CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;21 of 21 results for author: <span class="mathjax">Madden, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Madden%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Madden, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Madden%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Madden, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01707">arXiv:2310.01707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.01707">pdf</a>, <a href="https://arxiv.org/format/2310.01707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On-Chip Stimulated Brillouin Scattering via Surface Acoustic Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Neijts%2C+G">Govert Neijts</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+C+K">Choon Kong Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Riseng%2C+M+K">Maren Kramer Riseng</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+K">Kunlun Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Marpaung%2C+D">David Marpaung</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01707v1-abstract-short" style="display: inline;"> Surface acoustic wave (SAW) devices are ubiquitously used for signal processing and filtering, as well as mechanical, chemical and biological sensing, and show promise as quantum transducers. However, nowadays most SAWs are excited and driven via electromechanical coupling and interdigital transducers (IDTs), limiting operation bandwidth and flexibility. Novel ways to coherently excite and detect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01707v1-abstract-full').style.display = 'inline'; document.getElementById('2310.01707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01707v1-abstract-full" style="display: none;"> Surface acoustic wave (SAW) devices are ubiquitously used for signal processing and filtering, as well as mechanical, chemical and biological sensing, and show promise as quantum transducers. However, nowadays most SAWs are excited and driven via electromechanical coupling and interdigital transducers (IDTs), limiting operation bandwidth and flexibility. Novel ways to coherently excite and detect SAWs all-optically interfaced with photonic integrated circuits are yet elusive. Backward Stimulated Brillouin scattering (SBS) provides strong coherent interactions between optical and acoustic waves in chip-scale waveguides, however, demonstrations have been limited to single longitudinal waves in the waveguide core. Here, we numerically model and experimentally demonstrate surface acoustic wave stimulated Brillouin scattering (SAW-SBS) on a photonic chip. We designed and fabricated tailored waveguides made out of GeAsSe glass that show good overlap between SAWs at 3.81 GHz and guided optical modes, without requiring a top cladding. We measure a 225 W$^{-1}$m$^{-1}$ Brillouin gain coefficient of the surface acoustic resonance and linewidth narrowing to 40 MHz. Experimentally accessing this new regime of stimulated Brillouin scattering opens the door for novel on-chip sensing and signal processing applications, strong Brillouin interactions in materials that do not provide sufficient acoustic guidance in the waveguide core as well as excitation of surface acoustic waves in non-piezoelectric materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01707v1-abstract-full').style.display = 'none'; document.getElementById('2310.01707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.01009">arXiv:2308.01009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.01009">pdf</a>, <a href="https://arxiv.org/format/2308.01009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Brillouin light storage for 100 pulse widths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Jaksch%2C+K">Kevin Jaksch</a>, <a href="/search/physics?searchtype=author&amp;query=Piotrowski%2C+J">Johannes Piotrowski</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Mikolaj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S">Stephen Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.01009v1-abstract-short" style="display: inline;"> Signal processing based on stimulated Brillouin scattering (SBS) is limited by the narrow linewidth of the optoacoustic response, which confines many Brillouin applications to continuous wave signals or optical pulses longer than several nanoseconds. In this work, we experimentally demonstrate Brillouin interactions at the 150 ps time scale and a delay for a record 15 ns which corresponds to a del&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01009v1-abstract-full').style.display = 'inline'; document.getElementById('2308.01009v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.01009v1-abstract-full" style="display: none;"> Signal processing based on stimulated Brillouin scattering (SBS) is limited by the narrow linewidth of the optoacoustic response, which confines many Brillouin applications to continuous wave signals or optical pulses longer than several nanoseconds. In this work, we experimentally demonstrate Brillouin interactions at the 150 ps time scale and a delay for a record 15 ns which corresponds to a delay of 100 pulse widths. This breakthrough experimental result was enabled by the high local gain of the chalcogenide waveguides as the optoacoustic interaction length reduces with pulse width. We successfully transfer 150ps-long pulses to traveling acoustic waves within a Brillouin-based memory setup. The information encoded in the optical pulses is stored for 15 ns in the acoustic field. We show the retrieval of eight amplitude levels, multiple consecutive pulses and low distortion in pulse shape. The extension of Brillouin-based storage to the ultra-short pulse regime is an important step for the realisation of practical Brillouin-based delay lines and other optical processing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01009v1-abstract-full').style.display = 'none'; document.getElementById('2308.01009v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12877">arXiv:2212.12877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12877">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optimizing performance for on-chip SBS-based isolator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lai%2C+C+K">Choon Kong Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Bedoya%2C+A+C">Alvaro Casas Bedoya</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12877v1-abstract-short" style="display: inline;"> Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic back-reflection and controlling optical crosstalk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12877v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12877v1-abstract-full" style="display: none;"> Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic back-reflection and controlling optical crosstalk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a +/- 10 nm fabrication-induced width error, such isolation can be maintained over a 5-10 nm bandwidth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12877v1-abstract-full').style.display = 'none'; document.getElementById('2212.12877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.13167">arXiv:1904.13167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.13167">pdf</a>, <a href="https://arxiv.org/format/1904.13167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Coherently refreshed acoustic phonons for extended light storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.13167v1-abstract-short" style="display: inline;"> Acoustic waves can serve as memory for optical information, however, acoustic phonons in the GHz regime decay on the nanosecond timescale. Usually this is dominated by intrinsic acoustic loss due to inelastic scattering of the acoustic waves and thermal phonons. Here we show a way to counteract the intrinsic acoustic decay of the phonons in a waveguide by resonantly reinforcing the acoustic wave v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13167v1-abstract-full').style.display = 'inline'; document.getElementById('1904.13167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.13167v1-abstract-full" style="display: none;"> Acoustic waves can serve as memory for optical information, however, acoustic phonons in the GHz regime decay on the nanosecond timescale. Usually this is dominated by intrinsic acoustic loss due to inelastic scattering of the acoustic waves and thermal phonons. Here we show a way to counteract the intrinsic acoustic decay of the phonons in a waveguide by resonantly reinforcing the acoustic wave via synchronized optical pulses. This scheme overcomes the previous constraints of phonon-based optical signal processing for light storage and memory. We experimentally demonstrate on-chip storage up to 40 ns, four times the intrinsic acoustic lifetime in the waveguide. We confirm the coherence of the scheme by detecting the phase of the delayed optical signal after 40 ns using homodyne detection. Through theoretical considerations we anticipate that this concept allows for storage times up to microseconds within realistic experimental limitations while maintaining a GHz bandwidth of the optical signal. The refreshed phonon-based light storage removes the usual bandwidth-delay product limitations of e.g. slow-light schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13167v1-abstract-full').style.display = 'none'; document.getElementById('1904.13167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, BS and MM contributed equally</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07160">arXiv:1809.07160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07160">pdf</a>, <a href="https://arxiv.org/format/1809.07160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.36.000146">10.1364/JOSAB.36.000146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-chip correlation-based Brillouin sensing: design, experiment and simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zarifi%2C+A">Atiyeh Zarifi</a>, <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+B">Blair Morrison</a>, <a href="/search/physics?searchtype=author&amp;query=Casas-Bedoya%2C+A">Alvaro Casas-Bedoya</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+G">Gang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+T+G">Thach G. Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+A">Arnan Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07160v1-abstract-short" style="display: inline;"> Wavelength-scale SBS waveguides are enabling novel on-chip functionalities. The micro- and nano-scale SBS structures and the complexity of the SBS waveguides require a characterization technique to monitor the local geometry-dependent SBS responses along the waveguide. In this work, we experimentally demonstrate detection of longitudinal features down to 200$渭$m on a silicon-chalcogenide waveguide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07160v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07160v1-abstract-full" style="display: none;"> Wavelength-scale SBS waveguides are enabling novel on-chip functionalities. The micro- and nano-scale SBS structures and the complexity of the SBS waveguides require a characterization technique to monitor the local geometry-dependent SBS responses along the waveguide. In this work, we experimentally demonstrate detection of longitudinal features down to 200$渭$m on a silicon-chalcogenide waveguide using the Brillouin optical correlation domain analysis (BOCDA) technique. We provide simulation and analysis on how multiple acoustic and optical modes and geometrical variations influence the Brillouin spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07160v1-abstract-full').style.display = 'none'; document.getElementById('1809.07160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00146">arXiv:1806.00146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00146">pdf</a>, <a href="https://arxiv.org/format/1806.00146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On-chip broadband non-reciprocal light storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00146v2-abstract-short" style="display: inline;"> Breaking the symmetry between forward and backward propagating optical modes is of fundamental scientific interest and enables crucial functionalities, such as isolators, circulators, and duplex communication systems. Whereas there has been progress in achieving optical isolation on-chip, integrated broadband non-reciprocal signal processing functionalities that enable transmitting and receiving v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00146v2-abstract-full').style.display = 'inline'; document.getElementById('1806.00146v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00146v2-abstract-full" style="display: none;"> Breaking the symmetry between forward and backward propagating optical modes is of fundamental scientific interest and enables crucial functionalities, such as isolators, circulators, and duplex communication systems. Whereas there has been progress in achieving optical isolation on-chip, integrated broadband non-reciprocal signal processing functionalities that enable transmitting and receiving via the same low-loss planar waveguide, without altering the frequency or mode of the signal, remain elusive. Here, we demonstrate a non-reciprocal delay scheme based on the uni-directional transfer of optical data pulses to acoustic waves in a chip-based integration platform. We experimentally demonstrate that this scheme is not impacted by simultaneously counter-propagating optical signals. Furthermore, we achieve a bandwidth more than an order of magnitude broader than the intrinsic opto-acoustic linewidth, linear operation for a wide range of signal powers, and importantly, show that this scheme is wavelength preserving and avoids complicated multi-mode structures.. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00146v2-abstract-full').style.display = 'none'; document.getElementById('1806.00146v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, Moritz Merklein and Birgit Stiller contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00140">arXiv:1806.00140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00140">pdf</a>, <a href="https://arxiv.org/format/1806.00140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.43.003493">10.1364/OL.43.003493 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zarifi%2C+A">Atiyeh Zarifi</a>, <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+B">Blair Morrison</a>, <a href="/search/physics?searchtype=author&amp;query=Casas-Bedoya%2C+A">Alvaro Casas-Bedoya</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+G">Gang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+T+G">Thach G. Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+A">Arnan Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00140v1-abstract-short" style="display: inline;"> Recent advances in design and fabrication of photonic-phononic waveguides have enabled stimulated Brillouin scattering (SBS) in silicon-based platforms, such as under-etched silicon waveguides and hybrid waveguides. Due to the sophisticated design and more importantly high sensitivity of the Brillouin resonances to geometrical variations in micro- and nano-scale structures, it is necessary to have&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00140v1-abstract-full').style.display = 'inline'; document.getElementById('1806.00140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00140v1-abstract-full" style="display: none;"> Recent advances in design and fabrication of photonic-phononic waveguides have enabled stimulated Brillouin scattering (SBS) in silicon-based platforms, such as under-etched silicon waveguides and hybrid waveguides. Due to the sophisticated design and more importantly high sensitivity of the Brillouin resonances to geometrical variations in micro- and nano-scale structures, it is necessary to have access to the localized opto-acoustic response along those waveguides to monitor their uniformity and maximize their interaction strength. In this work, we design and fabricate photonic-phononic waveguides with a deliberate width variation on a hybrid silicon-chalcogenide photonic chip and confirm the effect of the geometrical variation on the localized Brillouin response using a distributed Brillouin measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00140v1-abstract-full').style.display = 'none'; document.getElementById('1806.00140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.08799">arXiv:1804.08799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.08799">pdf</a>, <a href="https://arxiv.org/format/1804.08799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.43.004321">10.1364/OL.43.004321 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-chip multi-stage optical delay based on cascaded Brillouin light storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.08799v1-abstract-short" style="display: inline;"> Storing and delaying optical signals plays a crucial role in data centers, phased array antennas, communication and future computing architectures. Here, we show a delay scheme based on cascaded Brillouin light storage, that achieves multi-stage delay at arbitrary positions within a photonic integrated circuit. Importantly these multiple resonant transfers between the optical and acoustic domain a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08799v1-abstract-full').style.display = 'inline'; document.getElementById('1804.08799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.08799v1-abstract-full" style="display: none;"> Storing and delaying optical signals plays a crucial role in data centers, phased array antennas, communication and future computing architectures. Here, we show a delay scheme based on cascaded Brillouin light storage, that achieves multi-stage delay at arbitrary positions within a photonic integrated circuit. Importantly these multiple resonant transfers between the optical and acoustic domain are controlled solely via external optical control pulses, allowing cascading of the delay without the need of aligning multiple structural resonances along the optical circuit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.08799v1-abstract-full').style.display = 'none'; document.getElementById('1804.08799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, Birgit Stiller and Moritz Merklein contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08626">arXiv:1803.08626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08626">pdf</a>, <a href="https://arxiv.org/format/1803.08626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Crosstalk-free multi-wavelength coherent light storage via Brillouin interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08626v2-abstract-short" style="display: inline;"> Stimulated Brillouin scattering drives a coherent interaction between optical signals and acoustic phonons and this effect can be used for storing optical information in acoustic waves. An important consideration arises when multiple optical frequencies are simultaneously employed in the Brillouin process: in this case the acoustic phonons that are addressed by each optical wavelength can be separ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08626v2-abstract-full').style.display = 'inline'; document.getElementById('1803.08626v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08626v2-abstract-full" style="display: none;"> Stimulated Brillouin scattering drives a coherent interaction between optical signals and acoustic phonons and this effect can be used for storing optical information in acoustic waves. An important consideration arises when multiple optical frequencies are simultaneously employed in the Brillouin process: in this case the acoustic phonons that are addressed by each optical wavelength can be separated by frequencies far smaller than the acoustic phonon linewidth, potentially leading to crosstalk between the optical modes. Here we extend the concept of Brillouin-based light storage to multiple wavelength channels. We experimentally and theoretically show that the accumulated phase mismatch over the length of the spatially extended phonons allows each optical wavelength channel to address a distinct phonon mode, ensuring negligible crosstalk, even if the phonons overlap in frequency. Moreover, we demonstrate that the strict phase matching condition enables the preservation of the coherence of the opto-acoustic transfer at closely spaced multiple acoustic frequencies. This particular phase-mismatch for broad-bandwidth pulses has far-reaching implications allowing dense wavelength multiplexing in Brillouin-based light storage, multi-frequency Brillouin sensing, multi-wavelength Brillouin lasers, parallel microwave processing and quantum photon-phonon interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08626v2-abstract-full').style.display = 'none'; document.getElementById('1803.08626v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, Birgit Stiller and Moritz Merklein contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06727">arXiv:1802.06727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.06727">pdf</a>, <a href="https://arxiv.org/format/1802.06727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2311904">10.1117/12.2311904 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photonic mid-infrared nulling for exoplanet detection on a planar chalcogenide platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Goldsmith%2C+H+K">Harry-Dean Kenchington Goldsmith</a>, <a href="/search/physics?searchtype=author&amp;query=Ireland%2C+M+J">Michael J. Ireland</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Luther-Davies%2C+B">Barry Luther-Davies</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Rongping Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Noris%2C+B">Barnaby Noris</a>, <a href="/search/physics?searchtype=author&amp;query=Tuthill%2C+P">Peter Tuthill</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06727v3-abstract-short" style="display: inline;"> The future of exoplanet detection lies in the mid-infrared (MIR). The MIR region contains the blackbody peak of both hot and habitable zone exoplanets, making the contrast between starlight and planet light less extreme. It is also the region where prominent chemical signatures indicative of life exist, such as ozone at 9.7 microns. At a wavelength of 4 microns the difference in emission between a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06727v3-abstract-full').style.display = 'inline'; document.getElementById('1802.06727v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06727v3-abstract-full" style="display: none;"> The future of exoplanet detection lies in the mid-infrared (MIR). The MIR region contains the blackbody peak of both hot and habitable zone exoplanets, making the contrast between starlight and planet light less extreme. It is also the region where prominent chemical signatures indicative of life exist, such as ozone at 9.7 microns. At a wavelength of 4 microns the difference in emission between an Earth-like planet and a star like our own is 80 dB. However a jovian planet, at the same separation exhibits 60 dB of contrast, or only 20 dB if it is hot due to its formation energy or being close to its host star. A two dimensional nulling interferometer, made with chalcogenide glass, has been measured to produce a null of 20 dB, limited by scattered light. Measures to increase the null depth to the theoretical limit of 60 dB are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06727v3-abstract-full').style.display = 'none'; document.getElementById('1802.06727v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Was published in SPIE: Optical and Infrared Interferometry and Imaging VI, Mike Ireland presented</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03142">arXiv:1712.03142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03142">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Chip-based Brillouin processing for carrier recovery in coherent optical communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Giacoumidis%2C+E">Elias Giacoumidis</a>, <a href="/search/physics?searchtype=author&amp;query=Choudhary%2C+A">Amol Choudhary</a>, <a href="/search/physics?searchtype=author&amp;query=Magi%2C+E">Eric Magi</a>, <a href="/search/physics?searchtype=author&amp;query=Marpaung%2C+D">David Marpaung</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S">Steve Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Corcoran%2C+B">Bill Corcoran</a>, <a href="/search/physics?searchtype=author&amp;query=Pelusi%2C+M">Mark Pelusi</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03142v3-abstract-short" style="display: inline;"> Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03142v3-abstract-full').style.display = 'inline'; document.getElementById('1712.03142v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03142v3-abstract-full" style="display: none;"> Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03142v3-abstract-full').style.display = 'none'; document.getElementById('1712.03142v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Part of this work has been presented as a postdealine paper at CLEO Pacific-Rim&#39;2017 and OSA Optica</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.09684">arXiv:1707.09684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.09684">pdf</a>, <a href="https://arxiv.org/format/1707.09684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Highly localized Brillouin scattering response in a photonic integrated circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zarifi%2C+A">Atiyeh Zarifi</a>, <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+N">Neuton Li</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.09684v1-abstract-short" style="display: inline;"> The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip impl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09684v1-abstract-full').style.display = 'inline'; document.getElementById('1707.09684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.09684v1-abstract-full" style="display: none;"> The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis (BOCDA) to locally measure the SBS spectrum with high spatial resolution of 800 渭m and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit (PIC). This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift (BFS) and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09684v1-abstract-full').style.display = 'none'; document.getElementById('1707.09684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10038">arXiv:1705.10038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.10038">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.19.015212">10.1364/OE.19.015212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High quality waveguides for the mid-infrared wavelength range in a silicon-on-sapphire platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fangxin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jackson%2C+S+D">Stuart D. Jackson</a>, <a href="/search/physics?searchtype=author&amp;query=Grillet%2C+C">Christian Grillet</a>, <a href="/search/physics?searchtype=author&amp;query=Magi%2C+E">Eric Magi</a>, <a href="/search/physics?searchtype=author&amp;query=Hudson%2C+D">Darren Hudson</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Steven J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Moghe%2C+Y">Yashodhan Moghe</a>, <a href="/search/physics?searchtype=author&amp;query=OBrien%2C+C">Christopher OBrien</a>, <a href="/search/physics?searchtype=author&amp;query=Read%2C+A">Andrew Read</a>, <a href="/search/physics?searchtype=author&amp;query=Duvall%2C+S+G">Steven G. Duvall</a>, <a href="/search/physics?searchtype=author&amp;query=Atanackovic%2C+P">Peter Atanackovic</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Moss%2C+D+J">David J. Moss</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10038v1-abstract-short" style="display: inline;"> We report record low loss silicon-on-sapphire nanowires for applications to mid infrared optics. We achieve propagation losses as low as 0.8dB/cm at 1550nm, 1.1 to 1.4dB/cm at 2080nm and &lt; 2dB/cm at = 5.18 microns. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10038v1-abstract-full" style="display: none;"> We report record low loss silicon-on-sapphire nanowires for applications to mid infrared optics. We achieve propagation losses as low as 0.8dB/cm at 1550nm, 1.1 to 1.4dB/cm at 2080nm and &lt; 2dB/cm at = 5.18 microns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10038v1-abstract-full').style.display = 'none'; document.getElementById('1705.10038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 18 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express Volume 19 Issue 16 Pages 15212-15220 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05233">arXiv:1702.05233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.05233">pdf</a>, <a href="https://arxiv.org/format/1702.05233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Compact Brillouin devices through hybrid integration on Silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+B">B. Morrison</a>, <a href="/search/physics?searchtype=author&amp;query=Casas-Bedoya%2C+A">A. Casas-Bedoya</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+G">G. Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">K. Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zarifi%2C+A">A. Zarifi</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+T+G">T. G. Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">D-Y. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Marpaung%2C+D">D. Marpaung</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S">S. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+A">A. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">B. J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05233v1-abstract-short" style="display: inline;"> A range of unique capabilities in optical and microwave signal processing have been demonstrated using stimulated Brillouin scattering. The desire to harness Brillouin scattering in mass manufacturable integrated circuits has led to a focus on silicon-based material platforms. Remarkable progress in silicon-based Brillouin waveguides has been made, but results have been hindered by nonlinear losse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05233v1-abstract-full').style.display = 'inline'; document.getElementById('1702.05233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05233v1-abstract-full" style="display: none;"> A range of unique capabilities in optical and microwave signal processing have been demonstrated using stimulated Brillouin scattering. The desire to harness Brillouin scattering in mass manufacturable integrated circuits has led to a focus on silicon-based material platforms. Remarkable progress in silicon-based Brillouin waveguides has been made, but results have been hindered by nonlinear losses present at telecommunications wavelengths. Here, we report a new approach to surpass this issue through the integration of a high Brillouin gain material, As2S3, onto a silicon chip. We fabricated a compact spiral device, within a silicon circuit, achieving an order of magnitude improvement in Brillouin amplification. To establish the flexibility of this approach, we fabricated a ring resonator with free spectral range precisely matched to the Brillouin shift, enabling the first demonstration of Brillouin lasing in a silicon integrated circuit. Combining active photonic components with the SBS devices shown here will enable the creation of compact, mass manufacturable optical circuits with enhanced functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05233v1-abstract-full').style.display = 'none'; document.getElementById('1702.05233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.08767">arXiv:1608.08767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.08767">pdf</a>, <a href="https://arxiv.org/format/1608.08767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-00717-y">10.1038/s41467-017-00717-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A chip-integrated coherent photonic-phononic memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.08767v2-abstract-short" style="display: inline;"> Controlling and manipulating quanta of coherent acoustic vibrations - phonons - in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality fa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08767v2-abstract-full').style.display = 'inline'; document.getElementById('1608.08767v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.08767v2-abstract-full" style="display: none;"> Controlling and manipulating quanta of coherent acoustic vibrations - phonons - in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at 5-orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with GHz-bandwidth and show operation at separate wavelengths with negligible cross-talk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08767v2-abstract-full').style.display = 'none'; document.getElementById('1608.08767v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, Moritz Merklein and Birgit Stiller contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.04438">arXiv:1608.04438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.04438">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2232199">10.1117/12.2232199 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chalcogenide glass planar MIR couplers for future chip based Bracewell interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Goldsmith%2C+H+K">Harry-Dean Kenchington Goldsmith</a>, <a href="/search/physics?searchtype=author&amp;query=Cvetojevic%2C+N">Nick Cvetojevic</a>, <a href="/search/physics?searchtype=author&amp;query=Ireland%2C+M">Michael Ireland</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Tuthill%2C+P">Peter Tuthill</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B">Ben Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Lawrence%2C+J+S">John S. Lawrence</a>, <a href="/search/physics?searchtype=author&amp;query=Debbarma%2C+S">Sukanta Debbarma</a>, <a href="/search/physics?searchtype=author&amp;query=Luther-Davies%2C+B">Barry Luther-Davies</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.04438v1-abstract-short" style="display: inline;"> Photonic integrated circuits are established as the technique of choice for a number of astronomical processing functions due to their compactness, high level of integration, low losses, and stability. Temperature control, mechanical vibration and acoustic noise become controllable for such a device enabling much more complex processing than can realistically be considered with bulk optics. To dat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04438v1-abstract-full').style.display = 'inline'; document.getElementById('1608.04438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.04438v1-abstract-full" style="display: none;"> Photonic integrated circuits are established as the technique of choice for a number of astronomical processing functions due to their compactness, high level of integration, low losses, and stability. Temperature control, mechanical vibration and acoustic noise become controllable for such a device enabling much more complex processing than can realistically be considered with bulk optics. To date the benefits have mainly been at wavelengths around 1550 nm but in the important Mid-Infrared region, standard photonic chips absorb light strongly. Chalcogenide glasses are well known for their transparency to beyond 10000 nm, and the first results from coupler devices intended for use in an interferometric nuller for exoplanetary observation in the Mid-Infrared L band (3800-4200 nm) are presented here showing that suitable performance can be obtained both theoretically and experimentally for the first fabricated devices operating at 4000 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04438v1-abstract-full').style.display = 'none'; document.getElementById('1608.04438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in Proc. SPIE 9907, Optical and Infrared Interferometry and Imaging V, 990730 (August 4, 2016)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4236">arXiv:1412.4236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4236">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Low power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marpaung%2C+D">David Marpaung</a>, <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+B">Blair Morrison</a>, <a href="/search/physics?searchtype=author&amp;query=Pagani%2C+M">Mattia Pagani</a>, <a href="/search/physics?searchtype=author&amp;query=Pant%2C+R">Ravi Pant</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Luther-Davies%2C+B">Barry Luther-Davies</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Steve J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4236v1-abstract-short" style="display: inline;"> Highly selective and reconfigurable microwave filters are of great importance in radio-frequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher frequency tuning range than electronic filters. However, all MWP filters to date have been limited by trade-offs between key parameters such as tuning&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4236v1-abstract-full').style.display = 'inline'; document.getElementById('1412.4236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4236v1-abstract-full" style="display: none;"> Highly selective and reconfigurable microwave filters are of great importance in radio-frequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher frequency tuning range than electronic filters. However, all MWP filters to date have been limited by trade-offs between key parameters such as tuning range, resolution, and suppression. This problem is exacerbated in the case of integrated MWP filters, blocking the path to compact, high performance filters. Here we show the first chip-based MWP band-stop filter with ultra-high suppression, high resolution in the MHz range, and 0-30 GHz frequency tuning. This record performance was achieved using an ultra-low Brillouin gain from a compact photonic chip and a novel approach of optical resonance-assisted RF signal cancellation. The results point to new ways of creating energy-efficient and reconfigurable integrated MWP signal processors for wireless communications and defence applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4236v1-abstract-full').style.display = 'none'; document.getElementById('1412.4236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.6909">arXiv:1307.6909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.6909">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.38.003208">10.1364/OL.38.003208 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrow linewidth Brillouin laser based on chalcogenide photonic chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kabakova%2C+I+V">Irina V. Kabakova</a>, <a href="/search/physics?searchtype=author&amp;query=Pant%2C+R">Ravi Pant</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Debbarma%2C+S">Sukhanta Debbarma</a>, <a href="/search/physics?searchtype=author&amp;query=Luther-Davies%2C+B">Barry Luther-Davies</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.6909v1-abstract-short" style="display: inline;"> We present the first demonstration of a narrow linewidth, waveguide-based Brillouin laser which is enabled by large Brillouin gain of a chalcogenide chip. The waveguides are equipped with vertical tapers for low loss coupling. Due to optical feedback for the Stokes wave, the lasing threshold is reduced to 360 mW, which is 5 times lower than the calculated single-pass Brillouin threshold for the sa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.6909v1-abstract-full').style.display = 'inline'; document.getElementById('1307.6909v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.6909v1-abstract-full" style="display: none;"> We present the first demonstration of a narrow linewidth, waveguide-based Brillouin laser which is enabled by large Brillouin gain of a chalcogenide chip. The waveguides are equipped with vertical tapers for low loss coupling. Due to optical feedback for the Stokes wave, the lasing threshold is reduced to 360 mW, which is 5 times lower than the calculated single-pass Brillouin threshold for the same waveguide. The slope efficiency of the laser is found to be 30% and the linewidth of 100 kHz is measured using a self-heterodyne method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.6909v1-abstract-full').style.display = 'none'; document.getElementById('1307.6909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.4487">arXiv:1306.4487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.4487">pdf</a>, <a href="https://arxiv.org/ps/1306.4487">ps</a>, <a href="https://arxiv.org/format/1306.4487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> State space modelling and data analysis exercises in LISA Pathfinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nofrarias%2C+M">M Nofrarias</a>, <a href="/search/physics?searchtype=author&amp;query=Antonucci%2C+F">F Antonucci</a>, <a href="/search/physics?searchtype=author&amp;query=Armano%2C+M">M Armano</a>, <a href="/search/physics?searchtype=author&amp;query=Audley%2C+H">H Audley</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+G">G Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Benedetti%2C+M">M Benedetti</a>, <a href="/search/physics?searchtype=author&amp;query=Binetruy%2C+P">P Binetruy</a>, <a href="/search/physics?searchtype=author&amp;query=Bogenstahl%2C+J">J Bogenstahl</a>, <a href="/search/physics?searchtype=author&amp;query=Bortoluzzi%2C+D">D Bortoluzzi</a>, <a href="/search/physics?searchtype=author&amp;query=Brandt%2C+N">N Brandt</a>, <a href="/search/physics?searchtype=author&amp;query=Caleno%2C+M">M Caleno</a>, <a href="/search/physics?searchtype=author&amp;query=Cavalleri%2C+A">A Cavalleri</a>, <a href="/search/physics?searchtype=author&amp;query=Congedo%2C+G">G Congedo</a>, <a href="/search/physics?searchtype=author&amp;query=Cruise%2C+M">M Cruise</a>, <a href="/search/physics?searchtype=author&amp;query=Danzmann%2C+K">K Danzmann</a>, <a href="/search/physics?searchtype=author&amp;query=De+Marchi%2C+F">F De Marchi</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Aguilo%2C+M">M Diaz-Aguilo</a>, <a href="/search/physics?searchtype=author&amp;query=Diepholz%2C+I">I Diepholz</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+G">G Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dolesi%2C+R">R Dolesi</a>, <a href="/search/physics?searchtype=author&amp;query=Dunbar%2C+N">N Dunbar</a>, <a href="/search/physics?searchtype=author&amp;query=Fauste%2C+J">J Fauste</a>, <a href="/search/physics?searchtype=author&amp;query=Ferraioli%2C+L">L Ferraioli</a>, <a href="/search/physics?searchtype=author&amp;query=Fichter%2C+V+F+W">V Ferroni W Fichter</a>, <a href="/search/physics?searchtype=author&amp;query=Fitzsimons%2C+E">E Fitzsimons</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.4487v2-abstract-short" style="display: inline;"> LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4487v2-abstract-full').style.display = 'inline'; document.getElementById('1306.4487v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.4487v2-abstract-full" style="display: none;"> LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4487v2-abstract-full').style.display = 'none'; document.getElementById('1306.4487v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Plenary talk presented at the 9th International LISA Symposium, 21-25 May 2012, Paris</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2013ASPC..467..161N </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.2925">arXiv:1208.2925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.2925">pdf</a>, <a href="https://arxiv.org/format/1208.2925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Using Program Synthesis for Social Recommendations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheung%2C+A">Alvin Cheung</a>, <a href="/search/physics?searchtype=author&amp;query=Solar-Lezama%2C+A">Armando Solar-Lezama</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S">Samuel Madden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.2925v1-abstract-short" style="display: inline;"> This paper presents a new approach to select events of interest to a user in a social media setting where events are generated by the activities of the user&#39;s friends through their mobile devices. We argue that given the unique requirements of the social media setting, the problem is best viewed as an inductive learning problem, where the goal is to first generalize from the users&#39; expressed &#34;like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.2925v1-abstract-full').style.display = 'inline'; document.getElementById('1208.2925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.2925v1-abstract-full" style="display: none;"> This paper presents a new approach to select events of interest to a user in a social media setting where events are generated by the activities of the user&#39;s friends through their mobile devices. We argue that given the unique requirements of the social media setting, the problem is best viewed as an inductive learning problem, where the goal is to first generalize from the users&#39; expressed &#34;likes&#34; and &#34;dislikes&#34; of specific events, then to produce a program that can be manipulated by the system and distributed to the collection devices to collect only data of interest. The key contribution of this paper is a new algorithm that combines existing machine learning techniques with new program synthesis technology to learn users&#39; preferences. We show that when compared with the more standard approaches, our new algorithm provides up to order-of-magnitude reductions in model training time, and significantly higher prediction accuracies for our target application. The approach also improves on standard machine learning techniques in that it produces clear programs that can be manipulated to optimize data collection and filtering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.2925v1-abstract-full').style.display = 'none'; document.getElementById('1208.2925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CSAIL-TR-2012-025 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> H.2; I.2.2; H.2.8; D.1.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.1688">arXiv:1011.1688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.1688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3549744">10.1063/1.3549744 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of correlated photon pairs in a chalcogenide As2S3 waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">C. Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+G+D">G. D. Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=Peruzzo%2C+A">A. Peruzzo</a>, <a href="/search/physics?searchtype=author&amp;query=Lobino%2C+M">M. Lobino</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">A. S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D+-">D. -Y. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">S. J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Natarajan%2C+C+M">C. M. Natarajan</a>, <a href="/search/physics?searchtype=author&amp;query=Tanner%2C+M+G">M. G. Tanner</a>, <a href="/search/physics?searchtype=author&amp;query=Hadfield%2C+R+H">R. H. Hadfield</a>, <a href="/search/physics?searchtype=author&amp;query=Dorenbos%2C+S+N">S. N. Dorenbos</a>, <a href="/search/physics?searchtype=author&amp;query=Zijlstra%2C+T">T. Zijlstra</a>, <a href="/search/physics?searchtype=author&amp;query=Zwiller%2C+V">V. Zwiller</a>, <a href="/search/physics?searchtype=author&amp;query=Thompson%2C+M+G">M. G. Thompson</a>, <a href="/search/physics?searchtype=author&amp;query=Rarity%2C+J+G">J. G. Rarity</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Luther-Davies%2C+B">B. Luther-Davies</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">B. J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Brien%2C+J+L">J. L. O&#39;Brien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.1688v1-abstract-short" style="display: inline;"> We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to accidental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.1688v1-abstract-full" style="display: none;"> We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to accidental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.1688v1-abstract-full').style.display = 'none'; document.getElementById('1011.1688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 98, 051101 (2011) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10