CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 59 results for author: <span class="mathjax">Pelliciari, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pelliciari, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pelliciari%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pelliciari, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12887">arXiv:2411.12887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12887">pdf</a>, <a href="https://arxiv.org/format/2411.12887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Investigation of magnetic excitations and charge order in a van der Waals ferromagnet Fe$_5$GeTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhartiya%2C+V+K">V. K. Bhartiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">T. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Darlington%2C+T+P">T. P. Darlington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rizzo%2C+D+J">D. J. Rizzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu.%2C+Y">Y. Gu.</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+C">C. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freeland%2C+J+W">J. W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">X. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basov%2C+D+N">D. N. Basov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A+F">A. F. May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12887v2-abstract-short" style="display: inline;"> Understanding the complex ground state of van der Waals (vdW) magnets is essential for designing new materials and devices that leverage these platforms. Here, we investigate a two-dimensional vdW ferromagnet -- Fe$_5$GeTe$_2$-- with one of the highest reported Curie temperatures, to elucidate its magnetic excitations and charge order. Using Fe $L_3 - $edge resonant inelastic x-ray scattering, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12887v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12887v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12887v2-abstract-full" style="display: none;"> Understanding the complex ground state of van der Waals (vdW) magnets is essential for designing new materials and devices that leverage these platforms. Here, we investigate a two-dimensional vdW ferromagnet -- Fe$_5$GeTe$_2$-- with one of the highest reported Curie temperatures, to elucidate its magnetic excitations and charge order. Using Fe $L_3 - $edge resonant inelastic x-ray scattering, we find the dual character of magnetic excitations, consisting of a coherent magnon and a continuum, similar to what is reported for its sister compound Fe$_3$GeTe$_2$. The magnon has an energy of $\approx$ 36 meV at the maximum in-plane momentum transfer ($-$0.35 r.l.u.) allowed at Fe $L_3 - $edge. A broad and non-dispersive continuum extends up to 150 meV, 50$\%$ higher energy than in Fe$_3$GeTe$_2$. Its intensity is sinusoidally modulated along the $L$ direction, with a period matching the inter-slab distance. Our findings suggest that while the unconventional dual character of magnetic excitations is generic to ternary Fe-Ge-Te vdW magnets, the correlation length of the out-of-plane magnetic interaction increases in Fe$_5$GeTe$_2$ as compared to Fe$_3$GeTe$_2$, supporting a stronger three-dimensional character for the former. Furthermore, by investigating the $\pm$(1/3, 1/3, $L$) peaks by resonant x-ray diffraction, we conclude these to have structural origin rather than charge order -- as previously reported -- and suggest doubling of the structural unit cell along the $c-$axis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12887v2-abstract-full').style.display = 'none'; document.getElementById('2411.12887v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09238">arXiv:2410.09238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09238">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Coupling of Electronic Transitions to Ferroelectric Order in a 2D Semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chun-Ying Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chica%2C+D+G">Daniel G. Chica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhi-Hao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Handa%2C+T">Taketo Handa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thinel%2C+M">Morgan Thinel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olsen%2C+N">Nicholas Olsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ziebel%2C+M+E">Michael E. Ziebel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+G">Guiying He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Yinming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Occhialini%2C+C+A">Connor A. Occhialini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basov%2C+D+N">Dmitri N. Basov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sfeir%2C+M">Matthew Sfeir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pasupathy%2C+A">Abhay Pasupathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichman%2C+D+R">David R. Reichman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+X">Xavier Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiaoyang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09238v1-abstract-short" style="display: inline;"> A ferroelectric material often exhibits a soft transvers optical (TO) phonon mode which governs it phase transition. Charge coupling to this ferroelectric soft mode may further mediate emergent physical properties, including superconductivity and defect tolerance. However, direct experimental evidence for such coupling is scarce. Here we show that a photo-launched coherent phonon couples strongly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09238v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09238v1-abstract-full" style="display: none;"> A ferroelectric material often exhibits a soft transvers optical (TO) phonon mode which governs it phase transition. Charge coupling to this ferroelectric soft mode may further mediate emergent physical properties, including superconductivity and defect tolerance. However, direct experimental evidence for such coupling is scarce. Here we show that a photo-launched coherent phonon couples strongly to electronic transitions across the bandgap in the van der Waals (vdW) two-dimensional (2D) ferroelectric semiconductor NbOI2. Using terahertz time-domain spectroscopy and first-principles calculations, we identify this mode as the TO phonon responsible for ferroelectric order. This exclusive coupling occurs only with above-gap electronic transition and is absent in the valence band as revealed by resonant inelastic X-ray scattering. Our findings suggest a new role of the soft TO phonon mode in electronic and optical properties of ferroelectric semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09238v1-abstract-full').style.display = 'none'; document.getElementById('2410.09238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, 13 pages SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02007">arXiv:2410.02007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02007">pdf</a>, <a href="https://arxiv.org/ps/2410.02007">ps</a>, <a href="https://arxiv.org/format/2410.02007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity in the parent infinite-layer nickelate NdNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Parzyck%2C+C+T">C. T. Parzyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatt%2C+L">L. Bhatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">M. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arthur%2C+Z">Z. Arthur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersen%2C+T+M">T. M. Pedersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herranz%2C+G">G. Herranz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georgescu%2C+A+B">A. B. Georgescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">D. A. Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02007v1-abstract-short" style="display: inline;"> We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound NdNiO$_2$. A combination of oxide molecular-beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02007v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02007v1-abstract-full" style="display: none;"> We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound NdNiO$_2$. A combination of oxide molecular-beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples with a variety of techniques, including electrical transport, scanning transmission electron microscopy, x-ray absorption spectroscopy, and resonant inelastic x-ray scattering, to investigate the possible origins of superconductivity. We propose that superconductivity could be intrinsic to the undoped infinite-layer nickelates but suppressed by disorder due to its nodal order parameter, a finding which would necessitate a reconsideration of the nickelate phase diagram. Another possible hypothesis is that the parent materials can be hole doped from randomly dispersed apical oxygen atoms, which would suggest an alternative pathway for achieving superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02007v1-abstract-full').style.display = 'none'; document.getElementById('2410.02007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 10 pages, 6 figures. Supplementary: 9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18258">arXiv:2409.18258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18258">pdf</a>, <a href="https://arxiv.org/format/2409.18258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.206501">10.1103/PhysRevLett.133.206501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capping effects on spin and charge excitations in parent and superconducting Nd1-xSrxNiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaBollita%2C+H">H. LaBollita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+N">N. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Y. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">T. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhartiya%2C+V">V. Bhartiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">S. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">X. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+A">A. Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernardini%2C+F">F. Bernardini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18258v1-abstract-short" style="display: inline;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18258v1-abstract-full" style="display: none;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations of Nd1-xSrxNiO2 (x = 0 and 0.2). Spin excitations are observed in parent and 20% doped Nd1-xSrxNiO2 regardless of capping, proving that magnetism is intrinsic to infinite-layer nickelates and appears in a significant fraction of their phase diagram. In parent and superconducting Nd1-xSrxNiO2, the spin excitations are slightly hardened in capped samples compared to the non-capped ones. Additionally, a weaker Ni - Nd charge transfer peak at ~ 0.6 eV suggests that the hybridization between Ni 3d and Nd 5d orbitals is reduced in capped samples. From our data, capping induces only minimal differences in Nd1-xSrxNiO2 and we phenomenologically discuss these differences based on the reconstruction of the SrTiO3 - NdNiO2 interface and other mechanisms such as crystalline disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'none'; document.getElementById('2409.18258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09418">arXiv:2405.09418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09418">pdf</a>, <a href="https://arxiv.org/format/2405.09418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Highly Tunable Ru-dimer Molecular Orbital State in 6H-perovskite Ba$_3$MRu$_2$O$_9$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+B">Bo Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B+H">Beom Hyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dobrowolski%2C+D">Daniel Dobrowolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Azmanska%2C+M">Monika Azmanska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shiyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clancy%2C+J+P">J. P. Clancy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09418v1-abstract-short" style="display: inline;"> Molecular orbital (MO) systems with clusters of heavy transition metal (TM) ions are one of the most important classes of model materials for studying the interplay between local physics and effects of itinerancy. Despite a large number of candidates identified in the family of 4d TM materials, an understanding of their physics from competing \textit{microscopic} energy scales is still missing. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09418v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09418v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09418v1-abstract-full" style="display: none;"> Molecular orbital (MO) systems with clusters of heavy transition metal (TM) ions are one of the most important classes of model materials for studying the interplay between local physics and effects of itinerancy. Despite a large number of candidates identified in the family of 4d TM materials, an understanding of their physics from competing \textit{microscopic} energy scales is still missing. We bridge this gap by reporting the first resonant inelastic X-ray scattering (RIXS) measurement on a well-known series of Ru dimer systems with a 6H-perovskite structure, Ba$_3$MRu$_2$O$_9$ (M$^{3+}$=In$^{3+}$, Y$^{3+}$, La$^{3+}$). Our RIXS measurements reveal an extremely fragile MO state in these Ru dimer compounds, evidenced by an abrupt change in the RIXS spectrum accompanying a tiny change in the local structure tuned by the M-site ion. By modelling the RIXS spectra, we attribute the enhanced electronic instability in Ba$_3$MRu$_2$O$_9$ to the combined effect of a large hopping and a small spin-orbit coupling in the Ru dimers. The unique combination of energy scales uncovered in the present study make Ru MO systems ideal model systems for studying quantum phase transitions with molecular orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09418v1-abstract-full').style.display = 'none'; document.getElementById('2405.09418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, Supplemental Materials available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10827">arXiv:2404.10827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10827">pdf</a>, <a href="https://arxiv.org/format/2404.10827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47852-x">10.1038/s41467-024-47852-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetically propagating Hund&#39;s exciton in van der Waals antiferromagnet NiPS3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">W. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlfeld%2C+K">K. Wohlfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J">J. Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walicki%2C+M">M. Walicki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldini%2C+E">E. Baldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitrano%2C+M">M. Mitrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10827v1-abstract-short" style="display: inline;"> Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body phenomena. Recently NiPS3 has received intense interest since it hosts an excitonic quasiparticle whose properties appear to be intimately linked to the magnetic state of the lattice. Despite extensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain unresolved&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10827v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10827v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10827v1-abstract-full" style="display: none;"> Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body phenomena. Recently NiPS3 has received intense interest since it hosts an excitonic quasiparticle whose properties appear to be intimately linked to the magnetic state of the lattice. Despite extensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain unresolved. Here we address these issues by measuring NiPS3 with ultra-high energy resolution resonant inelastic x-ray scattering (RIXS). We find that Hund&#39;s exchange interactions are primarily responsible for the energy of formation of the exciton. Measuring the dispersion of the Hund&#39;s exciton reveals that it propagates in a way that is analogous to a double-magnon. We trace this unique behavior to fundamental similarities between the NiPS3 exciton hopping and spin exchange processes, underlining the unique magnetic characteristics of this novel quasiparticle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10827v1-abstract-full').style.display = 'none'; document.getElementById('2404.10827v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages accepted in Nature Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 3496 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10818">arXiv:2404.10818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10818">pdf</a>, <a href="https://arxiv.org/format/2404.10818">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nature of excitons and their ligand-mediated delocalization in nickel dihalide charge-transfer insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Occhialini%2C+C+A">Connor A. Occhialini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elnaggar%2C+H">Hebatalla Elnaggar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Qian Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blei%2C+M">Mark Blei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tongay%2C+S+A">Seth Ariel Tongay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F+M+F">Frank M. F. de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10818v1-abstract-short" style="display: inline;"> The fundamental optical excitations of correlated transition-metal compounds are typically identified with multielectronic transitions localized at the transition-metal site, such as $dd$ transitions. In this vein, intense interest has surrounded the appearance of sharp, below band-gap optical transitions, i.e. excitons, within the magnetic phase of correlated Ni$^{2+}$ van der Waals magnets. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10818v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10818v1-abstract-full" style="display: none;"> The fundamental optical excitations of correlated transition-metal compounds are typically identified with multielectronic transitions localized at the transition-metal site, such as $dd$ transitions. In this vein, intense interest has surrounded the appearance of sharp, below band-gap optical transitions, i.e. excitons, within the magnetic phase of correlated Ni$^{2+}$ van der Waals magnets. The interplay of magnetic and charge-transfer insulating ground states in Ni$^{2+}$ systems raises intriguing questions on the roles of long-range magnetic order and of metal-ligand charge transfer in the exciton nature, which inspired microscopic descriptions beyond typical $dd$ excitations. Here we study the impact of charge-transfer and magnetic order on the excitation spectrum of the nickel dihalides (NiX$_2$, X $=$ Cl, Br, and I) using Ni-$L_3$ resonant inelastic x-ray scattering (RIXS). In all compounds, we detect sharp excitations, analogous to the recently reported excitons, and assign them to spin-singlet multiplets of octahedrally-coordinated Ni$^{2+}$ stabilized by intra-atomic Hund&#39;s exchange. Additionally, we demonstrate that these excitons are dispersive using momentum resolved RIXS. Our data evidence a ligand-mediated multiplet dispersion, which is tuned by the charge-transfer gap and independent of the presence of long-range magnetic order. This reveals the mechanisms governing non-local interactions of on-site $dd$ excitations with the surrounding crystal/magnetic structure, in analogy to ground state superexchange. These measurements thus establish the roles of magnetic order, self-doped ligand holes, and intersite coupling mechanisms for the properties of $dd$ excitations in charge-transfer insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10818v1-abstract-full').style.display = 'none'; document.getElementById('2404.10818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09678">arXiv:2402.09678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09678">pdf</a>, <a href="https://arxiv.org/format/2402.09678">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-024-01866-4">10.1038/s41563-024-01866-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elementary excitations of single-photon emitters in hexagonal Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mejia%2C+E">Enrique Mejia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+J+M">John M. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yanhong Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chand%2C+S+B">Saroj B. Chand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shiyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grosso%2C+G">Gabriele Grosso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09678v1-abstract-short" style="display: inline;"> Single-photon emitters serve as building blocks for many emerging concepts in quantum photonics. The recent identification of bright, tunable, and stable emitters in hexagonal boron nitride (hBN) has opened the door to quantum platforms operating across the infrared to ultraviolet spectrum. While it is widely acknowledged that defects are responsible for single-photon emitters in hBN, crucial deta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09678v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09678v1-abstract-full" style="display: none;"> Single-photon emitters serve as building blocks for many emerging concepts in quantum photonics. The recent identification of bright, tunable, and stable emitters in hexagonal boron nitride (hBN) has opened the door to quantum platforms operating across the infrared to ultraviolet spectrum. While it is widely acknowledged that defects are responsible for single-photon emitters in hBN, crucial details regarding their origin, electronic levels, and orbital involvement remain unknown. Here, we employ a combination of resonant inelastic X-ray scattering and photoluminescence spectroscopy in defective hBN unveiling an elementary excitation at 285 meV that gives rise to a plethora of harmonics correlated with single-photon emitters. We discuss the importance of N $蟺^*$ antibonding orbitals in shaping the electronic states of the emitters. The discovery of the elementary excitations of hBN provides new fundamental insights into quantum emission in low-dimensional materials, paving the way for future investigations in other platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09678v1-abstract-full').style.display = 'none'; document.getElementById('2402.09678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15086">arXiv:2306.15086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.15086">pdf</a>, <a href="https://arxiv.org/format/2306.15086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Comment on newly found Charge Density Waves in infinite layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+N">N. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wasik%2C+P">P. Wasik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15086v1-abstract-short" style="display: inline;"> Recent works[1-3] reported evidence for charge density waves (CDWs) in infinite layer nickelates (112 structure) based on resonant diffraction at the Ni $L_3$ edge measured at fixed scattering angle. We have found that a measurement with fixed momentum transfer, rather than scattering angle, does not show a resonance effect. We have also observed that a nearby structural Bragg peak from the substr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15086v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15086v1-abstract-full" style="display: none;"> Recent works[1-3] reported evidence for charge density waves (CDWs) in infinite layer nickelates (112 structure) based on resonant diffraction at the Ni $L_3$ edge measured at fixed scattering angle. We have found that a measurement with fixed momentum transfer, rather than scattering angle, does not show a resonance effect. We have also observed that a nearby structural Bragg peak from the substrate appears due to third harmonic content of the incident beam, and spreads intensity down to the region of the attributed CDW order. This was further confirmed by testing a bare substrate. We suggest procedures to confirm an effective resonant enhancement of a diffraction peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15086v1-abstract-full').style.display = 'none'; document.getElementById('2306.15086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02115">arXiv:2304.02115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02115">pdf</a>, <a href="https://arxiv.org/format/2304.02115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.066004">10.1103/PhysRevLett.132.066004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlfeld%2C+K">Krzysztof Wohlfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Castro%2C+D">Daniele Di Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez%2C+M+G">Mirian G. Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Mingu Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krockenberger%2C+Y">Yoshiharu Krockenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">Daniel E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+H">Hideki Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daghofer%2C+M">Maria Daghofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02115v3-abstract-short" style="display: inline;"> We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO), and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperse, pointing to a collective character of this excitation (orbiton) in compounds without apica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02115v3-abstract-full').style.display = 'inline'; document.getElementById('2304.02115v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02115v3-abstract-full" style="display: none;"> We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO), and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperse, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. We show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02115v3-abstract-full').style.display = 'none'; document.getElementById('2304.02115v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 066004 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08415">arXiv:2301.08415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08415">pdf</a>, <a href="https://arxiv.org/format/2301.08415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adg3710">10.1126/sciadv.adg3710 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy quasi-circular electron correlations with charge order wavelength in $\textrm{Bi}_2\textrm{Sr}_2\textrm{Ca}\textrm{Cu}_2\textrm{O}_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scott%2C+K">K. Scott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kisiel%2C+E">E. Kisiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyle%2C+T+J">T. J. Boyle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basak%2C+R">R. Basak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jargot%2C+G">G. Jargot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+D">Y. D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneeloch%2C+J+A">J. A. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A9gar%C3%A9%2C+F">F. L茅gar茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">A. F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">A. Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08415v1-abstract-short" style="display: inline;"> In the study of dynamic charge order correlations in the cuprates, most high energy-resolution resonant inelastic x-ray scattering (RIXS) measurements have focused on momenta along the high-symmetry directions of the copper oxide plane. However, electron scattering along other in-plane directions should not be neglected as they may contain information relevant, for example, to the origin of charge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08415v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08415v1-abstract-full" style="display: none;"> In the study of dynamic charge order correlations in the cuprates, most high energy-resolution resonant inelastic x-ray scattering (RIXS) measurements have focused on momenta along the high-symmetry directions of the copper oxide plane. However, electron scattering along other in-plane directions should not be neglected as they may contain information relevant, for example, to the origin of charge order correlations or to our understanding of the isotropic scattering responsible for strange metal behavior in cuprates. We report high-resolution resonant inelastic x-ray scattering (RIXS) experiments that reveal the presence of dynamic electron correlations over the $q_x$-$q_y$ scattering plane in underdoped $\textrm{Bi}_2\textrm{Sr}_2\textrm{Ca}\textrm{Cu}_2\textrm{O}_{8+未}$ with $T_c=54$ K. We use the softening of the RIXS-measured bond stretching phonon line as a marker for the presence of charge-order-related dynamic electron correlations. The experiments show that these dynamic correlations exist at energies below approximately $70$ meV and are centered around a quasi-circular manifold in the $q_x$-$q_y$ scattering plane with radius equal to the magnitude of the charge order wave vector, $q_{CO}$. We also demonstrate how this phonon-tracking procedure provides the necessary experimental precision to rule out fluctuations of short-range directional charge order (i.e. centered around $[q_x=\pm q_{CO}, q_y=0]$ and $[q_x=0, q_y=\pm q_{CO}]$) as the origin of the observed correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08415v1-abstract-full').style.display = 'none'; document.getElementById('2301.08415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted and under review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 9, eadg3710 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07637">arXiv:2301.07637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07637">pdf</a>, <a href="https://arxiv.org/format/2301.07637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202307515">10.1002/adma.202307515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stripe Symmetry of Short-range Charge Density Waves in Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H">Hannah Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07637v1-abstract-short" style="display: inline;"> The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios has been challenging for the short-range CDW in bismu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07637v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07637v1-abstract-full" style="display: none;"> The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios has been challenging for the short-range CDW in bismuth-based cuprates. Here, we employed high-resolution resonant inelastic x-ray scattering to uncover the spatial symmetry of the CDW in Bi$_2$Sr$_{2-x}$La$_{x}$CuO$_{6+未}$. Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes were found in reciprocal space. Based on Fourier transform analysis of real-space models, we interpret the results as evidence of unidirectional charge stripes, hosted by mutually 90$^\circ$-rotated anisotropic domains. Our work paves the way for a unified symmetry and microscopic description of CDW order in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07637v1-abstract-full').style.display = 'none'; document.getElementById('2301.07637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures and Supplementary Information; Under peer review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 36, 2307515 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04184">arXiv:2301.04184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04184">pdf</a>, <a href="https://arxiv.org/format/2301.04184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.011021">10.1103/PhysRevX.13.011021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic character of charge order in square planar low valence nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J">J. Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitrano%2C+M">M. Mitrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">W. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Norman%2C+M+R">M. R. Norman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04184v1-abstract-short" style="display: inline;"> Charge order is a central feature of the physics of cuprate superconductors and is known to arise from a modulation of holes with primarily oxygen character. Low-valence nickelate superconductors also host charge order, but the electronic character of this symmetry breaking is unsettled. Here, using resonant inelastic x-ray scattering at the Ni $L_2$-edge, we identify intertwined involvements of N&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04184v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04184v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04184v1-abstract-full" style="display: none;"> Charge order is a central feature of the physics of cuprate superconductors and is known to arise from a modulation of holes with primarily oxygen character. Low-valence nickelate superconductors also host charge order, but the electronic character of this symmetry breaking is unsettled. Here, using resonant inelastic x-ray scattering at the Ni $L_2$-edge, we identify intertwined involvements of Ni $3d_{x^2-y^2}$, $3d_{3z^2-r^2}$, and O $2p_蟽$ orbitals in the formation of diagonal charge order in an overdoped low-valence nickelate La$_{4}$Ni$_{3}$O$_{8}$. The Ni $3d_{x^2-y^2}$ orbitals, strongly hybridized with planar O $2p_蟽$, largely shape the spatial charge distribution and lead to Ni site-centered charge order. The $3d_{3z^2-r^2}$ orbitals play a small, but non-negligible role in the charge order as they hybridize with the rare-earth $5d$ orbitals. Our results reveal that the low-energy physics and ground-state character of these nickelates are more complex than those in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04184v1-abstract-full').style.display = 'none'; document.getElementById('2301.04184v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review X; 7 pages plus references and supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 13, 011021 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02677">arXiv:2301.02677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.02677">pdf</a>, <a href="https://arxiv.org/format/2301.02677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resonant inelastic X-ray scattering in topological semimetal FeSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Yao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandrasekaran%2C+A">Anirudh Chandrasekaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J">Jennifer Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tiantian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">Mark P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourtis%2C+S">Stefanos Kourtis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02677v1-abstract-short" style="display: inline;"> The energy spectrum of topological semimetals contains protected degeneracies in reciprocal space that correspond to Weyl, Dirac, or multifold fermionic states. To exploit the unconventional properties of these states, one has to access the electronic structure of the three-dimensional bulk. In this work, we resolve the bulk electronic states of candidate topological semimetal FeSi using momentum-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02677v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02677v1-abstract-full" style="display: none;"> The energy spectrum of topological semimetals contains protected degeneracies in reciprocal space that correspond to Weyl, Dirac, or multifold fermionic states. To exploit the unconventional properties of these states, one has to access the electronic structure of the three-dimensional bulk. In this work, we resolve the bulk electronic states of candidate topological semimetal FeSi using momentum-dependent resonant inelastic X-ray scattering (RIXS) at the Fe $L_3$ edge. We observe a broad excitation continuum devoid of sharp features, consistent with particle-hole scattering in an underlying electronic band structure. Using density functional theory, we calculate the electronic structure of FeSi and derive a band theory formulation of RIXS in the fast collision approximation to model the scattering process. We find that band theory qualitatively captures the number and position of the main spectral features, as well as the overall momentum dependence of the RIXS intensity. Our work paves the way for targeted studies of band touchings in topological semimetals with RIXS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02677v1-abstract-full').style.display = 'none'; document.getElementById('2301.02677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06911">arXiv:2210.06911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06911">pdf</a>, <a href="https://arxiv.org/format/2210.06911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.011012">10.1103/PhysRevX.13.011012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single- and Multimagnon Dynamics in Antiferromagnetic $伪$-Fe$_2$O$_3$ Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yanhong Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+Y">Yoshihiro Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higashi%2C+K">Keisuke Higashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Taehun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fengyuan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunes%2C+J">Jan Kunes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hariki%2C+A">Atsushi Hariki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06911v4-abstract-short" style="display: inline;"> Understanding the spin dynamics in antiferromagnetic (AFM) thin films is fundamental for designing novel devices based on AFM magnon transport. Here, we study the magnon dynamics in thin films of AFM $S=5/2$ $伪$-Fe$_2$O$_3$ by combining resonant inelastic x-ray scattering, Anderson impurity model plus dynamical mean-field theory, and Heisenberg spin model. Below 100 meV, we observe the thickness-i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06911v4-abstract-full').style.display = 'inline'; document.getElementById('2210.06911v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06911v4-abstract-full" style="display: none;"> Understanding the spin dynamics in antiferromagnetic (AFM) thin films is fundamental for designing novel devices based on AFM magnon transport. Here, we study the magnon dynamics in thin films of AFM $S=5/2$ $伪$-Fe$_2$O$_3$ by combining resonant inelastic x-ray scattering, Anderson impurity model plus dynamical mean-field theory, and Heisenberg spin model. Below 100 meV, we observe the thickness-independent (down to 15 nm) acoustic single-magnon mode. At higher energies (100-500 meV), an unexpected sequence of equally spaced, optical modes is resolved and ascribed to $螖S_z = 1$, 2, 3, 4, and 5 magnetic excitations corresponding to multiple, noninteracting magnons. Our study unveils the energy, character, and momentum-dependence of single and multimagnons in $伪$-Fe$_2$O$_3$ thin films, with impact on AFM magnon transport and its related phenomena. From a broader perspective, we generalize the use of L-edge resonant inelastic x-ray scattering as a multispin-excitation probe up to $螖S_z = 2S$. Our analysis identifies the spin-orbital mixing in the valence shell as the key element for accessing excitations beyond $螖S_z = 1$, and up to, e.g., $螖S_z = 5$. At the same time, we elucidate the novel origin of the spin excitations beyond the $螖S_z = 2$, emphasizing the key role played by the crystal lattice as a reservoir of angular momentum that complements the quanta carried by the absorbed and emitted photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06911v4-abstract-full').style.display = 'none'; document.getElementById('2210.06911v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review X</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 13, 011012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05614">arXiv:2208.05614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05614">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Excitations in Strained Infinite-layer Nickelate PrNiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shiyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">Izabela Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drewanowski%2C+A">Annabella Drewanowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rothenb%C3%BChler%2C+P">Pascal Rothenb眉hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhihai Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05614v1-abstract-short" style="display: inline;"> Strongly correlated materials often respond sensitively to the external perturbations. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be dramatically enhanced via only ~1% compressive strain-tuning enabled by substrate design. However, the root of such enhancement remains elusive. While the superconducting pairing mechanism is s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05614v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05614v1-abstract-full" style="display: none;"> Strongly correlated materials often respond sensitively to the external perturbations. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be dramatically enhanced via only ~1% compressive strain-tuning enabled by substrate design. However, the root of such enhancement remains elusive. While the superconducting pairing mechanism is still not settled, magnetic Cooper pairing - similar to the cuprates has been proposed. Using resonant inelastic x-ray scattering, we investigate the magnetic excitations in infinite-layer PrNiO2 thin films for different strain conditions. The magnon bandwidth of PrNiO2 shows only marginal response to strain-tuning, in sharp contrast to the striking enhancement of the superconducting transition temperature Tc in the doped superconducting samples. These results suggest the enhancement of Tc is not mediated by spin excitations and thus provide important empirics for the understanding of superconductivity in infinite-layer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05614v1-abstract-full').style.display = 'none'; document.getElementById('2208.05614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00718">arXiv:2208.00718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00718">pdf</a>, <a href="https://arxiv.org/format/2208.00718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain-modulated anisotropic electronic structure in superconducting RuO$_2$ films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Occhialini%2C+C+A">Connor A. Occhialini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martins%2C+L+G+P">Luiz G. P. Martins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+S">Shiyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yasunami%2C+T">Takahiro Yasunami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Musashi%2C+M">Maki Musashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+M">Masashi Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uchida%2C+M">Masaki Uchida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00718v1-abstract-short" style="display: inline;"> The binary ruthenate, RuO$_2$, has been the subject of intense interest due to its itinerant antiferromagnetism and strain-induced superconductivity. The strain mechanism and its effect on the microscopic electronic states leading to the normal and superconducting state, however, remain undisclosed. Here, we investigate highly-strained epitaxial (110) RuO$_2$ films using polarization-dependent oxy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00718v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00718v1-abstract-full" style="display: none;"> The binary ruthenate, RuO$_2$, has been the subject of intense interest due to its itinerant antiferromagnetism and strain-induced superconductivity. The strain mechanism and its effect on the microscopic electronic states leading to the normal and superconducting state, however, remain undisclosed. Here, we investigate highly-strained epitaxial (110) RuO$_2$ films using polarization-dependent oxygen K-edge X-ray absorption spectroscopy (XAS). Through the detection of pre-edge peaks, arising from O:$2p$ - Ru:$4d$ hybridization, we uncover the effects of epitaxial strain on the orbital/electronic structure near the Fermi level. Our data show robust strain-induced shifts of orbital levels and a reduction of hybridization strength. Furthermore, we reveal a pronounced in-plane anisotropy of the electronic structure along the $[110]/[1\bar{1}0]$ directions naturally stemming from the symmetry-breaking epitaxial strain of the substrate. The $B_{2g}$ symmetry component of the epitaxially-enforced strain breaks a sublattice degeneracy, resulting in an increase of the density of states at the Fermi level ($E_F$), possibly paving the way to superconductivity. These results underscore the importance of the effective reduction from tetragonal to orthorhombic lattice symmetry in (110) RuO$_2$ films and its relevance towards the superconducting and magnetic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00718v1-abstract-full').style.display = 'none'; document.getElementById('2208.00718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12296">arXiv:2205.12296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12296">pdf</a>, <a href="https://arxiv.org/format/2205.12296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.045134">10.1103/PhysRevB.106.045134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of the frustrated diamond lattice magnet NiRh$_2$O$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zager%2C+B">B. Zager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chamorro%2C+J+R">J. R. Chamorro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+L">L. Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueen%2C+T+M">T. M. McQueen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mourigal%2C+M">M. Mourigal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+K+W">K. W. Plumb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12296v1-abstract-short" style="display: inline;"> The $A$-site spinel NiRh$_2$O$_4$ is the only known realization of a spin-1 diamond lattice magnet and is predicted to host unconventional magnetic phenomena driven by frustrated nearest and next-nearest neighbor exchange as well as orbital degeneracy. Previous works found no sign of magnetic order but found a gapped dispersive magnetic excitation indicating a possible valence bond magnetic ground&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12296v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12296v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12296v1-abstract-full" style="display: none;"> The $A$-site spinel NiRh$_2$O$_4$ is the only known realization of a spin-1 diamond lattice magnet and is predicted to host unconventional magnetic phenomena driven by frustrated nearest and next-nearest neighbor exchange as well as orbital degeneracy. Previous works found no sign of magnetic order but found a gapped dispersive magnetic excitation indicating a possible valence bond magnetic ground state. However, the presence of many competing low energy degrees of freedom and limited empirical microscopic constraints complicates further analysis. Here, we carry out resonant inelastic x-ray scattering (RIXS) and x-ray absorption spectroscopy (XAS) to characterize the local electronic structure of NiRh$_2$O$_4$. The RIXS data can be partly described by a single-ion model for tetrahedrally coordinated Ni$^{2+}$ and indicates a tetragonal distortion $螖t_2\!=\!70$ meV that splits the $t_2$ orbitals into a high energy orbital singlet and lower energy orbital doublet. We identify features of the RIXS spectra that are consistent with a Rh-Ni two-site excitation indicating strong metal-metal hybridization mediated by oxygen in NiRh$_2$O$_4$. We also identify signatures of electron-phonon coupling through the appearance of phonon sidebands that dress crystal field excitations. These results establish the key energy scales relevant to the magnetism in NiRh$_2$O$_4$ and further demonstrate that covalency and lattice dynamics play essential roles in controlling the magnetic ground states of $A$-site spinels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12296v1-abstract-full').style.display = 'none'; document.getElementById('2205.12296v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.14209">arXiv:2204.14209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.14209">pdf</a>, <a href="https://arxiv.org/format/2204.14209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00934-y">10.1038/s42005-022-00934-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Site-specific electronic and magnetic excitations of the skyrmion material Cu$_2$OSeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yanhong Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yilin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jiaqi Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+M">Myung-Geun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+M+P">Marcus Peter Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotliar%2C+G">Gabriel Kotliar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">Claudio Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">Mark P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.14209v1-abstract-short" style="display: inline;"> The manifestation of skyrmions in the Mott-insulator Cu$_2$OSeO$_3$ originates from a delicate balance between magnetic and electronic energy scales. As a result of these intertwined couplings, the two symmetry-inequivalent magnetic ions, Cu-I and Cu-II, bond into a spin S=1 entangled tetrahedron. However, conceptualizing the unconventional properties of this material and the energy of the competi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14209v1-abstract-full').style.display = 'inline'; document.getElementById('2204.14209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.14209v1-abstract-full" style="display: none;"> The manifestation of skyrmions in the Mott-insulator Cu$_2$OSeO$_3$ originates from a delicate balance between magnetic and electronic energy scales. As a result of these intertwined couplings, the two symmetry-inequivalent magnetic ions, Cu-I and Cu-II, bond into a spin S=1 entangled tetrahedron. However, conceptualizing the unconventional properties of this material and the energy of the competing interactions is a challenging task due the complexity of this system. Here we combine X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering to uncover the electronic and magnetic excitations of Cu$_2$OSeO$_3$ with site-specificity. We quantify the energies of the 3d crystal-field splitting for both Cu-I and Cu-II, fundamental to optimize model Hamiltonians. Additionally, we unveil a site-specific magnetic mode, indicating that individual spin character is preserved within the entangled-tetrahedron picture. Our results thus provide experimental constraint for validating theories that describe the interactions of Cu$_2$OSeO$_3$, highlighting the site-selective capabilities of resonant spectroscopies <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14209v1-abstract-full').style.display = 'none'; document.getElementById('2204.14209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics volume 5, Article number: 156 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05533">arXiv:2111.05533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05533">pdf</a>, <a href="https://arxiv.org/format/2111.05533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.115105">10.1103/PhysRevB.105.115105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping-dependence of the electron-phonon coupling in two families of bilayer superconducting cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitrano%2C+M">Matteo Mitrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Luca%2C+G+M">Gabriella Maria De Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">Andi Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salluzzo%2C+M">Marco Salluzzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05533v1-abstract-short" style="display: inline;"> While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-$T_c$ superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen $K$-edge, we studied the EPC in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) and Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-未}$ (NBCO) at different doping levels ranging from heavily underdoped (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05533v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05533v1-abstract-full" style="display: none;"> While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-$T_c$ superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen $K$-edge, we studied the EPC in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) and Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-未}$ (NBCO) at different doping levels ranging from heavily underdoped ($p =0.07$) to overdoped ($p=0.21$). We analyze the data with a localized Lang-Firsov model that allows for the coherent excitations of two phonon modes. While electronic band dispersion effects are non-negligible, we are able to perform a study of the relative values of EPC matrix elements in these cuprate families. In the case of NBCO, the choice of the excitation energy allows us to disentangle modes related to the CuO$_3$ chains and the CuO$_2$ planes. Combining the results from the two families, we find the EPC strength decreases with doping at $\mathbf{q_\parallel}=(-0.25, 0)$ r.l.u., but has a non-monotonic trend as a function of doping at smaller momenta. This behavior is attributed to the screening effect of charge carriers. We also find that the phonon intensity is enhanced in the vicinity of the charge-density-wave (CDW) excitations while the extracted EPC strength appears to be less sensitive to their proximity. By performing a comparative study of two cuprate families, we are able to identify general trends in the EPC for the cuprates and provide experimental input to theories invoking a synergistic role for this interaction in $d$-wave pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05533v1-abstract-full').style.display = 'none'; document.getElementById('2111.05533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 115105 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.08937">arXiv:2110.08937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.08937">pdf</a>, <a href="https://arxiv.org/format/2110.08937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.011055">10.1103/PhysRevX.12.011055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of Oxygen States in the Low Valence Nickelate La$_4$Ni$_3$O$_8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J">J. Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">I. Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">Xi He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bozovic%2C+I">I. Bozovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitrano%2C+M">M. Mitrano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Norman%2C+M+R">M. R. Norman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.08937v2-abstract-short" style="display: inline;"> The discovery of superconductivity in square-planar low valence nickelates has ignited a vigorous debate regarding their essential electronic properties: Do these materials have appreciable oxygen charge-transfer character akin to the cuprates, or are they in a distinct Mott-Hubbard regime where oxygen plays a minimal role? Here, we resolve this question using O $K$-edge resonant inelastic x-ray s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08937v2-abstract-full').style.display = 'inline'; document.getElementById('2110.08937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.08937v2-abstract-full" style="display: none;"> The discovery of superconductivity in square-planar low valence nickelates has ignited a vigorous debate regarding their essential electronic properties: Do these materials have appreciable oxygen charge-transfer character akin to the cuprates, or are they in a distinct Mott-Hubbard regime where oxygen plays a minimal role? Here, we resolve this question using O $K$-edge resonant inelastic x-ray scattering (RIXS) measurements of the low valence nickelate La$_{4}$Ni$_{3}$O$_{8}$ and a prototypical cuprate La$_{2-x}$Sr$_{x}$CuO$_{4}$ ($x=0.35$). As expected, the cuprate lies deep in the charge-transfer regime of the Zaanen-Sawatzky-Allen scheme. The nickelate, however, is not well described by either limit of the ZSA scheme and is found to be of mixed charge-transfer/Mott-Hubbard character with the Coulomb repulsion $U$ of similar size to the charge-transfer energy $螖$. Nevertheless, the transition-metal-oxygen hopping is larger in La$_{4}$Ni$_{3}$O$_{8}$ than in La$_{2-x}$Sr$_{x}$CuO$_{4}$, leading to a significant superexchange interaction and an appreciable hole occupation of the ligand O orbitals in La$_{4}$Ni$_{3}$O$_{8}$ despite its larger $螖$. Our results clarify the essential characteristics of low valence nickelates and put strong constraints on theoretical interpretations of superconductivity in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.08937v2-abstract-full').style.display = 'none'; document.getElementById('2110.08937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages; to appear in PRX</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 12, 011055 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.11506">arXiv:2108.11506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.11506">pdf</a>, <a href="https://arxiv.org/format/2108.11506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L060402">10.1103/PhysRevB.107.L060402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High energy spin excitations in the quantum spin liquid candidate Zn-barlowite probed by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smaha%2C+R+W">Rebecca W. Smaha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">Ignace Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breidenbach%2C+A+T">Aaron T. Breidenbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J+M">Jack Mingde Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jiajia Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Young S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.11506v1-abstract-short" style="display: inline;"> A quantum spin liquid is a novel ground state that can support long-range entanglement between magnetic moments, resulting in exotic spin excitations involving fractionalized $S=\frac{1}{2}$ spinons. Here, we measure the excitations in single crystals of the spin liquid candidate Zn-barlowite using resonant inelastic X-ray scattering. By analyzing the incident polarization and temperature dependen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11506v1-abstract-full').style.display = 'inline'; document.getElementById('2108.11506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.11506v1-abstract-full" style="display: none;"> A quantum spin liquid is a novel ground state that can support long-range entanglement between magnetic moments, resulting in exotic spin excitations involving fractionalized $S=\frac{1}{2}$ spinons. Here, we measure the excitations in single crystals of the spin liquid candidate Zn-barlowite using resonant inelastic X-ray scattering. By analyzing the incident polarization and temperature dependences, we deduce a clear magnetic scattering contribution forming a broad continuum that surprisingly extends up to $\sim$200 meV ($\sim$14$J$, where $J$ is the magnetic exchange). The excitation spectrum reveals that significant contributions arise from multiple pairs of spinons and/or antispinons at high energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11506v1-abstract-full').style.display = 'none'; document.getElementById('2108.11506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, L060402 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06256">arXiv:2108.06256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.06256">pdf</a>, <a href="https://arxiv.org/format/2108.06256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Local electronic structure of rutile RuO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Occhialini%2C+C+A">Connor A. Occhialini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+H">Hoydoo You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">Andi Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">Ignace Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06256v1-abstract-short" style="display: inline;"> Recently, rutile RuO$_2$ has raised interest for its itinerant antiferromagnetism, crystal Hall effect, and strain-induced superconductivity. Understanding and manipulating these properties demands resolving the electronic structure and the relative roles of the rutile crystal field and $4d$ spin-orbit coupling (SOC). Here, we use O-K and Ru $M_3$ x-ray absorption (XAS) and Ru $M_3$ resonant inela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06256v1-abstract-full').style.display = 'inline'; document.getElementById('2108.06256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06256v1-abstract-full" style="display: none;"> Recently, rutile RuO$_2$ has raised interest for its itinerant antiferromagnetism, crystal Hall effect, and strain-induced superconductivity. Understanding and manipulating these properties demands resolving the electronic structure and the relative roles of the rutile crystal field and $4d$ spin-orbit coupling (SOC). Here, we use O-K and Ru $M_3$ x-ray absorption (XAS) and Ru $M_3$ resonant inelastic x-ray scattering (RIXS) to disentangle the contributions of crystal field, SOC, and electronic correlations in RuO$_2$. The locally orthorhombic site symmetry of the Ru ions introduces significant crystal field contributions beyond the approximate octahedral coordination yielding a crystal field energy scale of $螖(t_{2g})\approx 1$ eV breaking the degeneracy of the $t_{2g}$ orbitals. This splitting exceeds the Ru SOC ($\approx160$ meV) suggesting a more subtle role of SOC, primarily through the modification of itinerant (rather than local) $4d$ electronic states, ultimately highlighting the importance of the local symmetry in RuO$_2$. Remarkably, our analysis can be extended to other members of the rutile family, thus advancing the comprehension of the interplay among crystal field symmetry, electron correlations, and SOC in transition metal compounds with the rutile structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06256v1-abstract-full').style.display = 'none'; document.getElementById('2108.06256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13161">arXiv:2103.13161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.13161">pdf</a>, <a href="https://arxiv.org/format/2103.13161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0047264">10.1063/5.0047264 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuating magnetism of Co- and Cu-doped NaFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishi%2C+K">Kenji Ishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+L">Lingyi Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13161v1-abstract-short" style="display: inline;"> We report an x-ray emission spectroscopy (XES) study of the local fluctuating magnetic moment ($渭_{bare}$) in $\mathrm{NaFe_{1-x}Co_{x}As}$ and $\mathrm{NaFe_{1-x}Cu_{x}As}$. In NaFeAs, the reduced height of the As ions induces a local magnetic moment higher than $\mathrm{Ba_2As_2}$, despite lower T$_N$ and ordered magnetic moment. As NaFeAs is doped with Co $渭_{bare}$ is slightly reduced, whereas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13161v1-abstract-full').style.display = 'inline'; document.getElementById('2103.13161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13161v1-abstract-full" style="display: none;"> We report an x-ray emission spectroscopy (XES) study of the local fluctuating magnetic moment ($渭_{bare}$) in $\mathrm{NaFe_{1-x}Co_{x}As}$ and $\mathrm{NaFe_{1-x}Cu_{x}As}$. In NaFeAs, the reduced height of the As ions induces a local magnetic moment higher than $\mathrm{Ba_2As_2}$, despite lower T$_N$ and ordered magnetic moment. As NaFeAs is doped with Co $渭_{bare}$ is slightly reduced, whereas Cu doping leaves it unaffected, indicating a different doping mechanism: based on electron counting for Co whereas impurity scattering dominates in the case of Cu. Finally, we observe an increase of $渭_{bare}$ with temperature in all samples as observed in electron- and hole-doped $\mathrm{BaFe_2As_2}$. Since both Co and Cu doping display superconductivity, our findings demonstrate that the formation of Cooper pairs is not connected with the complete loss of fluctuating paramagnetic moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13161v1-abstract-full').style.display = 'none'; document.getElementById('2103.13161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 118, 112604 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08948">arXiv:2101.08948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08948">pdf</a>, <a href="https://arxiv.org/ps/2101.08948">ps</a>, <a href="https://arxiv.org/format/2101.08948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.075112">10.1103/PhysRevB.103.075112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics in NaFeAs and NaFe$_{0.53}$Cu$_{0.47}$As probed by resonant inelastic X-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weiyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D">Daniel McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chongde Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08948v1-abstract-short" style="display: inline;"> The parent compounds of iron-based superconductors are magnetically-ordered bad metals, with superconductivity appearing near a putative magnetic quantum critical point. The presence of both Hubbard repulsion and Hund&#39;s coupling leads to rich physics in these multiorbital systems, and motivated descriptions of magnetism in terms of itinerant electrons or localized spins. The NaFe$_{1-x}$Cu$_x$As s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08948v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08948v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08948v1-abstract-full" style="display: none;"> The parent compounds of iron-based superconductors are magnetically-ordered bad metals, with superconductivity appearing near a putative magnetic quantum critical point. The presence of both Hubbard repulsion and Hund&#39;s coupling leads to rich physics in these multiorbital systems, and motivated descriptions of magnetism in terms of itinerant electrons or localized spins. The NaFe$_{1-x}$Cu$_x$As series consists of magnetically-ordered bad metal ($x=0$), superconducting ($x\approx0.02$) and magnetically-ordered semiconducing/insulating ($x\approx0.5$) phases, providing a platform to investigate the connection between superconductivity, magnetism and electronic correlations. Here we use X-ray absorption spectroscopy and resonant inelastic X-ray scattering to study the valence state of Fe and spin dynamics in two NaFe$_{1-x}$Cu$_x$As compounds ($x=0$ and 0.47). We find that magnetism in both compounds arises from Fe$^{2+}$ atoms, and exhibits underdamped dispersive spin waves in their respective ordered states. The dispersion of spin excitations in NaFe$_{0.53}$Cu$_{0.47}$As is consistent with being quasi-one-dimensional. Compared to NaFeAs, the band top of spin waves in NaFe$_{0.53}$Cu$_{0.47}$As is slightly softened with significantly more spectral weight of the spin excitations. Our results indicate the spin dynamics in NaFe$_{0.53}$Cu$_{0.47}$As arise from localized magnetic moments and suggest the iron-based superconductors are proximate to a correlated insulating state with localized iron moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08948v1-abstract-full').style.display = 'none'; document.getElementById('2101.08948v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 075112 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04509">arXiv:2011.04509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04509">pdf</a>, <a href="https://arxiv.org/format/2011.04509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.031013">10.1103/PhysRevX.11.031013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Description of resonant inelastic x-ray scattering in correlated metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gilmore%2C+K">Keith Gilmore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kas%2C+J+J">Joshua J. Kas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kasahara%2C+S">Shigeru Kasahara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+Y">Yuji Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shibauchi%2C+T">Takasada Shibauchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04509v1-abstract-short" style="display: inline;"> To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfer, from first-principles for correlated materials. Toward that objective, we present new methodology for calculating the full RIXS response of a corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04509v1-abstract-full').style.display = 'inline'; document.getElementById('2011.04509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04509v1-abstract-full" style="display: none;"> To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfer, from first-principles for correlated materials. Toward that objective, we present new methodology for calculating the full RIXS response of a correlated metal in an unbiased fashion. Through comparison of measurements and calculations that tune the incident photon energy over a wide portion of the Fe L$_3$ absorption resonance of the example material BaFe$_2$As$_2$, we show that the RIXS response in BaFe$_2$As$_2$ is dominated by the direct channel contribution, including the Raman-like response below threshold, which we explain as a consequence of the finite core-hole lifetime broadening. Calculations are initially performed within the first-principles Bethe-Salpeter framework, which we then significantly improve by convolution with an effective spectral function for the intermediate-state excitation. We construct this spectral function, also from first-principles, by employing the cumulant expansion of the Green&#39;s function and performing a real-time time dependent density functional theory calculation of the response of the electronic system to the perturbation of the intermediate-state excitation. Importantly, this allows us to evaluate the indirect RIXS response from first-principles, accounting for the full periodicity of the crystal structure and with dependence on the momentum transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04509v1-abstract-full').style.display = 'none'; document.getElementById('2011.04509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 031013 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08745">arXiv:2010.08745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.08745">pdf</a>, <a href="https://arxiv.org/format/2010.08745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-020-00878-0">10.1038/s41563-020-00878-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning spin excitations in magnetic films by confinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangjae Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilmore%2C+K">Keith Gilmore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yanhong Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">Andi Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">Ignace Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+C+H">Charles H. Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+F+J">Frederick J. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08745v1-abstract-short" style="display: inline;"> Spin excitations of magnetic thin films are the founding element for novel transport concepts in spintronics, magnonics, and magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, their behaviour in mesoscopic films is less known due to experimental limitations. Here, we employ Resonant Inelastic X-Ray Scattering to investigate the spin excitation spectru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08745v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08745v1-abstract-full" style="display: none;"> Spin excitations of magnetic thin films are the founding element for novel transport concepts in spintronics, magnonics, and magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, their behaviour in mesoscopic films is less known due to experimental limitations. Here, we employ Resonant Inelastic X-Ray Scattering to investigate the spin excitation spectrum in mesoscopic Fe films, from bulk-like down to 3 unit cells thick. In bulk-like samples, we find isotropic, dispersive ferromagnons consistent with the dispersion observed by neutron scattering in bulk single crystals. As the thickness is reduced, these ferromagnons survive and evolve anisotropically: renormalising to lower energies along the out-of-plane direction while retaining their dispersion in the in-plane direction. This thickness dependence is captured by simple Heisenberg model calculations accounting for the confinement in the out-of-plane direction through the loss of Fe bonds. Our findings highlight the effects of mesoscopic scaling on spin dynamics and identify thickness as a knob for fine-tuning and controlling magnetic properties in films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08745v1-abstract-full').style.display = 'none'; document.getElementById('2010.08745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4, figure, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mat. (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09618">arXiv:2008.09618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09618">pdf</a>, <a href="https://arxiv.org/format/2008.09618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-23317-3">10.1038/s41467-021-23317-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of spin excitations from bulk to monolayer FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karakuzu%2C+S">S. Karakuzu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Q. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">R. Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">T. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+R">R. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">D. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maier%2C+T+A">T. A. Maier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09618v2-abstract-short" style="display: inline;"> The discovery of enhanced superconductivity (SC) in FeSe films grown on SrTiO3 (FeSe/STO) has revitalized the field of Fe-based superconductors. In the ultrathin limit, the superconducting transition temperature Tc is increased by almost an order of magnitude, raising new questions on the pairing mechanism. As in other unconventional superconductors, antiferromagnetic spin fluctuations have been p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09618v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09618v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09618v2-abstract-full" style="display: none;"> The discovery of enhanced superconductivity (SC) in FeSe films grown on SrTiO3 (FeSe/STO) has revitalized the field of Fe-based superconductors. In the ultrathin limit, the superconducting transition temperature Tc is increased by almost an order of magnitude, raising new questions on the pairing mechanism. As in other unconventional superconductors, antiferromagnetic spin fluctuations have been proposed as a candidate to mediate SC in this system. Thus, it is essential to study the evolution of the spin dynamics of FeSe in the ultrathin limit to elucidate their relationship with superconductivity. Here, we investigate and compare the spin excitations in bulk and monolayer FeSe grown on STO using high-resolution resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to the bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems. The present study reveals a remarkable reconfiguration of spin excitations in FeSe/STO, which is essential to understand the role of spin fluctuations in the pairing mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09618v2-abstract-full').style.display = 'none'; document.getElementById('2008.09618v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08209">arXiv:2008.08209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.08209">pdf</a>, <a href="https://arxiv.org/format/2008.08209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.087001">10.1103/PhysRevLett.126.087001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Superexchange in a $d^{9-未}$ Nickelate Revealed by Resonant Inelastic X-Ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J+Q">J. Q. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arribi%2C+P+V">P. Villar Arribi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Y. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">J. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiuzbaian%2C+S+G">S. G. Chiuzbaian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">I. Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freeland%2C+J+W">J. W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Norman%2C+M+R">M. R. Norman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08209v2-abstract-short" style="display: inline;"> The discovery of superconductivity in a $d^{9-未}$ nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08209v2-abstract-full').style.display = 'inline'; document.getElementById('2008.08209v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08209v2-abstract-full" style="display: none;"> The discovery of superconductivity in a $d^{9-未}$ nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced trilayer nickelate $d^{9-1/3}$ La4Ni3O8 and associated theoretical modeling. A magnon energy scale of ~80 meV resulting from a nearest-neighbor magnetic exchange of $J = 69(4)4$ meV is observed, proving that $d^{9-未}$ nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates, and suggests that they represent a promising route towards higher-temperature nickelate superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08209v2-abstract-full').style.display = 'none'; document.getElementById('2008.08209v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages not including supplmentary material; To appear in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 087001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.02575">arXiv:2008.02575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.02575">pdf</a>, <a href="https://arxiv.org/format/2008.02575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Mapping the unoccupied state dispersions in Ta$_2$NiSe$_5$ with resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Monney%2C+C">C. Monney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herzog%2C+M">M. Herzog</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pulkkinen%2C+A">A. Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olalde-Velasco%2C+P">P. Olalde-Velasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katayama%2C+N">N. Katayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nohara%2C+M">M. Nohara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizokawa%2C+T">T. Mizokawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.02575v1-abstract-short" style="display: inline;"> The transition metal chalcogenide Ta$_2$NiSe$_5$ undergoes a second-order phase transition at $T_c=328$ K involving a small lattice distortion. Below $T_c$, a band gap at the center of its Brillouin zone increases up to about 0.35 eV. In this work, we study the electronic structure of Ta$_2$NiSe$_5$ in its low-temperature semiconducting phase, using resonant inelastic x-ray scattering (RIXS) at th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02575v1-abstract-full').style.display = 'inline'; document.getElementById('2008.02575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.02575v1-abstract-full" style="display: none;"> The transition metal chalcogenide Ta$_2$NiSe$_5$ undergoes a second-order phase transition at $T_c=328$ K involving a small lattice distortion. Below $T_c$, a band gap at the center of its Brillouin zone increases up to about 0.35 eV. In this work, we study the electronic structure of Ta$_2$NiSe$_5$ in its low-temperature semiconducting phase, using resonant inelastic x-ray scattering (RIXS) at the Ni $L_3$-edge. In addition to a weak fluorescence response, we observe a collection of intense Raman-like peaks that we attribute to electron-hole excitations. Using density functional theory calculations of its electronic band structure, we identify the main Raman-like peaks as interband transitions between valence and conduction bands. By performing angle-dependent RIXS measurements, we uncover the dispersion of these electron-hole excitations that allows us to extract the low-energy boundary of the electron-hole continuum. From the dispersion of the valence band measured by angle-resolved photoemission spectroscopy, we derive the effective mass of the lowest unoccupied conduction band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02575v1-abstract-full').style.display = 'none'; document.getElementById('2008.02575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14912">arXiv:2006.14912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.14912">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2001755117">10.1073/pnas.2001755117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-orbital charge density wave excitations and concomitant phonon anomalies in Bi$_2$Sr$_2$LaCuO$_{6+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robarts%2C+H">Hannah Robarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14912v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) are ubiquitous in under-doped cuprate superconductors. As a modulation of the valence electron density, CDWs in hole-doped cuprates possess both Cu-3d and O-2p orbital character owing to the strong hybridization of these orbitals near the Fermi level. Here, we investigate under-doped Bi$_2$Sr$_{1.4}$La$_{0.6}$CuO$_{6+未}$ using resonant inelastic X-ray scattering (RIXS)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14912v1-abstract-full').style.display = 'inline'; document.getElementById('2006.14912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14912v1-abstract-full" style="display: none;"> Charge density waves (CDWs) are ubiquitous in under-doped cuprate superconductors. As a modulation of the valence electron density, CDWs in hole-doped cuprates possess both Cu-3d and O-2p orbital character owing to the strong hybridization of these orbitals near the Fermi level. Here, we investigate under-doped Bi$_2$Sr$_{1.4}$La$_{0.6}$CuO$_{6+未}$ using resonant inelastic X-ray scattering (RIXS) and find that a short-range CDW exists at both Cu and O sublattices in the copper-oxide (CuO2) planes with a comparable periodicity and correlation length. Furthermore, we uncover bond-stretching and bond-buckling phonon anomalies concomitant to the CDWs. Comparing to slightly over-doped Bi$_2$Sr$_{1.8}$La$_{0.2}$CuO$_{6+未}$, where neither CDWs nor phonon anomalies appear, we highlight that a sharp intensity anomaly is induced in the proximity of the CDW wavevector (QCDW) for the bond-buckling phonon, in concert with the diffused intensity enhancement of the bond-stretching phonon at wavevectors much greater than QCDW. Our results provide a comprehensive picture of the quasi-static CDWs, their dispersive excitations, and associated electron-phonon anomalies, which are key for understanding the competing electronic instabilities in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14912v1-abstract-full').style.display = 'none'; document.getElementById('2006.14912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages + Supplementary Information. Proc. Natl Acad. Sci. USA, (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS July 14, 2020 117 (28) 16219-16225 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02908">arXiv:2004.02908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.02908">pdf</a>, <a href="https://arxiv.org/format/2004.02908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Microscopic Relaxation Channels in Materials for Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Premkumar%2C+A">Anjali Premkumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weiland%2C+C">Conan Weiland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+S">Sooyeon Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaeck%2C+B">Berthold Jaeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Place%2C+A+P+M">Alexander P. M. Place</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waluyo%2C+I">Iradwikanari Waluyo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hunt%2C+A">Adrian Hunt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">Andi Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+M+S">Mike S. Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Russo%2C+P">Paola Russo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Camino%2C+F">Fernando Camino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kisslinger%2C+K">Kim Kisslinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+X">Xiao Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hybertsen%2C+M+S">Mark S. Hybertsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Houck%2C+A+A">Andrew A. Houck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">Ignace Jarrige</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02908v1-abstract-short" style="display: inline;"> Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times $T_1$ in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02908v1-abstract-full').style.display = 'inline'; document.getElementById('2004.02908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02908v1-abstract-full" style="display: none;"> Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times $T_1$ in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabrication. By comparing results for films deposited using three techniques, we reveal correlations between $T_1$ and grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Physical mechanisms connect these microscopic properties to residual surface resistance and $T_1$ through losses arising from the grain boundaries and from defects in the suboxides. Further, experiments show that the residual resistance ratio can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02908v1-abstract-full').style.display = 'none'; document.getElementById('2004.02908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.10312">arXiv:2001.10312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.10312">pdf</a>, <a href="https://arxiv.org/format/2001.10312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.207005">10.1103/PhysRevLett.124.207005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nature of the charge-density wave excitations in cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=lin%2C+J+Q">J. Q. lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarrige%2C+I">I. Jarrige</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oda%2C+M">M. Oda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurosawa%2C+K">K. Kurosawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Momono%2C+N">N. Momono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">K. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.10312v1-abstract-short" style="display: inline;"> The discovery of charge-density wave (CDW)-related effects in the resonant inelastic x-ray scattering (RIXS) spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive RIXS study of La2-xSrxCuO4 (LSCO) finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10312v1-abstract-full').style.display = 'inline'; document.getElementById('2001.10312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.10312v1-abstract-full" style="display: none;"> The discovery of charge-density wave (CDW)-related effects in the resonant inelastic x-ray scattering (RIXS) spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive RIXS study of La2-xSrxCuO4 (LSCO) finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x = 0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross-section for phonons and CDW-induced phonon-softening. We interpret our results in terms of a CDW that is generated by strong correlations and a phonon response that is driven by the CDW-induced modification of the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10312v1-abstract-full').style.display = 'none'; document.getElementById('2001.10312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages including references in long format</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 207005 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.04662">arXiv:1910.04662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.04662">pdf</a>, <a href="https://arxiv.org/format/1910.04662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-019-0236-3">10.1038/s42005-019-0236-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reciprocity between local moments and collective magnetic excitations in the phase diagram of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+K">Kenji Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Velasco%2C+P+O">Paul Olalde Velasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kasahara%2C+S">Shigeru Kasahara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+L">Lingyi Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+Y">Yuji Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shibauchi%2C+T">Takasada Shibauchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.04662v1-abstract-short" style="display: inline;"> Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the nature of the quasiparticles close to quantum criticality is fundamental to understand the phase diagram of quantum materials. Here, using resonant i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04662v1-abstract-full').style.display = 'inline'; document.getElementById('1910.04662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.04662v1-abstract-full" style="display: none;"> Unconventional superconductivity arises at the border between the strong coupling regime with local magnetic moments and the weak coupling regime with itinerant electrons, and stems from the physics of criticality that dissects the two. Unveiling the nature of the quasiparticles close to quantum criticality is fundamental to understand the phase diagram of quantum materials. Here, using resonant inelastic x-ray scattering (RIXS) and Fe-K$_尾$ emission spectroscopy (XES), we visualize the coexistence and evolution of local magnetic moments and collective spin excitations across the superconducting dome in isovalently-doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$ (0.00$\leq$x$\leq0.$52). Collective magnetic excitations resolved by RIXS are gradually hardened, whereas XES reveals a strong suppression of the local magnetic moment upon doping. This relationship is captured by an intermediate coupling theory, explicitly accounting for the partially localized and itinerant nature of the electrons in Fe pnictides. Finally, our work identifies a local-itinerant spin fluctuations channel through which the local moments transfer spin excitations to the particle-hole (paramagnons) continuum across the superconducting dome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04662v1-abstract-full').style.display = 'none'; document.getElementById('1910.04662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Communications Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 2, 139 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02072">arXiv:1910.02072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02072">pdf</a>, <a href="https://arxiv.org/format/1910.02072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-12502-0">10.1038/s41467-019-12502-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scale-invariant magnetic textures in the strongly correlated oxide NdNiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">Claudio Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Catalano%2C+S">Sara Catalano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simmons%2C+F">Forrest Simmons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadowski%2C+J+T">Jerzy T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levitan%2C+A">Abraham Levitan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibert%2C+M">Marta Gibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carlson%2C+E">Erica Carlson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J">Jean-Marc Triscone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilkins%2C+S">Stuart Wilkins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02072v1-abstract-short" style="display: inline;"> Strongly correlated quantum solids are characterized by an inherently granular electronic fabric, with spatial patterns that can span multiple length scales in proximity to a critical point. Here, we used a resonant magnetic X-ray scattering nanoprobe with sub-100 nm spatial resolution to directly visualize the texture of antiferromagnetic domains in NdNiO$_3$. Surprisingly, our measurements revea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02072v1-abstract-full').style.display = 'inline'; document.getElementById('1910.02072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02072v1-abstract-full" style="display: none;"> Strongly correlated quantum solids are characterized by an inherently granular electronic fabric, with spatial patterns that can span multiple length scales in proximity to a critical point. Here, we used a resonant magnetic X-ray scattering nanoprobe with sub-100 nm spatial resolution to directly visualize the texture of antiferromagnetic domains in NdNiO$_3$. Surprisingly, our measurements revealed a highly textured magnetic fabric, which is shown to be robust and nonvolatile even after thermal erasure across its ordering ($T_{N\acute{e}el}$) temperature. The scale-free distribution of antiferromagnetic domains and its non-integral dimensionality point to a hitherto-unobserved magnetic fractal geometry in this system. These scale-invariant textures directly reflect the continuous nature of the magnetic transition and the proximity of this system to a critical point. The present study not only exposes the near-critical behavior in rare earth nickelates but also underscores the potential for novel X-ray scattering nanoprobes to image the multiscale signatures of criticality near a critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02072v1-abstract-full').style.display = 'none'; document.getElementById('1910.02072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.10604">arXiv:1908.10604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.10604">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-019-0146-3">10.1038/s41535-019-0146-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Localization in CaVO3 Films via Bandwidth Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">Daniel E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beck%2C+S">Sophie Beck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naamneh%2C+M">Muntaser Naamneh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+W">Christof W. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E+V">Ekaterina V. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ederer%2C+C">Claude Ederer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.10604v1-abstract-short" style="display: inline;"> Understanding and controlling the electronic structure of thin layers of quantum materials is a crucial first step towards designing heterostructures where new phases and phenomena, including the metal-insulator transition (MIT), emerge. Here, we demonstrate control of the MIT via tuning electronic bandwidth and local site environment through selection of the number of atomic layers deposited. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10604v1-abstract-full').style.display = 'inline'; document.getElementById('1908.10604v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.10604v1-abstract-full" style="display: none;"> Understanding and controlling the electronic structure of thin layers of quantum materials is a crucial first step towards designing heterostructures where new phases and phenomena, including the metal-insulator transition (MIT), emerge. Here, we demonstrate control of the MIT via tuning electronic bandwidth and local site environment through selection of the number of atomic layers deposited. We take CaVO3, a correlated metal in its bulk form that has only a single electron in its V4+ 3d manifold, as a representative example. We find that thick films and ultrathin films (6 unit cells, uc, and below) are metallic and insulating, respectively, while a 10 uc CaVO3 film exhibits a clear thermal MIT. Our combined X-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) study reveals that the thickness-induced MIT is triggered by electronic bandwidth reduction and local moment formation from V3+ ions, that are both a consequence of the thickness confinement. The thermal MIT in our 10 uc CaVO3 film exhibits similar changes in the RIXS response to that of the thickness-induced MIT in terms of reduction of bandwidth and V 3d - O 2p hybridization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10604v1-abstract-full').style.display = 'none'; document.getElementById('1908.10604v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials volume 4, Article number: 6 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04194">arXiv:1906.04194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04194">pdf</a>, <a href="https://arxiv.org/format/1906.04194">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> N茅el and stripe ordering from spin-orbital entanglement in $伪$-Sr$_2$CrO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z+H">Z. H. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">W. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Occhialini%2C+C+A">C. A. Occhialini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+C+S">C. S. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Norman%2C+M+R">M. R. Norman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Q. Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04194v2-abstract-short" style="display: inline;"> The rich phenomenology engendered by the coupling between the spin and orbital degrees of freedom has become appreciated as a key feature of many strongly-correlated electron systems. The resulting emergent physics is particularly prominent in a number of materials, from Fe-based unconventional superconductors to transition metal oxides, including manganites and vanadates. Here, we investigate the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04194v2-abstract-full').style.display = 'inline'; document.getElementById('1906.04194v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04194v2-abstract-full" style="display: none;"> The rich phenomenology engendered by the coupling between the spin and orbital degrees of freedom has become appreciated as a key feature of many strongly-correlated electron systems. The resulting emergent physics is particularly prominent in a number of materials, from Fe-based unconventional superconductors to transition metal oxides, including manganites and vanadates. Here, we investigate the electronic ground states of $伪$-Sr$_2$CrO$_4$, a compound that is a rare embodiment of the spin-1 Kugel-Khomskii model on the square lattice -- a paradigmatic platform to capture the physics of coupled magnetic and orbital electronic orders. We have used resonant X-ray diffraction at the Cr-$K$ edge to reveal N茅el magnetic order at the in-plane wavevector $\mathbf{Q}_N = (1/2, 1/2)$ below $T_N = 112$ K, as well as an additional electronic order at the &#39;stripe&#39; wavevector $\mathbf{Q}_s = (1/2, 0)$ below T$_s$ $ \sim 50$ K. These findings are examined within the framework of the Kugel-Khomskii model by a combination of mean-field and Monte-Carlo approaches, which supports the stability of the spin N茅el phase with subsequent lower-temperature stripe orbital ordering, revealing a candidate mechanism for the experimentally observed peak at $\mathbf{Q}_s$. On the basis of these findings, we propose that $伪$-Sr$_2$CrO$_4$ serves as a new platform in which to investigate multi-orbital physics and its role in the low-temperature phases of Mott insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04194v2-abstract-full').style.display = 'none'; document.getElementById('1906.04194v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00509">arXiv:1906.00509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.00509">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.054408">10.1103/PhysRevMaterials.3.054408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An XMCD study of magnetism and valence state in iron-substituted strontium titanate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+A+S">Astera S. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Qi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Qian Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+S">Shuai Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freeland%2C+J+W">John W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+C+A">Caroline A. Ross</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00509v1-abstract-short" style="display: inline;"> Room temperature ferromagnetism was characterized for thin films of SrTi$_{0.6}$Fe$_{0.4}$O$_{3-未}$ grown by pulsed laser deposition on SrTiO$_{3}$ and Si substrates under different oxygen pressures and after annealing under oxygen and vacuum conditions. X-ray magnetic circular dichroism demonstrated that the magnetization originated from Fe$^{2+}$ cations, whereas Fe$^{3+}$ and Ti$^{4+}$ did not&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00509v1-abstract-full').style.display = 'inline'; document.getElementById('1906.00509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00509v1-abstract-full" style="display: none;"> Room temperature ferromagnetism was characterized for thin films of SrTi$_{0.6}$Fe$_{0.4}$O$_{3-未}$ grown by pulsed laser deposition on SrTiO$_{3}$ and Si substrates under different oxygen pressures and after annealing under oxygen and vacuum conditions. X-ray magnetic circular dichroism demonstrated that the magnetization originated from Fe$^{2+}$ cations, whereas Fe$^{3+}$ and Ti$^{4+}$ did not contribute. Films with the highest magnetic moment (0.8 渭B per Fe) had the highest measured Fe$^{2+}$:Fe${^3+}$ ratio of 0.1 corresponding to the largest concentration of oxygen vacancies (未 = 0.19). Post-growth annealing treatments under oxidizing and reducing conditions demonstrated quenching and partial recovery of magnetism respectively, and a change in Fe valence states. The study elucidates the microscopic origin of magnetism in highly Fe-substituted SrTi$_{1-x}$Fe$_x$O$_{3-未}$ perovskite oxides and demonstrates that the magnetic moment, which correlates with the relative content of Fe$^{2+}$ and Fe$^{3+}$, can be controlled via the oxygen content, either during growth or by post-growth annealing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00509v1-abstract-full').style.display = 'none'; document.getElementById('1906.00509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 054408 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06583">arXiv:1901.06583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06583">pdf</a>, <a href="https://arxiv.org/format/1901.06583">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.045105">10.1103/PhysRevB.99.045105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolving the nature of electronic excitations in resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">M. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krockenberger%2C+Y">Y. Krockenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">D. E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+W+N">W. N. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+H">H. Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06583v1-abstract-short" style="display: inline;"> The study of elementary bosonic excitations is essential toward a complete description of quantum electronic solids. In this context, resonant inelastic X-ray scattering (RIXS) has recently risen to becoming a versatile probe of electronic excitations in strongly correlated electron systems. The nature of the radiation-matter interaction endows RIXS with the ability to resolve the charge, spin and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06583v1-abstract-full').style.display = 'inline'; document.getElementById('1901.06583v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06583v1-abstract-full" style="display: none;"> The study of elementary bosonic excitations is essential toward a complete description of quantum electronic solids. In this context, resonant inelastic X-ray scattering (RIXS) has recently risen to becoming a versatile probe of electronic excitations in strongly correlated electron systems. The nature of the radiation-matter interaction endows RIXS with the ability to resolve the charge, spin and orbital nature of individual excitations. However, this capability has been only marginally explored to date. Here, we demonstrate a systematic method for the extraction of the character of excitations as imprinted in the azimuthal dependence of the RIXS signal. Using this novel approach, we resolve the charge, spin, and orbital nature of elastic scattering, (para-)magnon/bimagnon modes, and higher energy dd excitations in magnetically-ordered and superconducting copper-oxide perovskites (Nd2CuO4 and YBa2Cu3O6.75). Our method derives from a direct application of scattering theory, enabling us to deconstruct the complex scattering tensor as a function of energy loss. In particular, we use the characteristic tensorial nature of each excitation to precisely and reliably disentangle the charge and spin contributions to the low energy RIXS spectrum. This procedure enables to separately track the evolution of spin and charge spectral distributions in cuprates with doping. Our results demonstrate a new capability that can be integrated into the RIXS toolset, and that promises to be widely applicable to materials with intertwined spin, orbital, and charge excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06583v1-abstract-full').style.display = 'none'; document.getElementById('1901.06583v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 045105 (2019), https://link.aps.org/doi/10.1103/PhysRevB.99.045105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06406">arXiv:1901.06406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.06406">pdf</a>, <a href="https://arxiv.org/format/1901.06406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0401-8">10.1038/s41567-018-0401-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of charge order topology across a magnetic phase transition in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Mingu Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">Alex Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Breznay%2C+N">Nicholas Breznay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">Enrico Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">Feizhou He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Keto Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruiz%2C+A">Alejandro Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Z">Zeyu Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewin%2C+S">Sylvia Lewin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Analytis%2C+J">James Analytis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krockenberger%2C+Y">Yoshiharu Krockenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+H">Hideki Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06406v2-abstract-short" style="display: inline;"> Charge order is now accepted as an integral constituent of cuprate high-temperature superconductors, one that is intimately related to other instabilities in the phase diagram including antiferromagnetism and superconductivity. Unlike nesting-induced Peierls-like density waves, the charge correlations in the CuO2 planes have been predicted to display a rich momentum space topology depending on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06406v2-abstract-full').style.display = 'inline'; document.getElementById('1901.06406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06406v2-abstract-full" style="display: none;"> Charge order is now accepted as an integral constituent of cuprate high-temperature superconductors, one that is intimately related to other instabilities in the phase diagram including antiferromagnetism and superconductivity. Unlike nesting-induced Peierls-like density waves, the charge correlations in the CuO2 planes have been predicted to display a rich momentum space topology depending on the detailed fermiology of the system. However, to date charge order has only been observed along the high-symmetry Cu-O bond directions. Here, using resonant soft X-ray scattering, we investigate the evolution of the full momentum space topology of charge correlations in Ln2CuO4 (Ln=Nd, Pr) as a function of intrinsic electron doping. We report that, upon electron doping the parent Mott insulator, charge correlations first emerge in a hitherto-unobserved form, with full (Cinf) rotational symmetry in momentum-space. At higher doping levels, the orientation of charge correlations is sharply locked to the Cu-O bond high-symmetry directions, restoring a more conventional bidirectional charge order with enhanced correlation lengths. Through charge susceptibility calculations, we closely reproduce the drastic evolution in the topology of charge correlations across an antiferromagnetic quantum phase transition, highlighting the interplay between spin and charge degrees of freedom in electron-doped cuprates. Finally, using the established link between charge correlations and the underlying fermiology, we propose a revised phase diagram of Ln2CuO4 with a superconducting region extending toward the Mott limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06406v2-abstract-full').style.display = 'none'; document.getElementById('1901.06406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Nature Physics on April 20th, 2018. A revised version will appear in Nature Physics at 10.1038/s41567-018-0401-8</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 15, 335-450 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08327">arXiv:1810.08327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08327">pdf</a>, <a href="https://arxiv.org/format/1810.08327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.236802">10.1103/PhysRevLett.121.236802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoupling carrier concentration and electron-phonon coupling in oxide heterostructures observed with resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakatsukasa%2C+K">Ken Nakatsukasa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+S">Sai Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+L">Lin Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Junyi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">Hu Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D">D. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">M. Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karapetrova%2C+E">E. Karapetrova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Yongseong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haskel%2C+D">D. Haskel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">P. Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">E. Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berlijn%2C+T">Tom Berlijn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08327v1-abstract-short" style="display: inline;"> We report the observation of multiple phonon satellite features in ultra thin superlattices of form $n$SrIrO$_3$/$m$SrTiO$_3$ using resonant inelastic x-ray scattering. As the values of $n$ and $m$ vary the energy loss spectra show a systematic evolution in the relative intensity of the phonon satellites. Using a closed-form solution for the cross section, we extract the variation in the electron-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08327v1-abstract-full').style.display = 'inline'; document.getElementById('1810.08327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08327v1-abstract-full" style="display: none;"> We report the observation of multiple phonon satellite features in ultra thin superlattices of form $n$SrIrO$_3$/$m$SrTiO$_3$ using resonant inelastic x-ray scattering. As the values of $n$ and $m$ vary the energy loss spectra show a systematic evolution in the relative intensity of the phonon satellites. Using a closed-form solution for the cross section, we extract the variation in the electron-phonon coupling strength as a function of $n$ and $m$. Combined with the negligible carrier doping into the SrTiO$_3$ layers, these results indicate that tuning of the electron-phonon coupling can be effectively decoupled from doping. This work showcases both a feasible method to extract the electron-phonon coupling in superlattices and unveils a potential route for tuning this coupling which is often associated with superconductivity in SrTiO$_3$-based systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08327v1-abstract-full').style.display = 'none'; document.getElementById('1810.08327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 236802 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02036">arXiv:1806.02036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02036">pdf</a>, <a href="https://arxiv.org/ps/1806.02036">ps</a>, <a href="https://arxiv.org/format/1806.02036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.017202">10.1103/PhysRevLett.122.017202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Antiferromagnetism in Metallic RuO$_2$ Determined by Resonant X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z+H">Z. H. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+R+R">R. R. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Y. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawaguchi%2C+T">T. Kawaguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+H">H. You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao-Horn%2C+Y">Y. Shao-Horn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02036v3-abstract-short" style="display: inline;"> We studied the magnetic ordering of thin films and bulk crystals of rutile RuO$_2$ using resonant X-ray scattering across the Ru L$_2$ absorption edge. Combining polarization analysis and azimuthal-angle dependence of the magnetic Bragg signal, we have established the presence of G-type antiferromagnetism in RuO$_2$ with T$_N$ $&gt;$ 300 K. In addition to revealing a spin-ordered ground state in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02036v3-abstract-full').style.display = 'inline'; document.getElementById('1806.02036v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02036v3-abstract-full" style="display: none;"> We studied the magnetic ordering of thin films and bulk crystals of rutile RuO$_2$ using resonant X-ray scattering across the Ru L$_2$ absorption edge. Combining polarization analysis and azimuthal-angle dependence of the magnetic Bragg signal, we have established the presence of G-type antiferromagnetism in RuO$_2$ with T$_N$ $&gt;$ 300 K. In addition to revealing a spin-ordered ground state in the simplest ruthenium oxide compound, the persistence of magnetic order even in nanometer-thick films lays the ground for potential applications of RuO$_2$ in antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02036v3-abstract-full').style.display = 'none'; document.getElementById('1806.02036v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 017202 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02909">arXiv:1802.02909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02909">pdf</a>, <a href="https://arxiv.org/format/1802.02909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.8.011048">10.1103/PhysRevX.8.011048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Orbital Excitations in Ca$_{2}$RuO$_4$ Revealed by Resonant Inelastic X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+L">L. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forte%2C+F">F. Forte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fittipaldi%2C+R">R. Fittipaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fatuzzo%2C+C+G">C. G. Fatuzzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">V. Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivashko%2C+O">O. Ivashko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horio%2C+M">M. Horio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+F">F. Schindler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">M. Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D">D. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+W">W. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olalde-Velasco%2C+P">P. Olalde-Velasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">N. Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vecchione%2C+A">A. Vecchione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuoco%2C+M">M. Cuoco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02909v1-abstract-short" style="display: inline;"> The strongly correlated insulator Ca$_{2}$RuO$_4$ is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high-resolution oxygen $K$-edge resonant inelastic X-ray scattering study of the antiferromagnetic Mott insulating state of Ca$_{2}$RuO$_4$. A set of low-e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02909v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02909v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02909v1-abstract-full" style="display: none;"> The strongly correlated insulator Ca$_{2}$RuO$_4$ is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high-resolution oxygen $K$-edge resonant inelastic X-ray scattering study of the antiferromagnetic Mott insulating state of Ca$_{2}$RuO$_4$. A set of low-energy ($\sim$80 and 400 meV) and high-energy ($\sim$1.3 and 2.2 eV) excitations are reported that show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modelling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveil the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by the Hund&#39;s coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca$_{2}$RuO$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02909v1-abstract-full').style.display = 'none'; document.getElementById('1802.02909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in Physical Review X</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 8, 011048 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.06895">arXiv:1712.06895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.06895">pdf</a>, <a href="https://arxiv.org/format/1712.06895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.041102">10.1103/PhysRevB.97.041102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dispersive Magnetic and Electronic Excitations in Iridate Perovskites Probed with Oxygen $K$-Edge Resonant Inelastic X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olalde-Velasco%2C+P">Paul Olalde-Velasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fatale%2C+S">Sarah Fatale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vale%2C+J+G">James. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grioni%2C+M">Marco Grioni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">Des. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">Henrik. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.06895v1-abstract-short" style="display: inline;"> Resonant inelastic X-ray scattering (RIXS) experiments performed at the oxygen-$K$ edge on the iridate perovskites {\SIOS} and {\SION} reveal a sequence of well-defined dispersive modes over the energy range up to $\sim 0.8$ eV. The momentum dependence of these modes and their variation with the experimental geometry allows us to assign each of them to specific collective magnetic and/or electroni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06895v1-abstract-full').style.display = 'inline'; document.getElementById('1712.06895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.06895v1-abstract-full" style="display: none;"> Resonant inelastic X-ray scattering (RIXS) experiments performed at the oxygen-$K$ edge on the iridate perovskites {\SIOS} and {\SION} reveal a sequence of well-defined dispersive modes over the energy range up to $\sim 0.8$ eV. The momentum dependence of these modes and their variation with the experimental geometry allows us to assign each of them to specific collective magnetic and/or electronic excitation processes, including single and bi-magnons, and spin-orbit and electron-hole excitons. We thus demonstrated that dispersive magnetic and electronic excitations are observable at the O-$K$ edge in the presence of the strong spin-orbit coupling in the $5d$ shell of iridium and strong hybridization between Ir $5d$ and O $2p$ orbitals, which confirm and expand theoretical expectations. More generally, our results establish the utility of O-$K$ edge RIXS for studying the collective excitations in a range of $5d$ materials that are attracting increasing attention due to their novel magnetic and electronic properties. Especially, the strong RIXS response at O-$K$ edge opens up the opportunity for investigating collective excitations in thin films and heterostructures fabricated from these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06895v1-abstract-full').style.display = 'none'; document.getElementById('1712.06895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures with supplementary material. Accepted by PRB Rapid Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 041102 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.03427">arXiv:1709.03427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.03427">pdf</a>, <a href="https://arxiv.org/format/1709.03427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.115149">10.1103/PhysRevB.96.115149 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic and magnetic excitations in the &#34;half-stuffed&#34; Cu--O planes of Ba$_2$Cu$_3$O$_4$Cl$_2$ measured by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fatale%2C+S">S. Fatale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fatuzzo%2C+C+G">C. G. Fatuzzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babkevich%2C+P">P. Babkevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaik%2C+N+E">N. E. Shaik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">X. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">D. E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikkawa%2C+A">A. Kikkawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taguchi%2C+Y">Y. Taguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grioni%2C+M">M. Grioni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.03427v1-abstract-short" style="display: inline;"> We use resonant inelastic x-ray scattering (RIXS) at the Cu L$_3$ edge to measure the charge and spin excitations in the &#34;half-stuffed&#34; Cu--O planes of the cuprate antiferromagnet Ba$_2$Cu$_3$O$_4$Cl$_2$. The RIXS line shape reveals distinct contributions to the $dd$ excitations from the two structurally inequivalent Cu sites, which have different out-of-plane coordinations. The low-energy respons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03427v1-abstract-full').style.display = 'inline'; document.getElementById('1709.03427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.03427v1-abstract-full" style="display: none;"> We use resonant inelastic x-ray scattering (RIXS) at the Cu L$_3$ edge to measure the charge and spin excitations in the &#34;half-stuffed&#34; Cu--O planes of the cuprate antiferromagnet Ba$_2$Cu$_3$O$_4$Cl$_2$. The RIXS line shape reveals distinct contributions to the $dd$ excitations from the two structurally inequivalent Cu sites, which have different out-of-plane coordinations. The low-energy response exhibits magnetic excitations. We find a spin-wave branch whose dispersion follows the symmetry of a CuO$_2$ sublattice, similar to the case of the &#34;fully-stuffed&#34; planes of tetragonal CuO (T-CuO). Its bandwidth is closer to that of a typical cuprate material, such as Sr$_2$CuO$_2$Cl$_2$, than it is to that of T-CuO. We interpret this result as arising from the absence of the effective four-spin inter-sublattice interactions that act to reduce the bandwidth in T-CuO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03427v1-abstract-full').style.display = 'none'; document.getElementById('1709.03427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 115149 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.00663">arXiv:1708.00663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.00663">pdf</a>, <a href="https://arxiv.org/format/1708.00663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.097001">10.1103/PhysRevLett.119.097001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crossover from Collective to Incoherent Spin Excitations in Superconducting Cuprates Probed by Detuned Resonant Inelastic X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y+Y">Y. Y. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dellea%2C+G">G. Dellea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gretarsson%2C+H">H. Gretarsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Y. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">X. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">D. C. Peets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauviere%2C+L">L. Chauviere</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">P. Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonn%2C+D+A">D. A. Bonn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+R">R. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yakhou%2C+F">F. Yakhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">M. Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">X. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">L. Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.00663v1-abstract-short" style="display: inline;"> Spin excitations in the overdoped high temperature superconductors Tl$_2$Ba$_2$CuO$_{6+未}$ and (Bi,Pb)$_2$(Sr,La)$_{2}$CuO$_{6+未}$ were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-$L_3$ absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00663v1-abstract-full').style.display = 'inline'; document.getElementById('1708.00663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.00663v1-abstract-full" style="display: none;"> Spin excitations in the overdoped high temperature superconductors Tl$_2$Ba$_2$CuO$_{6+未}$ and (Bi,Pb)$_2$(Sr,La)$_{2}$CuO$_{6+未}$ were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-$L_3$ absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle/hole excitations whose maximum shows a fluorescence-like shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00663v1-abstract-full').style.display = 'none'; document.getElementById('1708.00663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, accepted in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 097001 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.01018">arXiv:1703.01018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.01018">pdf</a>, <a href="https://arxiv.org/ps/1703.01018">ps</a>, <a href="https://arxiv.org/format/1703.01018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.115148">10.1103/PhysRevB.96.115148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a dispersive charge mode in hole-doped cuprates using resonant inelastic x-ray scattering at the oxygen K edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+K">K. Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tohyama%2C+T">T. Tohyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asano%2C+S">S. Asano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+M">M. Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wakimoto%2C+S">S. Wakimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tustsui%2C+K">K. Tustsui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sota%2C+S">S. Sota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyawaki%2C+J">J. Miyawaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niwa%2C+H">H. Niwa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harada%2C+Y">Y. Harada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+Y">Y. Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizuki%2C+J">J. Mizuki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.01018v1-abstract-short" style="display: inline;"> We investigate electronic excitations in La2-x(Br,Sr)xCuO4 using resonant inelastic x-ray scattering (RIXS) at the oxygen K edge. RIXS spectra of the hole-doped cuprates show clear momentum dependence below 1 eV. The spectral weight exhibits positive dispersion and shifts to higher energy with increasing hole concentration. Theoretical calculation of the dynamical charge structure factor on oxygen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01018v1-abstract-full').style.display = 'inline'; document.getElementById('1703.01018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.01018v1-abstract-full" style="display: none;"> We investigate electronic excitations in La2-x(Br,Sr)xCuO4 using resonant inelastic x-ray scattering (RIXS) at the oxygen K edge. RIXS spectra of the hole-doped cuprates show clear momentum dependence below 1 eV. The spectral weight exhibits positive dispersion and shifts to higher energy with increasing hole concentration. Theoretical calculation of the dynamical charge structure factor on oxygen orbitals in a three-band Hubbard model is consistent with the experimental observation of the momentum and doping dependence, and therefore the dispersive mode is ascribed to intraband charge excitations which have been observed in electron-doped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01018v1-abstract-full').style.display = 'none'; document.getElementById('1703.01018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 115148 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.00890">arXiv:1612.00890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.00890">pdf</a>, <a href="https://arxiv.org/format/1612.00890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.075139">10.1103/PhysRevB.95.075139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping dependence of the magnetic excitations in La$_{2-x}$Sr$_x$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springell%2C+R+S">R. S. Springell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C4%8FAstuto%2C+M">M. 膹Astuto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">M. Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">H. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+J">J. Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D+J">D. J. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+J+P">J. P. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bo%C5%BEovi%C4%87%2C+I">I. Bo啪ovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.00890v1-abstract-short" style="display: inline;"> The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic exci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00890v1-abstract-full').style.display = 'inline'; document.getElementById('1612.00890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.00890v1-abstract-full" style="display: none;"> The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenology is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low energy excitations remains ambiguous. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00890v1-abstract-full').style.display = 'none'; document.getElementById('1612.00890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 075139 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.03621">arXiv:1611.03621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.03621">pdf</a>, <a href="https://arxiv.org/format/1611.03621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.134515">10.1103/PhysRevB.93.134515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intra-layer doping effects on the high-energy magnetic correlations in NaFeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisogni%2C+V">Valentina Bisogni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Velasco%2C+P+O">Paul Olalde Velasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+L">Lingyi Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Chuangqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.03621v1-abstract-short" style="display: inline;"> We have used Resonant Inelastic X-ray Scattering (RIXS) and dynamical susceptibility calculations to study the magnetic excitations in NaFe$_{1-x}$Co$_x$As (x = 0, 0.03, and 0.08). Despite a relatively low ordered magnetic moment, collective magnetic modes are observed in parent compounds (x = 0) and persist in optimally (x = 0.03) and overdoped (x = 0.08) samples. Their magnetic bandwidths are un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03621v1-abstract-full').style.display = 'inline'; document.getElementById('1611.03621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.03621v1-abstract-full" style="display: none;"> We have used Resonant Inelastic X-ray Scattering (RIXS) and dynamical susceptibility calculations to study the magnetic excitations in NaFe$_{1-x}$Co$_x$As (x = 0, 0.03, and 0.08). Despite a relatively low ordered magnetic moment, collective magnetic modes are observed in parent compounds (x = 0) and persist in optimally (x = 0.03) and overdoped (x = 0.08) samples. Their magnetic bandwidths are unaffected by doping within the range investigated. High energy magnetic excitations in iron pnictides are robust against doping, and present irrespectively of the ordered magnetic moment. Nevertheless, Co doping slightly reduces the overall magnetic spectral weight, differently from previous studies on hole-doped BaFe$_{2}$As$_{2}$, where it was observed constant. Finally, we demonstrate that the doping evolution of magnetic modes is different for the dopants being inside or outside the Fe-As layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03621v1-abstract-full').style.display = 'none'; document.getElementById('1611.03621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 134515 - 26 April (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.03620">arXiv:1611.03620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.03620">pdf</a>, <a href="https://arxiv.org/format/1611.03620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4962966">10.1063/1.4962966 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Presence of magnetic excitations in SmFeAsO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+L">Lingyi Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.03620v1-abstract-short" style="display: inline;"> We measured dispersive spin excitations in $\mathrm{SmFeAsO}$, parent compound of $\mathrm{SmFeAsO_{\text{1-x}}F_{\text{x}}}$ one of the highest temperature superconductors of Fe pnictides (T$_{\text{C}}\approx$55~K). We determine the magnetic excitations to disperse with a bandwidth energy of ca 170 meV at (0.47, 0) and (0.34, 0.34), which merges into the elastic line approaching the $螕$ point. C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03620v1-abstract-full').style.display = 'inline'; document.getElementById('1611.03620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.03620v1-abstract-full" style="display: none;"> We measured dispersive spin excitations in $\mathrm{SmFeAsO}$, parent compound of $\mathrm{SmFeAsO_{\text{1-x}}F_{\text{x}}}$ one of the highest temperature superconductors of Fe pnictides (T$_{\text{C}}\approx$55~K). We determine the magnetic excitations to disperse with a bandwidth energy of ca 170 meV at (0.47, 0) and (0.34, 0.34), which merges into the elastic line approaching the $螕$ point. Comparing our results with other parent Fe pnictides, we show the importance of structural parameters for the magnetic excitation spectrum, with small modifications of the tetrahedron angles and As height strongly affecting the magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03620v1-abstract-full').style.display = 'none'; document.getElementById('1611.03620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 109, 122601 (2016) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10