CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,265 results for author: <span class="mathjax">Li, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Li%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11586">arXiv:2411.11586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11586">pdf</a>, <a href="https://arxiv.org/format/2411.11586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Quantization of Sondheimer oscillations of conductivity in thin cadmium crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xiaodong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11586v2-abstract-short" style="display: inline;"> Decades ago, Sondheimer discovered that the electric conductivity of metallic crystals hosting ballistic electrons oscillates with magnetic field. These oscillations, periodic in magnetic field and the period proportional to the sample thickness, have been understood in a semi-classical framework. Here, we present a study of longitudinal and transverse conductivity in cadmium single crystals with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11586v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11586v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11586v2-abstract-full" style="display: none;"> Decades ago, Sondheimer discovered that the electric conductivity of metallic crystals hosting ballistic electrons oscillates with magnetic field. These oscillations, periodic in magnetic field and the period proportional to the sample thickness, have been understood in a semi-classical framework. Here, we present a study of longitudinal and transverse conductivity in cadmium single crystals with thickness varying between 12.6 to 475 $渭$m. When the magnetic field is sufficiently large or the sample sufficiently thick, the amplitude of oscillation falls off as $B^{-4}$ as previously reported. In contrast, the ten first oscillations follow a $B^{-2.5}e^{-B/B_0}$ field dependence and their amplitude is set by the quantum of conductance, the sample thickness, the magnetic length and the Fermi surface geometry. We demonstrate that they are beyond the semi-classical picture, as the exponential prefactor indicates quantum tunneling between distinct quantum states. We draw a picture of these quantum oscillations, in which the linear dispersion of the semi-Dirac band in the cadmium plays a crucial role. The oscillations arise by the intersection between the lowest Landau tube and flat toroids on the Fermi surface induced by confinement. Positive and negative corrections to semi-classical magneto-conductance can occur by alternation between destructive and constructive interference in phase-coherent helical states. The quantum limit of Sondheimer oscillations emerges as another manifestation of Aharanov-Bohm flux quantization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11586v2-abstract-full').style.display = 'none'; document.getElementById('2411.11586v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08311">arXiv:2411.08311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08311">pdf</a>, <a href="https://arxiv.org/ps/2411.08311">ps</a>, <a href="https://arxiv.org/format/2411.08311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> A generalization of the martingale property of entropy production in stochastic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiangting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+T">Tom Chou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08311v1-abstract-short" style="display: inline;"> By decoupling forward and backward stochastic trajectories, we develop a family of martingales and work theorems for the same stochastic process. We achieve this by introducing an alternative work theorem derivation that uses tools from stochastic calculus instead of path integrals. Our derivation applies to both overdamped and underdamped Langevin dynamics and generalizes work theorems so that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08311v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08311v1-abstract-full" style="display: none;"> By decoupling forward and backward stochastic trajectories, we develop a family of martingales and work theorems for the same stochastic process. We achieve this by introducing an alternative work theorem derivation that uses tools from stochastic calculus instead of path integrals. Our derivation applies to both overdamped and underdamped Langevin dynamics and generalizes work theorems so that they connect new quantities in stochastic processes, potentially revealing new applications in dissipative systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08311v1-abstract-full').style.display = 'none'; document.getElementById('2411.08311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 60H30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07764">arXiv:2411.07764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07764">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nanosecond nanothermometry in an electron microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Castioni%2C+F">Florian Castioni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Auad%2C+Y">Yves Auad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blazit%2C+J">Jean-Denis Blazit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoyan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woo%2C+S+Y">Steffi Y. Woo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+C">Ching-Hwa Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%A9phan%2C+O">Odile St茅phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kociak%2C+M">Mathieu Kociak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tizei%2C+L+H+G">Luiz H. G. Tizei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07764v1-abstract-short" style="display: inline;"> Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07764v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07764v1-abstract-full" style="display: none;"> Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions. By combining focused laser-induced heating and synchronized time-resolved monochromated electron energy loss spectroscopy (EELS), we track phonon, exciton and plasmon signals in various materials, including silicon nitride, aluminum thin film, and transition metal dichalcogenides. Our results demonstrate the technique&#39;s ability to follow temperature changes at the nanometer and nanosecond scales. The experimental data closely matched theoretical heat diffusion models, confirming the method&#39;s validity. This approach opens new opportunities to investigate transient thermal phenomena in nanoscale materials, offering valuable insights for applications in thermoelectric devices and nanoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07764v1-abstract-full').style.display = 'none'; document.getElementById('2411.07764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06931">arXiv:2411.06931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06931">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> 3D Printing of Near-Ambient Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dongxiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuxuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xingjian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xingxiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhengqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Boxi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nong%2C+S">Shutong Nong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+T">Tingrui Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Weihua Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mujun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06931v1-abstract-short" style="display: inline;"> Liquid Crystal Elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building bio-compatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable 3D printing of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06931v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06931v1-abstract-full" style="display: none;"> Liquid Crystal Elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building bio-compatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable 3D printing of NAT-LCEs with enhanced nematic order, intricate shape forming, and morphing capability. By integrating a low-temperature nozzle and a cooling platform into a 3D printer, the resulting temperature field synergistically facilitates mesogen alignment during extrusion and disruption-free UV cross-linking. This method achieves a nematic order 3000% higher than those fabricated using traditional room temperature 3D printing. Enabled by shifting of transition temperature during hybrid cooling printing, printed sheets spontaneously turn into 3D structures after release from the platform, exhibiting bidirectional deformation with heating and cooling. By adjusting the nozzle and plate temperatures, NAT-LCEs with graded properties can be fabricated for intricate shape morphing. A wristband system with enhanced heart rate monitoring is also developed based on 3D-printed NAT-LCE. Our method may open new possibilities for soft robotics, biomedical devices, and wearable electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06931v1-abstract-full').style.display = 'none'; document.getElementById('2411.06931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04481">arXiv:2411.04481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04481">pdf</a>, <a href="https://arxiv.org/format/2411.04481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-throughput Screening of Ferrimagnetic Semiconductors With Ultrahigh N$\acute{e}$el Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haidi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Q">Qingqing Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Weiduo Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhongjun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaofeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xingxing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04481v1-abstract-short" style="display: inline;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04481v1-abstract-full" style="display: none;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrinsic ferrimagnetic semiconductor candidates from nearly 44,000 structures in the Materials Project database, including 10 ferrimagnetic bipolar magnetic semiconductors (BMS) and 9 ferrimagnetic half semiconductors (HSC). Notably, the BMS \ce{NaFe5O8} possesses a high $T_{\mathrm{N}}$ of 768 K. By element substitutions, we obtain an HSC \ce{NaFe5S8} with a $T_{\mathrm{N}}$ of 957 K and a BMS \ce{LiFe5O8} with a $T_{\mathrm{N}}$ reaching 1059 K. Our results pave a promising avenue toward the development of ferrimagnetic spintronics at ambient temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'none'; document.getElementById('2411.04481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03754">arXiv:2411.03754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03754">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic order induced truly chiral phonons in a ferromagnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+M">Mengqian Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jinxuan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yunpeng Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bingru Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sang%2C+W">Wenbo Sang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+T">Tao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tiantian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03754v1-abstract-short" style="display: inline;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03754v1-abstract-full" style="display: none;"> Chiral phonons are vibrational modes in a crystal that possess a well-defined handedness or chirality, typically found in materials that lack inversion symmetry. Here we report the discovery of truly chiral phonon modes in the kagome ferromagnetic Weyl semimetal Co3Sn2S2, a material that preserves inversion symmetry but breaks time-reversal symmetry. Using helicity-resolved magneto-Raman spectroscopy, we observe the spontaneous splitting of the doubly degenerate in-plane Eg modes into two distinct chiral phonon modes of opposite helicity when the sample is zero-field cooled below the Curie temperature, without the application of an external magnetic field. As we sweep the out-of-plane magnetic field, this Eg phonon splitting exhibits a well-defined hysteresis loop directly correlated with the material&#39;s magnetization. The observed spontaneous splitting reaches up to 1.27 cm-1 at low temperatures and diminishes with increasing temperature, ultimately vanishing at the Curie temperature. Our findings highlight the role of the magnetic order in inducing chiral phonons, paving the way for novel methods to manipulate chiral phonons through magnetization and vice versa. Additionally, our work introduces new possibilities for controlling chiral Weyl fermions using chiral phonons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03754v1-abstract-full').style.display = 'none'; document.getElementById('2411.03754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22902">arXiv:2410.22902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22902">pdf</a>, <a href="https://arxiv.org/format/2410.22902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Polarization boost and ferroelectricity down to one unit cell in layered Carpy-Galy La$_{2}$Ti$_{2}$O$_{7}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gradauskaite%2C+E">Elzbieta Gradauskaite</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goossens%2C+A+S">Anouk S. Goossens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoyan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iglesias%2C+L">Luc铆a Iglesias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gloter%2C+A">Alexandre Gloter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+Q+N">Quintin N. Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bibes%2C+M">Manuel Bibes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22902v1-abstract-short" style="display: inline;"> Layered perovskite-based compounds offer a range of unconventional properties enabled by their naturally anisotropic structure. While most renowned for the superconductivity observed in the Ruddlesden-Popper phases, many of these layered compounds are also ferroelectric and exhibit a sizeable in-plane polarization. Among these, the Carpy-Galy phases (A${_n}$B${_n}$O$_{3n+2}$), characterized by 110&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22902v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22902v1-abstract-full" style="display: none;"> Layered perovskite-based compounds offer a range of unconventional properties enabled by their naturally anisotropic structure. While most renowned for the superconductivity observed in the Ruddlesden-Popper phases, many of these layered compounds are also ferroelectric and exhibit a sizeable in-plane polarization. Among these, the Carpy-Galy phases (A${_n}$B${_n}$O$_{3n+2}$), characterized by 110-oriented perovskite planes interleaved with additional oxygen layers, have been debated as platforms for hosting not only a robust polarization but also multiferroicity and polar metallicity. However, the challenges associated with the synthesis of ultrathin Carpy-Galy films and understanding the impact of strain on their properties limit their integration into devices. Addressing this issue, our study focuses on La$_2$Ti$_2$O$_7$, an $n$=4 (A$_2$B$_2$O$_7$) representative of the Carpy-Galy family, exploring its growth and concurrent phase stability on various substrates under different strain conditions. Remarkably, we demonstrate that a 3% tensile strain from DyScO$_3$ (100) substrates promotes a controlled layer-by-layer growth mode, while SrTiO$_3$ (110) and LaAlO$_3$-Sr$_2$TaAlO$_6$ (110), that exert negligible and compressive strains respectively, require post-deposition annealing to achieve similar results. Using scanning probe microscopy, X-ray diffraction, scanning transmission electron microscopy, and polarization switching experiments, we confirm that these films possess exceptional ferroelectric properties, including a polarization of 18 $渭$C/cm$^2$ - more than three times higher than previously reported - as well as persistence of ferroelectricity down to a single-unit-cell thickness. This study not only advances our understanding of Carpy-Galy phases in thin films but also lays a foundation for their application in advanced ferroelectric device architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22902v1-abstract-full').style.display = 'none'; document.getElementById('2410.22902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 main-text figures, 6 figures in Supporting Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22608">arXiv:2410.22608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22608">pdf</a>, <a href="https://arxiv.org/format/2410.22608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrostatic self-assembly of neutral particles on a dielectric substrate: A theoretical study via a multiple-image method and an effective-dipole approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiangui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zaixin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+S">Sun Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Decai Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22608v1-abstract-short" style="display: inline;"> A multiple-image method is developed to accurately calculate the electrostatic interaction between neutral dielectric particles and a uniformly charged dielectric substrate. The difference in dielectric constants between the particle and the solvent medium leads to a reversal of positive and negative polarizations in the particle. The variance in dielectric constants between the solvent medium and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22608v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22608v1-abstract-full" style="display: none;"> A multiple-image method is developed to accurately calculate the electrostatic interaction between neutral dielectric particles and a uniformly charged dielectric substrate. The difference in dielectric constants between the particle and the solvent medium leads to a reversal of positive and negative polarizations in the particle. The variance in dielectric constants between the solvent medium and the substrate causes a transition from attractive to repulsive forces between the particle and the substrate. A nonuniform electrostatic field is generated by the polarized charges on the substrate due to mutual induction. These characteristics of electrostatic manipulation determine whether particles are adsorbed onto the substrate or pushed away from it. The self-assembled particles tend to aggregate in a stable hexagonal structure on the substrate. These findings provide new insights into self-assembly processes involving neutral particles on a dielectric substrate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22608v1-abstract-full').style.display = 'none'; document.getElementById('2410.22608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17686">arXiv:2410.17686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17686">pdf</a>, <a href="https://arxiv.org/format/2410.17686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain-modulated Valley Polarization and Piezomagnetic Effects in Altermagnetic Cr$_2$S$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xiaoyang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Q">Qizhen Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quan%2C+C">Chuye Quan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+H">Haojie Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+S">Shilei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jianping Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xing&#39;ao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17686v1-abstract-short" style="display: inline;"> Altermagnetism exhibits advantages over both ferromagnetic and antiferromagnetic counterparts by enabling spin splitting within antiferromagnetic materials. Currently, it is established that valley polarization in altermagnetism remains largely insensitive to spin-orbit coupling and spin. Here, using Cr$_2$S$_2$ as a case study, we investigate the mechanism through which an external field modulate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17686v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17686v1-abstract-full" style="display: none;"> Altermagnetism exhibits advantages over both ferromagnetic and antiferromagnetic counterparts by enabling spin splitting within antiferromagnetic materials. Currently, it is established that valley polarization in altermagnetism remains largely insensitive to spin-orbit coupling and spin. Here, using Cr$_2$S$_2$ as a case study, we investigate the mechanism through which an external field modulates valley polarization in altermagnetism. This effect arises from the external field&#39;s disruption of diagonal mirror symmetry $M_{xy}$, consequently inducing valley polarization within the material. Strain not only induces valley polarization but also generates an almost uniform magnetic field, which can reach as high as 118.39 T under 5% uniaxial strain. In addition, this symmetry breaking in Cr$_2$S$_2$ monolayers results in significant piezomagnetic properties, merging piezomagnetic and altermagnetic characteristics in two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17686v1-abstract-full').style.display = 'none'; document.getElementById('2410.17686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17548">arXiv:2410.17548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17548">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Undulation-induced moir茅 superlattices with 1D polarization domains and 1D flat bands in 2D bilayer semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xingfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+S">Sunny Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yakobson%2C+B+I">Boris I. Yakobson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17548v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials have a high F枚ppl-von K谩rm谩n number and can be easily bent, much like a paper, making undulations a novel way to design distinct electronic phases. Through first-principles calculations, we reveal the formation of 1D polarization domains and 1D flat electronic bands by 1D bending modulation to a 2D bilayer semiconductor. Using 1D sinusoidal undulation of a hexagonal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17548v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17548v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials have a high F枚ppl-von K谩rm谩n number and can be easily bent, much like a paper, making undulations a novel way to design distinct electronic phases. Through first-principles calculations, we reveal the formation of 1D polarization domains and 1D flat electronic bands by 1D bending modulation to a 2D bilayer semiconductor. Using 1D sinusoidal undulation of a hexagonal boron nitride (hBN) bilayer as an example, we demonstrate how undulation induces nonuniform shear patterns, creating regions with unique local stacking and vertical polarization akin to sliding-induced ferroelectrics observed in twisted moir茅 systems. This sliding-induced polarization is also observed in double-wall BN nanotubes due to curvature differences between inner and outer tubes. Furthermore, undulation generates a shear-induced 1D moir茅 pattern that perturbs electronic states, confining them into 1D quantum-well-like bands with kinetic energy quenched in modulation direction while dispersive in other directions (1D flat bands). This electronic confinement is attributed to modulated shear deformation potential resulting from tangential polarization due to the moir茅 pattern. Thus, bending modulation and interlayer shear offer an alternative avenue, termed &#34;curvytronics&#34;, to induce exotic phenomena in 2D bilayer materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17548v1-abstract-full').style.display = 'none'; document.getElementById('2410.17548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14850">arXiv:2410.14850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14850">pdf</a>, <a href="https://arxiv.org/format/2410.14850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Cooperative non-reciprocal emission and quantum sensing of symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flebus%2C+B">Benedetta Flebus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14850v2-abstract-short" style="display: inline;"> Non-reciprocal propagation of energy and information is fundamental to a wide range of quantum technology applications. In this work, we explore the quantum many-body dynamics of a qubit ensemble coupled to a shared bath that mediates coherent and dissipative inter-qubit interactions with both symmetric and anti-symmetric components. We find that the interplay between anti-symmetric (symmetric) co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14850v2-abstract-full').style.display = 'inline'; document.getElementById('2410.14850v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14850v2-abstract-full" style="display: none;"> Non-reciprocal propagation of energy and information is fundamental to a wide range of quantum technology applications. In this work, we explore the quantum many-body dynamics of a qubit ensemble coupled to a shared bath that mediates coherent and dissipative inter-qubit interactions with both symmetric and anti-symmetric components. We find that the interplay between anti-symmetric (symmetric) coherent and symmetric (anti-symmetric) dissipative interactions results in non-reciprocal couplings, which, in turn, generate a spatially asymmetric emission pattern. We demonstrate that this pattern arises from non-reciprocal interactions coupling different quantum many-body states within a specific excitation manifold. Focusing on solid-state baths, we show that their lack of time-reversal and inversion symmetry is a key ingredient for generating non-reciprocal dynamics in the qubit ensemble. With the plethora of quantum materials that exhibit this symmetry breaking at equilibrium, our approach paves the way for realizing cooperative non-reciprocal transport in qubit ensembles without requiring time-modulated external drives or complex engineering. Using an ensemble of nitrogen-vacancy (NV) centers coupled to a generic non-centrosymmetric ferromagnetic bath as a concrete example, we demonstrate that our predictions can be tested in near-future experiments. As the spatial asymmetry in the relaxation dynamics of the qubit ensemble is a direct probe of symmetry breaking in the solid-state bath, our work also opens the door to developing model-agnostic quantum sensing schemes capable of detecting bath properties invisible to current state-of-the-art protocols, which operate solid-state defects as single-qubit sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14850v2-abstract-full').style.display = 'none'; document.getElementById('2410.14850v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14542">arXiv:2410.14542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14542">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> La$_2$O$_3$Mn$_2$Se$_2$: a correlated insulating layered d-wave altermagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chao-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoyin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatt%2C+S">Sabrina Hatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huai%2C+X">Xudong Huai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Birender Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyung-Mo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cardon%2C+P">Paul Cardon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+T+T">Thao T. Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frandsen%2C+B+M">Benjamin M. Frandsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Huiwen Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14542v1-abstract-short" style="display: inline;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14542v1-abstract-full" style="display: none;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconventional superconductors and can yield spin polarized electrical currents in the absence of external magnetic fields, making them promising candidates for next-generation spintronics. Here, we report altermagnetism in the correlated insulator, magnetically-ordered tetragonal oxychalcogenide, La$_2$O$_3$Mn$_2$Se$_2$. Symmetry analysis reveals a $\mathit{d}_{x^2 - y^2}$-wave type spin momentum locking, which is supported by density functional theory (DFT) calculations. Magnetic measurements confirm the AFM transition below $\sim$166 K while neutron pair distribution function analysis reveals a 2D short-range magnetic order that persists above the N茅el temperature. Single crystals are grown and characterized using X-ray diffraction, optical and electron microscopy, and microRaman spectroscopy to confirm the crystal structure, stoichiometry, and uniformity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'none'; document.getElementById('2410.14542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10539">arXiv:2410.10539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10539">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Incommensurate Transverse Peierls Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F+Z">F. Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+K+F">K. F. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Weizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xiaoyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+W+R">W. R. Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H">H. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H+X">H. X. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozano%2C+P+M">P. Mercado Lozano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+C">C. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T+T">T. T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">M. A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Juneja%2C+R">R. Juneja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindsay%2C+L">L. Lindsay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+N">H. N. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+J+-">J. -M. Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+M+F">M. F. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">X. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10539v1-abstract-short" style="display: inline;"> In one-dimensional quantum materials, conducting electrons and the underlying lattices can undergo a spontaneous translational symmetry breaking, known as Peierls transition. For nearly a century, the Peierls transition has been understood within the paradigm of electron-electron interactions mediated by longitudinal acoustic phonons. This classical picture has recently been revised in topological&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10539v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10539v1-abstract-full" style="display: none;"> In one-dimensional quantum materials, conducting electrons and the underlying lattices can undergo a spontaneous translational symmetry breaking, known as Peierls transition. For nearly a century, the Peierls transition has been understood within the paradigm of electron-electron interactions mediated by longitudinal acoustic phonons. This classical picture has recently been revised in topological semimetals, where transverse acoustic phonons can couple with conducting p-orbital electrons and give rise to an unconventional Fermi surface instability, dubbed the transverse Peierls transition (TPT). Most interestingly, the TPT induced lattice distortions can further break rotation or mirror/inversion symmetries, leading to nematic or chiral charge density waves (CDWs). Quantum materials that host the TPT, however, have not been experimentally established. Here, we report the experimental discovery of an incommensurate TPT in the tetragonal Dirac semimetal EuAl$_4$. Using inelastic x-ray scattering with meV resolution, we observe the complete softening of a transverse acoustic phonon at the CDW wavevector upon cooling, whereas the longitudinal acoustic phonon is nearly unchanged. Combining with first principles calculations, we show that the incommensurate CDW wavevector matches the calculated charge susceptibility peak and connects the nested Dirac bands with Al 3$p_{x}$ and 3$p_{y}$ orbitals. Supplemented by second harmonic generation measurements, we show that the CDW induced lattice distortions break all vertical and diagonal mirrors whereas the four-fold rotational symmetry is retained below the CDW transition. Our observations strongly suggest a chiral CDW in EuAl$_4$ and highlight the TPT as a new avenue for chiral quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10539v1-abstract-full').style.display = 'none'; document.getElementById('2410.10539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary materials are available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07541">arXiv:2410.07541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07541">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Recent Progress on Multiferroic Hexagonal Rare-Earth Ferrites (h-RFeO3, R = Y,Dy-Lu) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+Y">Yu Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoshan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07541v1-abstract-short" style="display: inline;"> Multiferroic hexagonal rare-earth ferrites (h-RFeO3, R=Sc, Y, and rare earth), in which the improper ferroelectricity and canted antiferromagnetism coexist, have been advocated as promising candidates to pursue the room-temperature multiferroics, because of strong spin-spin interaction. The strong interactions between the ferroic orders and the structural distortions are appealing for high-density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07541v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07541v1-abstract-full" style="display: none;"> Multiferroic hexagonal rare-earth ferrites (h-RFeO3, R=Sc, Y, and rare earth), in which the improper ferroelectricity and canted antiferromagnetism coexist, have been advocated as promising candidates to pursue the room-temperature multiferroics, because of strong spin-spin interaction. The strong interactions between the ferroic orders and the structural distortions are appealing for high-density, energy-efficient electronic devices. Over the past decade, remarkable advances in atomic-scale synthesis, characterization, and material modeling enable the significant progresses in the understanding and manipulation of ferroic orders and their couplings in h-RFeO3 thin films. These results reveal a physical picture of rich ferroelectric and magnetic phenomena interconnected by a set of structural distortions and spin-lattice couplings, which provides guidance for the control of ferroic orders down to the nano scale and the discovery of novel physical phenomena. This review focus on state-of-the-art studies in complex phenomena related to the ferroelectricity and magnetism as well as the magnetoelectric couplings in multiferroic h-RFeO3, based on mostly the recent experimental efforts, aiming to stimulate fresh ideas in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07541v1-abstract-full').style.display = 'none'; document.getElementById('2410.07541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05976">arXiv:2410.05976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05976">pdf</a>, <a href="https://arxiv.org/format/2410.05976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of Rydberg excitons in monolayer MoS2 at room temperature by Imbert-Fedorov shift spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaofeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+J">Jiaxing Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zhanyunxin Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zha%2C+M">Mingjie Zha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhibo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05976v1-abstract-short" style="display: inline;"> Rydberg excitons in transition metal dichalcogenides (TMDs) have emerged as a promising platform for investigating the properties of open quantum systems, thanks to their large binding energies(hundreds of meV). However, the study of Rydberg excitons in TMDs has been hindered by sample quality limitations, strong background signals from ground excitons, and broadening at room temperature. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05976v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05976v1-abstract-full" style="display: none;"> Rydberg excitons in transition metal dichalcogenides (TMDs) have emerged as a promising platform for investigating the properties of open quantum systems, thanks to their large binding energies(hundreds of meV). However, the study of Rydberg excitons in TMDs has been hindered by sample quality limitations, strong background signals from ground excitons, and broadening at room temperature. In this work, we report the first observation of multiple Rydberg exciton states in monolayer MoS2 at room temperature using Imbert-Fedorov (IF) shift spectroscopy. By numerically solving the Schrodinger equation, we extracted the quasiparticle band gaps for A and B excitons, confirming the temperature-induced redshift of the band gap, in excellent agreement with previous results. Our findings establish IF shift spectroscopy as a powerful tool for characterizing Rydberg excitons in TMDs, paving the way for potential applications in quantum manipulation and control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05976v1-abstract-full').style.display = 'none'; document.getElementById('2410.05976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05957">arXiv:2410.05957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05957">pdf</a>, <a href="https://arxiv.org/format/2410.05957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Unified model for non-Abelian braiding of Majorana and Dirac fermion zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tianyu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiong-Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yijia Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05957v1-abstract-short" style="display: inline;"> Majorana zero modes (MZMs) are the most intensively studied non-Abelian anyons. The Dirac fermion zero modes in topological insulators can be interpreted as the symmetry-protected &#34;doubling&#34; of the MZMs, suggesting an intrinsic connection between the quantum statistics of the two types of zero modes. Here we find that the minimal Kitaev chain model provides a unified characterization of the non-Ab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05957v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05957v1-abstract-full" style="display: none;"> Majorana zero modes (MZMs) are the most intensively studied non-Abelian anyons. The Dirac fermion zero modes in topological insulators can be interpreted as the symmetry-protected &#34;doubling&#34; of the MZMs, suggesting an intrinsic connection between the quantum statistics of the two types of zero modes. Here we find that the minimal Kitaev chain model provides a unified characterization of the non-Abelian braiding statistics of both the MZMs and Dirac fermion zero modes under different parameter regimes. In particular, we introduce a minimal tri-junction setting based on the minimal Kitaev chain model and show it facilitates the unified scheme of braiding Dirac fermion zero modes, as well as the MZMs in the assistance of a Dirac mode. This unified minimal model unveils that the non-Abelian braiding of the MZMs can be continuously extended to the realm of Dirac fermion zero modes. The present study reveals deeper insights into the non-Abelian statistics and enables a broader search for non-Abelian anyons beyond the scope of MZMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05957v1-abstract-full').style.display = 'none'; document.getElementById('2410.05957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00803">arXiv:2410.00803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00803">pdf</a>, <a href="https://arxiv.org/format/2410.00803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Squeezing atomic $p$-orbital condensates for detecting gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xinyang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W+V">W. Vincent Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00803v2-abstract-short" style="display: inline;"> Precision gravitational wave measurement transforms research beyond general relativity and cosmology. Advances are made by applying quantum enhanced interferometry into the LIGO, Virgo and KAGRA detectors. Here, we develop an atomic sensor that employs a $p$-orbital Bose-Einstein condensate in an optical lattice to project gravitational wave signals into an orbital squeezed state. This entangled s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00803v2-abstract-full').style.display = 'inline'; document.getElementById('2410.00803v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00803v2-abstract-full" style="display: none;"> Precision gravitational wave measurement transforms research beyond general relativity and cosmology. Advances are made by applying quantum enhanced interferometry into the LIGO, Virgo and KAGRA detectors. Here, we develop an atomic sensor that employs a $p$-orbital Bose-Einstein condensate in an optical lattice to project gravitational wave signals into an orbital squeezed state. This entangled state couples linearly to the spacetime distortion signals received via a Michelson interferometer. Simulation data show that this sensor improves sensitivity over LIGO&#39;s quantum noise by approximately one order of magnitude and detection volume by $\sim 10^3$ in key frequency regimes. Additionally, it reduces the required laser power by five orders of magnitude. These results suggest that atomic orbital squeezing offers a compelling alternative to conventional techniques, offering a qualitatively different avenue for gravitational wave-based detection of dark matter, black holes, and the equation of state in neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00803v2-abstract-full').style.display = 'none'; document.getElementById('2410.00803v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+55 pages, 4+15 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18400">arXiv:2409.18400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18400">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01523-x">10.1038/s42005-024-01523-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-tunable Dirac semimetal phase transition and emergent superconductivity in a borophane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+C">Chengyong Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xuelian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18400v1-abstract-short" style="display: inline;"> A two-dimensional (2D) Dirac semimetal with concomitant superconductivity has been long sought but rarely reported. It is believed that light-element materials have the potential to realize this goal owing to their intrinsic lightweight and metallicity. Here, based on the recently synthesized $尾_{12}$ hydrogenated borophene [Science 371, 1143 (2021)], we investigate its counterpart named $尾_{12}$-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18400v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18400v1-abstract-full" style="display: none;"> A two-dimensional (2D) Dirac semimetal with concomitant superconductivity has been long sought but rarely reported. It is believed that light-element materials have the potential to realize this goal owing to their intrinsic lightweight and metallicity. Here, based on the recently synthesized $尾_{12}$ hydrogenated borophene [Science 371, 1143 (2021)], we investigate its counterpart named $尾_{12}$-$ \rm {B_5H_3}$. Our first-principles calculations suggest it has good stability. $尾_{12}$-$ \rm {B_5H_3}$ is a scarce Dirac semimetal demonstrating a strain-tunable phase transition from three Dirac cones to a single Dirac cone. Additionally, $尾_{12}$-$ \rm {B_5H_3}$ is also a superior phonon-mediated superconductor with a superconducting critical temperature of 32.4 K and can be further boosted to 42 K under external strain. The concurrence of Dirac fermions and superconductivity, supplemented with dual tunabilities, reveals $尾_{12}$-$ \rm {B_5H_3}$ is an attractive platform to study either quantum phase transition in 2D Dirac semimetal or the superconductivity or the exotic physics brought about by their interplay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18400v1-abstract-full').style.display = 'none'; document.getElementById('2409.18400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 Pages, 5 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 7, 38 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18283">arXiv:2409.18283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18283">pdf</a>, <a href="https://arxiv.org/format/2409.18283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Sulfur and sulfur-oxide compounds as potential optically active defects on SWCNTs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mihm%2C+T+N">Tina N. Mihm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trerayapiwat%2C+K+J">K. Jing Trerayapiwat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xuedan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharifzadeh%2C+S">Sahar Sharifzadeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18283v1-abstract-short" style="display: inline;"> Semiconducting single-walled carbon nanotubes (SWCNT) containing sp3-type defects are a promising class of optoelectronic materials, demonstrating single photon emission and long-lived spins. The defect introduces new optical transitions due to both symmetry breaking induced band splitting and introduction of in-gap electronic states. We investigate sulfur-oxide containing compounds as a new class&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18283v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18283v1-abstract-full" style="display: none;"> Semiconducting single-walled carbon nanotubes (SWCNT) containing sp3-type defects are a promising class of optoelectronic materials, demonstrating single photon emission and long-lived spins. The defect introduces new optical transitions due to both symmetry breaking induced band splitting and introduction of in-gap electronic states. We investigate sulfur-oxide containing compounds as a new class of optically active dopants on (6,5) SWCNT. The SWCNT is exposed to sodium dodecyl sulfate with the resulting compound displaying a red-shifted and bright photoluminescence peak that is characteristic of sp3 doping. Density functional theory calculations are then performed on the adsorbed compounds that may arise (S, SO, SO2 and SO3). These calculations indicate that the two smallest molecules strongly bind to the SWCNT with binding energies of ~ 1.5-1.7 eV and 0.56 eV for S and SO, respectively. Moreover, these adsorbates introduce in-gap electronic states into the bandstructure of the tube consistent with the measured red-shift of (0.1-0.3) eV. Our study suggests that sulfur-based compounds are promising new dopants for (6,5) SWCNT with tunable electronic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18283v1-abstract-full').style.display = 'none'; document.getElementById('2409.18283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 1 SI pdf</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17022">arXiv:2409.17022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17022">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Improper flexoelectricity in hexagonal rare-earth ferrites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+G">Guodong Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+Y">Yu Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thind%2C+A+S">Arashdeep Singh Thind</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shah%2C+A+K">Amit Kumar Shah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowers%2C+A">Abbey Bowers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+R">Rohan Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoshan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17022v1-abstract-short" style="display: inline;"> Flexoelectricity is a universal effect that generates electric polarization due to broken inversion symmetry caused by local strain gradient. The large strain gradient at nanoscale makes flexo-electric effects, especially in nanoscopic ferroelectric materials, promising in sensors, actuator, energy harvesting, and memory applications. In this work, we studied flexoelectricity in hexagonal ferrites&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17022v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17022v1-abstract-full" style="display: none;"> Flexoelectricity is a universal effect that generates electric polarization due to broken inversion symmetry caused by local strain gradient. The large strain gradient at nanoscale makes flexo-electric effects, especially in nanoscopic ferroelectric materials, promising in sensors, actuator, energy harvesting, and memory applications. In this work, we studied flexoelectricity in hexagonal ferrites h-YbFeO3, an improper ferroelectric expected to have weak piezoelectricity and low sensitivity to depolarization field, which are advantageous for studying flexoelectric effects. We show that in h-YbFeO3 epitaxial thin films, strain gradient on the order of 10^6 m-1 occurs near grain boundaries, which has a significant impact on the non-polar K3 structural distortion that induces spontaneous polarization. The phenomenological model based on the Landau theory of improper ferroelectricity suggests an indirect flexoelectric effect on the order of 10 nC/m in h-YbFeO3, which is substantially larger than the expectation from Kogan mechanism. These results reveal a novel microscopic mechanism of coupling between strain gradient and polarization mediated by structural distortion, which we call improper flexoelectricity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17022v1-abstract-full').style.display = 'none'; document.getElementById('2409.17022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14856">arXiv:2409.14856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14856">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Coherent population trapping and spin relaxation of a silicon vacancy center in diamond at mK temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shuhao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinzhu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallagher%2C+I">Ian Gallagher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrie%2C+B">Benjamin Lawrie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14856v1-abstract-short" style="display: inline;"> We report experimental studies of coherent population trapping and spin relaxation in a temperature range between 4 K and 100 mK in a silicon vacancy (SiV) center subject to a transverse magnetic field. Near and below 1 K, phonon-induced spin dephasing becomes negligible compared with that induced by the spin bath of naturally abundant 13C atoms. The temperature dependence of the spin dephasing ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14856v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14856v1-abstract-full" style="display: none;"> We report experimental studies of coherent population trapping and spin relaxation in a temperature range between 4 K and 100 mK in a silicon vacancy (SiV) center subject to a transverse magnetic field. Near and below 1 K, phonon-induced spin dephasing becomes negligible compared with that induced by the spin bath of naturally abundant 13C atoms. The temperature dependence of the spin dephasing rates agrees with the theoretical expectation that phonon-induced spin dephasing arises primarily from orbital relaxation induced by first order electron-phonon interactions. A nearly 100-fold increase in spin lifetime is observed when the temperature is lowered from 4 K to slightly below 1 K, indicating that two-phonon spin-flip transitions play an essential role in the spin relaxation of SiV ground states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14856v1-abstract-full').style.display = 'none'; document.getElementById('2409.14856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11715">arXiv:2409.11715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11715">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional topological valley photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wenhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qiaolu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+N">Ning Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinrui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fujia Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Junyao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Y">Yuang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yudong Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+H">Haoran Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yihao Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11715v1-abstract-short" style="display: inline;"> Topological valley photonics, which exploits valley degree of freedom to manipulate electromagnetic waves, offers a practical and effective pathway for various classical and quantum photonic applications across the entire spectrum. Current valley photonics, however, has been limited to two dimensions, which typically suffer from out-of-plane losses and can only manipulate the flow of light in plan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11715v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11715v1-abstract-full" style="display: none;"> Topological valley photonics, which exploits valley degree of freedom to manipulate electromagnetic waves, offers a practical and effective pathway for various classical and quantum photonic applications across the entire spectrum. Current valley photonics, however, has been limited to two dimensions, which typically suffer from out-of-plane losses and can only manipulate the flow of light in planar geometries. Here, we have theoretically and experimentally developed a framework of three-dimensional (3D) topological valley photonics with a complete photonic bandgap and vectorial valley contrasting physics. Unlike the two-dimensional counterparts with a pair of valleys characterized by scalar valley Chern numbers, the 3D valley systems exhibit triple pairs of valleys characterized by valley Chern vectors, enabling the creation of vectorial bulk valley vortices and canalized chiral valley surface states. Notably, the valley Chern vectors and the circulating propagation direction of the valley surface states are intrinsically governed by the right-hand-thumb rule. Our findings reveal the vectorial nature of the 3D valley states and highlight their potential applications in 3D waveguiding, directional radiation, and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11715v1-abstract-full').style.display = 'none'; document.getElementById('2409.11715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10439">arXiv:2409.10439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10439">pdf</a>, <a href="https://arxiv.org/format/2409.10439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Successive topological phase transitions in two distinct spin-flop phases on the honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xudong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jize Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jinbin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Q">Qiang Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10439v1-abstract-short" style="display: inline;"> The Kitaev magnets with bond-dependent interactions have garnered considerable attention in recent years for their ability to harbor exotic phases and nontrivial excitations. The topological magnons, which are indicated by nonzero Chern number and thermal Hall conductivity, are proposed to partially explain thermal Hall measurements in real materials. Hitherto, topological magnons have been extens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10439v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10439v1-abstract-full" style="display: none;"> The Kitaev magnets with bond-dependent interactions have garnered considerable attention in recent years for their ability to harbor exotic phases and nontrivial excitations. The topological magnons, which are indicated by nonzero Chern number and thermal Hall conductivity, are proposed to partially explain thermal Hall measurements in real materials. Hitherto, topological magnons have been extensively explored when the magnetic field is normal to the honeycomb plane, but their topological characteristics are less studied in the presence of in-plane magnetic field. Here, we study two distinct in-plane field induced spin-flop phases in the $螕$-$螕&#39;$ model, both of which are off-diagonal couplings that have intimate relation to the Kitaev interaction. The two spin-flop phases are distinguished by their out-of-plane spin components which can be either antiparallel or parallel, thus dubbing antiferromagnetic (AFM) or ferromagnetic (FM) spin-flop phases, respectively. We map out topological phase diagrams for both phases, revealing a rich pattern of the Chern number over exchange parameters and magnetic field. We analytically calculate the boundaries of topological phase transitions when the magnetic field is along the $a$ and $b$ directions. We find that the thermal Hall conductivity and its derivative display contrasting behaviors when crossing different topological phase transitions. The striking difference of the two phases lies in that when the magnetic field is along the $b$ direction, topological magnons are totally absent in the AFM spin-flop phase, while they can survive in the FM analogue in certain parameter regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10439v1-abstract-full').style.display = 'none'; document.getElementById('2409.10439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14+4 pages, 10+3 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09806">arXiv:2409.09806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09806">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Room-temperature valley-selective emission in Si-MoSe2 heterostructures enabled by high-quality-factor chiroptical cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+A+C">Amalya C. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhuey%2C+S">Scott Dhuey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saunders%2C+A">Ashley Saunders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Meng-Xia Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dixon%2C+J+P">Jefferson P. Dixon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagli%2C+S">Sahil Dagli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+S">Sze-Cheung Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+T">Tingting Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chih-Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+J">Jun-Hao Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Apte%2C+R">Rajas Apte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinz%2C+T+F">Tony F. Heinz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Z">Zi-Lan Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dionne%2C+J+A">Jennifer A. Dionne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09806v3-abstract-short" style="display: inline;"> Transition metal dichalcogenides (TMDCs) possess valley pseudospin, allowing photon spin to be coupled to electron spin and enabling initialization and readout of both classical and quantum information. Rapid valley-dephasing processes have impeded the development of scalable, high-performance valleytronic devices operating at room temperature. Here we demonstrate that a chiral resonant metasurfac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09806v3-abstract-full').style.display = 'inline'; document.getElementById('2409.09806v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09806v3-abstract-full" style="display: none;"> Transition metal dichalcogenides (TMDCs) possess valley pseudospin, allowing photon spin to be coupled to electron spin and enabling initialization and readout of both classical and quantum information. Rapid valley-dephasing processes have impeded the development of scalable, high-performance valleytronic devices operating at room temperature. Here we demonstrate that a chiral resonant metasurface can enable room-temperature valley-selective emission, even with linearly polarized excitation. This platform provides circular eigen-polarization states with a high quality factor (Q-factor) and strong chiral near-field enhancement, resulting in unitary emission circular dichroism (i.e. single-handed circularly polarized emission). Our fabricated Si chiral metasurfaces exhibit chiral electromagnetic modes with Q-factors up to 450 at visible wavelengths, spectrally tuned to the exciton energy of MoSe2 monolayers. Using spatially- and spectrally-resolved mapping from temperatures of 100 K to 294 K, we demonstrate degrees of circular polarization (DOP) reaching a record high of 0.5 at room temperature. Reciprocal space mapping of the exciton emission reveals the chiral q-BIC localizes valley-selective emission in the vicinity of the photonic gamma-point. Photon-spin and time-resolved photoluminescence measurements show that the high DOP can be attributed to the significantly increased chiroptical local density of states provided by the metasurface, which enhances valley-specific radiative transition rates by a factor of approximately 13, with lifetimes as short as 189 ps. Our work could facilitate the development of compact chiral classical and quantum light sources and the creation of molecular chiral polaritons for quantum enantioselective synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09806v3-abstract-full').style.display = 'none'; document.getElementById('2409.09806v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08902">arXiv:2409.08902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08902">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Polarization Pinning at Antiphase Boundaries in Multiferroic YbFeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+G">Guodong Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Omprakash%2C+P">Pravan Omprakash</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+Y">Yu Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thind%2C+A+S">Arashdeep S. Thind</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoshan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+R">Rohan Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08902v2-abstract-short" style="display: inline;"> The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain-walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO$_3$. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO$_3$ thin films using a combination of aber&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08902v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08902v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08902v2-abstract-full" style="display: none;"> The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain-walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO$_3$. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO$_3$ thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO$_6$ octahedra at the APB that bridge the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO$_6$ octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08902v2-abstract-full').style.display = 'none'; document.getElementById('2409.08902v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07698">arXiv:2409.07698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07698">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interlayer Engineering of Lattice Dynamics and Elastic Constants of 2D Layered Nanomaterials under Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+G">Guoshuai Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuchang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+S">Susu Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+W">Wuxiao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yubing Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ming%2C+J">Jiaxin Ming</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tiansong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jun Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoyan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Weigao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yabin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07698v1-abstract-short" style="display: inline;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07698v1-abstract-full" style="display: none;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains vague, despite significant efforts. Herein, the layer-dependent lattice dynamics and elastic constants of 2D nanomaterials have been systematically investigated via pressure-engineering strategy based on ultralow frequency Raman spectroscopy. The shearing mode and layer-breathing Raman shifts of MoS2 with various thicknesses were analyzed by the linear chain model. Intriguingly, it was found that the layer-dependent d蠅/dP of shearing and breathing Raman modes display the opposite trends, quantitatively consistent with our molecular dynamics simulations and density functional theory calculations. These results can be generalized to other van der Waals systems, and may shed light on the potential applications of 2D materials in nanomechanics and nanoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'none'; document.getElementById('2409.07698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04531">arXiv:2409.04531</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04531">pdf</a>, <a href="https://arxiv.org/format/2409.04531">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Nonlinear Transport in a Floquet-Weyl Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Day%2C+M+W">Matthew W. Day</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kusyak%2C+K">Kateryna Kusyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sturm%2C+F">Felix Sturm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aranzadi%2C+J+I">Juan I. Aranzadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bretscher%2C+H+M">Hope M. Bretscher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fechner%2C+M">Michael Fechner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuyama%2C+T">Toru Matsuyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michael%2C+M+H">Marios H. Michael</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulte%2C+B+F">Benedikt F. Schulte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hagelstein%2C+J">Jesse Hagelstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrmann%2C+D">Dorothee Herrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kipp%2C+G">Gunda Kipp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potts%2C+A+M">Alex M. Potts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeStefano%2C+J+M">Jonathan M. DeStefano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yunfei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+G">Guido Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+D">Dongbin Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kennes%2C+D+M">Dante M. Kennes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sentef%2C+M+A">Michael A. Sentef</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04531v1-abstract-short" style="display: inline;"> Periodic laser driving, known as Floquet engineering, is a powerful tool to manipulate the properties of quantum materials. Using circularly polarized light, artificial magnetic fields, called Berry curvature, can be created in the photon-dressed Floquet-Bloch states that form. This mechanism, when applied to 3D Dirac and Weyl systems, is predicted to lead to photon-dressed movement of Weyl nodes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04531v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04531v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04531v1-abstract-full" style="display: none;"> Periodic laser driving, known as Floquet engineering, is a powerful tool to manipulate the properties of quantum materials. Using circularly polarized light, artificial magnetic fields, called Berry curvature, can be created in the photon-dressed Floquet-Bloch states that form. This mechanism, when applied to 3D Dirac and Weyl systems, is predicted to lead to photon-dressed movement of Weyl nodes which should be detectable in the transport sector. The transport response of such a topological light-matter hybrid, however, remains experimentally unknown. Here, we report on the transport properties of the type-II Weyl semimetal T$\mathrm{_d}$-MoTe$_\mathrm{2}$ illuminated by a femtosecond pulse of circularly polarized light. Using an ultrafast optoelectronic device architecture, we observed injection currents and a helicity-dependent anomalous Hall effect whose scaling with laser field strongly deviate from the perturbative laws of nonlinear optics. We show using Floquet theory that this discovery corresponds to the formation of a magnetic Floquet-Weyl semimetal state. Numerical ab initio simulations support this interpretation, indicating that the light-induced motion of the Weyl nodes contributes substantially to the measured transport signals. This work demonstrates the ability to generate large effective magnetic fields ($&gt;$ 30T) with light, which can be used to manipulate the magnetic and topological properties of a range of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04531v1-abstract-full').style.display = 'none'; document.getElementById('2409.04531v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04349">arXiv:2409.04349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04349">pdf</a>, <a href="https://arxiv.org/format/2409.04349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Impurity-induced thermal crossover in fractional Chern insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Ke Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+S+D">Sankar Das Sarma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04349v1-abstract-short" style="display: inline;"> The recent experimental observation of fractional quantum anomalous Hall (FQAH) states in rhombohedral multilayer graphene has attracted significant attention. One of the most intriguing observations is that the FQAH states at various fractional fillings give way to IQAH states as the temperature is lowered. In this work, we propose a mechanism for the appearance of FQAH states within a finite tem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04349v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04349v1-abstract-full" style="display: none;"> The recent experimental observation of fractional quantum anomalous Hall (FQAH) states in rhombohedral multilayer graphene has attracted significant attention. One of the most intriguing observations is that the FQAH states at various fractional fillings give way to IQAH states as the temperature is lowered. In this work, we propose a mechanism for the appearance of FQAH states within a finite temperature range in a toy model. The model consists of a flat Chern band and impurities, and we analyze the effects of impurities on the system&#39;s behavior at finite temperatures. We believe that the crossover may arise from the competition between the energy penalty for thermal excitations and the increase in entropy. We support our theoretical argument with numerical calculations using exact diagonalization. Our results suggest that impurities may play a crucial role in the crossover from the FQAH to IQAH states in rhombohedral pentalayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04349v1-abstract-full').style.display = 'none'; document.getElementById('2409.04349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04149">arXiv:2409.04149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04149">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin freezing induced giant exchange bias in a doped Hund&#39;s metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+J">S. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+D">D. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B+L">B. L. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+M">M. Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y+B">Y. B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X+Y">X. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04149v1-abstract-short" style="display: inline;"> Exchange bias (EB) is a fundamental phenomenon in widespread information technologies. However, a comprehensive understanding of its microscopic origin remains a great challenge. One key issue in the debate is the role of frustration and disorder in the EB mechanism, which motivates the exploration of the EB effect in spin glass (SG) systems. Here,in the SG state of Cr-doped Hund&#39;s metal CsFe2As2,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04149v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04149v1-abstract-full" style="display: none;"> Exchange bias (EB) is a fundamental phenomenon in widespread information technologies. However, a comprehensive understanding of its microscopic origin remains a great challenge. One key issue in the debate is the role of frustration and disorder in the EB mechanism, which motivates the exploration of the EB effect in spin glass (SG) systems. Here,in the SG state of Cr-doped Hund&#39;s metal CsFe2As2, we discover a giant EB effect with a maximum bias field of ~ 2 Tesla, which is almost two orders of magnitude larger than that of traditional alloy SGs. Our results indicate that the giant EB effect should originate from the exchange interactions at the natural boundaries between the tunable ferromagnetic-like (FM) regions around Cr dopants and the SG matrix, via which the FM spins are strongly pinned by the frozen spins in the SG matrix. In addition, the temperature-dependent and cooling-field-dependent EB behaviors could be interpreted well by the SG model with frustrated FM/SG boundaries, which provides an intuitive and explicit understanding of the impact of glassy parameters on the EB effect. All these results suggest that the correlated metals are promising directions for exploring the EB effect in the SG state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04149v1-abstract-full').style.display = 'none'; document.getElementById('2409.04149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures,Supplementary information available on request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04000">arXiv:2409.04000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04000">pdf</a>, <a href="https://arxiv.org/format/2409.04000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multiple types of spin textures and robust valley physics in MP$_2$X$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+L">Li Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhichao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04000v1-abstract-short" style="display: inline;"> Both spin textures and multiple valleys in the momentum space have attracted great attentions due to their versatile applications in spintronics and valleytronics. It is highly desirable to realize multiple types of spin textures in a single material and further couple the spin textures to valley degree of freedom. Here, we study electronic properties of SnP$_{2}$Se$_{6}$ monolayer by first-princi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04000v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04000v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04000v1-abstract-full" style="display: none;"> Both spin textures and multiple valleys in the momentum space have attracted great attentions due to their versatile applications in spintronics and valleytronics. It is highly desirable to realize multiple types of spin textures in a single material and further couple the spin textures to valley degree of freedom. Here, we study electronic properties of SnP$_{2}$Se$_{6}$ monolayer by first-principles calculations. The monolayer exhibits rare Weyl-type and Ising-type spin textures at different valleys, which can be conveniently expressed by electron and hole dopings, respectively. Besides valley-contrasting spin textures, Berry-curvature-driven anomalous Hall currents and optical selectivity are found to be valley dependent as well. These valley-related properties also have generalizations to SnP$_{2}$Se$_{6}$ few-layers and other MP$_{2}$X$_{6}$. Our findings open new avenue for exploring appealing interplay between spin textures and multiple valleys, and designing advanced device paradigms based on spin and valley degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04000v1-abstract-full').style.display = 'none'; document.getElementById('2409.04000v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03229">arXiv:2409.03229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03229">pdf</a>, <a href="https://arxiv.org/format/2409.03229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.094601">10.1103/PhysRevMaterials.8.094601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bonding Hierarchy and Coordination Interaction Leading to High Thermoelectricity in Wide Bandgap TlAgI2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Mengyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+M">Minxuan Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xuejie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yuzhou Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiangang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xiangdong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhibin Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03229v1-abstract-short" style="display: inline;"> High thermoelectric properties are associated with the phonon-glass electron-crystal paradigm. Conventional wisdom suggests that the optimal bandgap of semiconductor to achieve the largest power factor should be between 6 and 10 kbT. To address challenges related to the bipolar effect and temperature limitations, we present findings on Zintl-type TlAgI2, which demonstrates an exceptionally low lat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03229v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03229v1-abstract-full" style="display: none;"> High thermoelectric properties are associated with the phonon-glass electron-crystal paradigm. Conventional wisdom suggests that the optimal bandgap of semiconductor to achieve the largest power factor should be between 6 and 10 kbT. To address challenges related to the bipolar effect and temperature limitations, we present findings on Zintl-type TlAgI2, which demonstrates an exceptionally low lattice thermal conductivity of 0.3 W m-1 K-1 at 300 K. The achieved figure of merit (ZT) for TlAgI2, featuring a 1.55 eV bandgap, reaches a value of 2.20 for p-type semiconductor. This remarkable ZT is attributed to the existence of extended antibonding states Ag-I in the valence band. Furthermore, the bonding hierarchy, influencing phonon anharmonicity, and coordination bonds, facilitating electron transfer between the ligand and the central metal ion, significantly contribute to electronic transport. This finding serves as a promising avenue for the development of high ZT materials with wide bandgaps at elevated temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03229v1-abstract-full').style.display = 'none'; document.getElementById('2409.03229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02880">arXiv:2409.02880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02880">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Frustrated S = 1/2 Chains in One-Dimensional Correlated Metal Ti4MnBi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X+Y">X. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nocera%2C+A">A. Nocera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foyevtsova%2C+K">K. Foyevtsova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oudah%2C+M">M. Oudah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murai%2C+N">N. Murai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kofu%2C+M">M. Kofu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuura%2C+M">M. Matsuura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamatsukuri%2C+H">H. Tamatsukuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aronson%2C+M+C">M. C. Aronson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02880v2-abstract-short" style="display: inline;"> Electronic correlations lead to heavy quasiparticles in three-dimensional metals, and their collapse can destabilize magnetic moments. It is an open question whether there is an analogous instability in one-dimensional (1D) systems, unanswered due to the lack of metallic spin chains. We report neutron scattering measurements and Density Matrix Renormalization Group calculations establishing spinon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02880v2-abstract-full').style.display = 'inline'; document.getElementById('2409.02880v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02880v2-abstract-full" style="display: none;"> Electronic correlations lead to heavy quasiparticles in three-dimensional metals, and their collapse can destabilize magnetic moments. It is an open question whether there is an analogous instability in one-dimensional (1D) systems, unanswered due to the lack of metallic spin chains. We report neutron scattering measurements and Density Matrix Renormalization Group calculations establishing spinons in the correlated metal Ti4MnBi2, confirming it is 1D. Ti4MnBi2 is inherently frustrated, forming near a quantum critical point separating two T = 0 phases of the J1-J2 XXZ model. The lack of magnetic order above 0.3 K results from these quantum critical fluctuations, potentially compounded by Kondo moment compensation. Ti4MnBi2 provides the first experimental evidence that 1D magnetism, previously the exclusive domain of insulators, persists in metallic systems with moderate correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02880v2-abstract-full').style.display = 'none'; document.getElementById('2409.02880v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00635">arXiv:2409.00635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00635">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Designing high endurance Hf0.5Zr0.5O2 capacitors through engineered recovery from fatigue for non-volatile ferroelectric memory and neuromorphic hardware </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinye Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srivari%2C+P">Padma Srivari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majumdar%2C+S">Sayani Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00635v1-abstract-short" style="display: inline;"> Heavy computational demands from artificial intelligence (AI) leads the research community to explore the design space for functional materials that can be used for high performance memory and neuromorphic computing hardware. Novel device technologies with specially engineered properties are under intense investigation to revolutionize information processing with brain-inspired computing primitive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00635v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00635v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00635v1-abstract-full" style="display: none;"> Heavy computational demands from artificial intelligence (AI) leads the research community to explore the design space for functional materials that can be used for high performance memory and neuromorphic computing hardware. Novel device technologies with specially engineered properties are under intense investigation to revolutionize information processing with brain-inspired computing primitives for ultra energy-efficient implementation of AI and machine learning tasks. Ferroelectric memories with ultra-low power and fast operation, non-volatile data retention and reliable switching to multiple polarization states promises one such option for non-volatile memory and synaptic weight elements in neuromorphic hardware. For quick adaptation of industry, new materials need complementary metal oxide semiconductor (CMOS) process compatibility which brings a whole new set of challenges and opportunities for advanced materials design. In this work, we report on designing of back-end-of-line compatible ferroelectric Hf0.5Zr0.5O2 capacitors that are capable of recovery from fatigue multiple times reaching 2Pr &gt; 40 microC cm-2 upon each retrieval. Our results indicate that with specifically engineered material stack and annealing protocols, it is possible to reach endurance exceeding 10^9 cycles at room temperature that can lead to ultralow power ferroelectric non-volatile memory components or synaptic weight elements compatible with online training or inference tasks for neuromorphic computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00635v1-abstract-full').style.display = 'none'; document.getElementById('2409.00635v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15684">arXiv:2408.15684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15684">pdf</a>, <a href="https://arxiv.org/format/2408.15684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A quasi-ohmic back contact achieved by inserting single-crystal graphene in flexible Kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yixiong Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wentong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Di Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+W">Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jialu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Shi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+J">Jintao Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bullock%2C+J">James Bullock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M">Mei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhancheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xingzhan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+H">Haofei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mulvaney%2C+P">Paul Mulvaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15684v1-abstract-short" style="display: inline;"> Flexible photovoltaics with a lightweight and adaptable nature that allows for deployment on curved surfaces and in building facades have always been a goal vigorously pursued by researchers in thin-film solar cell technology. The recent strides made in improving the sunlight-to-electricity conversion efficiency of kesterite Cu$_{2}$ZnSn(S, Se)$_{4}$ (CZTSSe) suggest it to be a perfect candidate.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15684v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15684v1-abstract-full" style="display: none;"> Flexible photovoltaics with a lightweight and adaptable nature that allows for deployment on curved surfaces and in building facades have always been a goal vigorously pursued by researchers in thin-film solar cell technology. The recent strides made in improving the sunlight-to-electricity conversion efficiency of kesterite Cu$_{2}$ZnSn(S, Se)$_{4}$ (CZTSSe) suggest it to be a perfect candidate. However, making use of rare Mo foil in CZTSSe solar cells causes severe problems in thermal expansion matching, uneven grain growth, and severe problems at the back contact of the devices. Herein, a strategy utilizing single-crystal graphene to modify the back interface of flexible CZTSSe solar cells is proposed. It will be shown that the insertion of graphene at the Mo foil/CZTSSe interface provides strong physical support for the subsequent deposition of the CZTSSe absorber layer, improving the adhesion between the absorber layer and the Mo foil substrate. Additionally, the graphene passivates the rough sites on the surface of the Mo foil, enhancing the chemical homogeneity of the substrate, and resulting in a more crystalline and homogeneous CZTSSe absorber layer on the Mo foil substrate. The detrimental reaction between Mo and CZTSSe has also been eliminated. Through an analysis of the electrical properties, it is found that the introduction of graphene at the back interface promotes the formation of a quasi-ohmic contact at the back contact, decreasing the back contact barrier of the solar cell, and leading to efficient collection of charges at the back interface. This investigation demonstrates that solution-based CZTSSe photovoltaic devices could form the basis of cheap and flexible solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15684v1-abstract-full').style.display = 'none'; document.getElementById('2408.15684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13405">arXiv:2408.13405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13405">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c03071">10.1021/acs.nanolett.4c03071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultracoherent GHz Diamond Spin-Mechanical Lamb Wave Resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinzhu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lekavicius%2C+I">Ignas Lekavicius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noeckel%2C+J">Jens Noeckel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13405v1-abstract-short" style="display: inline;"> We report the development of an all-optical approach that excites the fundamental compression mode in a diamond Lamb wave resonator with an optical gradient force and detects the induced vibrations via strain coupling to a silicon vacancy center, specifically, via phonon sidebands in the optical excitation spectrum of the silicon vacancy. Sideband optical interferometry has also been used for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13405v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13405v1-abstract-full" style="display: none;"> We report the development of an all-optical approach that excites the fundamental compression mode in a diamond Lamb wave resonator with an optical gradient force and detects the induced vibrations via strain coupling to a silicon vacancy center, specifically, via phonon sidebands in the optical excitation spectrum of the silicon vacancy. Sideband optical interferometry has also been used for the detection of the in-plane mechanical vibrations, for which conventional optical interferometry is not effective. These experiments demonstrate a GHz fundamental compression mode with a Q-factor &gt;10^7 at temperatures near 7 K, providing a promising platform for reaching the quantum regime of spin mechanics, especially phononic cavity QED of electron spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13405v1-abstract-full').style.display = 'none'; document.getElementById('2408.13405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10306">arXiv:2408.10306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10306">pdf</a>, <a href="https://arxiv.org/format/2408.10306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Strict area law entanglement versus chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+T">Ting-Chun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGreevy%2C+J">John McGreevy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+B">Bowen Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10306v1-abstract-short" style="display: inline;"> Chirality is a property of a gapped phase of matter in two spatial dimensions that can be manifested through non-zero thermal or electrical Hall conductance. In this paper, we prove two no-go theorems that forbid such chirality for a quantum state in a finite dimensional local Hilbert space with strict area law entanglement entropies. As a crucial ingredient in the proofs, we introduce a new quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10306v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10306v1-abstract-full" style="display: none;"> Chirality is a property of a gapped phase of matter in two spatial dimensions that can be manifested through non-zero thermal or electrical Hall conductance. In this paper, we prove two no-go theorems that forbid such chirality for a quantum state in a finite dimensional local Hilbert space with strict area law entanglement entropies. As a crucial ingredient in the proofs, we introduce a new quantum information-theoretic primitive called instantaneous modular flow, which has many other potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10306v1-abstract-full').style.display = 'none'; document.getElementById('2408.10306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09433">arXiv:2408.09433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09433">pdf</a>, <a href="https://arxiv.org/format/2408.09433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmps.2024.105823">10.1016/j.jmps.2024.105823 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stochastic process model for interfacial gap of purely normal elastic rough surface contact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joe%2C+J">Junki Joe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaobao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yunong Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09433v1-abstract-short" style="display: inline;"> In purely normal elastic rough surface contact problems, Persson&#39;s theory of contact shows that the evolution of the probability density function (PDF) of contact pressure with the magnification is governed by a diffusion equation. However, there is no partial differential equation describing the evolution of the PDF of the interfacial gap. In this study, we derive a convection--diffusion equation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09433v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09433v1-abstract-full" style="display: none;"> In purely normal elastic rough surface contact problems, Persson&#39;s theory of contact shows that the evolution of the probability density function (PDF) of contact pressure with the magnification is governed by a diffusion equation. However, there is no partial differential equation describing the evolution of the PDF of the interfacial gap. In this study, we derive a convection--diffusion equation in terms of the PDF of the interfacial gap based on stochastic process theory, as well as the initial and boundary conditions. A finite difference method is developed to numerically solve the partial differential equation. The predicted PDF of the interfacial gap agrees well with that by Green&#39;s Function Molecular Dynamics (GFMD) and other variants of Persson&#39;s theory of contact at high load ranges. At low load ranges, the obvious deviation between the present work and GFMD is attributed to the overestimated mean interfacial gap and oversimplified magnification-dependent diffusion coefficient used in the present model. As one of its direct application, we show that the present work can effectively solve the adhesive contact problem under the DMT limit. The current study provides an alternative methodology for determining the PDF of the interfacial gap and a unified framework for solving the complementary problem of random contact pressure and random interfacial gap based on stochastic process theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09433v1-abstract-full').style.display = 'none'; document.getElementById('2408.09433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the Mechanics and Physics of Solids, 2024, 105823 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08976">arXiv:2408.08976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08976">pdf</a>, <a href="https://arxiv.org/format/2408.08976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable Hyperuniformity in Cellular Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yiwen Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinzhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+D">Dapeng Bi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08976v1-abstract-short" style="display: inline;"> Hyperuniform materials, characterized by their suppressed density fluctuations and vanishing structure factors as the wave number approaches zero, represent a unique state of matter that straddles the boundary between order and randomness. These materials exhibit exceptional optical, mechanical, and acoustic properties, making them of great interest in materials science and engineering. Traditiona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08976v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08976v1-abstract-full" style="display: none;"> Hyperuniform materials, characterized by their suppressed density fluctuations and vanishing structure factors as the wave number approaches zero, represent a unique state of matter that straddles the boundary between order and randomness. These materials exhibit exceptional optical, mechanical, and acoustic properties, making them of great interest in materials science and engineering. Traditional methods for creating hyperuniform structures, including collective-coordinate optimization and centroidal Voronoi tessellations, have primarily been computational and face challenges in capturing the complexity of naturally occurring systems. This study introduces a comprehensive theoretical framework to generate hyperuniform structures inspired by the collective organization of biological cells within an epithelial tissue layer. By adjusting parameters such as cell elasticity and interfacial tension, we explore a spectrum of hyperuniform states from fluid to rigid, each exhibiting distinct mechanical properties and types of density fluctuations. Our results not only advance the understanding of hyperuniformity in biological tissues but also demonstrate the potential of these materials to inform the design of novel materials with tailored properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08976v1-abstract-full').style.display = 'none'; document.getElementById('2408.08976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05139">arXiv:2408.05139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05139">pdf</a>, <a href="https://arxiv.org/format/2408.05139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Fractional quantum anomalous Hall effect in rhombohedral multilayer graphene with a strong displacement field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Ke Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+S+D">Sankar Das Sarma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05139v1-abstract-short" style="display: inline;"> We investigate the fractional quantum anomalous Hall (FQAH) effect in rhombohedral multilayer graphene (RnG) in the presence of a strong applied displacement field. We first introduce the interacting model of RnG, which includes the noninteracting continuum model and the many-body Coulomb interaction. We then discuss the integer quantum anomalous Hall (IQAH) effect in RnG and the role of the Hartr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05139v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05139v1-abstract-full" style="display: none;"> We investigate the fractional quantum anomalous Hall (FQAH) effect in rhombohedral multilayer graphene (RnG) in the presence of a strong applied displacement field. We first introduce the interacting model of RnG, which includes the noninteracting continuum model and the many-body Coulomb interaction. We then discuss the integer quantum anomalous Hall (IQAH) effect in RnG and the role of the Hartree-Fock approach in understanding its appearance. Next, we explore the FQAH effect in RnG for $n=3$--$6$ using a combination of constrained Hartree-Fock and exact diagonalization methods. We characterize the stability of the FQAH phase by the size of the FQAH gap and find that RnG generally has a stable FQAH phase, although the required displacement field varies significantly among different $n$ values. Our work establishes the theoretical universality of both IQAH and FQAH in RnG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05139v1-abstract-full').style.display = 'none'; document.getElementById('2408.05139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03939">arXiv:2408.03939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03939">pdf</a>, <a href="https://arxiv.org/format/2408.03939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Manipulable compact many-body localization and absence of superfluidity in geometrically frustrated systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xinyao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Sousa%2C+M+S+M">Matheus S. M. de Sousa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hegg%2C+A">Anthony Hegg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ku%2C+W">Wei Ku</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03939v1-abstract-short" style="display: inline;"> Geometric frustration is known to completely damage kinetic processes of some of the orbitals (and their associated quantum coherence) as to produce flat bands in the non-interacting systems. The impact of introducing additional interaction to the system in such frustrated systems is, however, a highly controversial issue. On the one hand, numerical studies on geometrically frustrated systems of h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03939v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03939v1-abstract-full" style="display: none;"> Geometric frustration is known to completely damage kinetic processes of some of the orbitals (and their associated quantum coherence) as to produce flat bands in the non-interacting systems. The impact of introducing additional interaction to the system in such frustrated systems is, however, a highly controversial issue. On the one hand, numerical studies on geometrically frustrated systems of hard-core boson (equivalent to a spin-1/2 systems) typically lead to glass or solid phases containing only local many-body coherence, indicating the persistence of the damage in quantum coherence. On the other, there continues to be noticeable claims of development of superfluidity that implies kinetic flow of particles. To resolve this apparent contradiction of great significance, we present a rigorous proof showing that density-density interaction is incapable of defeating the geometric frustration to allow propagation of those immobile particles, let alone sustaining a superfluidity. Instead, the frustrated systems develop many $\textit{compact}$ many-body localized states as &#34;many-body scars&#34; that do not thermalize, making them good candidates for storing $\textit{robust}$ and $\textit{manipulable}$ quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03939v1-abstract-full').style.display = 'none'; document.getElementById('2408.03939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03857">arXiv:2408.03857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03857">pdf</a>, <a href="https://arxiv.org/ps/2408.03857">ps</a>, <a href="https://arxiv.org/format/2408.03857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Reply to &#34;Comment on `Towards exact solutions of superconducting $T_c$ induced by electron-phonon interaction&#39; &#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guo-Zhu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhao-Kun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+X">Xiao-Yin Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing-Rong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Hao-Fu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jie Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03857v1-abstract-short" style="display: inline;"> In a series of papers, we have proposed a non-perturbative field-theoretic approach to deal with strong electron-phonon and strong Coulomb interactions. The key ingredient of such an approach is to determine the full fermion-boson vertex corrections by solving a number of self-consistent Ward-Takahashi identities. Palle (see Phys. Rev. B 110, 026501 (2024), arXiv:2404.02918) argued that our Ward-T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03857v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03857v1-abstract-full" style="display: none;"> In a series of papers, we have proposed a non-perturbative field-theoretic approach to deal with strong electron-phonon and strong Coulomb interactions. The key ingredient of such an approach is to determine the full fermion-boson vertex corrections by solving a number of self-consistent Ward-Takahashi identities. Palle (see Phys. Rev. B 110, 026501 (2024), arXiv:2404.02918) argued that our Ward-Takahashi identities failed to include some important additional terms and thus are incorrect. We agree that our Ward-Takahashi identities have ignored some potentially important contributions and here give some remarks on the role played by the additional terms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03857v1-abstract-full').style.display = 'none'; document.getElementById('2408.03857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Reply to arXiv:2404.02918, which is published as Phys. Rev. B 110, 026501 (2024), by Palle, commenting on arXiv:1911.05528</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 026502 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02176">arXiv:2408.02176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02176">pdf</a>, <a href="https://arxiv.org/format/2408.02176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Field-Tunable Valley Coupling and Localization in a Dodecagonal Semiconductor Quasicrystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhida Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanxing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaohui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+S">Dong Seob Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+Y">Yue Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+M">Miles Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abudayyeh%2C+H">Hamza Abudayyeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+C">Chih-Kang Shih</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalaf%2C+E">Eslam Khalaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoqin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02176v1-abstract-short" style="display: inline;"> Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir茅 crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02176v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02176v1-abstract-full" style="display: none;"> Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir茅 crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q valleys in separate layers are brought arbitrarily close in momentum space via higher-order Umklapp scatterings. A modest perpendicular electric field is sufficient to induce strong interlayer K-Q hybridization, manifested as a new hybrid excitonic doublet. Concurrently, we observe the disappearance of the trion resonance and attribute it to quasicrystal potential driven localization. Our findings highlight the remarkable attribute of incommensurate systems to bring any pair of momenta into close proximity, thereby introducing a novel aspect to valley engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02176v1-abstract-full').style.display = 'none'; document.getElementById('2408.02176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01830">arXiv:2408.01830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01830">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity in Hafnia: The Origin of Nanoscale Stabilization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+G">Guodong Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haidong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+K">Kartik Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shah%2C+A+K">Amit Kumar Shah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Omprakash%2C+P">Pravan Omprakash</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+Y">Yu Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buragohain%2C+P">Pratyush Buragohain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hachtel%2C+J+A">Jordan A. Hachtel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupini%2C+A+R">Andrew R. Lupini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+M">Miaofang Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gruverman%2C+A">Alexei Gruverman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+R">Rohan Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoshan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01830v1-abstract-short" style="display: inline;"> The discovery of ferroelectricity in hafnia-based materials have boosted the potential of incorporating ferroelectrics in advanced electronics, thanks to their compatibility with silicon technology. However, comprehending why these materials defy the common trend of reduced ferroelectric ordering at the nanoscale, and the mechanism that stabilizes the ferroelectric phase (absent in hafnia phase di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01830v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01830v1-abstract-full" style="display: none;"> The discovery of ferroelectricity in hafnia-based materials have boosted the potential of incorporating ferroelectrics in advanced electronics, thanks to their compatibility with silicon technology. However, comprehending why these materials defy the common trend of reduced ferroelectric ordering at the nanoscale, and the mechanism that stabilizes the ferroelectric phase (absent in hafnia phase diagram) presents significant challenges to traditional knowledge of ferroelectricity. In this work, we show that the formation of the orthorhombic ferroelectric phase (o-FE, space group Pca21) of the single-crystalline epitaxial films of 10% La-doped HfO2 (LHO) on (111)-oriented yttria stabilized zirconia (YSZ) relies on the stability of the high-pressure orthorhombic antiferroelectric phase (o-AFE, space group Pbca). Our detailed structural characterizations demonstrate that as-grown LHO films represent largely the o-AFE phase being thermodynamically stabilized by the compressive strain. Our Kelvin probe force microscopy studies show, under mechanical poling, the o-AFE phase is converted to the o-FE phase which remains stable under ambient conditions. We find that the orthorhombic phase stability is enhanced in thinner films down to one-unit-cell thickness, a trend that is unknown in any other ferroelectric films. This is due to the vanishing depolarization field of the o-AFE phase and the isomorphic LHO/YSZ interface, supporting strain-enhanced ferroelectricity in the ultrathin films. This results in an unprecedented increase of the Curie temperature up to 850 掳C, the highest reported for sub-nanometer-thick ferroelectrics. Overall, our findings opens the way for advanced engineering of hafnia-based materials for ferroelectric applications and heralding a new frontier of high-temperature ferroelectrics at the two-dimensional limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01830v1-abstract-full').style.display = 'none'; document.getElementById('2408.01830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17859">arXiv:2407.17859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17859">pdf</a>, <a href="https://arxiv.org/format/2407.17859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Mechanism of Type-II Multiferroicity in Pure and Al-Doped CuFeO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Weiqin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Panshuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Haiyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xueyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Changsong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17859v1-abstract-short" style="display: inline;"> Type-II multiferroicity, where electric polarization is induced by specific spin patterns, is crucial in fundamental physics and advanced spintronics. However, the spin model and magnetoelectric coupling mechanisms in prototypical type-II multiferroic CuFeO$_2$ and Al-doped CuFeO$_2$ remain unclear. Here, by considering both spin and alloy degrees of freedom, we develop a magnetic cluster expansio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17859v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17859v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17859v1-abstract-full" style="display: none;"> Type-II multiferroicity, where electric polarization is induced by specific spin patterns, is crucial in fundamental physics and advanced spintronics. However, the spin model and magnetoelectric coupling mechanisms in prototypical type-II multiferroic CuFeO$_2$ and Al-doped CuFeO$_2$ remain unclear. Here, by considering both spin and alloy degrees of freedom, we develop a magnetic cluster expansion method, which considers all symmetry allowed interactions. Applying such method, we not only obtain realistic spin model that can correctly reproduce observations for both CuFeO$_2$ and CuFe$_{1-x}$Al$_x$O$_2$, but also revisit well-known theories of the original spin-current (SC) model and $p$-$d$ hybridization model. Specifically, we find that (i) a previously overlooked biquadratic interaction is critical to reproduce the $\uparrow\uparrow\downarrow\downarrow$ ground state and excited states of CuFeO$_2$; (ii) the combination of absent biquadratic interaction and increased magnetic frustration around Al dopants stabilizes the proper screw state; and (iii) it is the generalized spin-current (GSC) model that can correctly characterize the multiferroicity of CuFeO$_2$. These findings have broader implications for understanding novel magnetoelectric couplings in, e.g., monolayer multiferroic NiI$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17859v1-abstract-full').style.display = 'none'; document.getElementById('2407.17859v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17025">arXiv:2407.17025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17025">pdf</a>, <a href="https://arxiv.org/format/2407.17025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Distinct moir茅 trions in a twisted semiconductor homobilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhida Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haonan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaohui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+Y">Yue Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Frank Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arash%2C+S">Saba Arash</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+S">Dong Seob Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangcheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yongxin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quan%2C+J">Jiamin Quan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldini%2C+E">Edoardo Baldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDonald%2C+A+H">Allan H. MacDonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+C">Chih-Kang Shih</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Li Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoqin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17025v1-abstract-short" style="display: inline;"> Many fascinating properties discovered in graphene and transition metal dichalcogenide (TMD) moir茅 superlattices originate from flat bands and enhanced many-body effects. Here, we discover new many-electron excited states in TMD homobilayers. As optical resonances evolve with twist angle and doping in MoSe$_2$ bilayers, a unique type of ``charge-transfer&#34; trions is observed when gradual changes in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17025v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17025v1-abstract-full" style="display: none;"> Many fascinating properties discovered in graphene and transition metal dichalcogenide (TMD) moir茅 superlattices originate from flat bands and enhanced many-body effects. Here, we discover new many-electron excited states in TMD homobilayers. As optical resonances evolve with twist angle and doping in MoSe$_2$ bilayers, a unique type of ``charge-transfer&#34; trions is observed when gradual changes in atomic alignment between the layers occur. In real space, the optically excited electron-hole pair mostly resides in a different site from the doped hole in a moir茅 supercell. In momentum space, the electron-hole pair forms in the single-particle-band $K$-valley, while the hole occupies the $螕$-valley. The rich internal structure of this trion resonance arises from the ultra-flatness of the first valence band and the distinct influence of moir茅 potential modulation on holes and excitons. Our findings open new routes to realizing photon-spin transduction or implementing moir茅 quantum simulators with independently tunable fermion and boson densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17025v1-abstract-full').style.display = 'none'; document.getElementById('2407.17025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17010">arXiv:2407.17010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17010">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-024-01698-y">10.1038/s41565-024-01698-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective and Quasi-continuous Switching of Ferroelectric Chern Insulator Device for Neuromorphic Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Moyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yongqin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+B">Bin Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zaizheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin-Zhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Fanqiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jiao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wen-Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Menghao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+S">Shi-Jun Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+F">Feng Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17010v1-abstract-short" style="display: inline;"> Topologically protected edge state transport in quantum materials is dissipationless and features quantized Hall conductance, and shows great potential in highly fault-tolerant computing technologies. However, it remains elusive about how to develop topological edge state-based computing devices. Recently, exploration and understanding of interfacial ferroelectricity in various van der Waals heter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17010v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17010v1-abstract-full" style="display: none;"> Topologically protected edge state transport in quantum materials is dissipationless and features quantized Hall conductance, and shows great potential in highly fault-tolerant computing technologies. However, it remains elusive about how to develop topological edge state-based computing devices. Recently, exploration and understanding of interfacial ferroelectricity in various van der Waals heterostructure material systems have received widespread attention among the community of materials science and condensed matter physics3-11. Such ferroelectric polarization emergent at the vdW interface can coexist with other quantum states and thus provides an unprecedented opportunity to electrically switch the topological edge states of interest, which is of crucial significance to the fault-tolerant electronic device applications based on the topological edge states. Here, we report the selective and quasi-continuous ferroelectric switching of topological Chern insulator devices and demonstrate its promising application in noise-immune neuromorphic computing. We fabricate this ferroelectric Chern insulator device by encapsulating magic-angle twisted bilayer graphene with doubly-aligned h-BN layers, and observe the coexistence of the interfacial ferroelectricity and the topological Chern insulating states. This ferroelectricity exhibits an anisotropic dependence on the in-plane magnetic field. By using a VBG pulse with delicately controlled amplitude, we realize the nonvolatile switching between any pair of Chern insulating states and achieve 1280 distinguishable nonvolatile resistance levels on a single device. Furthermore, we demonstrate deterministic switching between two arbitrary levels among the record-high number of nonvolatile resistance levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17010v1-abstract-full').style.display = 'none'; document.getElementById('2407.17010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnolgy (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13985">arXiv:2407.13985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13985">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Cluster Sliding Ferroelectricity in Trilayer Quasi-Hexagonal C60 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuefei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yanhan Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+S">Shi Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xueao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Junfeng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13985v1-abstract-short" style="display: inline;"> Electric polarization typically originates from non-centrosymmetric charge distributions. Since chemical bonds between atoms of the same elements favor centrosymmetric crystal structures and symmetrically distributed electron charges, elemental ferroelectrics are extremely rare. In comparison to atoms, elemental clusters are less symmetric and typically have various preferred orientations in cryst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13985v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13985v1-abstract-full" style="display: none;"> Electric polarization typically originates from non-centrosymmetric charge distributions. Since chemical bonds between atoms of the same elements favor centrosymmetric crystal structures and symmetrically distributed electron charges, elemental ferroelectrics are extremely rare. In comparison to atoms, elemental clusters are less symmetric and typically have various preferred orientations in crystals. Consequently, the assembly of clusters with different orientations tends to break the inversion symmetry. Based on this concept, we show that sliding ferroelectricity naturally emerges in trilayer quasi-hexagonal phase (qHP) C60, a cluster-assembled carbon allotrope recently synthesized. Trilayer qHP C60&#39;s have several stable polar structures, which are distinguishable in second-harmonic generation (SHG) responses. Compared to previously found elemental ferroelectrics, trilayer qHP C60&#39;s have sizable band gaps and some of them have both switchable out-of-plane and in-plane polarizations. Remarkably, the out-of-plane and in-plane polarizations are decoupled, enabling an easy-to-implement construction of Van der Waals homostructures with ferroelectrically switchable chirality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13985v1-abstract-full').style.display = 'none'; document.getElementById('2407.13985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12744">arXiv:2407.12744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12744">pdf</a>, <a href="https://arxiv.org/format/2407.12744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad51f8">10.1088/1674-1056/ad51f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negligible Normal Fluid in Superconducting State of Heavily Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Detected by Ultra-Low Temperature Angle-Resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qinghong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yuyang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yiwen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiangang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+W">Wenkai Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hongtao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+N">Nan Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Lijuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Rukang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Hanqing Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xintong Li</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12744v1-abstract-short" style="display: inline;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a he&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12744v1-abstract-full" style="display: none;"> In high temperature cuprate superconductors, it was found that in the overdoped region the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a $T_{\mathrm{c}}$ of 48 K. We find that this heavily overdoped Bi2212 remains in the strong coupling regime with $2 \mathit螖_0 / k_{\mathrm{B}} T_{\mathrm{c}}=5.8$. The single-particle scattering rate is very small along the nodal direction ($\sim$5 meV) and increases as the momentum moves from the nodal to the antinodal regions. A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero. The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212. These results provide key information to understand the high $T_\mathrm{c}$ mechanism in the cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12744v1-abstract-full').style.display = 'none'; document.getElementById('2407.12744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B 33, 077405 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12124">arXiv:2407.12124</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12124">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> </div> <p class="title is-5 mathjax"> Emergence of cellular nematic order is a conserved feature of gastrulation in animal embryos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huebner%2C+R+J">Robert J. Huebner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+M+L+K">Margot L. K. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawyer%2C+J">Jessica Sawyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peifer%2C+M">Mark Peifer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wallingford%2C+J+B">John B. Wallingford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thirumalai%2C+D">D. Thirumalai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12124v1-abstract-short" style="display: inline;"> Cells undergo dramatic changes in morphology during embryogenesis, yet how these changes affect the formation of ordered tissues remains elusive. Here we find that the emergence of a nematic liquid crystal phase occurs in cells during gastrulation in the development of embryos of fish, frogs, and fruit flies. Moreover, the spatial correlations in all three organisms are long-ranged and follow a si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12124v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12124v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12124v1-abstract-full" style="display: none;"> Cells undergo dramatic changes in morphology during embryogenesis, yet how these changes affect the formation of ordered tissues remains elusive. Here we find that the emergence of a nematic liquid crystal phase occurs in cells during gastrulation in the development of embryos of fish, frogs, and fruit flies. Moreover, the spatial correlations in all three organisms are long-ranged and follow a similar power-law decay (y~$x^{-伪}$ ) with $伪$ less than unity for the nematic order parameter, suggesting a common underlying physical mechanism unifies events in these distantly related species. All three species exhibit similar propagation of the nematic phase, reminiscent of nucleation and growth phenomena. Finally, we use a theoretical model along with disruptions of cell adhesion and cell specification to characterize the minimal features required for formation of the nematic phase. Our results provide a framework for understanding a potentially universal features of metazoan embryogenesis and shed light on the advent of ordered structures during animal development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12124v1-abstract-full').style.display = 'none'; document.getElementById('2407.12124v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 29 pages, 6 figures. SI: 9 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11836">arXiv:2407.11836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11836">pdf</a>, <a href="https://arxiv.org/format/2407.11836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic memory and distinct spin populations in ferromagnetic Co3Sn2S2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Menil%2C+C">Charles Menil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leridon%2C+B">Brigitte Leridon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavanna%2C+A">Antonella Cavanna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gennser%2C+U">Ulf Gennser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mailly%2C+D">Dominique Mailly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+L">Linchao Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaokang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fauqu%C3%A9%2C+B">Beno卯t Fauqu茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnia%2C+K">Kamran Behnia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11836v2-abstract-short" style="display: inline;"> Co3Sn2S2, a ferromagnetic Weyl semi-metal with Co atoms on a kagome lattice, has generated much recent attention. Experiments have identified a temperature scale below the Curie temperature. Here, we find that this magnet keeps a memory, when not exposed to a magnetic field sufficiently large to erase it. We identify the driver of this memory effect as a small secondary population of spins, whose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11836v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11836v2-abstract-full" style="display: none;"> Co3Sn2S2, a ferromagnetic Weyl semi-metal with Co atoms on a kagome lattice, has generated much recent attention. Experiments have identified a temperature scale below the Curie temperature. Here, we find that this magnet keeps a memory, when not exposed to a magnetic field sufficiently large to erase it. We identify the driver of this memory effect as a small secondary population of spins, whose coercive field is significantly larger than that of the majority spins. The shape of the magnetization hysteresis curve has a threshold magnetic field set by the demagnetizing factor. These two field scales set the hitherto unidentified temperature scale, which is not a thermodynamic phase transition, but a crossing point between meta-stable boundaries. Global magnetization is well defined, even when it is non-uniform, but drastic variations in local magnetization point to a coarse energy landscape, with the thermodynamic limit not achieved at micrometer length scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11836v2-abstract-full').style.display = 'none'; document.getElementById('2407.11836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10