbit coupling meets a van der Waals layered and undistorted honeycomb spin lattice, which outputs highly anisotropic exchange couplings required by the Kitaev model. YbOCl is the first single crystal of the family we grew, with a size up to ~ 15 mm. We have performed magnetization and high magnetic field electron spin resonance measurements from 2 to 300 K. We develop the mean-field scenario for the anisotropic spin system, with which we are able to well describe the experiments and reliably determine the fundamental parameters. The self-consistent simulations give the anisotropic spin-exchange interactions of $J_{\pm}$ (~ -0.3 K) and $J_{zz}$ (~ 1.6 K), and g factors of $g_{ab}$ (~ 3.4) and $g_{c}$ (~ 2.9). Based on the spin-exchange interactions, we employ the exact diagonalization method to work out the ground state phase diagram of YbOCl in terms of the off-diagonal exchange couplings. The phase diagram hosting rich magnetic phases including the spin-disordered one, sheds light on the novel magnetic properties of the family, particularly the Kitaev physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02383v1-abstract-full').style.display = 'none'; document.getElementById('2207.02383v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 033006 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02061">arXiv:2207.02061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02061">pdf</a>, <a href="https://arxiv.org/format/2207.02061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.043147">10.1103/PhysRevResearch.4.043147 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatiotemporal dynamics of classical and quantum density profiles in low-dimensional spin systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heitmann%2C+T">Tjark Heitmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+J">Jonas Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Fengping Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michielsen%2C+K">Kristel Michielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Raedt%2C+H">Hans De Raedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinigeweg%2C+R">Robin Steinigeweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02061v2-abstract-short" style="display: inline;"> We provide a detailed comparison between the dynamics of high-temperature spatiotemporal correlation functions in quantum and classical spin models. In the quantum case, our large-scale numerics are based on the concept of quantum typicality, which exploits the fact that random pure quantum states can faithfully approximate ensemble averages, allowing the simulation of spin-$1/2$ systems with up t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02061v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02061v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02061v2-abstract-full" style="display: none;"> We provide a detailed comparison between the dynamics of high-temperature spatiotemporal correlation functions in quantum and classical spin models. In the quantum case, our large-scale numerics are based on the concept of quantum typicality, which exploits the fact that random pure quantum states can faithfully approximate ensemble averages, allowing the simulation of spin-$1/2$ systems with up to $40$ lattice sites. Due to the exponentially growing Hilbert space, we find that for such system sizes even a single random state is sufficient to yield results with extremely low noise that is negligible for most practical purposes. In contrast, a classical analog of typicality is missing. In particular, we demonstrate that, in order to obtain data with a similar level of noise in the classical case, extensive averaging over classical trajectories is required, no matter how large the system size. Focusing on (quasi-)one-dimensional spin chains and ladders, we find a remarkably good agreement between quantum and classical dynamics. This applies not only to cases where both the quantum and classical model are nonintegrable, but also to cases where the quantum spin-$1/2$ model is integrable and the corresponding classical $s\to\infty$ model is not. Our analysis is based on the comparison of space-time profiles of the spin and energy correlation functions, where the agreement is found to hold not only in the bulk but also in the tails of the resulting density distribution. The mean-squared displacement of the density profiles reflects the nature of emerging hydrodynamics and is found to exhibit similar scaling for quantum and classical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02061v2-abstract-full').style.display = 'none'; document.getElementById('2207.02061v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 043147 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01738">arXiv:2204.01738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01738">pdf</a>, <a href="https://arxiv.org/format/2204.01738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43588-022-00351-9">10.1038/s43588-022-00351-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental quantum adversarial learning with programmable superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Weikang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biamonte%2C+J">Jacob Biamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+D">Dong-Ling Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01738v1-abstract-short" style="display: inline;"> Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01738v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01738v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01738v1-abstract-full" style="display: none;"> Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 $渭$s, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01738v1-abstract-full').style.display = 'none'; document.getElementById('2204.01738v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, 8 algorithms</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Computational Science 2, 711 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03225">arXiv:2203.03225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.03225">pdf</a>, <a href="https://arxiv.org/format/2203.03225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-022-19378-z">10.1038/s41598-022-19378-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast optical observation of spin-pumping induced dynamic exchange coupling in ferromagnetic semiconductor/metal bilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">P. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H+C">H. C. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J+Y">J. Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H+L">H. L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+S+H">S. H. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">F. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z">Z. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X+Z">X. Z. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+H">J. H. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H+B">H. B. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCpke%2C+G">G. L眉pke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03225v2-abstract-short" style="display: inline;"> Spin angular momentum transfer in magnetic bilayers offers the possibility of ultrafast and low-loss operation for next-generation spintronic devices. We report the field- and temperature- dependent measurements on the magnetization precessions in Co$_2$FeAl/(Ga,Mn)As by time-resolved magneto-optical Kerr effect (TRMOKE). Analysis of the effective Gilbert damping and phase shift indicates a clear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03225v2-abstract-full').style.display = 'inline'; document.getElementById('2203.03225v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03225v2-abstract-full" style="display: none;"> Spin angular momentum transfer in magnetic bilayers offers the possibility of ultrafast and low-loss operation for next-generation spintronic devices. We report the field- and temperature- dependent measurements on the magnetization precessions in Co$_2$FeAl/(Ga,Mn)As by time-resolved magneto-optical Kerr effect (TRMOKE). Analysis of the effective Gilbert damping and phase shift indicates a clear signature of an enhanced dynamic exchange coupling between the two ferromagnetic (FM) layers due to the reinforced spin pumping at resonance. The temperature dependence of the dynamic exchange-coupling reveals a primary contribution from the ferromagnetism in (Ga,Mn)As. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03225v2-abstract-full').style.display = 'none'; document.getElementById('2203.03225v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2203.00293</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Scientific Reports 12, 20093 (2022) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 12, 20093 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00293">arXiv:2203.00293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00293">pdf</a>, <a href="https://arxiv.org/format/2203.00293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast enhancement of interfacial exchange coupling in ferromagnetic bilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H+C">H. C. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">P. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J+Y">J. Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H+L">H. L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+S+H">S. H. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">F. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z">Z. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X+Z">X. Z. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+H">J. H. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H+B">H. B. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCpke%2C+G">G. L眉pke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00293v3-abstract-short" style="display: inline;"> Fast spin manipulation in magnetic heterostructures, where magnetic interactions between different materials often define the functionality of devices, is a key issue in the development of ultrafast spintronics. Although recently developed optical approaches such as ultrafast spin-transfer and spin-orbit torques open new pathways to fast spin manipulation, these processes do not fully utilize the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00293v3-abstract-full').style.display = 'inline'; document.getElementById('2203.00293v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00293v3-abstract-full" style="display: none;"> Fast spin manipulation in magnetic heterostructures, where magnetic interactions between different materials often define the functionality of devices, is a key issue in the development of ultrafast spintronics. Although recently developed optical approaches such as ultrafast spin-transfer and spin-orbit torques open new pathways to fast spin manipulation, these processes do not fully utilize the unique possibilities offered by interfacial magnetic coupling effects in ferromagnetic multilayer systems. Here, we experimentally demonstrate ultrafast photo-enhanced interfacial exchange interactions in the ferromagnetic Co$_2$FeAl/(Ga,Mn)As system at low laser fluence levels. The excitation efficiency of Co$_2$FeAl with the (Ga,Mn)As layer is 30-40 times higher than the case with the GaAs layer at 5 K due to a photo-enhanced exchange coupling interaction via photoexcited charge transfer between the two ferromagnetic layers. In addition, the coherent spin precessions persist to room temperature, excluding the drive of photo-enhanced magnetization in the (Ga,Mn)As layer and indicating a proximity-effect-related optical excitation mechanism. The results highlight the importance of considering the range of interfacial exchange interactions in ferromagnetic heterostructures and how these magnetic coupling effects can be utilized for ultrafast, low-power spin manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00293v3-abstract-full').style.display = 'none'; document.getElementById('2203.00293v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03438">arXiv:2201.03438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03438">pdf</a>, <a href="https://arxiv.org/ps/2201.03438">ps</a>, <a href="https://arxiv.org/format/2201.03438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01784-9">10.1038/s41567-022-01784-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Many-body Hilbert space scarring on a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+J">Jie Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bobo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yunyan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fangli Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papi%C4%87%2C+Z">Zlatko Papi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+L">Lei Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+Y">Ying-Cheng Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03438v2-abstract-short" style="display: inline;"> Quantum many-body scarring (QMBS) -- a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems -- presents opportunities for mitigating thermalization-induced decoherence in quantum information processsing. However, the existing experimental realizations of QMBS are based on kinetically-constrained systems where an emergent dynamical symmetry &#34;shields&#34; such sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03438v2-abstract-full').style.display = 'inline'; document.getElementById('2201.03438v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03438v2-abstract-full" style="display: none;"> Quantum many-body scarring (QMBS) -- a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems -- presents opportunities for mitigating thermalization-induced decoherence in quantum information processsing. However, the existing experimental realizations of QMBS are based on kinetically-constrained systems where an emergent dynamical symmetry &#34;shields&#34; such states from the thermalizing bulk of the spectrum. Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis. Utilizing a programmable superconducting processor with 30 qubits and tunable couplings, we realize Hilbert space scarring in a non-constrained model in different geometries, including a linear chain as well as a quasi-one-dimensional comb geometry. By performing full quantum state tomography on 4-qubit subsystems, we provide strong evidence for QMBS states by measuring qubit population dynamics, quantum fidelity and entanglement entropy following a quench from initial product states. Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03438v2-abstract-full').style.display = 'none'; document.getElementById('2201.03438v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> s41567-022-01784-9 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 19, 120 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07199">arXiv:2112.07199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.07199">pdf</a>, <a href="https://arxiv.org/format/2112.07199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.085115">10.1103/PhysRevB.106.085115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Spin Dynamics of Quantum Spin Liquid Candidate $NaYbSe_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M">Mingtai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+W">Weizhen Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">Peter J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07199v2-abstract-short" style="display: inline;"> The family of rare earth chalcogenides $ARECh_{2}$ (A = alkali or monovalent ions, RE = rare earth, and Ch = O, S, Se, and Te) appears as an inspiring playground for studying quantum spin liquids (QSL). The crucial low-energy spin dynamics remain to be uncovered. By employing muon spin relaxation ($渭$SR) and zero-field (ZF) AC susceptibility down to 50 mK, we are able to identify the gapless QSL i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07199v2-abstract-full').style.display = 'inline'; document.getElementById('2112.07199v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07199v2-abstract-full" style="display: none;"> The family of rare earth chalcogenides $ARECh_{2}$ (A = alkali or monovalent ions, RE = rare earth, and Ch = O, S, Se, and Te) appears as an inspiring playground for studying quantum spin liquids (QSL). The crucial low-energy spin dynamics remain to be uncovered. By employing muon spin relaxation ($渭$SR) and zero-field (ZF) AC susceptibility down to 50 mK, we are able to identify the gapless QSL in $NaYbSe_{2}$, a representative member with an effective spin-1/2, and explore its unusual spin dynamics. The ZF $渭$SR experiments unambiguously rule out spin ordering or freezing in $NaYbSe_{2}$ down to 50 mK, two orders of magnitude smaller than the exchange coupling energies. The spin relaxation rate, $位$, approaches a constant below 0.3 K, indicating finite spin excitations featured by a gapless QSL ground state. This is consistently supported by our AC susceptibility measurements. The careful analysis of the longitudinal field (LF) $渭$SR spectra reveals a strong spatial correlation and a temporal correlation in the spin-disordered ground state, highlighting the unique feature of spin entanglement in the QSL state. The observations allow us to establish an experimental H-T phase diagram. The study offers insight into the rich and exotic magnetism of the rare earth family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07199v2-abstract-full').style.display = 'none'; document.getElementById('2112.07199v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 085115 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05577">arXiv:2109.05577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05577">pdf</a>, <a href="https://arxiv.org/format/2109.05577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04854-3">10.1038/s41586-022-04854-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a symmetry-protected topological time crystal with superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+D">Dong-Ling Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05577v1-abstract-short" style="display: inline;"> We report the observation of a symmetry-protected topological time crystal, which is implemented with an array of programmable superconducting qubits. Unlike the time crystals reported in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the topological time crystal observed in our experiment break&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05577v1-abstract-full').style.display = 'inline'; document.getElementById('2109.05577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05577v1-abstract-full" style="display: none;"> We report the observation of a symmetry-protected topological time crystal, which is implemented with an array of programmable superconducting qubits. Unlike the time crystals reported in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the topological time crystal observed in our experiment breaks the time translational symmetry only at the boundaries and has trivial dynamics in the bulk. More concretely, we observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins up to 40 driving cycles. We demonstrate that the sub-harmonic response is independent of whether the initial states are random product states or symmetry-protected topological states, and experimentally map out the phase boundary between the time crystalline and thermal phases. Our work paves the way to exploring peculiar non-equilibrium phases of matter emerged from the interplay between topology and localization as well as periodic driving, with current noisy intermediate-scale quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05577v1-abstract-full').style.display = 'none'; document.getElementById('2109.05577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages main text, and 11 pages for supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 607, 468 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09693">arXiv:2108.09693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09693">pdf</a>, <a href="https://arxiv.org/ps/2108.09693">ps</a>, <a href="https://arxiv.org/format/2108.09693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Effects of the Crystalline Electric Field in the $KErTe_{2}$ Quantum Spin Liquid Candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Weiwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhitao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09693v1-abstract-short" style="display: inline;"> In this paper, we performed thermodynamic and electron spin resonance (ESR) measurements to study low-energy magnetic excitations, which were significantly affected by crystalline electric field (CEF) excitations due to relatively small gaps between the CEF ground state and the excited states. Based on the CEF and mean-field (MF) theories, we analyzed systematically and consistently the ESR experi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09693v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09693v1-abstract-full" style="display: none;"> In this paper, we performed thermodynamic and electron spin resonance (ESR) measurements to study low-energy magnetic excitations, which were significantly affected by crystalline electric field (CEF) excitations due to relatively small gaps between the CEF ground state and the excited states. Based on the CEF and mean-field (MF) theories, we analyzed systematically and consistently the ESR experiments and thermodynamic measurements including susceptibility, magnetization, and heat capacity. The CEF parameters were successfully extracted by fitting high-temperature (&gt; 20 K) susceptibilities in the ab-plane and along the c-axis, allowing to determine the Lande factors ($g_{ab,calc}$ = 5.98(7) and $g_{c,calc}$ = 2.73(3)). These values were consistent with the values of Lande factors determined by ESR experiments ($g_{ab,exp}$ = 5.69 and $g_{c,exp}$ = 2.75). By applying the CEF and MF theories to the susceptibility and magnetization results, we estimated the anisotropic spin-exchange energies and found that the CEF excitations in \ce{KErTe2} played a decisive role in the magnetism above 3 K, while the low-temperature magnetism below 10 K was gradually correlated with the anisotropic spin-exchange interactions. The CEF excitations were demonstrated in the low-temperature heat capacity, where both the positions of two broad peaks and their magnetic field dependence well corroborated our calculations. The present study provides a basis to explore the enriched magnetic and electronic properties of the QSL family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09693v1-abstract-full').style.display = 'none'; document.getElementById('2108.09693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01974">arXiv:2104.01974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.01974">pdf</a>, <a href="https://arxiv.org/format/2104.01974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac0a5d">10.1088/1674-1056/ac0a5d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective Model for Rare-earth Kitaev Materials and its Classical Monte Carlo Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M">Mengjie Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Huihang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jing Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengxin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01974v2-abstract-short" style="display: inline;"> Recently, the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid (KSL). In the present work, we firstly propose an effective spin Hamiltonian consistents with the symmetry group of the crystal structure. Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram. When approaching to the low t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01974v2-abstract-full').style.display = 'inline'; document.getElementById('2104.01974v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01974v2-abstract-full" style="display: none;"> Recently, the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid (KSL). In the present work, we firstly propose an effective spin Hamiltonian consistents with the symmetry group of the crystal structure. Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram. When approaching to the low temperature limit, several magnetic long range orders are observed, including the stripe, the zigzag, the antiferromagnetic (AFM), the ferromagnetic (FM), the incommensurate spiral (IS), the Multi-$\pmb {Q}$ and the 120掳. We further calculate the thermodynamic properties of the system, such as the temperature dependence of the magnetic susceptibility and the heat capacity. The ordering transition temperatures reflected in the two quantities agree with each other. For most interaction regions, the system is magnetically more susceptible in the $ab$-plane than in the $c$-direction. The stripe phase is special, where the susceptibility is fairly isotropic in the whole temperature region. These features provide useful information to understand the magnetic properties of related materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01974v2-abstract-full').style.display = 'none'; document.getElementById('2104.01974v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01903">arXiv:2104.01903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.01903">pdf</a>, <a href="https://arxiv.org/format/2104.01903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Two-magnon Raman scattering in antiferromagnetic phases of frustrated spin models on the honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Junru Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01903v1-abstract-short" style="display: inline;"> We calculate the two-magnon Raman scattering spectra in antiferromagnetic phases of several frustrated spin models defined on the honeycomb lattice. These include the N茅el antiferromagnetic phase of a $J_1$-$J_2$-$J_3$ model and the stripe phase of the Heisenberg-Kitaev model. We show that both the magnetic frustration and the anisotropy of interactions may significantly affect the Raman spectra.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01903v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01903v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01903v1-abstract-full" style="display: none;"> We calculate the two-magnon Raman scattering spectra in antiferromagnetic phases of several frustrated spin models defined on the honeycomb lattice. These include the N茅el antiferromagnetic phase of a $J_1$-$J_2$-$J_3$ model and the stripe phase of the Heisenberg-Kitaev model. We show that both the magnetic frustration and the anisotropy of interactions may significantly affect the Raman spectra. We further discuss the implications of our results to the magnetic excitations of the iron-based compound BaFe$_2$Se$_2$O and show how the magnetic interactions can be extracted from fit to the Raman spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01903v1-abstract-full').style.display = 'none'; document.getElementById('2104.01903v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00472">arXiv:2104.00472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00472">pdf</a>, <a href="https://arxiv.org/format/2104.00472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.054415">10.1103/PhysRevB.104.054415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum versus Classical Dynamics in Spin Models: Chains, Ladders, and Square Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schubert%2C+D">Dennis Schubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+J">Jonas Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Fengping Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michielsen%2C+K">Kristel Michielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Raedt%2C+H">Hans De Raedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinigeweg%2C+R">Robin Steinigeweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00472v3-abstract-short" style="display: inline;"> We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is gover&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00472v3-abstract-full').style.display = 'inline'; document.getElementById('2104.00472v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00472v3-abstract-full" style="display: none;"> We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the autocorrelation functions of local densities, where the time evolution is governed either by the linear Schr枚dinger equation in the quantum case, or the nonlinear Hamiltonian equations of motion in the case of classical mechanics. While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not be expected, our large-scale numerical results for spin-$1/2$ systems with up to $N = 36$ lattice sites in fact defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of integrable chains, at least if transport properties are not dominated by the extensive number of conservation laws. Our findings indicate that classical or semi-classical simulations provide a meaningful strategy to analyze the dynamics of quantum many-body models, even in cases where the spin quantum number $S = 1/2$ is small and far away from the classical limit $S \to \infty$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00472v3-abstract-full').style.display = 'none'; document.getElementById('2104.00472v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 054415 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12309">arXiv:2103.12309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.12309">pdf</a>, <a href="https://arxiv.org/ps/2103.12309">ps</a>, <a href="https://arxiv.org/format/2103.12309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/38/4/047502">10.1088/0256-307X/38/4/047502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rare-earth chalcohalides: A family of van der Waals layered Kitaev spin liquid candidates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M">Mengjie Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yanzhen Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yingqi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12309v2-abstract-short" style="display: inline;"> Kitaev spin liquid (KSL) system has attracted tremendous attention in past years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation. Material realization of such a system remains a major challenge in the field due to the unusual configuration of anisotropic spin interactions, though great effort has been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12309v2-abstract-full').style.display = 'inline'; document.getElementById('2103.12309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12309v2-abstract-full" style="display: none;"> Kitaev spin liquid (KSL) system has attracted tremendous attention in past years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation. Material realization of such a system remains a major challenge in the field due to the unusual configuration of anisotropic spin interactions, though great effort has been made before. Here we reveal that rare-earth chalcohalides REChX (RE=rare earth, Ch=O, S, Se, Te, X=F, Cl, Br, I) can serve as a family of KSL candidates. Most family members have the typical SmSI-type structure with a high symmetry of R-3m and rare-earth magnetic ions form an undistorted honeycomb lattice. The strong spin-orbit coupling of 4f electrons intrinsically offers anisotropic spin interactions as required by Kitaev model. We have grown the crystals of YbOCl and synthesized the polycrystals of SmSI, ErOF, HoOF and DyOF, and made careful structural characterizations. We carry out magnetic and heat capacity measurements down to 1.8 K and find no obvious magnetic transition in all the samples but DyOF. The van der Waals interlayer coupling highlights the true two-dimensionality of the family which is vital for the exact realization of Abelian/non-Abelian anyons, and the graphene-like feature will be a prominent advantage for developing miniaturized devices. The family is expected to act as an inspiring material platform for the exploration of KSL physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12309v2-abstract-full').style.display = 'none'; document.getElementById('2103.12309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 38(4), 047502 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01863">arXiv:2012.01863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01863">pdf</a>, <a href="https://arxiv.org/ps/2012.01863">ps</a>, <a href="https://arxiv.org/format/2012.01863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/132/46001">10.1209/0295-5075/132/46001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First order transition in trigonal structure ${\textbf{Ca}}{\textbf{Mn}}_{2}{\textbf{P}}_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">F. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Z+Y">Z. Y. Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">J. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">W. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D+S">D. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Na%2C+S+H">S. H. Na</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+C">C. Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+B">X. B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Z. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L+L">L. L. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+M">Q. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">T. Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J+L">J. L. Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01863v1-abstract-short" style="display: inline;"> We report structural and physical properties of the single crystalline ${\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2}$. The X-ray diffraction(XRD) results show that ${\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2}$ adopts the trigonal ${\mathrm{Ca}}{\mathrm{Al}}_{2}{\mathrm{Si}}_{2}$-type structure. Temperature dependent electrical resistivity $蟻(T)$ measurements indicate an insulating ground stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01863v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01863v1-abstract-full" style="display: none;"> We report structural and physical properties of the single crystalline ${\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2}$. The X-ray diffraction(XRD) results show that ${\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2}$ adopts the trigonal ${\mathrm{Ca}}{\mathrm{Al}}_{2}{\mathrm{Si}}_{2}$-type structure. Temperature dependent electrical resistivity $蟻(T)$ measurements indicate an insulating ground state for ${\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2}$ with activation energies of 40 meV and 0.64 meV for two distinct regions, respectively. Magnetization measurements show no apparent magnetic phase transition under 400 K. Different from other ${\mathrm{A}}{\mathrm{Mn}}_{2}{\mathrm{Pn}}_{2}$ (A = Ca, Sr, and Ba, and Pn = P, As, and Sb) compounds with the same structure, heat capacity $C_{\mathrm{p}}(T)$ and $蟻(T)$ reveal that ${\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2}$ has a first-order transition at $T$ = 69.5 K and the transition temperature shifts to high temperature upon increasing pressure. The emergence of plenty of new Raman modes below the transition, clearly suggests a change in symmetry accompanying the transition. The combination of the structural, transport, thermal and magnetic measurements, points to an unusual origin of the transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01863v1-abstract-full').style.display = 'none'; document.getElementById('2012.01863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. Accepted by Europhysics Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL 132 (2020) 46001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06274">arXiv:2011.06274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06274">pdf</a>, <a href="https://arxiv.org/ps/2011.06274">ps</a>, <a href="https://arxiv.org/format/2011.06274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.184419">10.1103/PhysRevB.103.184419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective Magnetic Hamiltonian at Finite Temperatures for Rare Earth Chalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Weiwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhitao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junfeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06274v2-abstract-short" style="display: inline;"> Alkali metal rare-earth chalcogenide $ARECh2$ (A=alkali or monovalent metal, RE=rare earth, Ch=O, S, Se, Te), is a large family of quantum spin liquid (QSL) candidates we discovered recently. Unlike $YbMgGaO4$, most members in the family except for the oxide ones, have relatively small crystalline electric-field (CEF) excitation levels, particularly the first ones. This makes the conventional Curi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06274v2-abstract-full').style.display = 'inline'; document.getElementById('2011.06274v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06274v2-abstract-full" style="display: none;"> Alkali metal rare-earth chalcogenide $ARECh2$ (A=alkali or monovalent metal, RE=rare earth, Ch=O, S, Se, Te), is a large family of quantum spin liquid (QSL) candidates we discovered recently. Unlike $YbMgGaO4$, most members in the family except for the oxide ones, have relatively small crystalline electric-field (CEF) excitation levels, particularly the first ones. This makes the conventional Curie-Weiss analysis at finite temperatures inapplicable and CEF excitations may play an essential role in understanding the low-energy spin physics. Here we considered an effective magnetic Hamiltonian incorporating CEF excitations and spin-spin interactions, to accurately describe thermodynamics in such a system. By taking $NaYbSe2$ as an example, we were able to analyze magnetic susceptibility, magnetization under pulsed high fields and heat capacity in a systematic and comprehensive way. The analysis allows us to produce accurate anisotropic exchange coupling energies and unambiguously determine a crossover temperature ($\sim$25 K in the case of $NaYbSe2$), below which CEF effects fade away and pure spin-spin interactions stand out. We further validated the effective picture by successfully explaining the anomalous temperature dependence of electron spin resonance (ESR) spectral width. The effective scenario in principle can be generalized to other rare-earth spin systems with small CEF excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06274v2-abstract-full').style.display = 'none'; document.getElementById('2011.06274v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 184419 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.11466">arXiv:2010.11466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.11466">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c01874">10.1021/acs.nanolett.1c01874 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-tuned intralayer exchange in superlattice-like MnBi2Te4/(Bi2Te3)n topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+J">Jifeng Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuntian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+M">Meng Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jingyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xuefeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiao-Ming Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+R">Ruie Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yichen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+M">Mingqiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kedong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.11466v2-abstract-short" style="display: inline;"> The magnetic structures of MnBi2Te4(Bi2Te3)n can be manipulated by tuning the interlayer coupling via the number of Bi2Te3 spacer layers n, while the intralayer ferromagnetic (FM) exchange coupling is considered too robust to control. By applying hydrostatic pressure up to 3.5 GPa, we discover opposite responses of magnetic properties for n = 1 and 2. MnBi4Te7 stays at A-type antiferromagnetic (AF&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11466v2-abstract-full').style.display = 'inline'; document.getElementById('2010.11466v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.11466v2-abstract-full" style="display: none;"> The magnetic structures of MnBi2Te4(Bi2Te3)n can be manipulated by tuning the interlayer coupling via the number of Bi2Te3 spacer layers n, while the intralayer ferromagnetic (FM) exchange coupling is considered too robust to control. By applying hydrostatic pressure up to 3.5 GPa, we discover opposite responses of magnetic properties for n = 1 and 2. MnBi4Te7 stays at A-type antiferromagnetic (AFM) phase with a decreasing N茅el temperature and an increasing saturation field. In sharp contrast, MnBi6Te10 experiences a phase transition from A-type AFM to a quasi-two-dimensional FM state with a suppressed saturation field under pressure. First-principles calculations reveal the essential role of intralayer exchange coupling from lattice compression in determining these magnetic properties. Such magnetic phase transition is also observed in 20% Sb-doped MnBi6Te10 due to the in-plane lattice compression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11466v2-abstract-full').style.display = 'none'; document.getElementById('2010.11466v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters,July 1, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14051">arXiv:2009.14051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14051">pdf</a>, <a href="https://arxiv.org/ps/2009.14051">ps</a>, <a href="https://arxiv.org/format/2009.14051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dimensional Crossover Tuned by Pressure in Layered Magnetic NiPS3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yunyu Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+B">Binbin Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jianhong Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+F">Fang Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaohui Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14051v1-abstract-short" style="display: inline;"> Layered magnetic transition-metal thiophosphate NiPS3 has unique two-dimensional (2D) magnetic properties and electronic behavior. The electronic band structure and corresponding magnetic state are expected to sensitive to the interlayer interaction, which can be tuned by external pressure. Here, we report an insulator-metal transition accompanied with magnetism collapse during the 2D-3D crossover&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14051v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14051v1-abstract-full" style="display: none;"> Layered magnetic transition-metal thiophosphate NiPS3 has unique two-dimensional (2D) magnetic properties and electronic behavior. The electronic band structure and corresponding magnetic state are expected to sensitive to the interlayer interaction, which can be tuned by external pressure. Here, we report an insulator-metal transition accompanied with magnetism collapse during the 2D-3D crossover in structure induced by hydrostatic pressure. A two-stage phase transition from monoclinic (C2=m) to trigonal (P-31m) lattice is identified by ab initio simulation and confirmed by high-pressure XRD and Raman data, corresponding to a layer by layer slip mechanism along the a-axis. Temperature dependence resistance measurements and room temperature infrared spectroscopy show that the insulator-metal transition occurs near 20 GPa as well as magnetism collapse, which is further confirmed by low temperature Raman measurement and theoretical calculation. These results establish a strong correlation among the structural change, electric transport, and magnetic phase transition and expand our understandings about the layered magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14051v1-abstract-full').style.display = 'none'; document.getElementById('2009.14051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11479">arXiv:2003.11479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.11479">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure induced metallization and possible unconventional superconductivity in spin liquid $NaYbSe_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yunyu Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Weiwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaohui Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11479v1-abstract-short" style="display: inline;"> Beyond the conventional electron pairing mediated by phonons, high-temperature superconductivity in cuprates is believed to stem from quantum spin liquid (QSL). The unconventional superconductivity by doping a spin liquid/Mott insulator, is a long-sought goal but a principal challenge in condensed matter physics because of the lack of an ideal QSL platform. Here we report the pressure induced meta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11479v1-abstract-full').style.display = 'inline'; document.getElementById('2003.11479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11479v1-abstract-full" style="display: none;"> Beyond the conventional electron pairing mediated by phonons, high-temperature superconductivity in cuprates is believed to stem from quantum spin liquid (QSL). The unconventional superconductivity by doping a spin liquid/Mott insulator, is a long-sought goal but a principal challenge in condensed matter physics because of the lack of an ideal QSL platform. Here we report the pressure induced metallization and possible unconventional superconductivity in $NaYbSe_{2}$, which belongs to a large and ideal family of triangular lattice spin liquid we revealed recently and is evidenced to possess a QSL ground state. The charge gap of NaYbSe2 is gradually reduced by applying pressures, and at ~20 GPa the crystal jumps into a superconducting (SC) phase with Tc ~ 5.8 K even before the insulating gap is completely closed. The metallization is confirmed by further high-pressure experiments but the sign of superconductivity is not well repeated. No symmetry breaking accompanies the SC transition, as indicated by X-ray diffraction and low-temperature Raman experiments under high pressures. This intrinsically connects QSL and SC phases, and suggests an unconventional superconductivity developed from QSL. We further observed the magnetic-field-tuned superconductor-insulator transition which is analogous to that found in the underdoped cuprate superconductor $La_{2-x}Sr_{x}CuO_{4}$. The study is expected to inspire interest in exploring new types of superconductors and sheds light into the intriguing physics from a spin liquid/Mott insulator to a superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11479v1-abstract-full').style.display = 'none'; document.getElementById('2003.11479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04772">arXiv:2002.04772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04772">pdf</a>, <a href="https://arxiv.org/format/2002.04772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.035144">10.1103/PhysRevB.103.035144 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystalline Electric-Field Excitations in Quantum Spin Liquids Candidate $NaYbSe_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guohua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Weiwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+J">Jianting Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yimeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04772v3-abstract-short" style="display: inline;"> Very recently we revealed a large family of triangular lattice quantum spin liquid candidates named rare-earth chalcogenides, which features a high-symmetry structure without structural/charge disorders and spin impurities, and may serve as an ideal platform exploring spin liquid physics. The knowledge of crystalline electric-field (CEF) excitations is an essential step to explore the fundamental&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04772v3-abstract-full').style.display = 'inline'; document.getElementById('2002.04772v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04772v3-abstract-full" style="display: none;"> Very recently we revealed a large family of triangular lattice quantum spin liquid candidates named rare-earth chalcogenides, which features a high-symmetry structure without structural/charge disorders and spin impurities, and may serve as an ideal platform exploring spin liquid physics. The knowledge of crystalline electric-field (CEF) excitations is an essential step to explore the fundamental magnetism of rare-earth spin systems. Here we employed inelastic neutron scattering (INS) and Raman scattering (RS) to carry out a comprehensive CFE investigation on $NaYbSe_{2}$, a promising representative of the family. By comparison with its nonmagnetic compound $NaLuSe_{2}$, we are able to identify the CEF excitations at 15.8, 24.3 and 30.5 meV at 5K. The selected cuts of the INS spectra are well re-produced with a large anisotropy of $g$ factors ($g_{ab}:g_{c}\sim3:1$). Further, the CEF excitations are explained well by our calculations based on the point charge model. Interestingly, $NaYbSe_{2}$ exhibits an unusual CEF shift to higher energies with increasing temperatures, and the Raman mode close to the first CEF excitation shows an anomalously large softening with decreasing temperatures. The absence of the anomalies in $NaLuSe_{2}$ clearly demonstrates a CEF-phonon coupling not reported in the family. It can be understood in term of the weaker electronegativity of Se. The fact that the smallest first CEF excitation in the sub-family of $NaYbCh_{2}$ is $\sim$ 180K (Ch=O, S, Se), guarantees that the sub-family can be strictly described with an effective S=1/2 picture at sufficiently low temperatures. Interestingly the CEF-phonon coupling revealed here may present alternative possibilities to manipulate the spin systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04772v3-abstract-full').style.display = 'none'; document.getElementById('2002.04772v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, supplementary material provided, error corrected in Figure 4</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 035144 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10361">arXiv:1910.10361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10361">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0533-y">10.1038/s41563-019-0533-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-messenger nano-probes of hidden magnetism in a strained manganite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McLeod%2C+A+S">A. S. McLeod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+M+Q">M. Q. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">F. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Post%2C+K+W">K. W. Post</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X+G">X. G. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A+J">A. J. Millis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">W. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rondinelli%2C+J+M">J. M. Rondinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Averitt%2C+R+D">R. D. Averitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basov%2C+D+N">D. N. Basov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10361v1-abstract-short" style="display: inline;"> The ground state properties of correlated electron systems can be extraordinarily sensitive to external stimuli, such as temperature, strain, and electromagnetic fields, offering abundant platforms for functional materials. We present a metastable and reversible photoinduced ferromagnetic transition in strained films of the doped manganite La(2/3)Ca(1/3)MnO3. Using the novel multi-messenger combin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10361v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10361v1-abstract-full" style="display: none;"> The ground state properties of correlated electron systems can be extraordinarily sensitive to external stimuli, such as temperature, strain, and electromagnetic fields, offering abundant platforms for functional materials. We present a metastable and reversible photoinduced ferromagnetic transition in strained films of the doped manganite La(2/3)Ca(1/3)MnO3. Using the novel multi-messenger combination of atomic force microscopy, cryogenic scanning near-field optical microscopy, magnetic force microscopy, and ultrafast laser excitation, we demonstrate both &#34;writing&#34; and &#34;erasing&#34; of a metastable ferromagnetic metal phase with nanometer-resolved finesse. By tracking both optical conductivity and magnetism at the nano-scale, we reveal how spontaneous strain underlies the thermal stability, persistence, and reversal of this photoinduced metal. Our first-principles electronic structure calculations reveal how an epitaxially engineered Jahn-Teller distortion can stabilize nearly degenerate antiferromagnetic insulator and ferromagnetic metal phases. We propose a Ginzburg-Landau description to rationalize the co-active interplay of strain, lattice distortion, and magnetism we resolve in strained LCMO, thus guiding future functional engineering of epitaxial oxides like manganites into the regime of phase-programmable materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10361v1-abstract-full').style.display = 'none'; document.getElementById('1910.10361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.13199">arXiv:1909.13199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.13199">pdf</a>, <a href="https://arxiv.org/format/1909.13199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.087601">10.1103/PhysRevLett.124.087601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental identification of electric dipoles induced by magnetic monopoles in Tb2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Changle Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Anmin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Gang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xuefeng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qingming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.13199v1-abstract-short" style="display: inline;"> The fundamental principles of electrodynamics allow an electron carrying both electric monopole (charge) and magnetic dipole (spin) but prohibit its magnetic counterpart. Recently it was predicted that the magnetic &#34;monopoles&#34; carrying emergent magnetic charges in spin ice systems can induce electric dipoles. The inspiring prediction offers a novel way to study magnetic monopole excitations and ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13199v1-abstract-full').style.display = 'inline'; document.getElementById('1909.13199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.13199v1-abstract-full" style="display: none;"> The fundamental principles of electrodynamics allow an electron carrying both electric monopole (charge) and magnetic dipole (spin) but prohibit its magnetic counterpart. Recently it was predicted that the magnetic &#34;monopoles&#34; carrying emergent magnetic charges in spin ice systems can induce electric dipoles. The inspiring prediction offers a novel way to study magnetic monopole excitations and magnetoelectric coupling. However, no clear example has been identified up to now. Here, we report the experimental evidence for electric dipoles induced by magnetic monopoles in spin frustrated Tb2Ti2O7. The magnetic field applied to pyrochlore Tb2Ti2O7 along [111] direction, brings out a &#34;3-in-1-out&#34; magnetic monopole configuration, and then induces a subtle structural phase transition at Hc~2.3 T. The transition is evidenced by the non-linear phonon splitting under magnetic fields and the anomalous crystal-field excitations of Tb3+ ions. The observations consistently point to the displacement of the oxygen O&#34; anions along [111] axis which gives rise to the formation of electric dipoles. The finding demonstrates that the scenario of magnetic monopole having both magnetic charge and electric dipole is realized in Tb2Ti2O7 and sheds light into the coupling between electricity and magnetism of magnetic monopoles in spin frustrated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13199v1-abstract-full').style.display = 'none'; document.getElementById('1909.13199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 087601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.10334">arXiv:1906.10334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.10334">pdf</a>, <a href="https://arxiv.org/ps/1906.10334">ps</a>, <a href="https://arxiv.org/format/1906.10334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.267201">10.1103/PhysRevLett.123.267201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of a Persistent Insulator-to-Metal Transition in Strained Manganite Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Teitelbaum%2C+S+W">Samuel W. Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ofori-Okai%2C+B+K">Benjamin K. Ofori-Okai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yu-Hsiang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jingdi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Averitt%2C+R+D">Richard D. Averitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+K+A">Keith A. Nelson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.10334v2-abstract-short" style="display: inline;"> Transition metal oxides possess complex free energy surfaces with competing degrees of freedom. Photoexcitation allows shaping of such rich energy landscapes. In epitaxially strained $\mathrm{La_{0.67}Ca_{0.33}MnO_3}$, optical excitation with a sub-100 fs pulse above $2\ \mathrm{mJ/cm^2}$ leads to a persistent metallic phase below 100 K. Using single-shot optical and terahertz spectroscopy, we sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10334v2-abstract-full').style.display = 'inline'; document.getElementById('1906.10334v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.10334v2-abstract-full" style="display: none;"> Transition metal oxides possess complex free energy surfaces with competing degrees of freedom. Photoexcitation allows shaping of such rich energy landscapes. In epitaxially strained $\mathrm{La_{0.67}Ca_{0.33}MnO_3}$, optical excitation with a sub-100 fs pulse above $2\ \mathrm{mJ/cm^2}$ leads to a persistent metallic phase below 100 K. Using single-shot optical and terahertz spectroscopy, we show that this phase transition is a multi-step process. We conclude that the phase transition is driven by partial charge order melting, followed by growth of the persistent metallic phase on longer timescales. A time-dependent Ginzburg-Landau model can describe the fast dynamics of the reflectivity, followed by longer timescale in-growth of the metallic phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10334v2-abstract-full').style.display = 'none'; document.getElementById('1906.10334v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages plus 7 pages supplement, 4 figures plus 2 figures supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 267201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09268">arXiv:1906.09268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.09268">pdf</a>, <a href="https://arxiv.org/ps/1906.09268">ps</a>, <a href="https://arxiv.org/format/1906.09268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.101.062133">10.1103/PhysRevE.101.062133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exponential damping induced by random and realistic perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+J">Jonas Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Fengping Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knipschild%2C+L">Lars Knipschild</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Raedt%2C+H">Hans De Raedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michielsen%2C+K">Kristel Michielsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gemmer%2C+J">Jochen Gemmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinigeweg%2C+R">Robin Steinigeweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09268v2-abstract-short" style="display: inline;"> Given a quantum many-body system and the expectation-value dynamics of some operator, we study how this reference dynamics is altered due to a perturbation of the system&#39;s Hamiltonian. Based on projection operator techniques, we unveil that if the perturbation exhibits a random-matrix structure in the eigenbasis of the unperturbed Hamiltonian, then this perturbation effectively leads to an exponen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09268v2-abstract-full').style.display = 'inline'; document.getElementById('1906.09268v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09268v2-abstract-full" style="display: none;"> Given a quantum many-body system and the expectation-value dynamics of some operator, we study how this reference dynamics is altered due to a perturbation of the system&#39;s Hamiltonian. Based on projection operator techniques, we unveil that if the perturbation exhibits a random-matrix structure in the eigenbasis of the unperturbed Hamiltonian, then this perturbation effectively leads to an exponential damping of the original dynamics. Employing a combination of dynamical quantum typicality and numerical linked cluster expansions, we demonstrate that our theoretical findings for random matrices can, in some cases, be relevant for the dynamics of realistic quantum many-body models as well. Specifically, we study the decay of current autocorrelation functions in spin-$1/2$ ladder systems, where the rungs of the ladder are treated as a perturbation to the otherwise uncoupled legs. We find a convincing agreement between the exact dynamics and the lowest-order prediction over a wide range of interchain couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09268v2-abstract-full').style.display = 'none'; document.getElementById('1906.09268v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 101, 062133 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jin%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10