CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 120 results for author: <span class="mathjax">Gao, Q</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Gao%2C+Q">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gao, Q"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gao%2C+Q&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gao, Q"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17193">arXiv:2411.17193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17193">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The Fe-N system: crystal structure prediction, phase stability, and mechanical properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+E">Ergen Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinbin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shahid%2C+I">Ijaz Shahid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hui Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yixiu Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Peitao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xing-Qiu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17193v1-abstract-short" style="display: inline;"> Nitriding introduces nitrides into the surface of steels, significantly enhancing the surface me-chanical properties. By combining the variable composition evolutionary algorithm and first-principles calculations based on density functional theory, 50 thermodynamically stable or metastable Fe-N compounds with various stoichiometric ratios were identified, exhibiting also dynamic and mechanical sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17193v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17193v1-abstract-full" style="display: none;"> Nitriding introduces nitrides into the surface of steels, significantly enhancing the surface me-chanical properties. By combining the variable composition evolutionary algorithm and first-principles calculations based on density functional theory, 50 thermodynamically stable or metastable Fe-N compounds with various stoichiometric ratios were identified, exhibiting also dynamic and mechanical stability. The mechanical properties of these structures were systemati-cally studied, including the bulk modulus, shear modulus, Young&#39;s modulus, Poisson&#39;s ratio, Pugh&#39;s ratio, Cauchy pressure, Klemen parameters, universal elastic anisotropy, Debye tempera-ture, and Vickers hardness. All identified stable and metastable Fe-N compounds were found in the ductile region, with most exhibiting homogeneous elastic properties and isotropic metallic bonding. As the nitrogen concentration increases, their bulk moduli generally increase as well. The Vickers hardness values of Fe-N compounds range from 3.5 to 10.5 GPa, which are signifi-cantly higher than that of pure Fe (2.0 GPa), due to the stronger Fe-N bonds strength. This study provides insights into optimizing and designing Fe-N alloys with tailored mechanical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17193v1-abstract-full').style.display = 'none'; document.getElementById('2411.17193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02255">arXiv:2410.02255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02255">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSEN.2024.3398003">10.1109/JSEN.2024.3398003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent Advances in Graphene-Based Humidity Sensors with the Focus of Structural Design: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Quan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gaohan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02255v1-abstract-short" style="display: inline;"> The advent of the 5G era means that the concepts of robot, VR/AR, UAV, smart home, smart healthcare based on IoT (Internet of Things) have gradually entered human life. Since then, intelligent life has become the dominant direction of social development. Humidity sensors, as humidity detection tools, not only convey the comfort of human living environment, but also display great significance in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02255v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02255v1-abstract-full" style="display: none;"> The advent of the 5G era means that the concepts of robot, VR/AR, UAV, smart home, smart healthcare based on IoT (Internet of Things) have gradually entered human life. Since then, intelligent life has become the dominant direction of social development. Humidity sensors, as humidity detection tools, not only convey the comfort of human living environment, but also display great significance in the fields of meteorology, medicine, agriculture and industry. Graphene-based materials exhibit tremendous potential in humidity sensing owing to their ultra-high specific surface area and excellent electron mobility under room temperature for application in humidity sensing. This review begins with the introduction of examples of various synthesis strategies of graphene, followed by the device structure and working mechanism of graphene-based humidity sensor. In addition, several different structural design methods of graphene are summarized, demonstrating the structural design of graphene can not only optimize the performance of graphene, but also bring significant advantages in humidity sensing. Finally, key challenges hindering the further development and practical application of high-performance graphene-based humidity sensors are discussed, followed by presenting the future perspectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02255v1-abstract-full').style.display = 'none'; document.getElementById('2410.02255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01484">arXiv:2410.01484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01484">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.4c11194">10.1021/acsami.4c11194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Humidity Sensing Properties of Different Atomic Layers of Graphene on SiO2/Si Substrate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">Chang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaojing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01484v1-abstract-short" style="display: inline;"> Graphene has the great potential to be used for humidity sensing due to ultrahigh surface area and conductivity. However, the impact of different atomic layers of graphene on SiO2/Si substrate on the humidity sensing have not been studied yet. In this paper, we fabricated three types of humidity sensors on SiO2/Si substrate based on one to three atomic layers of graphene, in which the sensing area&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01484v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01484v1-abstract-full" style="display: none;"> Graphene has the great potential to be used for humidity sensing due to ultrahigh surface area and conductivity. However, the impact of different atomic layers of graphene on SiO2/Si substrate on the humidity sensing have not been studied yet. In this paper, we fabricated three types of humidity sensors on SiO2/Si substrate based on one to three atomic layers of graphene, in which the sensing areas of graphene are 75 渭m * 72 渭m and 45 渭m * 72 渭m, respectively. We studied the impact of both the number of atomic layers of graphene and the sensing areas of graphene on the responsivity and response/recovery time of the prepared graphene-based humidity sensors. We found the relative resistance change of the prepared devices decreased with the increase of number of atomic layers of graphene under the same change of relative humidity. Further, devices based on tri-layer graphene showed the fastest response/recovery time while devices based on double-layer graphene showed the slowest response/recovery time. Finally, we chose the devices based on double-layer graphene that have relatively good responsivity and stability for application in respiration monitoring and contact-free finger monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01484v1-abstract-full').style.display = 'none'; document.getElementById('2410.01484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01439">arXiv:2410.01439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01439">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Graphene MEMS and NEMS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">Chang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemme%2C+M+C">Max C. Lemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01439v1-abstract-short" style="display: inline;"> Graphene is being increasingly used as an interesting transducer membrane in micro- and nanoelectromechanical systems (MEMS and NEMS, respectively) due to its atomical thickness, extremely high carrier mobility, high mechanical strength and piezoresistive electromechanical transductions. NEMS devices based on graphene feature increased sensitivity, reduced size, and new functionalities. In this re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01439v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01439v1-abstract-full" style="display: none;"> Graphene is being increasingly used as an interesting transducer membrane in micro- and nanoelectromechanical systems (MEMS and NEMS, respectively) due to its atomical thickness, extremely high carrier mobility, high mechanical strength and piezoresistive electromechanical transductions. NEMS devices based on graphene feature increased sensitivity, reduced size, and new functionalities. In this review, we discuss the merits of graphene as a functional material for MEMS and NEMS, the related properties of graphene, the transduction mechanisms of graphene MEMS and NEMS, typical transfer methods for integrating graphene with MEMS substrates, methods for fabricating suspended graphene, and graphene patterning and electrical contact. Consequently, we provide an overview of devices based on suspended and nonsuspended graphene structures. Finally, we discuss the potential and challenges of applications of graphene in MEMS and NEMS. Owing to its unique features, graphene is a promising material for emerging MEMS, NEMS and sensor applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01439v1-abstract-full').style.display = 'none'; document.getElementById('2410.01439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18258">arXiv:2409.18258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18258">pdf</a>, <a href="https://arxiv.org/format/2409.18258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.206501">10.1103/PhysRevLett.133.206501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capping effects on spin and charge excitations in parent and superconducting Nd1-xSrxNiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaBollita%2C+H">H. LaBollita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+N">N. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Y. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">T. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhartiya%2C+V">V. Bhartiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">S. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">X. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+A">A. Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardini%2C+F">F. Bernardini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18258v1-abstract-short" style="display: inline;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18258v1-abstract-full" style="display: none;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations of Nd1-xSrxNiO2 (x = 0 and 0.2). Spin excitations are observed in parent and 20% doped Nd1-xSrxNiO2 regardless of capping, proving that magnetism is intrinsic to infinite-layer nickelates and appears in a significant fraction of their phase diagram. In parent and superconducting Nd1-xSrxNiO2, the spin excitations are slightly hardened in capped samples compared to the non-capped ones. Additionally, a weaker Ni - Nd charge transfer peak at ~ 0.6 eV suggests that the hybridization between Ni 3d and Nd 5d orbitals is reduced in capped samples. From our data, capping induces only minimal differences in Nd1-xSrxNiO2 and we phenomenologically discuss these differences based on the reconstruction of the SrTiO3 - NdNiO2 interface and other mechanisms such as crystalline disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'none'; document.getElementById('2409.18258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10619">arXiv:2409.10619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10619">pdf</a>, <a href="https://arxiv.org/format/2409.10619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bootstrapping the Quantum Hall problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzetta%2C+R+A">Ryan A. Lanzetta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ledwith%2C+P">Patrick Ledwith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalaf%2C+E">Eslam Khalaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10619v1-abstract-short" style="display: inline;"> The bootstrap method aims to solve problems by imposing constraints on the space of physical observables, which often follow from physical assumptions such as positivity and symmetry. Here, we employ a bootstrap approach to study interacting electrons in the lowest Landau level by minimizing the energy as a function of the static structure factor subject to a set of constraints, bypassing the need&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10619v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10619v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10619v1-abstract-full" style="display: none;"> The bootstrap method aims to solve problems by imposing constraints on the space of physical observables, which often follow from physical assumptions such as positivity and symmetry. Here, we employ a bootstrap approach to study interacting electrons in the lowest Landau level by minimizing the energy as a function of the static structure factor subject to a set of constraints, bypassing the need to construct the full many-body wavefunction. This approach rigorously lower bounds the ground state energy, making it complementary to conventional variational upper bounds. We show that the lower bound we obtain is relatively tight, within at most 5\% from the ground state energy computed with exact diagonalization (ED) at small system sizes, and generally gets tighter as we include more constraints. In addition to energetics, our results reproduce the correct power law dependence of the pair correlation function at short distances and the existence of a large entanglement gap in the two-particle entanglement spectra for the Laughlin states at $谓= 1/3$. We further identify signatures of the composite Fermi liquid state close to half-filling. This shows that the bootstrap approach is capable, in principle, of describing non-trivial gapped topologically ordered, as well as gapless, phases. At the end, we will discuss possible extensions and limitations of this approach. Our work establishes numerical bootstrap as a promising method to study many-body phases in topological bands, paving the way to its application in moir茅 platforms where the energetic competition between fractional quantum anomalous Hall, symmetry broken, and gapless states remains poorly understood. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10619v1-abstract-full').style.display = 'none'; document.getElementById('2409.10619v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Total 24 pages. Main text: 16 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02176">arXiv:2408.02176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02176">pdf</a>, <a href="https://arxiv.org/format/2408.02176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Field-Tunable Valley Coupling and Localization in a Dodecagonal Semiconductor Quasicrystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhida Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanxing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaohui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+S">Dong Seob Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+Y">Yue Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+M">Miles Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abudayyeh%2C+H">Hamza Abudayyeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+C">Chih-Kang Shih</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalaf%2C+E">Eslam Khalaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoqin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02176v1-abstract-short" style="display: inline;"> Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir茅 crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02176v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02176v1-abstract-full" style="display: none;"> Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir茅 crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q valleys in separate layers are brought arbitrarily close in momentum space via higher-order Umklapp scatterings. A modest perpendicular electric field is sufficient to induce strong interlayer K-Q hybridization, manifested as a new hybrid excitonic doublet. Concurrently, we observe the disappearance of the trion resonance and attribute it to quasicrystal potential driven localization. Our findings highlight the remarkable attribute of incommensurate systems to bring any pair of momenta into close proximity, thereby introducing a novel aspect to valley engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02176v1-abstract-full').style.display = 'none'; document.getElementById('2408.02176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17375">arXiv:2407.17375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17375">pdf</a>, <a href="https://arxiv.org/format/2407.17375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconducting phase interference effect in momentum space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+B">Bo Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+R">Runze Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+D">Dingshun Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17375v1-abstract-short" style="display: inline;"> The pairing symmetry of superconducting electrons can be identified through various phase-sensitive experiments. However, phenomena like the Josephson effect predominantly depend on frameworks exhibiting macroscopic interference. At the microscopic level, phase interference effects within momentum space are absent due to the intrinsic challenge of extracting phase information from specific momentu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17375v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17375v1-abstract-full" style="display: none;"> The pairing symmetry of superconducting electrons can be identified through various phase-sensitive experiments. However, phenomena like the Josephson effect predominantly depend on frameworks exhibiting macroscopic interference. At the microscopic level, phase interference effects within momentum space are absent due to the intrinsic challenge of extracting phase information from specific momentum points. By incorporating the hybridization effect between a primary band and its replica bands generated by density wave orders or other interactions, we introduce a superconducting phase interference effect at the intersection points on the Fermi surfaces of these two bands. This effect clarifies the extraordinary behavior observed in the single-particle spectral function in recent angle-resolved photoemission spectroscopy (ARPES) measurements in the $Bi_2Sr_2CaCu_2O_{8+未}$ (Bi2212) superconductor. It also offers a new insight into the non-zero Josephson current observed in a $45^\circ$-twisted Josephson junction of cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17375v1-abstract-full').style.display = 'none'; document.getElementById('2407.17375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00281">arXiv:2407.00281</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00281">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adn5696">10.1126/sciadv.adn5696 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinguishing Surface and Bulk Electromagnetism via Their Dynamics in an Intrinsic Magnetic Topological Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+K+D">Khanh Duy Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Woojoo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+J">Jianchen Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tongyao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berruto%2C+G">Gabriele Berruto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+C">Chenhui Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ip%2C+C+I+J">Chi Ian Jess Ip</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Haoran Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+H">Seng Huat Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chaoxing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiao-Xiao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuolong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00281v1-abstract-short" style="display: inline;"> The indirect exchange interaction between local magnetic moments via surface electrons has been long predicted to bolster the surface ferromagnetism in magnetic topological insulators (MTIs), which facilitates the quantum anomalous Hall effect. This unconventional effect is critical to determining the operating temperatures of future topotronic devices. However, the experimental confirmation of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00281v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00281v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00281v1-abstract-full" style="display: none;"> The indirect exchange interaction between local magnetic moments via surface electrons has been long predicted to bolster the surface ferromagnetism in magnetic topological insulators (MTIs), which facilitates the quantum anomalous Hall effect. This unconventional effect is critical to determining the operating temperatures of future topotronic devices. However, the experimental confirmation of this mechanism remains elusive, especially in intrinsic MTIs. Here we combine time-resolved photoemission spectroscopy with time-resolved magneto-optical Kerr effect measurements to elucidate the unique electromagnetism at the surface of an intrinsic MTI MnBi2Te4. Theoretical modeling based on 2D Ruderman-Kittel-Kasuya-Yosida interactions captures the initial quenching of a surface-rooted exchange gap within a factor of two but over-estimates the bulk demagnetization by one order of magnitude. This mechanism directly explains the sizable gap in the quasi-2D electronic state and the nonzero residual magnetization in even-layer MnBi2Te4. Furthermore, it leads to efficient light-induced demagnetization comparable to state-of-the-art magnetophotonic crystals, promising an effective manipulation of magnetism and topological orders for future topotronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00281v1-abstract-full').style.display = 'none'; document.getElementById('2407.00281v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13228">arXiv:2405.13228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13228">pdf</a>, <a href="https://arxiv.org/format/2405.13228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c00008">10.1021/acs.nanolett.4c00008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preservation of Topological Surface States in Millimeter-Scale Transferred Membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ip%2C+C+I+J">Chi Ian Jess Ip</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+K+D">Khanhy Du Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+C">Chenhui Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+G">Gangbin Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoenig%2C+E">Eli Hoenig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marchese%2C+T+S">Thomas S. Marchese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Minghao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Woojoo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rokni%2C+H">Hossein Rokni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Y+S">Ying Shirley Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuolong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13228v1-abstract-short" style="display: inline;"> Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of topological insulator Bi$_2$Se$_3$, grown by mol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13228v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13228v1-abstract-full" style="display: none;"> Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of topological insulator Bi$_2$Se$_3$, grown by molecular beam epitaxy, down to 3 quintuple layers. We characterize the preservation of the topological surface states and quantum well states in transferred Bi$_{2}$Se$_{3}$ films using angle-resolved photoemission spectroscopy. Leveraging the photon-energy-dependent surface sensitivity, the photoemission spectra taken with $6$ eV and $21.2$ eV photons reveal a transfer-induced migration of the topological surface states from the top to the inner layers. By establishing clear electronic structures of the transferred films and unveiling the wavefunction relocation of the topological surface states, our work paves the physics foundation crucial for the future fabrication of artificially stacked topological materials with single-layer precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13228v1-abstract-full').style.display = 'none'; document.getElementById('2405.13228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12885">arXiv:2405.12885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12885">pdf</a>, <a href="https://arxiv.org/format/2405.12885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Featuring nuanced electronic band structure in gapped multilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jin Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qixuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zekang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Cheng Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Luca%2C+M">Mario Di Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hajigeorgiou%2C+E">Emily Hajigeorgiou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+M">Mitali Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12885v3-abstract-short" style="display: inline;"> Moir茅 systems featuring flat electronic bands exhibit a vast landscape of emergent exotic quantum states, making them one of the resourceful platforms in condensed matter physics in recent times. Tuning these systems via twist angle and the electric field greatly enhances our comprehension of their strongly correlated ground states. Here, we report a technique to investigate the nuanced intricacie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12885v3-abstract-full').style.display = 'inline'; document.getElementById('2405.12885v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12885v3-abstract-full" style="display: none;"> Moir茅 systems featuring flat electronic bands exhibit a vast landscape of emergent exotic quantum states, making them one of the resourceful platforms in condensed matter physics in recent times. Tuning these systems via twist angle and the electric field greatly enhances our comprehension of their strongly correlated ground states. Here, we report a technique to investigate the nuanced intricacies of band structures in dual-gated multilayer graphene systems. We utilize the Landau levels of a decoupled monolayer graphene to extract the electric field-dependent bilayer graphene charge neutrality point gap. Then, we extend this method to analyze the evolution of the band gap and the flat bandwidth in twisted mono-bilayer graphene. The band gap maximizes at the same displacement field where the flat bandwidth minimizes, indicating the strongest electron-electron correlation, which is supported by directly observing the emergence of a strongly correlated phase. Moreover, we extract integer and fractional gaps to further demonstrate the strength of this method. Our technique gives a new perspective and paves the way for improving the understanding of electronic band structure in versatile flat band systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12885v3-abstract-full').style.display = 'none'; document.getElementById('2405.12885v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09860">arXiv:2404.09860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09860">pdf</a>, <a href="https://arxiv.org/format/2404.09860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamic constraints on kinetic perturbations of homogeneous driven diffusions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qi Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chun%2C+H">Hyun-Myung Chun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horowitz%2C+J+M">Jordan M. Horowitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09860v1-abstract-short" style="display: inline;"> We analyze the static response to kinetic perturbations of nonequilibrium steady states that can be modeled as diffusions. We demonstrate that kinetic response is purely a nonequilibirum effect, measuring the degree to which the Fluctuation-Dissipation Theorem is violated out of equilibrium. For driven diffusions in a flat landscape, we further demonstrate that such response is constrained by the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09860v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09860v1-abstract-full" style="display: none;"> We analyze the static response to kinetic perturbations of nonequilibrium steady states that can be modeled as diffusions. We demonstrate that kinetic response is purely a nonequilibirum effect, measuring the degree to which the Fluctuation-Dissipation Theorem is violated out of equilibrium. For driven diffusions in a flat landscape, we further demonstrate that such response is constrained by the strength of the nonequilibrium driving via quantitative inequalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09860v1-abstract-full').style.display = 'none'; document.getElementById('2404.09860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03457">arXiv:2403.03457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03457">pdf</a>, <a href="https://arxiv.org/format/2403.03457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Scrambling Transition in Free Fermion Systems Induced by a Single Impurity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qucheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">Tianci Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03457v1-abstract-short" style="display: inline;"> In quantum many-body systems, interactions play a crucial role in the emergence of information scrambling. When particles interact throughout the system, the entanglement between them can lead to a rapid and chaotic spreading of quantum information, typically probed by the growth in operator size in the Heisenberg picture. In this study, we explore whether the operator undergoes scrambling when pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03457v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03457v1-abstract-full" style="display: none;"> In quantum many-body systems, interactions play a crucial role in the emergence of information scrambling. When particles interact throughout the system, the entanglement between them can lead to a rapid and chaotic spreading of quantum information, typically probed by the growth in operator size in the Heisenberg picture. In this study, we explore whether the operator undergoes scrambling when particles interact solely through a single impurity in generic spatial dimensions, focusing on fermion systems with spatial and temporal random hoppings. By connecting the dynamics of the operator to the symmetric exclusion process with a source term, we demonstrate the presence of an escape-to-scrambling transition when tuning the interaction strength for fermions in three dimensions. As a comparison, systems in lower dimensions are proven to scramble at arbitrarily weak interactions unless the hopping becomes sufficiently long-ranged. Our predictions are validated using both a Brownian circuit with a single Majorana fermion per site and a solvable Brownian SYK model with a large local Hilbert space dimension. This suggests the universality of the theoretical picture for free fermion systems with spatial and temporal randomness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03457v1-abstract-full').style.display = 'none'; document.getElementById('2403.03457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13886">arXiv:2401.13886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13886">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02349-0">10.1038/s41567-023-02349-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of possible excitonic charge density waves and metal-insulator transitions in atomically thin semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yang-hao Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+P">Pengfei Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haiyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+S">Shuaishuai Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tangprapha%2C+K">Kanjanaporn Tangprapha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yichen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaolong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Shengwei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13886v1-abstract-short" style="display: inline;"> Charge density wave (CDW) is a collective quantum phenomenon with a charge modulation in solids1-2. Condensation of electron and hole pairs with finite momentum will lead to such an ordered state3-7. However, lattice symmetry breaking manifested as the softening of phonon modes can occur simultaneously, which makes it difficult to disentangle the origin of the transition8-14. Here, we report a con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13886v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13886v1-abstract-full" style="display: none;"> Charge density wave (CDW) is a collective quantum phenomenon with a charge modulation in solids1-2. Condensation of electron and hole pairs with finite momentum will lead to such an ordered state3-7. However, lattice symmetry breaking manifested as the softening of phonon modes can occur simultaneously, which makes it difficult to disentangle the origin of the transition8-14. Here, we report a condensed phase in low dimensional HfTe2, whereas angle-resolved photoemission spectroscopy (ARPES) measurements show a metal-insulator transition by lowering the temperature in single triatomic layer (TL) HfTe2. A full gap opening, renormalization of the bands, and emergence of replica bands at the M point are observed in the low temperatures, indicating formation of a CDW in the ground state.Raman spectroscopy shows no sign of lattice distortion within the detection limit. The results are corroborated by first-principles calculations, demonstrating the electronic origin of the CDW. By adding more layers, the phase transition is suppressed and completely destroyed at 3 TL because of the increased screening around the Fermi surface. Interestingly, a small amount of electron doping in 1 TL film during the growth significantly raises the transition temperature (TC), which is attributed to a reduced screening effect and a more balanced electron and hole carrier density. Our results indicate a CDW formation mechanism consistent with the excitonic insulator phase in low dimensional HfTe2 and open up opportunity for realization of novel quantum states based on exciton condensation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13886v1-abstract-full').style.display = 'none'; document.getElementById('2401.13886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://www.nature.com/articles/s41567-023-02349-0 published in Nature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02259">arXiv:2401.02259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02259">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Nearest-Neighboring Pairing of Monolayer NbSe2 Facilitates the Emergence of Topological Superconducting States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Quan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanru Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jianxin Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+L">Lijun Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02259v1-abstract-short" style="display: inline;"> NbSe2, which simultaneously exhibits superconductivity and spin-orbit coupling, is anticipated to pave the way for topological superconductivity and unconventional electron pairing. In this paper, we systematically study topological superconducting (TSC) phases in monolayer NbSe2 through mixing on-site s-wave pairing (ps) with nearest-neighbor pairing (psA1) based on a tight-binding model. We obse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02259v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02259v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02259v1-abstract-full" style="display: none;"> NbSe2, which simultaneously exhibits superconductivity and spin-orbit coupling, is anticipated to pave the way for topological superconductivity and unconventional electron pairing. In this paper, we systematically study topological superconducting (TSC) phases in monolayer NbSe2 through mixing on-site s-wave pairing (ps) with nearest-neighbor pairing (psA1) based on a tight-binding model. We observe rich phases with both fixed and sensitive Chern numbers (CNs) depending on the chemical potential (渭) and out-of-plane magnetic field (Vz). As the psA1 increases, the TSC phase manifests matching and mismatching features according to whether there is a bulk-boundary correspondence (BBC). Strikingly, the introduction of mixed wave pairing significantly reduces the critical Vz to form TSC phases compared with the pure s-wave paring. Moreover, the TSC phase can be modulated even at Vz=0 under appropriate 渭 and psA1, which is identified by the robust topological edge states (TESs) of ribbons. Additionally, the mixed pairing influences the hybridization of bulk and edge states, resulting in a matching/mismatching BBC with localized/oscillating TESs on the ribbon. Our finding is helpful for the realization of TSC states in experiment, as well as designing and regulating TSC materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02259v1-abstract-full').style.display = 'none'; document.getElementById('2401.02259v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages. 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00499">arXiv:2401.00499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00499">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+S">Sihao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhaoxin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yunlong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00499v3-abstract-short" style="display: inline;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'inline'; document.getElementById('2401.00499v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00499v3-abstract-full" style="display: none;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that uses enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limits the use of high-precision potential energy functions for simulations. To address this issue, we present a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allows for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a Carbonyl insertion reaction catalyzed by Manganese. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'none'; document.getElementById('2401.00499v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16853">arXiv:2312.16853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A novel two-dimensional all-carbon Dirac node-line semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Youjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qian Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhenpeng Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16853v1-abstract-short" style="display: inline;"> Carbon allotropes have vast potential in various applications, including superconductivity, energy storage, catalysis, and photoelectric semiconductor devices. Recently, there has been significant research interest in exploring new carbon materials that exhibit unique electronic structures. Here, we propose a novel two-dimensional (2D) carbon allotrope called TCH-SSH-2D, which possesses a Dirac no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16853v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16853v1-abstract-full" style="display: none;"> Carbon allotropes have vast potential in various applications, including superconductivity, energy storage, catalysis, and photoelectric semiconductor devices. Recently, there has been significant research interest in exploring new carbon materials that exhibit unique electronic structures. Here, we propose a novel two-dimensional (2D) carbon allotrope called TCH-SSH-2D, which possesses a Dirac node-line (DNL) semimetallic state. The structure of TCH-SSH-2D is derived from the TCH-type Archimedean polyhedral carbon cluster units, combined with the SSH lattice model, possessing a space group of tetragonal P4/mmm. Using first-principles calculations, we demonstrate that the system is dynamically, thermodynamically, and mechanically stable. It exhibits an energetically favorable structure with no imaginary frequency in the phonon dispersion curves and elastic constants satisfying the Born-Huang stability criterion. Our findings not only contribute to a deeper understanding of the carbon allotrope family but also provide an opportunity to explore unique Dirac states in two-dimensional pure carbon systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16853v1-abstract-full').style.display = 'none'; document.getElementById('2312.16853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08260">arXiv:2312.08260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08260">pdf</a>, <a href="https://arxiv.org/format/2312.08260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin fluctuations sufficient to mediate superconductivity in nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Worm%2C+P">Paul Worm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kitatani%2C+M">Motoharu Kitatani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">Izabela Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Csontosov%C3%A1%2C+D">Diana Csontosov谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+L">Liang Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomczak%2C+J+M">Jan M. Tomczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Held%2C+K">Karsten Held</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08260v1-abstract-short" style="display: inline;"> Infinite-layer nickelates show high-temperature superconductivity, and the experimental phase diagram agrees well with the one simulated within the dynamical vertex approximation (D$螕$A). Here, we compare the spin-fluctuation spectrum behind these calculations to resonant inelastic X-ray scattering experiments. The overall agreement is good. This independent cross-validation of the strength of spi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08260v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08260v1-abstract-full" style="display: none;"> Infinite-layer nickelates show high-temperature superconductivity, and the experimental phase diagram agrees well with the one simulated within the dynamical vertex approximation (D$螕$A). Here, we compare the spin-fluctuation spectrum behind these calculations to resonant inelastic X-ray scattering experiments. The overall agreement is good. This independent cross-validation of the strength of spin fluctuations strongly supports the scenario, advanced by D$螕$A, that spin-fluctuations are the mediator of the superconductivity observed in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08260v1-abstract-full').style.display = 'none'; document.getElementById('2312.08260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07043">arXiv:2310.07043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07043">pdf</a>, <a href="https://arxiv.org/format/2310.07043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.035137">10.1103/PhysRevB.110.035137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Information Scrambling in Free Fermion Systems with a Sole Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qucheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07043v2-abstract-short" style="display: inline;"> It is well established that the presence of single impurity can have a substantial impact on the transport properties of quantum many-body systems at low temperature. In this work, we investigate a close analog of this problem from the perspective of quantum information dynamics. We construct Brownian circuits and Clifford circuits consisting of a free fermion hopping term and a sole interaction.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07043v2-abstract-full').style.display = 'inline'; document.getElementById('2310.07043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07043v2-abstract-full" style="display: none;"> It is well established that the presence of single impurity can have a substantial impact on the transport properties of quantum many-body systems at low temperature. In this work, we investigate a close analog of this problem from the perspective of quantum information dynamics. We construct Brownian circuits and Clifford circuits consisting of a free fermion hopping term and a sole interaction. In both circuits, our findings reveal the emergence of operator scrambling. Notably, the growth of the operator can be mapped to the symmetric exclusion process in the presence of a source term localized at a single point. We demonstrate that in the one-dimensional system, both the operator and entanglement exhibit diffusive scaling. Conversely, in scenarios characterized by all-to-all hopping, the operator&#39;s size undergoes exponential growth, while the entanglement exhibits a linear increase over time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07043v2-abstract-full').style.display = 'none'; document.getElementById('2310.07043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 035137 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16384">arXiv:2307.16384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.16384">pdf</a>, <a href="https://arxiv.org/format/2307.16384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48610-9">10.1038/s41467-024-48610-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ARPES Detection of Superconducting Gap Sign in Unconventional Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bok%2C+J+M">Jin Mo Bok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ai%2C+P">Ping Ai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiangyu Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H">Han-Yong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16384v1-abstract-short" style="display: inline;"> Superconductivity is realized by opening a gap in the superconducting state. The gap symmetry is crucial in understanding the underlying superconductivity mechanism. The magnitude and the phase are essential in fully characterizing the superconducting gap. Angle-resolved photoemission spectroscopy (ARPES) has played a key role in determining the gap symmetry in unconventional superconductors. Howe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16384v1-abstract-full').style.display = 'inline'; document.getElementById('2307.16384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16384v1-abstract-full" style="display: none;"> Superconductivity is realized by opening a gap in the superconducting state. The gap symmetry is crucial in understanding the underlying superconductivity mechanism. The magnitude and the phase are essential in fully characterizing the superconducting gap. Angle-resolved photoemission spectroscopy (ARPES) has played a key role in determining the gap symmetry in unconventional superconductors. However, it has been considered so far that ARPES can only measure the magnitude of the superconducting gap but not its phase; the phase has to be detected by other phase-sensitive techniques. Here we propose a new method to directly detect the superconducting gap sign by using ARPES. This method is successfully validated in a cuprate superconductor with a well-known $d$-wave gap symmetry. When two bands are nearby in momentum space and have a strong interband interaction, the resulted electronic structures in the superconducting state are sensitive to the relative gap sign between the two bands which can be captured by ARPES measurements. Our present work provides a new way to detect the gap sign and can be applied to various superconductors, particularly those with multiple orbitals like the iron-based superconductors. It also makes ARPES more powerful to determine both the gap magnitude and the phase that are significant in understanding the superconductivity mechanism of unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16384v1-abstract-full').style.display = 'none'; document.getElementById('2307.16384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 4538 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07137">arXiv:2307.07137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07137">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Bilayer Kagome Borophene with Multiple van Hove Singularities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qian Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Q">Qimin Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhenpeng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07137v2-abstract-short" style="display: inline;"> The appearance of van Hove singularities near the Fermi level leads to prominent phenomena, including superconductivity, charge density wave, and ferromagnetism. Here a bilayer Kagome lattice with multiple van Hove singularities is designed and a novel borophene with such lattice (BK-borophene) is proposed by the first-principles calculations. BK-borophene, which is formed via three-center two-ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07137v2-abstract-full').style.display = 'inline'; document.getElementById('2307.07137v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07137v2-abstract-full" style="display: none;"> The appearance of van Hove singularities near the Fermi level leads to prominent phenomena, including superconductivity, charge density wave, and ferromagnetism. Here a bilayer Kagome lattice with multiple van Hove singularities is designed and a novel borophene with such lattice (BK-borophene) is proposed by the first-principles calculations. BK-borophene, which is formed via three-center two-electron (3c-2e) sigma-type bonds, is predicted to be energetically, dynamically, thermodynamically, and mechanically stable. The electronic structure hosts both conventional and high-order van Hove singularities in one band. The conventional van Hove singularity resulting from the horse saddle is 0.065 eV lower than the Fermi level, while the high-order one resulting from the monkey saddle is 0.385 eV below the Fermi level. Both the singularities lead to the divergence of electronic density of states. Besides, the high-order singularity is just intersected to a Dirac-like cone, where the Fermi velocity can reach 1340000 m/s. The interaction between the two Kagome lattices is critical for the appearance of high-order van Hove singularities. The novel bilayer Kagome borophene with rich and intriguing electronic structure offers an unprecedented platform for studying correlation phenomena in quantum material systems and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07137v2-abstract-full').style.display = 'none'; document.getElementById('2307.07137v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05713">arXiv:2306.05713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generalized Nucleation Theory for Ice Crystallization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Maodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yupeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yijie Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dechin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lijiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05713v3-abstract-short" style="display: inline;"> Despite the simplicity of the water molecule, the kinetics of ice nucleation under natural conditions can be complex. We investigated spontaneously grown ice nuclei using all-atom molecular dynamics simulations and found significant differences between the kinetics of ice formation through spontaneously formed and ideal nuclei. Since classical nucleation theory can only provide a good description&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05713v3-abstract-full').style.display = 'inline'; document.getElementById('2306.05713v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05713v3-abstract-full" style="display: none;"> Despite the simplicity of the water molecule, the kinetics of ice nucleation under natural conditions can be complex. We investigated spontaneously grown ice nuclei using all-atom molecular dynamics simulations and found significant differences between the kinetics of ice formation through spontaneously formed and ideal nuclei. Since classical nucleation theory can only provide a good description of ice nucleation in ideal conditions, we propose a generalized nucleation theory that can better characterize the kinetics of ice crystal nucleation in general conditions. This study provides an explanation on why previous experimental and computational studies have yielded widely varying critical nucleation sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05713v3-abstract-full').style.display = 'none'; document.getElementById('2306.05713v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17363">arXiv:2303.17363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17363">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2023.170947">10.1016/j.jmmm.2023.170947 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angular dependence of the electrically driven and detected ferromagnetic resonance in Ni$_{36}$Fe$_{64}$ wires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsoi%2C+M">Maxim Tsoi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17363v1-abstract-short" style="display: inline;"> We study the angular dependence of ferromagnetic resonance (FMR) in Ni$_{36}$Fe$_{64}$ wires using both traditional microwave-absorption and electrical-detection techniques. In our experiments we apply a static magnetic field at an angle $胃$ with respect to the wire, while the microwave current, which is responsible for driving FMR, is always flowing along the wire. For different $胃$s we find a ve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17363v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17363v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17363v1-abstract-full" style="display: none;"> We study the angular dependence of ferromagnetic resonance (FMR) in Ni$_{36}$Fe$_{64}$ wires using both traditional microwave-absorption and electrical-detection techniques. In our experiments we apply a static magnetic field at an angle $胃$ with respect to the wire, while the microwave current, which is responsible for driving FMR, is always flowing along the wire. For different $胃$s we find a very similar behavior for both microwave-absorption and electrically-detected FMR -- the resonance magnetic field follows a simple &#34;$1/\cos(胃)$&#34; dependence. This simple behavior highlights the importance of the relative orientation between the driving current and magnetic field. We also investigated the dependence of the electrically detected FMR on dc and rf (microwave) current magnitudes. As expected, the resonance signal increases linearly with both the applied dc current and the microwave power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17363v1-abstract-full').style.display = 'none'; document.getElementById('2303.17363v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02865">arXiv:2303.02865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.02865">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/11/117404">10.1088/0256-307X/41/11/117404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Distinct Charge Orders in Infinite-layer PrNiO2+未 revealed by Resonant X-ray Diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02865v2-abstract-short" style="display: inline;"> A broken translation symmetry has recently been revealed in infinite-layer nickelates, which has piqued considerable interest in its origin and relation to superconductivity, as well as in its comparison to charge order in cuprates. Here, by performing resonant x-ray scattering measurements in thin films of infinite-layer PrNiO2+未, we find that the superlattice reflection at the Ni L3 absorption e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02865v2-abstract-full').style.display = 'inline'; document.getElementById('2303.02865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02865v2-abstract-full" style="display: none;"> A broken translation symmetry has recently been revealed in infinite-layer nickelates, which has piqued considerable interest in its origin and relation to superconductivity, as well as in its comparison to charge order in cuprates. Here, by performing resonant x-ray scattering measurements in thin films of infinite-layer PrNiO2+未, we find that the superlattice reflection at the Ni L3 absorption edge differs considerably from that at the Pr M5 resonance in their dependence on energy, temperature, and local symmetry, indicating they are two distinct charge orders despite the same in-plane wavevectors. These dissimilarities might be related to the excess oxygen dopants, considering that the resonant reflections were observed in an incompletely reduced PrNiO2+未 film. In addition, our azimuthal analysis suggests that the oxygen ligands should play a pivotal role in the charge modulation revealed at the Ni L3 resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02865v2-abstract-full').style.display = 'none'; document.getElementById('2303.02865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 41 117404 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.10031">arXiv:2302.10031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.10031">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L161404">10.1103/PhysRevB.105.L161404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensional crossover and symmetry transformation of the charge density waves in VSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">P. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y+-">Y. -H. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R+-">R. -Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H+T">H. T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A+-">A. -V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+M+Y">M. Y. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T+-">T. -C. Chiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.10031v1-abstract-short" style="display: inline;"> Collective phenomena in solids can be sensitive to the dimensionality of the system; a case of special interest is VSe2, which shows a (r7 x r3) charge density wave (CDW) in the single layer with the three-fold symmetry in the normal phase spontaneously broken, in contrast to the (4 x 4) in-plane CDW in the bulk. Angle-resolved photoemission spectroscopy (ARPES) from VSe2 ranging from a single lay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10031v1-abstract-full').style.display = 'inline'; document.getElementById('2302.10031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.10031v1-abstract-full" style="display: none;"> Collective phenomena in solids can be sensitive to the dimensionality of the system; a case of special interest is VSe2, which shows a (r7 x r3) charge density wave (CDW) in the single layer with the three-fold symmetry in the normal phase spontaneously broken, in contrast to the (4 x 4) in-plane CDW in the bulk. Angle-resolved photoemission spectroscopy (ARPES) from VSe2 ranging from a single layer to the bulk reveals the evolution of the electronic structure including the Fermi surface contours and the CDW gap. At a thickness of two layers, the ARPES maps are already nearly bulklike, but the transition temperature TC for the (4 x 4) CDW is much higher than the bulk value of 110 K. These results can be understood as a result of dimensional crossover of phonon instability driven by a competition of nesting vectors. Our study provides key insights into the CDW mechanisms and offers a perspective in the search and control of emergent phases in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10031v1-abstract-full').style.display = 'none'; document.getElementById('2302.10031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, L161404 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03876">arXiv:2302.03876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.03876">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36667-x">10.1038/s41467-023-36667-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of high-temperature exciton condensation in a two-dimensional semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yang-hao Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuzhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haotian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pu%2C+J">Jinxu Pu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+S">Shengtao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yichen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T+C">Tai C. Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03876v1-abstract-short" style="display: inline;"> Electrons and holes can spontaneously form excitons and condense in a semimetal or semiconductor, as predicted decades ago. This type of Bose condensation can happen at much higher temperatures in comparison with dilute atomic gases. Two-dimensional (2D) materials with reduced Coulomb screening around the Fermi level are promising for realizing such a system. Here we report a change in the band st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03876v1-abstract-full').style.display = 'inline'; document.getElementById('2302.03876v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03876v1-abstract-full" style="display: none;"> Electrons and holes can spontaneously form excitons and condense in a semimetal or semiconductor, as predicted decades ago. This type of Bose condensation can happen at much higher temperatures in comparison with dilute atomic gases. Two-dimensional (2D) materials with reduced Coulomb screening around the Fermi level are promising for realizing such a system. Here we report a change in the band structure accompanied by a phase transition at about 180 K in single-layer ZrTe2 based on angle-resolved photoemission spectroscopy (ARPES) measurements. Below the transition temperature, gap opening and development of an ultra-flat band top around the zone center are observed. This gap and the phase transition are rapidly suppressed with extra carrier densities introduced by adding more layers or dopants on the surface. The results suggest the formation of an excitonic insulating ground state in single-layer ZrTe2, and the findings are rationalized by first principles calculations and a self-consistent mean-field theory. Our study provides evidence for exciton condensation in a 2D semimetal and demonstrates strong dimensionality effects on the formation of intrinsic bound electron-hole pairs in solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03876v1-abstract-full').style.display = 'none'; document.getElementById('2302.03876v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 994 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00604">arXiv:2302.00604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00604">pdf</a>, <a href="https://arxiv.org/format/2302.00604">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05610-3">10.1038/s41586-022-05610-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudospin-selective Floquet band engineering in black phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shaohua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+C">Changhua Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+B">Benshu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hui Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qixuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Haoyuan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+T">Tianyun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+P">Peizhe Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shuyun Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00604v1-abstract-short" style="display: inline;"> Time-periodic light field has emerged as a control knob for manipulating quantum states in solid-state materials, cold atoms and photonic systems via hybridization with photon-dressed Floquet states in the strong coupling limit, dubbed as Floquet engineering. Such interaction leads to tailored properties of quantum materials, for example, modifications of the topological properties of Dirac materi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00604v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00604v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00604v1-abstract-full" style="display: none;"> Time-periodic light field has emerged as a control knob for manipulating quantum states in solid-state materials, cold atoms and photonic systems via hybridization with photon-dressed Floquet states in the strong coupling limit, dubbed as Floquet engineering. Such interaction leads to tailored properties of quantum materials, for example, modifications of the topological properties of Dirac materials and modulation of the optical response. Despite extensive research interests over the past decade, there is no experimental evidence of momentum-resolved Floquet band engineering of semiconductors, which is a crucial step to extend Floquet engineering to a wide range of solid-state materials. Here, based on time- and angle-resolved photoemission spectroscopy measurements, we report experimental signatures of Floquet band engineering in a model semiconductor - black phosphorus. Upon near-resonance pumping at photon energy of 340 to 440 meV, a strong band renormalization is observed near the band edges. In particular, light-induced dynamical gap opening is resolved at the resonance points, which emerges simultaneously with the Floquet sidebands. Moreover, the band renormalization shows a strong selection rule favoring pump polarization along the armchair direction, suggesting pseudospin selectivity for the Floquet band engineering as enforced by the lattice symmetry. Our work demonstrates pseudospin-selective Floquet band engineering in black phosphorus, and provides important guiding principles for Floquet engineering of semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00604v1-abstract-full').style.display = 'none'; document.getElementById('2302.00604v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 614, 75-80 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00658">arXiv:2211.00658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00658">pdf</a>, <a href="https://arxiv.org/format/2211.00658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Untwisting moir茅 physics: Almost ideal bands and fractional Chern insulators in periodically strained monolayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Junkai Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ledwith%2C+P">Patrick Ledwith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D">Daniel Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalaf%2C+E">Eslam Khalaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00658v1-abstract-short" style="display: inline;"> Moir茅 systems have emerged in recent years as a rich platform to study strong correlations. Here, we will discuss a simple, experimentally feasible setup based on periodically strained graphene that reproduces several key aspects of twisted moir茅 heterostructures -- but without introducing a twist. We consider a monolayer graphene sheet subject to a $C_2$-breaking periodic strain-induced psuedomag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00658v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00658v1-abstract-full" style="display: none;"> Moir茅 systems have emerged in recent years as a rich platform to study strong correlations. Here, we will discuss a simple, experimentally feasible setup based on periodically strained graphene that reproduces several key aspects of twisted moir茅 heterostructures -- but without introducing a twist. We consider a monolayer graphene sheet subject to a $C_2$-breaking periodic strain-induced psuedomagnetic field (PMF) with period $L_M \gg a$, along with a scalar potential of the same period. This system has {\it almost ideal} flat bands with valley-resolved Chern number $\pm 1$, where the deviation from ideal band geometry is analytically controlled and exponentially small in the dimensionless ratio $(L_M/l_B)^2$ where $l_B$ is the magnetic length corresponding to the maximum value of the PMF. Moreover, the scalar potential can tune the bandwidth far below the Coulomb scale, making this a very promising platform for strongly interacting topological phases. Using a combination of strong-coupling theory and self-consistent Hartree fock, we find quantum anomalous Hall states at integer fillings. At fractional filling, exact diagonaliztion reveals a fractional Chern insulator at parameters in the experimentally feasible range. Overall, we find that this system has larger interaction-induced gaps, smaller quasiparticle dispersion, and enhanced tunability compared to twisted graphene systems, even in their ideal limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00658v1-abstract-full').style.display = 'none'; document.getElementById('2211.00658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06348">arXiv:2210.06348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06348">pdf</a>, <a href="https://arxiv.org/format/2210.06348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02206-0">10.1038/s41567-023-02206-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Origin of High-Tc Maximization and Persistence in Trilayer Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiangyu Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yinghao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hailan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+Y">Yingjie Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chengtian Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06348v1-abstract-short" style="display: inline;"> In high temperature cuprate superconductors, it was found that the superconducting transition temperature Tc depends on the number of CuO2 planes (n) in the structural unit and the maximum Tc is realized in the trilayer system (n=3). It was also found that the trilayer superconductors exhibit an unusual phase diagram that Tc keeps nearly constant in the overdoped region which is in strong contrast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06348v1-abstract-full').style.display = 'inline'; document.getElementById('2210.06348v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06348v1-abstract-full" style="display: none;"> In high temperature cuprate superconductors, it was found that the superconducting transition temperature Tc depends on the number of CuO2 planes (n) in the structural unit and the maximum Tc is realized in the trilayer system (n=3). It was also found that the trilayer superconductors exhibit an unusual phase diagram that Tc keeps nearly constant in the overdoped region which is in strong contrast to the Tc decrease usually found in other cuprate superconductors. The electronic origin of the Tc maximization in the trilayer superconductors and its high Tc persistence in the overdoped region remains unclear. By taking high resolution laser-based angle resolved photoemission (ARPES) measurements, here we report our revelation of the microscopic origin of the unusual superconducting properties in the trilayer superconductors. For the first time we have observed the trilayer splitting in Bi2Sr2Ca2Cu3O10+d (Bi2223) superconductor. The observed Fermi surface, band structures, superconducting gap and the selective Bogoliubov band hybridizations can be well described by a three-layer interaction model. Quantitative information of the microscopic processes involving intra- and interlayer hoppings and pairings are extracted. The electronic origin of the maximum Tc in Bi2223 and the persistence of the high Tc in the overdoped region is revealed. These results provide key insights in understanding high Tc superconductivity and pave a way to further enhance Tc in the cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06348v1-abstract-full').style.display = 'none'; document.getElementById('2210.06348v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 19, 1841-1847 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14070">arXiv:2209.14070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14070">pdf</a>, <a href="https://arxiv.org/format/2209.14070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.165121">10.1103/PhysRevB.107.165121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional coherent spectrum of interacting spinons from matrix-product states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qi Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+H">Haijun Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yuan Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14070v1-abstract-short" style="display: inline;"> We compute numerically the second and third order nonlinear magnetic susceptibilities of an Ising ladder model in the context of two-dimensional coherent spectroscopy by using the infinite time-evolving block decimation method. The Ising ladder model couples a quantum Ising chain to a bath of polarized spins, thereby effecting the decay of spinon excitations. We show that its third order susceptib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14070v1-abstract-full').style.display = 'inline'; document.getElementById('2209.14070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14070v1-abstract-full" style="display: none;"> We compute numerically the second and third order nonlinear magnetic susceptibilities of an Ising ladder model in the context of two-dimensional coherent spectroscopy by using the infinite time-evolving block decimation method. The Ising ladder model couples a quantum Ising chain to a bath of polarized spins, thereby effecting the decay of spinon excitations. We show that its third order susceptibility contains a robust spinon echo signal in the weak coupling regime, which appears in the two-dimensional coherent spectrum as a highly anisotropic peak in the frequency plane. The spinon echo peak reveals the dynamical properties of the spinons. In particular, the spectral peak corresponding to the high energy spinons, which couple to the bath, is suppressed with increasing coupling, whereas those do not show no significant changes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14070v1-abstract-full').style.display = 'none'; document.getElementById('2209.14070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04365">arXiv:2209.04365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.04365">pdf</a>, <a href="https://arxiv.org/format/2209.04365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.224311">10.1103/PhysRevB.106.224311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semiclassical dynamics of electrons in space-time crystal: Magnetization, polarization, and current response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04365v3-abstract-short" style="display: inline;"> A space-time crystal is defined as a quantum mechanical system with both spatial and temporal periodicity. Such a system can be described by the Floquet-Bloch (FB) theory. We first formulate a semiclassical theory by constructing a wave-packet through the superposition of the FB wave functions and derive the equations of motion of FB electrons subjected to slowly varying external fields (not to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04365v3-abstract-full').style.display = 'inline'; document.getElementById('2209.04365v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04365v3-abstract-full" style="display: none;"> A space-time crystal is defined as a quantum mechanical system with both spatial and temporal periodicity. Such a system can be described by the Floquet-Bloch (FB) theory. We first formulate a semiclassical theory by constructing a wave-packet through the superposition of the FB wave functions and derive the equations of motion of FB electrons subjected to slowly varying external fields (not to be confused with the fast-changing Floquet drive), revealing behaviors similar to ordinary Bloch electrons but with quantities modified in the Floquet context. Specifically, we study local magnetic moment due to the self-rotation of the wave-packet, a contribution to total magnetization from the Berry curvature in k-space, and the polarization of a fully occupied FB band. Based on the semiclassical theory, we can also show the fingerprint of the energy flow in such an energy-non-conserved system. We then discuss the density matrix of a FB system attached to a thermal bath, which allows us to investigate quantities involving many electrons in the non-interacting limit. As an application, we calculate the intrinsic current response in an oblique spacetime metal showing the non-equilibrium nature of the FB system. The current response can also be related to the acoustoelectric effect. Overall, we develop a systematic approach for studying space-time crystals and provide a powerful tool to explore the electronic properties of this exotic system with coupled space and time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04365v3-abstract-full').style.display = 'none'; document.getElementById('2209.04365v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13918">arXiv:2208.13918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13918">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42961-5">10.1038/s41467-023-42961-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of quantum criticality in cuprates by charge density fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">R. Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">L. Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caprara%2C+S">S. Caprara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Camisa%2C+P">P. Camisa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">X. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauch%2C+T">T. Bauch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y+Y">Y. Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Castro%2C+C">C. Di Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grilli%2C+M">M. Grilli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lombardi%2C+F">F. Lombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">L. Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13918v3-abstract-short" style="display: inline;"> The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13918v3-abstract-full').style.display = 'inline'; document.getElementById('2208.13918v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13918v3-abstract-full" style="display: none;"> The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to $p$=0.22). At $p^*\approx$0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy $螖$ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13918v3-abstract-full').style.display = 'none'; document.getElementById('2208.13918v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 4 figures, 9 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 7198 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05614">arXiv:2208.05614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05614">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Excitations in Strained Infinite-layer Nickelate PrNiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shiyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">Izabela Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drewanowski%2C+A">Annabella Drewanowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rothenb%C3%BChler%2C+P">Pascal Rothenb眉hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05614v1-abstract-short" style="display: inline;"> Strongly correlated materials often respond sensitively to the external perturbations. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be dramatically enhanced via only ~1% compressive strain-tuning enabled by substrate design. However, the root of such enhancement remains elusive. While the superconducting pairing mechanism is s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05614v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05614v1-abstract-full" style="display: none;"> Strongly correlated materials often respond sensitively to the external perturbations. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be dramatically enhanced via only ~1% compressive strain-tuning enabled by substrate design. However, the root of such enhancement remains elusive. While the superconducting pairing mechanism is still not settled, magnetic Cooper pairing - similar to the cuprates has been proposed. Using resonant inelastic x-ray scattering, we investigate the magnetic excitations in infinite-layer PrNiO2 thin films for different strain conditions. The magnon bandwidth of PrNiO2 shows only marginal response to strain-tuning, in sharp contrast to the striking enhancement of the superconducting transition temperature Tc in the doped superconducting samples. These results suggest the enhancement of Tc is not mediated by spin excitations and thus provide important empirics for the understanding of superconductivity in infinite-layer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05614v1-abstract-full').style.display = 'none'; document.getElementById('2208.05614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11688">arXiv:2207.11688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.11688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> HSH-carbon: A novel sp2-sp3 carbon allotrope with an ultrawide energy gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia-Qi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qian Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhen-Peng Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11688v1-abstract-short" style="display: inline;"> A sp2-sp3 hybrid carbon allotrope named HSH-carbon is proposed by the first-principles calculations. The structure of HSH-carbon can be regarded as a template polymerization of [1.1.1]propellane molecules in a hexagonal lattice, as well as, an AA stacking of recently reported HSH-C10 consisting of carbon trigonal bipyramids. Based on calculations, the stability of this structure is demonstrated in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11688v1-abstract-full').style.display = 'inline'; document.getElementById('2207.11688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11688v1-abstract-full" style="display: none;"> A sp2-sp3 hybrid carbon allotrope named HSH-carbon is proposed by the first-principles calculations. The structure of HSH-carbon can be regarded as a template polymerization of [1.1.1]propellane molecules in a hexagonal lattice, as well as, an AA stacking of recently reported HSH-C10 consisting of carbon trigonal bipyramids. Based on calculations, the stability of this structure is demonstrated in terms of the cohesive energy, phonon dispersion, Born-Huang stability criteria, and ab initio molecular dynamics. HSH-carbon is predicted to be a semiconductor with an indirect energy gap of 3.56 eV at the PBE level or 4.80 eV at the HSE06 level. It is larger than the gap of Si and close to the gap of c-diamond, which indicates HSH-carbon is potentially an ultrawide bandgap semiconductor. The effective masses of carriers in the VB and CB edge are comparable with wide bandgap semiconductors such as GaN and ZnO. The elastic behavior of HSH-carbon such as bulk modulus, Young&#39;s modulus and shear modulus is comparable with that of T-carbon and much smaller than that of c-diamond, which suggests that HSH-carbon would be much easier to be processed than c-diamond in practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11688v1-abstract-full').style.display = 'none'; document.getElementById('2207.11688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07962">arXiv:2207.07962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07962">pdf</a>, <a href="https://arxiv.org/format/2207.07962">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac7214">10.1088/1674-1056/ac7214 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+未 superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chunyao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07962v1-abstract-short" style="display: inline;"> The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry breaking and which symmetries are broken across the pseudogap transition. By performing high resolution laser-based angle-resolved photoemission measurements on the optimally-doped Bi2Sr1.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07962v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07962v1-abstract-full" style="display: none;"> The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry breaking and which symmetries are broken across the pseudogap transition. By performing high resolution laser-based angle-resolved photoemission measurements on the optimally-doped Bi2Sr1.6La0.4CuO6+未 superconductor, we report the observations of the particle-hole symmetry conservation in both the superconducting state and the pseudogap state along the entire Fermi surface. These results provide key insights in understanding the nature of the pseudogap and its relation with high temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07962v1-abstract-full').style.display = 'none'; document.getElementById('2207.07962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 31, 087401 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.06830">arXiv:2205.06830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.06830">pdf</a>, <a href="https://arxiv.org/format/2205.06830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.075420">10.1103/PhysRevB.106.075420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry Origin of Lattice Vibration Modes in Twisted Multilayer Graphene: Phasons vs Moir茅 Phonons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalaf%2C+E">Eslam Khalaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.06830v2-abstract-short" style="display: inline;"> Lattice dynamics play a crucial role in the physics of Moir茅 systems. In twisted bilayer graphene (TBG), it was shown that, in addition to the graphene phonons, there is another set of gapless excitations termed Moir茅 Phonons [Phys. Rev. B, 075416, 2019] reflecting the lattice dynamics at the Moire superlattice level. These modes were later suggested to be phasons due to the incommensurate stackin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06830v2-abstract-full').style.display = 'inline'; document.getElementById('2205.06830v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.06830v2-abstract-full" style="display: none;"> Lattice dynamics play a crucial role in the physics of Moir茅 systems. In twisted bilayer graphene (TBG), it was shown that, in addition to the graphene phonons, there is another set of gapless excitations termed Moir茅 Phonons [Phys. Rev. B, 075416, 2019] reflecting the lattice dynamics at the Moire superlattice level. These modes were later suggested to be phasons due to the incommensurate stacking of the two graphene layers [Phys. Rev. B, 155426, 2019]. In this work, we elucidate the equivalence of these two seemingly distinct perspectives by identifying an underlying symmetry, which we dub mismatch symmetry, that exists for any twist angle. For commensurate angles, this is a discrete symmetry whereas for incommensurate angles, it is equivalent to a continuous phase symmetry giving rise to phason modes. In the small angle limit, such symmetry becomes a continuous local symmetry whose spontaneous breaking gives rise to Moir茅 phonons as its Goldstone mode. We derive an effective field theory for these collective modes in TBG in precise agreement with the full model and discuss their different properties. Our analysis is then generalized to twisted multilayer graphene (TMG) where we identify higher order mismatch and deduce the count of gapless modes including graphene phonons, Moir茅 phonons and phasons. Especially, we study twisted mirror-symmetric trilayer graphene with an alternating twist angle $胃$ and find that it can be mapped to a TBG with the re-scaled twist angle $\sqrt{2/3}胃$, hosting the same Moir茅 phonon modes in the even mirror sector with an additional set of gapped modes in the odd sector. Our work presents a systematic study of lattice symmetries in TMG providing insights into its unique lattice dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06830v2-abstract-full').style.display = 'none'; document.getElementById('2205.06830v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10532">arXiv:2202.10532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.10532">pdf</a>, <a href="https://arxiv.org/ps/2202.10532">ps</a>, <a href="https://arxiv.org/format/2202.10532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.014301">10.1103/PhysRevB.106.014301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metamorphic dynamical quantum phase transition in double-quench processes at finite temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xu-Yang Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qu-Cheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hao Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+C">Chih-Chun Chien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10532v3-abstract-short" style="display: inline;"> By deriving a general framework and analyzing concrete examples, we demonstrate a class of dynamical quantum phase transitions (DQPTs) in one-dimensional two-band systems going through double-quench processes. When this type of DQPT occurs, the Loschmidt amplitude vanishes and the rate function remains singular after the second quench, meaning the final state continually has no overlap with the in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10532v3-abstract-full').style.display = 'inline'; document.getElementById('2202.10532v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10532v3-abstract-full" style="display: none;"> By deriving a general framework and analyzing concrete examples, we demonstrate a class of dynamical quantum phase transitions (DQPTs) in one-dimensional two-band systems going through double-quench processes. When this type of DQPT occurs, the Loschmidt amplitude vanishes and the rate function remains singular after the second quench, meaning the final state continually has no overlap with the initial state. This type of DQPT is named metamorphic DQPT to differentiate it from ordinary DQPTs that only exhibit zero Loschmidt amplitude and singular rate function at discrete time points. The metamorphic DQPTs occur at zero as well as finite temperatures. Our examples of the Su-Schrieffer-Heeger (SSH) model and Kitaev chain illustrate the conditions and behavior of the metamorphic DQPT. Since ordinary DQPTs have been experimentally realized in many systems, similar setups with double quenches will demonstrate the metamorphic DQPT. Our findings thus provide additional controls of dynamical evolution of quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10532v3-abstract-full').style.display = 'none'; document.getElementById('2202.10532v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, submitted, title changed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 014301 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.08108">arXiv:2201.08108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.08108">pdf</a>, <a href="https://arxiv.org/format/2201.08108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2219491120">10.1073/pnas.2219491120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ubiquitous Coexisting Electron-Mode Couplings in High Temperature Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bok%2C+J+M">Jin Mo Bok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wentao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiangyu Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jianqiao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chunyao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chengtian Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H">Han-Yong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.08108v1-abstract-short" style="display: inline;"> In conventional superconductors, the electron-phonon coupling plays a dominant role in pairing the electrons and generating superconductivity. In high temperature cuprate superconductors, the existence of the electron coupling with phonons and other boson modes and its role in producing high temperature superconductivity remain unclear. The evidence of the electron-boson coupling mainly comes from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08108v1-abstract-full').style.display = 'inline'; document.getElementById('2201.08108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.08108v1-abstract-full" style="display: none;"> In conventional superconductors, the electron-phonon coupling plays a dominant role in pairing the electrons and generating superconductivity. In high temperature cuprate superconductors, the existence of the electron coupling with phonons and other boson modes and its role in producing high temperature superconductivity remain unclear. The evidence of the electron-boson coupling mainly comes from the angle-resolved photoemission (ARPES) observations of the ~70meV nodal dispersion kink and the ~40meV antinodal kink. However, the reported results are sporadic and the nature of the involved bosons are still under debate. Here we report new findings of ubiquitous two coexisting electron-mode couplings in cuprate superconductors. By taking ultra-high resolution laser-based ARPES measurements, combined with the improved second derivative analysis method, we discovered that the electrons are coupled simultaneously with two sharp phonon modes with energies of ~70meV and ~40meV in different superconductors with different doping levels, over the entire momentum space and at different temperatures above and below the superconducting transition temperature. The observed electron-phonon couplings are unusual because the associated energy scales do not exhibit an obvious change across the superconducting transition. We further find that the well-known &#34;peak-dip-hump&#34; structure, which has long been considered as a hallmark of superconductivity, is also omnipresent and consists of finer structures that originates from electron coupling with two sharp phonon modes. These comprehensive results provide a unified picture to reconcile all the reported observations and pinpoint the origin of the electron-mode couplings in cuprate superconductors. They provide key information to understand the role of the electron-phonon coupling in generating high temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08108v1-abstract-full').style.display = 'none'; document.getElementById('2201.08108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 120, e2219491120 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09371">arXiv:2112.09371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09371">pdf</a>, <a href="https://arxiv.org/format/2112.09371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04250">10.1021/acs.nanolett.1c04250 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Population inversion and Dirac fermion cooling in 3D Dirac semimetal Cd$_3$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+C">Changhua Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Sheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shaohua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiang-Yu Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Haoyuan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qixuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+L">Laipeng Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+D">Dong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+T">Tian-Long Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shuyun Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09371v1-abstract-short" style="display: inline;"> Revealing the ultrafast dynamics of three-dimensional (3D) Dirac fermions upon photoexcitation is critical for both fundamental science and device applications. So far, how the cooling of 3D Dirac fermions differs from that of two-dimensional (2D) Dirac fermions and whether there is population inversion are fundamental questions that remain to be answered. Here we reveal the ultrafast dynamics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09371v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09371v1-abstract-full" style="display: none;"> Revealing the ultrafast dynamics of three-dimensional (3D) Dirac fermions upon photoexcitation is critical for both fundamental science and device applications. So far, how the cooling of 3D Dirac fermions differs from that of two-dimensional (2D) Dirac fermions and whether there is population inversion are fundamental questions that remain to be answered. Here we reveal the ultrafast dynamics of Dirac fermions in a model 3D Dirac semimetal Cd$_3$As$_2$ by ultrafast time- and angle-resolved photoemission spectroscopy (TrARPES) with a tunable probe photon energy from 5.3 - 6.9 eV. The energy- and momentum-resolved relaxation rate shows a linear dependence on the energy, suggesting Dirac fermion cooling through intraband relaxation. Moreover, a population inversion is reported based on the observation of accumulated photoexcited carriers in the conduction band with a lifetime of $蟿_n$ = 3.0 ps. Our work provides direct experimental evidence for a long-lived population inversion in a 3D Dirac semimetal, which is in contrast to 2D graphene where the interband relaxation occurs on a much faster timescale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09371v1-abstract-full').style.display = 'none'; document.getElementById('2112.09371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 22, 1138 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05796">arXiv:2112.05796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05796">pdf</a>, <a href="https://arxiv.org/format/2112.05796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.105.L012102">10.1103/PhysRevE.105.L012102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamic constraints on the nonequilibrium response of one-dimensional diffusions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qi Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chun%2C+H">Hyun-Myung Chun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horowitz%2C+J+M">Jordan M. Horowitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05796v2-abstract-short" style="display: inline;"> We analyze the static response to perturbations of nonequilibrium steady states that can be modeled as one-dimensional diffusions on the circle. We demonstrate that an arbitrary perturbation can be broken up into a combination of three specific classes of perturbations that can be fruitfully addressed individually. For each class, we derive a simple formula that quantitatively characterizes the re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05796v2-abstract-full').style.display = 'inline'; document.getElementById('2112.05796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05796v2-abstract-full" style="display: none;"> We analyze the static response to perturbations of nonequilibrium steady states that can be modeled as one-dimensional diffusions on the circle. We demonstrate that an arbitrary perturbation can be broken up into a combination of three specific classes of perturbations that can be fruitfully addressed individually. For each class, we derive a simple formula that quantitatively characterizes the response in terms of the strength of nonequilibrium driving valid arbitrarily far from equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05796v2-abstract-full').style.display = 'none'; document.getElementById('2112.05796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 105, L012102 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12234">arXiv:2111.12234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12234">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.2c02176">10.1021/acs.jpclett.2c02176 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomistic View of Homogeneous Nucleation of Water into Polymorphic Ices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Maodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haiyang%2C+N">Niu Haiyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y+K">Yao Kun Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lijiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Zhiqiang Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12234v1-abstract-short" style="display: inline;"> Water is one of the most abundant substances on Earth, and ice, i.e., solid water, has more than 18 known phases. Normally ice in nature exists only as Ice Ih, Ice Ic, or a stacking disordered mixture of both. Although many theoretical efforts have been devoted to understanding the thermodynamics of different ice phases at ambient temperature and pressure, there still remains many puzzles. We simu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12234v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12234v1-abstract-full" style="display: none;"> Water is one of the most abundant substances on Earth, and ice, i.e., solid water, has more than 18 known phases. Normally ice in nature exists only as Ice Ih, Ice Ic, or a stacking disordered mixture of both. Although many theoretical efforts have been devoted to understanding the thermodynamics of different ice phases at ambient temperature and pressure, there still remains many puzzles. We simulated the reversible transitions between water and different ice phases by performing full atom molecular dynamics simulations. Using the enhanced sampling method MetaITS with the two selected X-ray diffraction peak intensities as collective variables, the ternary phase diagrams of liquid water, ice Ih, ice Ic at multiple were obtained. We also present a simple physical model which successfully explains the thermodynamic stability of ice. Our results agree with experiments and leads to a deeper understanding of the ice nucleation mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12234v1-abstract-full').style.display = 'none'; document.getElementById('2111.12234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82Dxx <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. Lett.13, 8601 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.10171">arXiv:2111.10171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.10171">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural Origin of Boson Peak in Glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qingyang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhen Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Qiang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aleman%2C+C+F">Christopher Florencio Aleman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+D">Duan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">Alexander Hume Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falk%2C+M">Michael Falk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+H">Howard Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Jianming Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xijie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mingwei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.10171v1-abstract-short" style="display: inline;"> Boson peak, the excess low energy excitations in the terahertz regime, is one of the most unique features of disordered systems and has been linked to many anomalous properties of glass materials. The nature and structural origin of the boson peak remain elusive and have been debated for more than a half century mainly due to the lack of real-time and real-space experimental insights of the dynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10171v1-abstract-full').style.display = 'inline'; document.getElementById('2111.10171v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.10171v1-abstract-full" style="display: none;"> Boson peak, the excess low energy excitations in the terahertz regime, is one of the most unique features of disordered systems and has been linked to many anomalous properties of glass materials. The nature and structural origin of the boson peak remain elusive and have been debated for more than a half century mainly due to the lack of real-time and real-space experimental insights of the dynamic phenomenon. In this work we employed femtosecond MeV ultrafast electron diffraction to characterize the atomic dynamics of metallic glasses in real time. The experiment reveals collective atomic oscillations, presented in elastic electron scattering and atomic pair distribution functions, within the boson peak frequency range of 1.0-1.8 THz in both reciprocal and real space. It was found that the oscillation frequency has reciprocal dependence on interatomic pair distances and the corresponding wave velocity experimentally affirms the transverse acoustic wave nature of the boson peak. The observed strong correlation between THz acoustic vibrations and coherent electron scattering provides compelling evidence that the boson peak originates from the collective transverse vibrational modes of structurally ordered atoms in the disordered system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10171v1-abstract-full').style.display = 'none'; document.getElementById('2111.10171v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05533">arXiv:2111.05533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05533">pdf</a>, <a href="https://arxiv.org/format/2111.05533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.115105">10.1103/PhysRevB.105.115105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping-dependence of the electron-phonon coupling in two families of bilayer superconducting cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitrano%2C+M">Matteo Mitrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Luca%2C+G+M">Gabriella Maria De Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">Andi Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salluzzo%2C+M">Marco Salluzzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05533v1-abstract-short" style="display: inline;"> While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-$T_c$ superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen $K$-edge, we studied the EPC in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) and Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-未}$ (NBCO) at different doping levels ranging from heavily underdoped (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05533v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05533v1-abstract-full" style="display: none;"> While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-$T_c$ superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen $K$-edge, we studied the EPC in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) and Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-未}$ (NBCO) at different doping levels ranging from heavily underdoped ($p =0.07$) to overdoped ($p=0.21$). We analyze the data with a localized Lang-Firsov model that allows for the coherent excitations of two phonon modes. While electronic band dispersion effects are non-negligible, we are able to perform a study of the relative values of EPC matrix elements in these cuprate families. In the case of NBCO, the choice of the excitation energy allows us to disentangle modes related to the CuO$_3$ chains and the CuO$_2$ planes. Combining the results from the two families, we find the EPC strength decreases with doping at $\mathbf{q_\parallel}=(-0.25, 0)$ r.l.u., but has a non-monotonic trend as a function of doping at smaller momenta. This behavior is attributed to the screening effect of charge carriers. We also find that the phonon intensity is enhanced in the vicinity of the charge-density-wave (CDW) excitations while the extracted EPC strength appears to be less sensitive to their proximity. By performing a comparative study of two cuprate families, we are able to identify general trends in the EPC for the cuprates and provide experimental input to theories invoking a synergistic role for this interaction in $d$-wave pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05533v1-abstract-full').style.display = 'none'; document.getElementById('2111.05533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 115105 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02606">arXiv:2111.02606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.02606">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Crystal-like Order Stabilizing Glasses: Structural Origin of Ultra-stable Metallic Glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhen Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+A+K+A">Anh Khoa Augustin Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jing Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+D">Daixiu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jiuhui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qingyang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohara%2C+K">Koji Ohara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kato%2C+H">Hidemi Kato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+A">Akihiko Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mingwei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02606v1-abstract-short" style="display: inline;"> Glasses are featured with a disordered amorphous structure, being opposite to crystals that are constituted by periodic lattices. In this study we report that the exceptional thermodynamic and kinetic stability of an ultra-stable binary ZrCu metallic glass, fabricated by high-temperature physical vapor deposition, originates from ubiquitous crystal-like medium range order (MRO) constituted by Voro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02606v1-abstract-full').style.display = 'inline'; document.getElementById('2111.02606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02606v1-abstract-full" style="display: none;"> Glasses are featured with a disordered amorphous structure, being opposite to crystals that are constituted by periodic lattices. In this study we report that the exceptional thermodynamic and kinetic stability of an ultra-stable binary ZrCu metallic glass, fabricated by high-temperature physical vapor deposition, originates from ubiquitous crystal-like medium range order (MRO) constituted by Voronoi polyhedron ordering with well-defined local translational symmetry beyond nearest atomic neighbors. The crystal-like MRO significantly improves the thermodynamic and kinetic stability of the glass, which is in opposition to the conventional wisdom that crystal-like order deteriorates the stability and forming ability of metallic glasses. This study unveils the structural origin of ultra-stable metallic glasses and shines a light on the intrinsic correlation of local atomic structure ordering with glass transition of metallic glasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02606v1-abstract-full').style.display = 'none'; document.getElementById('2111.02606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07863">arXiv:2110.07863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.07863">pdf</a>, <a href="https://arxiv.org/format/2110.07863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> DC Current Generation and Power Feature in Strongly Driven Floquet-Bloch Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yafei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07863v2-abstract-short" style="display: inline;"> We study the DC current generation in a periodically driven Bloch system connected to a heat bath. Under a relaxation time approximation, the density matrix for such a system is obtained, which is related to two equilibria: a Floquet quasi-equilibrium where the density matrix is diagonal under the Floquet-Bloch eigenbasis and an instantaneous Bloch thermal equilibrium. Then, the current responses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07863v2-abstract-full').style.display = 'inline'; document.getElementById('2110.07863v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07863v2-abstract-full" style="display: none;"> We study the DC current generation in a periodically driven Bloch system connected to a heat bath. Under a relaxation time approximation, the density matrix for such a system is obtained, which is related to two equilibria: a Floquet quasi-equilibrium where the density matrix is diagonal under the Floquet-Bloch eigenbasis and an instantaneous Bloch thermal equilibrium. Then, the current responses and their power features, i.e. the power input behavior, are discussed in a unified manner, which reveals that there exist an intrinsic current and an extrinsic correction. Remarkably, the intrinsic part consumes no energy and corresponds to the Floquet quasi-equilibrium, while the extrinsic part needs a sustained energy input and originates from a shift between two equilibrium ensembles. We further investigate the role of the external driving field strength finding that large DC currents can be generated under a relatively strong but not too strong driving field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07863v2-abstract-full').style.display = 'none'; document.getElementById('2110.07863v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05761">arXiv:2109.05761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05761">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01464-x">10.1038/s42005-023-01464-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-induced enhancement of $T_c$ in infinite-layer Pr$_{0.8}$Sr$_{0.2}$NiO$_2$ films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei-Chih Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+J+J">Joshua J. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hales%2C+J">Jordyn Hales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hailan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodolakis%2C+F">Fanny Rodolakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McChesney%2C+J+L">Jessica L. McChesney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fu-Chun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05761v3-abstract-short" style="display: inline;"> The mechanism of unconventional superconductivity in correlated materials remains a great challenge in condensed matter physics. The recent discovery of superconductivity in infinite-layer nickelates, as analog to high-Tc cuprates, has opened a new route to tackle this challenge. By growing 8 nm Pr0.8Sr0.2NiO2 films on the (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate, we successfully raise the transition t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05761v3-abstract-full').style.display = 'inline'; document.getElementById('2109.05761v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05761v3-abstract-full" style="display: none;"> The mechanism of unconventional superconductivity in correlated materials remains a great challenge in condensed matter physics. The recent discovery of superconductivity in infinite-layer nickelates, as analog to high-Tc cuprates, has opened a new route to tackle this challenge. By growing 8 nm Pr0.8Sr0.2NiO2 films on the (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate, we successfully raise the transition temperature Tc from 9 K in the widely studied SrTiO3-substrated nickelates into 15 K. By combining x-ray absorption spectroscopy with the first-principles and many-body simulations, we find a positive correlation between Tc and the pre-edge peak intensity, which can be attributed to the hybridization between Ni and O orbitals induced by the strain. Our result suggests that structural engineering can further enhance unconventional superconductivity, and the charge-transfer property plays a crucial role in the pairing strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05761v3-abstract-full').style.display = 'none'; document.getElementById('2109.05761v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 6, 341 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00254">arXiv:2109.00254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00254">pdf</a>, <a href="https://arxiv.org/ps/2109.00254">ps</a>, <a href="https://arxiv.org/format/2109.00254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.023005">10.1103/PhysRevResearch.4.023005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine learning of XY model on a spherical Fibonacci lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chen-Hui Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qu-Cheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+X">Xu-Yang Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yan He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hao Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chien%2C+C">Chih-Chun Chien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00254v2-abstract-short" style="display: inline;"> We study the XY model on a spherical surface inspired by recently realized spherically confined atomic gases. Instead of a traditional latitude-longitude lattice, we introduce a much more homogeneous spherical lattice, the Fibonacci lattice, and use classical Monte Carlo simulations to determine spin configurations. The results clearly show that topological defects, in the form of vortices, must e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00254v2-abstract-full').style.display = 'inline'; document.getElementById('2109.00254v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00254v2-abstract-full" style="display: none;"> We study the XY model on a spherical surface inspired by recently realized spherically confined atomic gases. Instead of a traditional latitude-longitude lattice, we introduce a much more homogeneous spherical lattice, the Fibonacci lattice, and use classical Monte Carlo simulations to determine spin configurations. The results clearly show that topological defects, in the form of vortices, must exist in the stable configuration on a sphere but vanish in a plane due to a mathematical theorem. Using these spin configurations as training samples, we propose a graph-convolutional-network based method to recognize different phases, and successfully predict the phase transition temperature. We also apply the density-based spatial clustering of applications with noise, a powerful machine learning algorithm, to monitor the merging path of two vortices with different topological charges on the sphere during Monte Carlo simulations. Our results provide reliable predictions for future space-based experiments on ultracold atomic gases confined on spherical lattice in the microgravity environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00254v2-abstract-full').style.display = 'none'; document.getElementById('2109.00254v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 023005 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12705">arXiv:2107.12705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12705">pdf</a>, <a href="https://arxiv.org/format/2107.12705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.1c00877">10.1021/acs.jctc.1c00877 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analytical energy gradient for state-averaged orbital-optimized variational quantum eigensolvers and its application to a photochemical reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Omiya%2C+K">Keita Omiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakagawa%2C+Y+O">Yuya O. Nakagawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koh%2C+S">Sho Koh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizukami%2C+W">Wataru Mizukami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qi Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kobayashi%2C+T">Takao Kobayashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12705v2-abstract-short" style="display: inline;"> Elucidating photochemical reactions is vital to understand various biochemical phenomena and develop functional materials such as artificial photosynthesis and organic solar cells, albeit its notorious difficulty by both experiments and theories. The best theoretical way so far to analyze photochemical reactions at the level of ab initio electronic structure is the state-averaged multi-configurati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12705v2-abstract-full').style.display = 'inline'; document.getElementById('2107.12705v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12705v2-abstract-full" style="display: none;"> Elucidating photochemical reactions is vital to understand various biochemical phenomena and develop functional materials such as artificial photosynthesis and organic solar cells, albeit its notorious difficulty by both experiments and theories. The best theoretical way so far to analyze photochemical reactions at the level of ab initio electronic structure is the state-averaged multi-configurational self-consistent field (SA-MCSCF) method. However, the exponential computational cost of classical computers with the increasing number of molecular orbitals hinders applications of SA-MCSCF for large systems we are interested in. Utilizing quantum computers was recently proposed as a promising approach to overcome such computational cost, dubbed as state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE). Here we extend a theory of SA-OO-VQE so that analytical gradients of energy can be evaluated by standard techniques that are feasible with near-term quantum computers. The analytical gradients, known only for the state-specific OO-VQE in previous studies, allow us to determine various characteristics of photochemical reactions such as the conical intersection (CI) points. We perform a proof-of-principle calculation of our methods by applying it to the photochemical cis-trans isomerization of 1,3,3,3-tetrafluoropropene. Numerical simulations of quantum circuits and measurements can correctly capture the photochemical reaction pathway of this model system, including the CI points. Our results illustrate the possibility of leveraging quantum computers for studying photochemical reactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12705v2-abstract-full').style.display = 'none'; document.getElementById('2107.12705v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.02688">arXiv:2107.02688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.02688">pdf</a>, <a href="https://arxiv.org/format/2107.02688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-27946-6">10.1038/s41467-021-27946-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Nature of Charge Density Wave and Electron-Phonon Coupling in Kagome Superconductor KV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hailan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yuhao Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dingsong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shilong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiangyu Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qingyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.02688v2-abstract-short" style="display: inline;"> The Kagome superconductors AV3Sb5 (A=K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02688v2-abstract-full').style.display = 'inline'; document.getElementById('2107.02688v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.02688v2-abstract-full" style="display: none;"> The Kagome superconductors AV3Sb5 (A=K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02688v2-abstract-full').style.display = 'none'; document.getElementById('2107.02688v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 13, 273 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13745">arXiv:2104.13745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13745">pdf</a>, <a href="https://arxiv.org/format/2104.13745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/38/5/057404">10.1088/0256-307X/38/5/057404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Common ($蟺$,$蟺$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dingsong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+W">Wenshan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+L">Lu Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+T">Taimin Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hongjun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13745v1-abstract-short" style="display: inline;"> High resolution angle-resolved photoemission spectroscopy (ARPES) measurements are carried out on CaKFe$_4$As$_4$, KCa$_2$Fe$_4$As$_4$F$_2$ and (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ superconductors. Clear evidence of band folding between the Brillouin zone center and corners with a ($蟺$,$蟺$) wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13745v1-abstract-full').style.display = 'inline'; document.getElementById('2104.13745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13745v1-abstract-full" style="display: none;"> High resolution angle-resolved photoemission spectroscopy (ARPES) measurements are carried out on CaKFe$_4$As$_4$, KCa$_2$Fe$_4$As$_4$F$_2$ and (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ superconductors. Clear evidence of band folding between the Brillouin zone center and corners with a ($蟺$,$蟺$) wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors. A dominant $\sqrt{2}\,\times\,\sqrt{2}$ surface reconstruction is observed on the cleaved surface of CaKFe$_4$As$_4$ by scanning tunneling microscopy (STM) measurements. We propose that the commonly observed $\sqrt{2}\,\times\,\sqrt{2}$ reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the ($蟺$,$蟺$) band folding. Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13745v1-abstract-full').style.display = 'none'; document.getElementById('2104.13745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 38, 057404 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gao%2C+Q&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10