CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 1,702 results for author: <span class="mathjax">Liu, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Liu%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17334">arXiv:2502.17334</a> <span> [<a href="https://arxiv.org/pdf/2502.17334">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Propulsion and Levitation of Metajets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kudtarkar%2C+K">Kaushik Kudtarkar</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yixin Chen</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+Z">Ziqiang Cai</a>, <a href="/search/physics?searchtype=author&query=Cunha%2C+P">Preston Cunha</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+S">Sam Lin</a>, <a href="/search/physics?searchtype=author&query=Wong%2C+Z+J">Zi Jing Wong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yongmin Liu</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+S">Shoufeng Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17334v1-abstract-short" style="display: inline;"> The quintessential hallmark distinguishing metasurfaces from traditional optical components is the engineering of subwavelength meta-atoms to manipulate light at will. Enabling this freedom, in a reverse manner, to control objects constituted by metasurfaces could expand our capability of optical manipulation to go beyond the predominant microscopic and sub-microscopic scales. Here, we introduce a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17334v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17334v1-abstract-full" style="display: none;"> The quintessential hallmark distinguishing metasurfaces from traditional optical components is the engineering of subwavelength meta-atoms to manipulate light at will. Enabling this freedom, in a reverse manner, to control objects constituted by metasurfaces could expand our capability of optical manipulation to go beyond the predominant microscopic and sub-microscopic scales. Here, we introduce a driving metaphotonic force fully controllable by meta-atoms to manipulate structured objects named metajets. Upon Newton's law of motion that can apply to classical and relativistic mechanics, we develop a first-principles theory to analyze optical forces generated by refraction and reflection at an interface. We find that three-dimensional motions of metajets would be possible if one could introduce an extra wavevector component. We achieve that by creating a spatially distributed phase gradient with deliberately arranged silicon nanopillars. Our experiments and simulations reveal an in-plane propulsion and, very importantly, out-of-plane levitation of the metajets, aligning well with the theory. We also find that the metaphotonic force augments with increased light power but is not limited by the size of metajets, which could unleash new opportunities for metaphotonic control in large settings, such as interstellar light sails. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17334v1-abstract-full').style.display = 'none'; document.getElementById('2502.17334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17002">arXiv:2502.17002</a> <span> [<a href="https://arxiv.org/pdf/2502.17002">pdf</a>, <a href="https://arxiv.org/format/2502.17002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Neutron multiplicity measurement in muon capture on oxygen nuclei in the Gd-loaded Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+S">The Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+S">S. Abe</a>, <a href="/search/physics?searchtype=author&query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/physics?searchtype=author&query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&query=Harada%2C+M">M. Harada</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a> , et al. (265 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17002v1-abstract-short" style="display: inline;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17002v1-abstract-full" style="display: none;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with the muon capture events followed by gamma rays to be $50.2^{+2.0}_{-2.1}\%$. By fitting the observed multiplicity considering the detection efficiency, we measure neutron multiplicity in muon capture as $P(0)=24\pm3\%$, $P(1)=70^{+3}_{-2}\%$, $P(2)=6.1\pm0.5\%$, $P(3)=0.38\pm0.09\%$. This is the first measurement of the multiplicity of neutrons associated with muon capture without neutron energy threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'none'; document.getElementById('2502.17002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16138">arXiv:2502.16138</a> <span> [<a href="https://arxiv.org/pdf/2502.16138">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Advancing C-C Coupling of Electrocatalytic CO2 Reduction Reaction for C2+ Products </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liang%2C+G">Guangyuan Liang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chao Wu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Liang Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shaowei Zhang</a>, <a href="/search/physics?searchtype=author&query=Dou%2C+S">Shixue Dou</a>, <a href="/search/physics?searchtype=author&query=Du%2C+H">Hongfang Du</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+D">Dandan Cui</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+L">Liangxu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16138v1-abstract-short" style="display: inline;"> The production of multicarbon (C2+) products through electrocatalytic CO2 reduction reaction (CO2RR) is crucial to addressing global environmental challenges and advancing sustainable energy solutions. However, efficiently producing these high-value chemicals via C-C coupling reactions is a significant challenge. This requires catalysts with optimized surface configurations and electronic properti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16138v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16138v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16138v1-abstract-full" style="display: none;"> The production of multicarbon (C2+) products through electrocatalytic CO2 reduction reaction (CO2RR) is crucial to addressing global environmental challenges and advancing sustainable energy solutions. However, efficiently producing these high-value chemicals via C-C coupling reactions is a significant challenge. This requires catalysts with optimized surface configurations and electronic properties capable of breaking the scaling relations among various intermediates. In this report, we introduce the fundamentals of electrocatalytic CO2RR and the mechanism of C-C coupling. We examine the effects of catalytic surface interactions with key intermediates and reaction pathways, and discuss emerging strategies for enhancing C-C coupling reactions toward C2+ products. Despite varieties of these strategies, we summarize direct clues for the proper design of the catalyst for the electrocatalytic CO2RR towards C2+ products, aiming to provide valuable insights to broad readers in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16138v1-abstract-full').style.display = 'none'; document.getElementById('2502.16138v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16135">arXiv:2502.16135</a> <span> [<a href="https://arxiv.org/pdf/2502.16135">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> The surface binding and energy issues in rational design of the separation membrane of Li||S batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+S">Shuyu Cheng</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L+W+C">Lijing Wang Chao Wu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+S">Sheng Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+D">Dandan Cui</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shaowei Zhang</a>, <a href="/search/physics?searchtype=author&query=Dou%2C+S">Shixue Dou</a>, <a href="/search/physics?searchtype=author&query=Du%2C+H">Hongfang Du</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+L">Liangxu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16135v1-abstract-short" style="display: inline;"> Lithium-sulfur batteries (LSBs) represent one of the most promising next-generation energy storage technologies, offering exceptionally high energy densities. However, their widespread adoption remains hindered by challenges such as sluggish conversion reactions and the dissolution of lithium polysulfides, which lead to poor cycling stability and reduced performance. While significant efforts have… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16135v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16135v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16135v1-abstract-full" style="display: none;"> Lithium-sulfur batteries (LSBs) represent one of the most promising next-generation energy storage technologies, offering exceptionally high energy densities. However, their widespread adoption remains hindered by challenges such as sluggish conversion reactions and the dissolution of lithium polysulfides, which lead to poor cycling stability and reduced performance. While significant efforts have been made to address these limitations, the energy storage capabilities of LSBs in practical devices remain far from achieving their full potential. This report delves into recent advancements in the rational design of separation membranes for LSBs, focusing on addressing fundamental issues related to surface binding and surface energy interactions within materials science. By examining the functionalization and optimization of separation membranes, we aim to highlight strategies that can guide the development of more robust and efficient LSBs, bringing them closer to practical implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16135v1-abstract-full').style.display = 'none'; document.getElementById('2502.16135v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15353">arXiv:2502.15353</a> <span> [<a href="https://arxiv.org/pdf/2502.15353">pdf</a>, <a href="https://arxiv.org/format/2502.15353">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Simulation Studies of the Effect of SiPM Dark Noise on the Performance of a Highly Granular Crystal ECAL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rolph%2C+J">Jack Rolph</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yong Liu</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+B">Baohua Qi</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhiyu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15353v1-abstract-short" style="display: inline;"> A proposal for the CEPC ECAL is a highly-granular scintillating crystal design that uses SiPMs to measure physics signals from photons. Radiation damage to the silicon will impair the performance of the calorimeter due to dark noise, which will affect the reconstruction capabilities of the calorimeter system. This paper presents a simulation study assessing the effect of radiation damage of SiPM d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15353v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15353v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15353v1-abstract-full" style="display: none;"> A proposal for the CEPC ECAL is a highly-granular scintillating crystal design that uses SiPMs to measure physics signals from photons. Radiation damage to the silicon will impair the performance of the calorimeter due to dark noise, which will affect the reconstruction capabilities of the calorimeter system. This paper presents a simulation study assessing the effect of radiation damage of SiPM dark noise on the response from calorimeter to electrons due to changing fluence and temperature. It was observed that dark noise significantly degrades the linearity of response, with up to 45% error in reconstructed energy for a 1 GeV shower at a fluence of $1 \times 10^{10}\mathrm{cm}^{-2}$. The stochastic and noise resolution terms was observed to remain stable, increasing only by 0.2% and 1% respectively in the range $1 \times 10^{7}-1 \times 10^{10}\mathrm{cm}^{-2}$ fluence. Under the assumption of no irradiation, the influence of dark noise with temperature in the normal operating range of the calorimeter system was estimated to be negligible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15353v1-abstract-full').style.display = 'none'; document.getElementById('2502.15353v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13956">arXiv:2502.13956</a> <span> [<a href="https://arxiv.org/pdf/2502.13956">pdf</a>, <a href="https://arxiv.org/format/2502.13956">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Imaging the Photochemistry of Cyclobutanone using Ultrafast Electron Diffraction: Experimental Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Green%2C+A+E">A. E. Green</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Allum%2C+F">F. Allum</a>, <a href="/search/physics?searchtype=author&query=Gra%C3%9Fl%2C+M">M. Gra脽l</a>, <a href="/search/physics?searchtype=author&query=Lenzen%2C+P">P. Lenzen</a>, <a href="/search/physics?searchtype=author&query=Ashfold%2C+M+N+R">M. N. R. Ashfold</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+S">S. Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">X. Cheng</a>, <a href="/search/physics?searchtype=author&query=Centurion%2C+M">M. Centurion</a>, <a href="/search/physics?searchtype=author&query=Crane%2C+S+W">S. W. Crane</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+R+G">R. G. Forbes</a>, <a href="/search/physics?searchtype=author&query=Goff%2C+N+A">N. A. Goff</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">L. Huang</a>, <a href="/search/physics?searchtype=author&query=Kaufman%2C+B">B. Kaufman</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+P+L">P. L. Kramer</a>, <a href="/search/physics?searchtype=author&query=Lam%2C+H+V+S">H. V. S. Lam</a>, <a href="/search/physics?searchtype=author&query=Larsen%2C+K+A">K. A. Larsen</a>, <a href="/search/physics?searchtype=author&query=Lemons%2C+R">R. Lemons</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M+-">M. -F. Lin</a>, <a href="/search/physics?searchtype=author&query=Orr-Ewing%2C+A+J">A. J. Orr-Ewing</a>, <a href="/search/physics?searchtype=author&query=Rolles%2C+D">D. Rolles</a>, <a href="/search/physics?searchtype=author&query=Rudenko%2C+A">A. Rudenko</a>, <a href="/search/physics?searchtype=author&query=Saha%2C+S+K">S. K. Saha</a>, <a href="/search/physics?searchtype=author&query=Searles%2C+J">J. Searles</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13956v1-abstract-short" style="display: inline;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13956v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13956v1-abstract-full" style="display: none;"> We investigated the ultrafast structural dynamics of cyclobutanone following photoexcitation at $位=200$ nm using gas-phase megaelectronvolt ultrafast electron diffraction. Our investigation complements the simulation studies of the same process within this special issue. It provides information about both electronic state population and structural dynamics through well-separable inelastic and elastic electron scattering signatures. We observe the depopulation of the photoexcited S$_2$ state of cyclobutanone with n3s Rydberg character through its inelastic electron scattering signature with a time constant of $(0.29 \pm 0.2)$ ps towards the S$_1$ state. The S$_1$ state population undergoes ring-opening via a Norrish Type-I reaction, likely while passing through a conical intersection with S$_0$. The corresponding structural changes can be tracked by elastic electron scattering signatures. These changes appear with a delay of $(0.14 \pm 0.05)$ ps with respect the initial photoexcitation, which is less than the S$_2$ depopulation time constant. This behavior provides evidence for the ballistic nature of the ring-opening once the S$_1$ state is reached. The resulting biradical species react further within $(1.2 \pm 0.2)$ ps via two rival fragmentation channels yielding ketene and ethylene, or propene and carbon monoxide. Our study showcases both the value of gas-phase ultrafast diffraction studies as an experimental benchmark for nonadiabatic dynamics simulation methods and the limits in the interpretation of such experimental data without comparison to such simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13956v1-abstract-full').style.display = 'none'; document.getElementById('2502.13956v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13841">arXiv:2502.13841</a> <span> [<a href="https://arxiv.org/pdf/2502.13841">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Combined Light Excitation and Scanning Gate Microscopy on Heterostructure Nanowire Photovoltaic Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yen-Po Liu</a>, <a href="/search/physics?searchtype=author&query=Fast%2C+J">Jonatan Fast</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yang Chen</a>, <a href="/search/physics?searchtype=author&query=Zhe%2C+R">Ren Zhe</a>, <a href="/search/physics?searchtype=author&query=Burke%2C+A">Adam Burke</a>, <a href="/search/physics?searchtype=author&query=Timm%2C+R">Rainer Timm</a>, <a href="/search/physics?searchtype=author&query=Linke%2C+H">Heiner Linke</a>, <a href="/search/physics?searchtype=author&query=Mikkelsen%2C+A">Anders Mikkelsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13841v1-abstract-short" style="display: inline;"> Nanoscale optoelectronic components achieve functionality via spatial variation in electronic structure induced by composition, defects, and dopants. To dynamically change the local band alignment and influence defect states, a scanning gate electrode is highly useful. However, this technique is rarely combined with photoexcitation by a controlled external light source. We explore a setup that com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13841v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13841v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13841v1-abstract-full" style="display: none;"> Nanoscale optoelectronic components achieve functionality via spatial variation in electronic structure induced by composition, defects, and dopants. To dynamically change the local band alignment and influence defect states, a scanning gate electrode is highly useful. However, this technique is rarely combined with photoexcitation by a controlled external light source. We explore a setup that combines several types of light excitation with high resolution scanning gate and atomic force microscopy (SGM/AFM). We apply the technique to InAs nanowires with an atomic scale defined InP segment, that have attracted considerable attention for studies of hot carrier devices. Using AFM we image the topography of the nanowire device. SGM measurements without light excitation show how current profiles can be influenced by local gating near the InP segment. Modelling of the tip and nanowire can well predict the results based on the axial band structure variation and an asymmetric tip. SGM studies including light excitation are then performed using both a white light LED and laser diodes at 515 and 780nm. Both negative and positive photoconductance can be observed and the combined effect of light excitation and local gating is observed. SGM can then be used to discriminate between effects related to the wire axial compositional structure and surface states. The setup explored in the current work has significant advantages to study optoelectronics at realistic conditions and with rapid turnover. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13841v1-abstract-full').style.display = 'none'; document.getElementById('2502.13841v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12620">arXiv:2502.12620</a> <span> [<a href="https://arxiv.org/pdf/2502.12620">pdf</a>, <a href="https://arxiv.org/format/2502.12620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> An unstructured block-based adaptive mesh refinement approach for explicit discontinuous Galerkin method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yun-Long Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+A">A-Man Zhang</a>, <a href="/search/physics?searchtype=author&query=Konga%2C+Q">Qi Konga</a>, <a href="/search/physics?searchtype=author&query=Chena%2C+L">Lewen Chena</a>, <a href="/search/physics?searchtype=author&query=Haoa%2C+Q">Qihang Haoa</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Y">Yuan Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12620v1-abstract-short" style="display: inline;"> In the present paper, we present an adaptive mesh refinement(AMR) approach designed for the discontinuous Galerkin method for conservation laws. The block-based AMR is adopted to ensure the local data structure simplicity and the efficiency, while the unstructured topology of the initial blocks is supported by the forest concept such that the complex geometry of the computational domain can be eas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12620v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12620v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12620v1-abstract-full" style="display: none;"> In the present paper, we present an adaptive mesh refinement(AMR) approach designed for the discontinuous Galerkin method for conservation laws. The block-based AMR is adopted to ensure the local data structure simplicity and the efficiency, while the unstructured topology of the initial blocks is supported by the forest concept such that the complex geometry of the computational domain can be easily treated. The inter-block communication through guardcells is introduced to avoid the direct treatment of flux computing between cells at different refinement levels. The sharp corners and creases generated during direct refinement can be avoided by projecting the boundary nodes to either the user-defined boundary surface function or the auto-generated NURBs. High-level MPI parallelization is implemented with dynamic load balancing through a space curve filling procedure. Some test cases are presented. As a result, ideal accuracy order and versatility in tracing and controlling the dynamic refinement are observed. Also, good parallelization efficiency is demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12620v1-abstract-full').style.display = 'none'; document.getElementById('2502.12620v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11056">arXiv:2502.11056</a> <span> [<a href="https://arxiv.org/pdf/2502.11056">pdf</a>, <a href="https://arxiv.org/format/2502.11056">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerated engineering of topological interface states in one-dimensional phononic crystals via deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xue-Qian Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Da Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiao-Shuang Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+T">Tian-Xue Ma</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue-Sheng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+Z">Zhuo Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11056v1-abstract-short" style="display: inline;"> Topological interface states (TISs) in phononic crystals (PnCs) are robust acoustic modes against external perturbations, which are of great significance in scientific and engineering communities. However, designing a pair of PnCs with specified band gaps (BGs) and TIS frequency remains a challenging problem. In this work, deep learning (DL) approaches are used for the engineering of one-dimension… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11056v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11056v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11056v1-abstract-full" style="display: none;"> Topological interface states (TISs) in phononic crystals (PnCs) are robust acoustic modes against external perturbations, which are of great significance in scientific and engineering communities. However, designing a pair of PnCs with specified band gaps (BGs) and TIS frequency remains a challenging problem. In this work, deep learning (DL) approaches are used for the engineering of one-dimensional (1D) PnCs with high design freedoms. The considered 1D PnCs are composed of periodic solid scatterers embedded in the air background, whose unit cell is divided into a matrix with 32 * 32 pixels. First, the variational autoencoder is applied to reduce the dimensionality of unit cell images, allowing accurate reconstruction of PnC images with different numbers of scatterers. Subsequently, the multilayer perceptron and the tandem neural network are used to realize the property prediction and customized design of 1D PnCs, respectively. The correlation coefficients for the property prediction and inverse design are more than 97%. The unit cell images of 1D PnCs with specific BG properties could be successfully and instantaneously designed. Importantly, the implementation of a "one-to-many" design of PnC pairs with specific TIS frequencies is realized. Furthermore, the reliability and robustness of the constructed networks are confirmed by randomly specifying the design targets as well as the experimental verification. This study demonstrates the broad application prospects of DL approaches in the field of PnC design and provides new ideas and methods for the intelligent design of artificially functional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11056v1-abstract-full').style.display = 'none'; document.getElementById('2502.11056v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10941">arXiv:2502.10941</a> <span> [<a href="https://arxiv.org/pdf/2502.10941">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Compact Turnkey Soliton Microcombs at Microwave Rates via Wafer-Scale Fabrication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuanlei Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Ze Wang</a>, <a href="/search/physics?searchtype=author&query=Lao%2C+C">Chenghao Lao</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+T">Tianyu Xu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Yinke Cheng</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhenyu Xie</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junqi Wang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+H">Haoyang Luo</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xin Zhou</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+B">Bo Ni</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+K">Kaixuan Zhu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yanwu Liu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+X">Xing Jin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Min Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jian-Fei Liu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+X">Xuening Cao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Ting Wang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Bei-Bei Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fangxing Zhang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">Yun-Feng Xiao</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10941v1-abstract-short" style="display: inline;"> Soliton microcombs generated in nonlinear microresonators facilitate the photonic integration of timing, frequency synthesis, and astronomical calibration functionalities. For these applications, low-repetition-rate soliton microcombs are essential as they establish a coherent link between optical and microwave signals. However, the required pump power typically scales with the inverse of the repe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10941v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10941v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10941v1-abstract-full" style="display: none;"> Soliton microcombs generated in nonlinear microresonators facilitate the photonic integration of timing, frequency synthesis, and astronomical calibration functionalities. For these applications, low-repetition-rate soliton microcombs are essential as they establish a coherent link between optical and microwave signals. However, the required pump power typically scales with the inverse of the repetition rate, and the device footprint scales with the inverse of square of the repetition rate, rendering low-repetition-rate soliton microcombs challenging to integrate within photonic circuits. This study designs and fabricates silicon nitride microresonators on 4-inch wafers with highly compact form factors. The resonator geometries are engineered from ring to finger and spiral shapes to enhance integration density while attaining quality factors over 10^7. Driven directly by an integrated laser, soliton microcombs with repetition rates below 10 GHz are demonstrated via turnkey initiation. The phase noise performance of the synthesized microwave signals reaches -130 dBc/Hz at 100 kHz offset frequency for 10 GHz carrier frequencies. This work enables the high-density integration of soliton microcombs for chip-based microwave photonics and spectroscopy applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10941v1-abstract-full').style.display = 'none'; document.getElementById('2502.10941v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10806">arXiv:2502.10806</a> <span> [<a href="https://arxiv.org/pdf/2502.10806">pdf</a>, <a href="https://arxiv.org/ps/2502.10806">ps</a>, <a href="https://arxiv.org/format/2502.10806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optomechanically induced transparency in Four-wave mixing atomic ensemble assisted Laguerre-Gaussian vortex cavity system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yue-Tong Hao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Mou Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10806v1-abstract-short" style="display: inline;"> We investigate the steady-state optical response of a Laguerre-Gaussian vortex cavity system integrated with cold atoms featuring a double-$螞$ energy level structure. Within this hybrid system, the atoms are driven by cavity mode and three coherent vortex beams, each carrying independent orbital angular momentum (OAM). We first check the steady-state output spectrum of the hybrid system in the pas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10806v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10806v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10806v1-abstract-full" style="display: none;"> We investigate the steady-state optical response of a Laguerre-Gaussian vortex cavity system integrated with cold atoms featuring a double-$螞$ energy level structure. Within this hybrid system, the atoms are driven by cavity mode and three coherent vortex beams, each carrying independent orbital angular momentum (OAM). We first check the steady-state output spectrum of the hybrid system in the passive/active case (without/with external cavity driving). Our findings reveal that the optomechanically induced transparency (OMIT) spectrum is modulated by the OAM difference $(螖\ell\hbar)$ from the atomic component throughout the four-wave mixing (FWM) process. The resulting loop phase ($螖\ell胃$) can achieve a switching effect on the absorption and gain behavior of the hybrid system for the probe beam. Additionally, the group delay, indicative of fast/slow light phenomena, is also tuned by $螖\ell$. We further display how the atomic OAM modulates the periodicity of the output spot pattern in the hybrid system. This research provides valuable insights into the modulation of optical responses in Laguerre-Gaussian vortex cavity systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10806v1-abstract-full').style.display = 'none'; document.getElementById('2502.10806v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10740">arXiv:2502.10740</a> <span> [<a href="https://arxiv.org/pdf/2502.10740">pdf</a>, <a href="https://arxiv.org/format/2502.10740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Commissioning of a radiofrequency quadrupole cooler-buncher for collinear laser spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yin-Shen Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+H">Han-Rui Hu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xiao-Fei Yang</a>, <a href="/search/physics?searchtype=author&query=Mei%2C+W">Wen-Cong Mei</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yang-Fan Guo</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Z">Zhou Yan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shao-Jie Chen</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+S">Shi-wei Bai</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shu-Jing Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yong-Chao Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dong-Yang Chen</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Y">Yan-Lin Ye</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qi-Te Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/physics?searchtype=author&query=Malbrunot-Ettenauer%2C+S">Stephan Malbrunot-Ettenauer</a>, <a href="/search/physics?searchtype=author&query=Lechner%2C+S">Simon Lechner</a>, <a href="/search/physics?searchtype=author&query=Kanitz%2C+C">Carina Kanitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10740v1-abstract-short" style="display: inline;"> A RadioFrequency Quadrupole (RFQ) cooler-buncher system has been developed and implemented in a collinear laser spectroscopy setup. This system is dedicated to convert a continuous ion beam into short bunches, while enhancing beam quality and reducing energy spread. The functionality of the RFQ cooler-buncher has been verified through offline tests with stable rubidium and indium beam, delivered f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10740v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10740v1-abstract-full" style="display: none;"> A RadioFrequency Quadrupole (RFQ) cooler-buncher system has been developed and implemented in a collinear laser spectroscopy setup. This system is dedicated to convert a continuous ion beam into short bunches, while enhancing beam quality and reducing energy spread. The functionality of the RFQ cooler-buncher has been verified through offline tests with stable rubidium and indium beam, delivered from a surface ion source and a laser ablation ion source, respectively. With a transmission efficiency exceeding 60%, bunched ion beams with a full width at half maximum of approximately 2渭s in the time-of-flight spectrum have been successfully achieved. The implementation of RFQ cooler-buncher system has significantly improved the overall transmission efficiency of the collinear laser spectroscopy setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10740v1-abstract-full').style.display = 'none'; document.getElementById('2502.10740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10316">arXiv:2502.10316</a> <span> [<a href="https://arxiv.org/pdf/2502.10316">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Physiologically-based simulation model of color appearance for red-green color vision deficiency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+L">Lijia Sun</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+S">Shining Ma</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+Y">Yong Tao</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+L">Liang Jia</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yue Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yongtian Wang</a>, <a href="/search/physics?searchtype=author&query=Song%2C+a+W">and Weitao Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10316v1-abstract-short" style="display: inline;"> Various simulation methods of color appearance for dichromats or anomalous trichromats have been proposed over the years. To further improve the performance of the simulation model and extend the application range to both dichromats or anomalous trichromats, we have proposed a simulation model of cone fundamentals specifically designed for individuals with red-green type color vision deficiency (C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10316v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10316v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10316v1-abstract-full" style="display: none;"> Various simulation methods of color appearance for dichromats or anomalous trichromats have been proposed over the years. To further improve the performance of the simulation model and extend the application range to both dichromats or anomalous trichromats, we have proposed a simulation model of cone fundamentals specifically designed for individuals with red-green type color vision deficiency (CVD) based on the CIE 2006 physiological observer model. By utilizing the simulated cone fundamentals, it becomes possible to predict the color appearance of real scenes and digital images for CVD. The fundamental premise of the new model is rooted in the hypothesis that CVD arises from a shift in the peak wavelength of the photopigment absorption spectrum of the L or M cone. Instead of simply maintaining the waveform without alteration as observed in prior studies, we altered waveforms of the absorption spectra of anomalous L/M cone photopigments when adjusting their peak wavelengths. Regarding different shapes in the absorption spectrum between the L and M cone, the absorption spectrum of the anomalous L/M cone was obtained by combining the peak wavenumber shift and linear interpolation of spectral quantal absorption curves between L- and M-photopigments in the wavenumber domain. The performance of the proposed model was substantiated through experimental validation by the pseudoisochromatic plates and Farnsworth Munsell 100 Hue test (FM-100). The findings revealed a high level of consistency between the model prediction and the actual perception reported by individuals with CVD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10316v1-abstract-full').style.display = 'none'; document.getElementById('2502.10316v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08048">arXiv:2502.08048</a> <span> [<a href="https://arxiv.org/pdf/2502.08048">pdf</a>, <a href="https://arxiv.org/format/2502.08048">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Efficiently Laser Driven Terahertz Surface Plasmon Polaritons on Long Metal Wire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shao%2C+S">Shuoting Shao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiangbing Wang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+R">Rong Huang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+G">Guangyue Hu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">Min Chen</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+H">Huibo Tang</a>, <a href="/search/physics?searchtype=author&query=Kuang%2C+L">Longyu Kuang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuxi Liu</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+Y">Yuqiu Gu</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yongkun Ding</a>, <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruxin Li</a>, <a href="/search/physics?searchtype=author&query=Zhuo%2C+H">Hongbin Zhuo</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+M">Mingyang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08048v2-abstract-short" style="display: inline;"> We experimentally demonstrate a novel scheme for efficiently generating intense terahertz (THz) surface plasmon polaritons (SPPs) on a sub-wavelength-diameter meter-long metal wire. Driven by a subrelativistic femtosecond laser (a0=0.3, 3 mJ) focused at the wire's midpoint, single-cycle ten-megawatt THz SPPs are excited and propagating bidirectionally along it over 25 cm. The measured laser-to-SPP… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08048v2-abstract-full').style.display = 'inline'; document.getElementById('2502.08048v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08048v2-abstract-full" style="display: none;"> We experimentally demonstrate a novel scheme for efficiently generating intense terahertz (THz) surface plasmon polaritons (SPPs) on a sub-wavelength-diameter meter-long metal wire. Driven by a subrelativistic femtosecond laser (a0=0.3, 3 mJ) focused at the wire's midpoint, single-cycle ten-megawatt THz SPPs are excited and propagating bidirectionally along it over 25 cm. The measured laser-to-SPPs energy conversion efficiency is reaching up to ~2.4%, which is the highest value at present. It is proved that the THz SPPs are excited by coherent transition radiation of the subrelativistic laser produced escaping electrons. Particle-in-cell together with CST simulations confirm the experimental observations. Our scheme of using readily available subrelativistic laser should thus be useful to applications requiring terawatt level single-cycle THz SPPs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08048v2-abstract-full').style.display = 'none'; document.getElementById('2502.08048v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07180">arXiv:2502.07180</a> <span> [<a href="https://arxiv.org/pdf/2502.07180">pdf</a>, <a href="https://arxiv.org/format/2502.07180">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Soliton microcombs in X-cut LiNbO3 microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nie%2C+B">Binbin Nie</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+X">Xiaomin Lv</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+K">Kaixuan Zhu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Ze Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yanwu Liu</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhenyu Xie</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+X">Xing Jin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guanyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+D">Du Qian</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhenyu Chen</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Q">Qiang Luo</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+S">Shuting Kang</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+G">Guowei Lv</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07180v1-abstract-short" style="display: inline;"> Chip-scale integration of optical frequency combs, particularly soliton microcombs, enables miniaturized instrumentation for timekeeping, ranging, and spectroscopy. Although soliton microcombs have been demonstrated on various material platforms, realizing complete comb functionality on photonic chips requires the co-integration of high-speed modulators and efficient frequency doublers, features t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07180v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07180v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07180v1-abstract-full" style="display: none;"> Chip-scale integration of optical frequency combs, particularly soliton microcombs, enables miniaturized instrumentation for timekeeping, ranging, and spectroscopy. Although soliton microcombs have been demonstrated on various material platforms, realizing complete comb functionality on photonic chips requires the co-integration of high-speed modulators and efficient frequency doublers, features that are available in a monolithic form on X-cut thin-film lithium niobate (TFLN). However, the pronounced Raman nonlinearity associated with extraordinary light in this platform has so far precluded soliton microcomb generation. Here, we report the generation of transverse-electric-polarized soliton microcombs with a 25 GHz repetition rate in high-Q microresonators on X-cut TFLN chips. By precisely orienting the racetrack microresonator relative to the optical axis, we mitigate Raman nonlinearity and enable soliton formation under continuous-wave laser pumping. Moreover, the soliton microcomb spectra are extended to 350 nm with pulsed laser pumping. This work expands the capabilities of TFLN photonics and paves the way for the monolithic integration of fast-tunable, self-referenced microcombs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07180v1-abstract-full').style.display = 'none'; document.getElementById('2502.07180v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05635">arXiv:2502.05635</a> <span> [<a href="https://arxiv.org/pdf/2502.05635">pdf</a>, <a href="https://arxiv.org/format/2502.05635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Data-driven Low-rank Approximation for Electron-hole Kernel and Acceleration of Time-dependent GW Calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hou%2C+B">Bowen Hou</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jinyuan Wu</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+V+C">Victor Chang Lee</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiaxuan Guo</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L+Y">Luna Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+D+Y">Diana Y. Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05635v1-abstract-short" style="display: inline;"> Many-body electron-hole interactions are essential for understanding non-linear optical processes and ultrafast spectroscopy of materials. Recent first principles approaches based on nonequilibrium Green's function formalisms, such as the time-dependent adiabatic GW (TD-aGW) approach, can predict the nonequilibrium dynamics of excited states including electron-hole interactions. However, the high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05635v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05635v1-abstract-full" style="display: none;"> Many-body electron-hole interactions are essential for understanding non-linear optical processes and ultrafast spectroscopy of materials. Recent first principles approaches based on nonequilibrium Green's function formalisms, such as the time-dependent adiabatic GW (TD-aGW) approach, can predict the nonequilibrium dynamics of excited states including electron-hole interactions. However, the high dimensionality of the electron-hole kernel poses significant computational challenges for scalability. Here, we develop a data-driven low-rank approximation for the electron-hole kernel, leveraging localized excitonic effects in the Hilbert space of crystalline systems. Through singular value decomposition (SVD) analysis, we show that the subspace of non-zero singular values, containing the key information of the electron-hole kernel, retains a small size even as the k-grid grows, ensuring computational feasibility with extremely dense k-grids for converged calculations. Utilizing this low-rank property, we achieve at least 95% compression of the kernel and an order-of-magnitude speedup of TD-aGW calculations. Our method, rooted in physical interpretability, outperforms existing machine learning approaches by avoiding intensive training processes and eliminating time-accumulated errors, providing a general framework for high-throughput, nonequilibrium simulation of light-driven dynamics in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05635v1-abstract-full').style.display = 'none'; document.getElementById('2502.05635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04755">arXiv:2502.04755</a> <span> [<a href="https://arxiv.org/pdf/2502.04755">pdf</a>, <a href="https://arxiv.org/format/2502.04755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Geometric origin of self-intersection points in non-Hermitian energy spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pi%2C+J">Jinghui Pi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chenyang Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yong-Chun Liu</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Y">Yangqian Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04755v1-abstract-short" style="display: inline;"> Unlike Hermitian systems, non-Hermitian energy spectra under periodic boundary conditions can form closed loops in the complex energy plane, a phenomenon known as point gap topology. In this paper, we investigate the self-intersection points of such non-Hermitian energy spectra and reveal their geometric origins. We rigorously demonstrate that these self-intersection points result from the interse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04755v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04755v1-abstract-full" style="display: none;"> Unlike Hermitian systems, non-Hermitian energy spectra under periodic boundary conditions can form closed loops in the complex energy plane, a phenomenon known as point gap topology. In this paper, we investigate the self-intersection points of such non-Hermitian energy spectra and reveal their geometric origins. We rigorously demonstrate that these self-intersection points result from the intersection of the auxiliary generalized Brillouin zone and the Brillouin zone in one-band systems, as confirmed by an extended Hatano-Nelson model. This finding is further generalized to multi-band systems, illustrated through a non-Hermitian Su-Schrieffer-Heeger model. Moreover, we address multiple self-intersection points and derive the geometric conditions for general n-fold self-intersection points. Our results enhance the fundamental understanding of generic non-Hermitian quantum systems and provide theoretical support for further experimental investigations of energy self-intersection points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04755v1-abstract-full').style.display = 'none'; document.getElementById('2502.04755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03170">arXiv:2502.03170</a> <span> [<a href="https://arxiv.org/pdf/2502.03170">pdf</a>, <a href="https://arxiv.org/format/2502.03170">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Revisiting PSF models: unifying framework and high-performance implementation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&query=Stergiopoulou%2C+V">Vasiliki Stergiopoulou</a>, <a href="/search/physics?searchtype=author&query=Chuah%2C+J">Jonathan Chuah</a>, <a href="/search/physics?searchtype=author&query=Unser%2C+M">Michael Unser</a>, <a href="/search/physics?searchtype=author&query=Sage%2C+D">Daniel Sage</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+J">Jonathan Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03170v1-abstract-short" style="display: inline;"> Localization microscopy often relies on detailed models of point spread functions. For applications such as deconvolution or PSF engineering, accurate models for light propagation in imaging systems with high numerical aperture are required. Different models have been proposed based on 2D Fourier transforms or 1D Bessel integrals. The most precise ones combine a vectorial description of the electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03170v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03170v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03170v1-abstract-full" style="display: none;"> Localization microscopy often relies on detailed models of point spread functions. For applications such as deconvolution or PSF engineering, accurate models for light propagation in imaging systems with high numerical aperture are required. Different models have been proposed based on 2D Fourier transforms or 1D Bessel integrals. The most precise ones combine a vectorial description of the electric field and precise aberration models. However, it may be unclear which model to choose, as there is no comprehensive comparison between the Fourier and Bessel approaches yet. Moreover, many existing libraries are written in Java (e.g. our previous PSF generator software) or MATLAB, which hinders the integration into deep learning algorithms. In this work, we start from the original Richards-Wolf integral and revisit both approaches in a systematic way. We present a unifying framework in which we prove the equivalence between the Fourier and Bessel strategies and detail a variety of correction factors applicable to both of them. Then, we provide a high-performance implementation of our theoretical framework in the form of an open-source library that is built on top of PyTorch, a popular library for deep learning. It enables us to benchmark the accuracy and computational speed of different models, thus allowing for an in-depth comparison of the existing models for the first time. We show that the Bessel strategy is optimal for axisymmetric beams while the Fourier approach can be applied to more general scenarios. Our work enables efficient PSF computation on CPU or GPU, which can then be included in simulation and optimization pipelines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03170v1-abstract-full').style.display = 'none'; document.getElementById('2502.03170v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02999">arXiv:2502.02999</a> <span> [<a href="https://arxiv.org/pdf/2502.02999">pdf</a>, <a href="https://arxiv.org/format/2502.02999">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Exploration of optimized front-end readout circuit for time measurement of large-area SiPM arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y+Q">Y. Q. Tan</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J+N">J. N. Tang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W+H">W. H. Wu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+D+L">D. L. Xu</a>, <a href="/search/physics?searchtype=author&query=Zhi%2C+W">W. Zhi</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z+Z">Z. Z. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02999v1-abstract-short" style="display: inline;"> The detector of TRopIcal DEep-sea Neutrino Telescope (TRIDENT) will use large-area silicon photomultiplier (SiPM) arrays combined with photomultiplier tubes to boost photon detection efficiency and pointing capability. An application-specific integrated circuit (ASIC) is being developed to aim at high-resolution time measurement of large-area SiPM arrays. This work researches four architectures of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02999v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02999v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02999v1-abstract-full" style="display: none;"> The detector of TRopIcal DEep-sea Neutrino Telescope (TRIDENT) will use large-area silicon photomultiplier (SiPM) arrays combined with photomultiplier tubes to boost photon detection efficiency and pointing capability. An application-specific integrated circuit (ASIC) is being developed to aim at high-resolution time measurement of large-area SiPM arrays. This work researches four architectures of readout circuits including different input stages (common gate stage and negative feedback common gate stage) and discriminators (two types of current discriminator and one voltage discriminator) using a 180 nm CMOS process for optimizing time resolution. The experimental measurements show that single photon time resolutions performed using Hamamatsu S13360-3050PE SiPMs are around 260 ps full width at half maximum (FWHM). A timing jitter less than 500 ps FWHM when connecting a 6x6 mm^2 SiPM array is achieved. The power consumption is less than 7 mW/channel. Additionally, a digital summation is applied to reduce the number of output interfaces. The measured performances of the ASIC cater to the TRIDENT application requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02999v1-abstract-full').style.display = 'none'; document.getElementById('2502.02999v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02884">arXiv:2502.02884</a> <span> [<a href="https://arxiv.org/pdf/2502.02884">pdf</a>, <a href="https://arxiv.org/format/2502.02884">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Physically Consistent Global Atmospheric Data Assimilation with Machine Learning in a Latent Space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+H">Hang Fan</a>, <a href="/search/physics?searchtype=author&query=Fei%2C+B">Ben Fei</a>, <a href="/search/physics?searchtype=author&query=Gentine%2C+P">Pierre Gentine</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">Yi Xiao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Kun Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yubao Liu</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+Y">Yongquan Qu</a>, <a href="/search/physics?searchtype=author&query=Ling%2C+F">Fenghua Ling</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+L">Lei Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02884v1-abstract-short" style="display: inline;"> Data assimilation (DA) provides more accurate, physically consistent analysis fields and is used for estimating initial conditions in numerical weather forecasting. Traditional DA methods derive statistically optimal analyses in model space based on Bayesian theory. However, their effectiveness is limited by the difficulty of accurately estimating the background error covariances matrix B, which r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02884v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02884v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02884v1-abstract-full" style="display: none;"> Data assimilation (DA) provides more accurate, physically consistent analysis fields and is used for estimating initial conditions in numerical weather forecasting. Traditional DA methods derive statistically optimal analyses in model space based on Bayesian theory. However, their effectiveness is limited by the difficulty of accurately estimating the background error covariances matrix B, which represents the intricate interdependencies among atmospheric variables, as well as the standard linearity assumptions required during the assimilation step. To address these limitations, we propose Latent Data Assimilation (LDA) for a multi-variable global atmosphere, performing non-linear Machine-Learning based Bayesian DA on an atmospheric latent representation learned by an autoencoder. The feasibility of LDA is supported by the near-linear relationship between increments in latent space (within the typical magnitude range for DA) and their corresponding impacts in model space, ensuring that the optimal analysis obtained in latent space approximates the optimal analysis in model space. Due to the relationships among the atmospheric variables encoded in the latent space, LDA can physically propagate observation information across unobserved regions and atmospheric variables, even with a fully diagonal B in latent space. We perform idealized experiments with simulated observations and demonstrate the superiority of LDA over traditional DA methods in model space, while the experiments assimilating real observations highlight its potential application for operational reanalysis and weather forecasting systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02884v1-abstract-full').style.display = 'none'; document.getElementById('2502.02884v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01414">arXiv:2502.01414</a> <span> [<a href="https://arxiv.org/pdf/2502.01414">pdf</a>, <a href="https://arxiv.org/format/2502.01414">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Clarifying Self Seed in 391-nm N$_2^{+}$ Air Lasing by Vectorially Structured Light Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+J">Jingsong Gao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yang Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chengyin Wu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hongbing Jiang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yunquan Liu</a>, <a href="/search/physics?searchtype=author&query=Han%2C+M">Meng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01414v1-abstract-short" style="display: inline;"> A single intense near-infrared femtosecond laser beam can generate ultraviolet N$_2^{+}$ lasing at 391 nm in the air, offering a promising tool for remote sensing. One of the key debates regarding its mechanism is whether it is seeded by a self-generated spectral component, such as the second harmonic, which is inevitably produced by the charge gradient in the laser plasma filament. In this study,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01414v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01414v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01414v1-abstract-full" style="display: none;"> A single intense near-infrared femtosecond laser beam can generate ultraviolet N$_2^{+}$ lasing at 391 nm in the air, offering a promising tool for remote sensing. One of the key debates regarding its mechanism is whether it is seeded by a self-generated spectral component, such as the second harmonic, which is inevitably produced by the charge gradient in the laser plasma filament. In this study, we generated both radially and azimuthally polarized N$_2^{+}$ lasing at 391 nm, in contrast to that the second harmonic in argon is found near zero at the azimuthal polarization case. By characterizing the spatial phase distribution of the radially polarized 391-nm lasing, we concluded that the phase of the 391-nm lasing aligns with the driving field, thereby ruling out the hypothesis of self-seeding by the second harmonic. Our work also provides a promising method to remotely generate vectorially structured ultraviolet light fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01414v1-abstract-full').style.display = 'none'; document.getElementById('2502.01414v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01324">arXiv:2502.01324</a> <span> [<a href="https://arxiv.org/pdf/2502.01324">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Navigating pollution: A multimodal approach to traffic and exposure management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yueqi Liu</a>, <a href="/search/physics?searchtype=author&query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+L">Lei Yu</a>, <a href="/search/physics?searchtype=author&query=Tu%2C+W">Wenrui Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01324v1-abstract-short" style="display: inline;"> Few studies quantify how traffic management dynamically reshapes modal split and emission-exposure outcomes over pollution severities. This paper proposes a novel day-to-day assignment model integrating exposure cost, which includes exposure perception and emissions-dispersion-exposure algorithm. Numerical experiments reveal that and various levels of traffic-related measures have an air pollution… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01324v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01324v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01324v1-abstract-full" style="display: none;"> Few studies quantify how traffic management dynamically reshapes modal split and emission-exposure outcomes over pollution severities. This paper proposes a novel day-to-day assignment model integrating exposure cost, which includes exposure perception and emissions-dispersion-exposure algorithm. Numerical experiments reveal that and various levels of traffic-related measures have an air pollution scenario-dependent effect on the MT system. In light pollution scenarios, vehicle restrictions and reduced fares for buses or ridesharing help lower car usage and reduce emissions and exposure. However, under heavy pollution, higher-level restrictions and ridesharing fares paradoxically increase travelers' exposure by 18% and 6.3%, respectively, due to modal shift. Furthermore, timely pollution information updates could plausibly encourage healthier travel. This paper also proposes practical strategies for both routine and emergency traffic management, considering the trade-offs among travel cost, emission, and exposure, and emphasizes the need for measures tailored to different air pollution contexts to offer deeper insights for urban traffic policies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01324v1-abstract-full').style.display = 'none'; document.getElementById('2502.01324v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01112">arXiv:2502.01112</a> <span> [<a href="https://arxiv.org/pdf/2502.01112">pdf</a>, <a href="https://arxiv.org/ps/2502.01112">ps</a>, <a href="https://arxiv.org/format/2502.01112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Relativistic configuration-interaction and coupled-cluster calculations of Ir$^{17+}$ transition energies and properties for optical clock applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H+X">H. X. Liu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Y+M">Y. M. Yu</a>, <a href="/search/physics?searchtype=author&query=Suo%2C+B+B">B. B. Suo</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+Y+F">Y. F. Ge</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01112v2-abstract-short" style="display: inline;"> The transition energies and properties of the Ir$^{17+}$ ion are calculated using the Kramers-restricted configuration-interaction (KRCI) and Fock-space coupled-cluster (FSCC) methods within the Dirac-Coulomb-Gaunt Hamiltonian framework. These calculations show several forbidden optical transitions between the $4f^{13}5s$ ground state and the $4f^{14}$ and $4f^{12}5s^2$ excited states, underscorin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01112v2-abstract-full').style.display = 'inline'; document.getElementById('2502.01112v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01112v2-abstract-full" style="display: none;"> The transition energies and properties of the Ir$^{17+}$ ion are calculated using the Kramers-restricted configuration-interaction (KRCI) and Fock-space coupled-cluster (FSCC) methods within the Dirac-Coulomb-Gaunt Hamiltonian framework. These calculations show several forbidden optical transitions between the $4f^{13}5s$ ground state and the $4f^{14}$ and $4f^{12}5s^2$ excited states, underscoring their potential as candidates for optical clock applications. Additionally, key properties of the ground and low-lying excited states are reported, including Lande $g_J$ factors, lifetimes, electric dipole polarizabilities, electric quadrupole moments, hyperfine structure constants, relativistic sensitivities, Lorentz-invariance coefficient tensor, and isotope shifts. The excellent agreement between the results from the KRCI and FSCC methods demonstrates the robustness of the calculations and confirms the reliability of the proposed clock transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01112v2-abstract-full').style.display = 'none'; document.getElementById('2502.01112v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00188">arXiv:2502.00188</a> <span> [<a href="https://arxiv.org/pdf/2502.00188">pdf</a>, <a href="https://arxiv.org/format/2502.00188">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of Magnetic Evaporative Beamline Cooling for Preparation of Cold Atomic Beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Esfahani%2C+A+A">A. Ashtari Esfahani</a>, <a href="/search/physics?searchtype=author&query=Bhagvati%2C+S">S. Bhagvati</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6ser%2C+S">S. B枚ser</a>, <a href="/search/physics?searchtype=author&query=Brandsema%2C+M+J">M. J. Brandsema</a>, <a href="/search/physics?searchtype=author&query=Cabral%2C+R">R. Cabral</a>, <a href="/search/physics?searchtype=author&query=Chirayath%2C+V+A">V. A. Chirayath</a>, <a href="/search/physics?searchtype=author&query=Claessens%2C+C">C. Claessens</a>, <a href="/search/physics?searchtype=author&query=Coward%2C+N">N. Coward</a>, <a href="/search/physics?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/physics?searchtype=author&query=Doe%2C+P+J">P. J. Doe</a>, <a href="/search/physics?searchtype=author&query=Elliott%2C+M+G">M. G. Elliott</a>, <a href="/search/physics?searchtype=author&query=Enomoto%2C+S">S. Enomoto</a>, <a href="/search/physics?searchtype=author&query=Fertl%2C+M">M. Fertl</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">J. A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Foust%2C+B+T">B. T. Foust</a>, <a href="/search/physics?searchtype=author&query=Gaison%2C+J+K">J. K. Gaison</a>, <a href="/search/physics?searchtype=author&query=Harmston%2C+P">P. Harmston</a>, <a href="/search/physics?searchtype=author&query=Heeger%2C+K+M">K. M. Heeger</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+B+J+P">B. J. P. Jones</a>, <a href="/search/physics?searchtype=author&query=Karim%2C+E">E. Karim</a>, <a href="/search/physics?searchtype=author&query=Kazkaz%2C+K">K. Kazkaz</a>, <a href="/search/physics?searchtype=author&query=Kolbeck%2C+P+T">P. T. Kolbeck</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">M. Li</a>, <a href="/search/physics?searchtype=author&query=Lindman%2C+A">A. Lindman</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C+Y">C. Y. Liu</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00188v1-abstract-short" style="display: inline;"> The most sensitive direct neutrino mass searches today are based on measurement of the endpoint of the beta spectrum of tritium to infer limits on the mass of the unobserved recoiling neutrino. To avoid the smearing associated with the distribution of molecular final states in the T-He molecule, the next generation of these experiments will need to employ atomic (T) rather than molecular (T$_{2}$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00188v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00188v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00188v1-abstract-full" style="display: none;"> The most sensitive direct neutrino mass searches today are based on measurement of the endpoint of the beta spectrum of tritium to infer limits on the mass of the unobserved recoiling neutrino. To avoid the smearing associated with the distribution of molecular final states in the T-He molecule, the next generation of these experiments will need to employ atomic (T) rather than molecular (T$_{2}$) tritium sources. Following production, atomic T can be trapped in gravitational and / or magnetic bottles for beta spectrum experiments, if and only if it can first be cooled to millikelvin temperatures. Accomplishing this cooling presents substantial technological challenges. The Project 8 collaboration is developing a technique based on magnetic evaporative cooling along a beamline (MECB) for the purpose of cooling T to feed a magneto-gravitational trap that also serves as a cyclotron radiation emission spectroscope. Initial tests of the approach are planned in a pathfinder apparatus using atomic Li. This paper presents a method for analyzing the dynamics of the MECB technique, and applies these calculations to the design of systems for cooling and slowing of atomic Li and T. A scheme is outlined that could provide a current of T at the millikelvin temperatures required for the Project 8 neutrino mass search. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00188v1-abstract-full').style.display = 'none'; document.getElementById('2502.00188v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15473">arXiv:2501.15473</a> <span> [<a href="https://arxiv.org/pdf/2501.15473">pdf</a>, <a href="https://arxiv.org/format/2501.15473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Semi-Supervised Learning for AVO Inversion with Strong Spatial Feature Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yingtian Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yong Li</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+J">Junheng Peng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingwei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15473v1-abstract-short" style="display: inline;"> One-dimensional convolution is a widely used deep learning technique in prestack amplitude variation with offset (AVO) inversion; however, it lacks lateral continuity. Although two-dimensional convolution improves lateral continuity, due to the sparsity of well-log data, the model only learns weak spatial features and fails to explore the spatial correlations in seismic data fully. To overcome the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15473v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15473v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15473v1-abstract-full" style="display: none;"> One-dimensional convolution is a widely used deep learning technique in prestack amplitude variation with offset (AVO) inversion; however, it lacks lateral continuity. Although two-dimensional convolution improves lateral continuity, due to the sparsity of well-log data, the model only learns weak spatial features and fails to explore the spatial correlations in seismic data fully. To overcome these challenges, we propose a novel AVO inversion method based on semi-supervised learning with strong spatial feature constraints (SSFC-SSL). First, two-dimensional predicted values are obtained through the inversion network, and the predicted values at well locations are sparsely represented using well-log labels. Subsequently, a label-annihilation operator is introduced, enabling the predicted values at non-well locations to learn the spatial features of well locations through the neural network. Ultimately, a two-way strong spatial feature mapping between non-well locations and well locations is achieved. Additionally, to reduce the dependence on well-log labels, we combine the semi-supervised learning strategy with a low-frequency model, further enhancing the robustness of the method. Experimental results on both synthetic example and field data demonstrate that the proposed method significantly improves lateral continuity and inversion accuracy compared to one- and two-dimensional deep learning techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15473v1-abstract-full').style.display = 'none'; document.getElementById('2501.15473v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript has been submitted to IEEE Transactions on Geoscience and Remote Sensing for reviewing</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; I.6.5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12936">arXiv:2501.12936</a> <span> [<a href="https://arxiv.org/pdf/2501.12936">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Catalyst Design Framework for Electrochemical Hydrogen Peroxide Synthesis Facilitated by Local Atomic Environment Descriptors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhijian Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yan Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bingqian Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuqi Zhang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+T">Tianxiang Gao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mingzhe Li</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+X">Xue Jia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Heng Liu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+X">Xuqiang Shao</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+L">Li Wei</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Weijie Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12936v1-abstract-short" style="display: inline;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with mac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12936v1-abstract-full" style="display: none;"> Developing a universal and precise design framework is crucial to search high-performance catalysts, but it remains a giant challenge due to the diverse structures and sites across various types of catalysts. To address this challenge, herein, we developed a novel framework by the refined local atomic environment descriptors (i.e., weighted Atomic Center Symmetry Function, wACSF) combined with machine learning (ML), microkinetic modeling, and computational high-throughput screening. This framework is successfully integrated into the Digital Catalysis Database (DigCat), enabling efficient screening for 2e- water oxidation reaction (2e- WOR) catalysts across four material categories (i.e., metal alloys, metal oxides and perovskites, and single-atom catalysts) within a ML model. The proposed wACSF descriptors integrating both geometric and chemical features are proven effective in predicting the adsorption free energies with ML. Excitingly, based on the wACSF descriptors, the ML models accurately predict the adsorption free energies of hydroxyl (螖GOH*) and oxygen (螖GO*) for such a wide range of catalysts, achieving R2 values of 0.84 and 0.91, respectively. Through density functional theory calculations and microkinetic modeling, a universal 2e- WOR microkinetic volcano model was derived with excellent agreement with experimental observations reported to date, which was further used to rapidly screen high-performance catalysts with the input of ML-predicted 螖GOH*. Most importantly, this universal framework can significantly improve the efficiency of catalyst design by considering multiple types of materials at the same time, which can dramatically accelerate the screening of high-performance catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12936v1-abstract-full').style.display = 'none'; document.getElementById('2501.12936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12391">arXiv:2501.12391</a> <span> [<a href="https://arxiv.org/pdf/2501.12391">pdf</a>, <a href="https://arxiv.org/format/2501.12391">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Physics of Skill Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Ziming Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yizhou Liu</a>, <a href="/search/physics?searchtype=author&query=Michaud%2C+E+J">Eric J. Michaud</a>, <a href="/search/physics?searchtype=author&query=Gore%2C+J">Jeff Gore</a>, <a href="/search/physics?searchtype=author&query=Tegmark%2C+M">Max Tegmark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12391v1-abstract-short" style="display: inline;"> We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12391v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12391v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12391v1-abstract-full" style="display: none;"> We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we take physicists' approach of abstraction and simplification. We propose three models with varying complexities -- the Geometry model, the Resource model, and the Domino model, trading between reality and simplicity. The Domino effect can be reproduced in the Geometry model, whose resource interpretation inspires the Resource model, which can be further simplified to the Domino model. These models present different levels of abstraction and simplification; each is useful to study some aspects of skill learning. The Geometry model provides interesting insights into neural scaling laws and optimizers; the Resource model sheds light on the learning dynamics of compositional tasks; the Domino model reveals the benefits of modularity. These models are not only conceptually interesting -- e.g., we show how Chinchilla scaling laws can emerge from the Geometry model, but also are useful in practice by inspiring algorithmic development -- e.g., we show how simple algorithmic changes, motivated by these toy models, can speed up the training of deep learning models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12391v1-abstract-full').style.display = 'none'; document.getElementById('2501.12391v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures. Codes are available at https://github.com/KindXiaoming/physics_of_skill_learning</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10510">arXiv:2501.10510</a> <span> [<a href="https://arxiv.org/pdf/2501.10510">pdf</a>, <a href="https://arxiv.org/format/2501.10510">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Jet Size Prediction in Compound Multiphase Bubble Bursting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhengyu Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J">Jie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10510v1-abstract-short" style="display: inline;"> The Worthington jets from bursting bubbles at a gas-liquid interface can break up into small droplets, aerosolizing chemical and biological substances into the atmosphere and impacting both global climate and public health. Despite their importance in contaminant transport, the influence of adsorbed contaminants on bubble-bursting jet dynamics remains poorly understood. Here, we document how an im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10510v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10510v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10510v1-abstract-full" style="display: none;"> The Worthington jets from bursting bubbles at a gas-liquid interface can break up into small droplets, aerosolizing chemical and biological substances into the atmosphere and impacting both global climate and public health. Despite their importance in contaminant transport, the influence of adsorbed contaminants on bubble-bursting jet dynamics remains poorly understood. Here, we document how an immiscible compound contaminant layer impacts the jet radius, which deviates from the expected jetting dynamics produced by clean bubble bursting. We rationalize the deviation of the jet radius by characterizing the propagation of the capillary waves at the air-oil-water interface. We develop a linearized wave damping model based on the understanding of the oil thickness profile and the wave dispersion, and we propose a revised Ohnesorge number with a scaling relation that captures the experimental results reasonably well across a wide range of oil layer thicknesses and viscosities. Our work not only advances the fundamental understanding of bubble bursting jets but also offers valuable insights for predicting aerosol size distributions and modeling the transport of airborne contaminants in realistic environmental scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10510v1-abstract-full').style.display = 'none'; document.getElementById('2501.10510v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09089">arXiv:2501.09089</a> <span> [<a href="https://arxiv.org/pdf/2501.09089">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Physics-Aware POD-Based Learning for Ab initio QEM-Galerkin Simulations of Periodic Nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Veresko%2C+M">Martin Veresko</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+D">Daqing Hou</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+M">Ming-Cheng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09089v1-abstract-short" style="display: inline;"> Quantum nanostructures offer crucial applications in electronics, photonics, materials, drugs, etc. For accurate design and analysis of nanostructures and materials, simulations of the Schrodinger or Schrodinger-like equation are always needed. For large nanostructures, these eigenvalue problems can be computationally intensive. One effective solution is a learning method via Proper Orthogonal Dec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09089v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09089v1-abstract-full" style="display: none;"> Quantum nanostructures offer crucial applications in electronics, photonics, materials, drugs, etc. For accurate design and analysis of nanostructures and materials, simulations of the Schrodinger or Schrodinger-like equation are always needed. For large nanostructures, these eigenvalue problems can be computationally intensive. One effective solution is a learning method via Proper Orthogonal Decomposition (POD), together with ab initio Galerkin projection of the Schrodinger equation. POD-Galerkin projects the problem onto a reduced-order space with the POD basis representing electron wave functions (WFs) guided by the first principles in simulations. To minimize training effort and enhance robustness of POD-Galerkin in larger structures, the quantum element method (QEM) was proposed previously, which partitions nanostructures into generic quantum elements. Larger nanostructures can then be constructed by the trained generic quantum elements, each of which is represented by its POD-Galerkin model. This work investigates QEM-Galerkin thoroughly in multi-element quantum-dot (QD) structures on approaches to further improve training effectiveness and simulation accuracy and efficiency for QEM-Galerkin. To further improve computing speed, POD and Fourier bases for periodic potentials are also examined in QEM-Galerkin simulations. Results indicate that, considering efficiency and accuracy, the POD potential basis is superior to the Fourier potential basis even for periodic potentials. Overall, QEM-Galerkin offers more than a 2-order speedup in computation over direct numerical simulation for multi-element QD structures, and more improvement is observed in a structure comprising more elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09089v1-abstract-full').style.display = 'none'; document.getElementById('2501.09089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08894">arXiv:2501.08894</a> <span> [<a href="https://arxiv.org/pdf/2501.08894">pdf</a>, <a href="https://arxiv.org/format/2501.08894">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.111.015423">10.1103/PhysRevE.111.015423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> General Solution for Elastic Networks on Arbitrary Curved Surfaces in the Absence of Rotational Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yankang Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Siyu Li</a>, <a href="/search/physics?searchtype=author&query=Zandi%2C+R">Roya Zandi</a>, <a href="/search/physics?searchtype=author&query=Travesset%2C+A">Alex Travesset</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08894v1-abstract-short" style="display: inline;"> Understanding crystal growth over arbitrary curved surfaces with arbitrary boundaries is a formidable challenge, stemming from the complexity of formulating non-linear elasticity using geometric invariant quantities. Solutions are generally confined to systems exhibiting rotational symmetry. In this paper, we introduce a framework to address these challenges by numerically solving these equations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08894v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08894v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08894v1-abstract-full" style="display: none;"> Understanding crystal growth over arbitrary curved surfaces with arbitrary boundaries is a formidable challenge, stemming from the complexity of formulating non-linear elasticity using geometric invariant quantities. Solutions are generally confined to systems exhibiting rotational symmetry. In this paper, we introduce a framework to address these challenges by numerically solving these equations without relying on inherent symmetries. We illustrate our approach by computing the minimum energy required for an elastic network containing a disclination at any point and by investigating surfaces that lack rotational symmetry. Our findings reveal that the transition from a defect-free structure to a stable state with a single 5-fold or 7-fold disclination strongly depends on the shape of the domain, emphasizing the profound influence of edge geometry. We discuss the implications of our results for general experimental systems, particularly in elucidating the assembly pathways of virus capsids. This research enhances our understanding of crystal growth on complex surfaces and expands its applications across diverse scientific domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08894v1-abstract-full').style.display = 'none'; document.getElementById('2501.08894v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, 1 table in the main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08106">arXiv:2501.08106</a> <span> [<a href="https://arxiv.org/pdf/2501.08106">pdf</a>, <a href="https://arxiv.org/format/2501.08106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Photodetachment of negative hydrogen ion beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gorlov%2C+T+V">T. V. Gorlov</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Cousineau%2C+S">S. Cousineau</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Oguz%2C+A">A. Oguz</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+N">N. Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08106v1-abstract-short" style="display: inline;"> The method of H- photoionization is interesting for laser assisted charge exchange injection. In this paper, the model and computation of photoionization of negative hydrogen ion by using strong lasers is considered. The development of this work is motivated by using pure lasers for photodetachment of electron from negative hydrogen ion when it is not convenient or not possible to use stripping ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08106v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08106v1-abstract-full" style="display: none;"> The method of H- photoionization is interesting for laser assisted charge exchange injection. In this paper, the model and computation of photoionization of negative hydrogen ion by using strong lasers is considered. The development of this work is motivated by using pure lasers for photodetachment of electron from negative hydrogen ion when it is not convenient or not possible to use stripping magnet. Herein we develop a method of calculation of high efficiency photoionization using time dependent wave equation with application of powerful lasers. We compare this precise method of calculation with simplified method of calculation through linear model of cross section interaction. Another mechanism of photodetachment through excitation of the Feshbach resonance is also considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08106v1-abstract-full').style.display = 'none'; document.getElementById('2501.08106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06936">arXiv:2501.06936</a> <span> [<a href="https://arxiv.org/pdf/2501.06936">pdf</a>, <a href="https://arxiv.org/format/2501.06936">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Full C- and L-band tunable erbium-doped integrated lasers via scalable manufacturing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ji%2C+X">Xinru Ji</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xuan Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+Z">Zheru Qiu</a>, <a href="/search/physics?searchtype=author&query=Lihachev%2C+G">Grigory Lihachev</a>, <a href="/search/physics?searchtype=author&query=Bianconi%2C+S">Simone Bianconi</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jiale Sun</a>, <a href="/search/physics?searchtype=author&query=Voloshin%2C+A">Andrey Voloshin</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+T">Taegon Kim</a>, <a href="/search/physics?searchtype=author&query=Olson%2C+J+C">Joseph C. Olson</a>, <a href="/search/physics?searchtype=author&query=Kippenberg%2C+T+J">Tobias J. Kippenberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06936v1-abstract-short" style="display: inline;"> Erbium (Er) ions are the gain medium of choice for fiber-based amplifiers and lasers, offering a long excited-state lifetime, slow gain relaxation, low amplification nonlinearity and noise, and temperature stability compared to semiconductor-based platforms. Recent advances in ultra-low-loss silicon nitride (Si$_3$N$_4$) photonic integrated circuits, combined with ion implantation, have enabled th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06936v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06936v1-abstract-full" style="display: none;"> Erbium (Er) ions are the gain medium of choice for fiber-based amplifiers and lasers, offering a long excited-state lifetime, slow gain relaxation, low amplification nonlinearity and noise, and temperature stability compared to semiconductor-based platforms. Recent advances in ultra-low-loss silicon nitride (Si$_3$N$_4$) photonic integrated circuits, combined with ion implantation, have enabled the realization of high-power on-chip Er amplifiers and lasers with performance comparable to fiber-based counterparts, supporting compact photonic systems. Yet, these results are limited by the high (2 MeV) implantation beam energy required for tightly confined Si$_3$N$_4$ waveguides (700 nm height), preventing volume manufacturing of Er-doped photonic integrated circuits. Here, we overcome these limitations and demonstrate the first fully wafer-scale, foundry-compatible Er-doped photonic integrated circuit-based tunable lasers. Using 200 nm-thick Si$_3$N$_4$ waveguides, we reduce the ion beam energy requirement to below 500 keV, enabling efficient wafer-scale implantation with an industrial 300 mm ion implanter. We demonstrate a laser wavelength tuning range of 91 nm, covering nearly the entire optical C- and L-bands, with fiber-coupled output power reaching 36 mW and an intrinsic linewidth of 95 Hz. The temperature-insensitive properties of erbium ions allowed stable laser operation up to 125$^{\circ}$C and lasing with less than 15 MHz drift for over 6 hours at room temperature using a remote fiber pump. The fully scalable, low-cost fabrication of Er-doped waveguide lasers opens the door for widespread adoption in coherent communications, LiDAR, microwave photonics, optical frequency synthesis, and free-space communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06936v1-abstract-full').style.display = 'none'; document.getElementById('2501.06936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06364">arXiv:2501.06364</a> <span> [<a href="https://arxiv.org/pdf/2501.06364">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantification of Nuclear Coordinate Activation on Polaritonic Potential Energy Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alam%2C+S">Shahzad Alam</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yicheng Liu</a>, <a href="/search/physics?searchtype=author&query=Holmes%2C+R+J">Russell J. Holmes</a>, <a href="/search/physics?searchtype=author&query=Frontiera%2C+R+R">Renee R. Frontiera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06364v1-abstract-short" style="display: inline;"> Polaritonic states, which arise from strong coupling between light and matter, show great promise in modifying chemical reactivity. However, reproducible enhancement of chemical reactions with polaritons is challenging due to a lack of understanding on how to launch wavepackets along productive reactive coordinates while avoiding unproductive local minima in the multidimensional potential energy l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06364v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06364v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06364v1-abstract-full" style="display: none;"> Polaritonic states, which arise from strong coupling between light and matter, show great promise in modifying chemical reactivity. However, reproducible enhancement of chemical reactions with polaritons is challenging due to a lack of understanding on how to launch wavepackets along productive reactive coordinates while avoiding unproductive local minima in the multidimensional potential energy landscape. Here we employ resonance Raman intensity analysis to quantify mode-specific nuclear displacement values in pentacene thin films and pentacene exciton-polaritons. We find that coupling significantly changes the potential energy landscape, including both enhancement and suppression of nuclear displacements. We demonstrate that controlling cavity parameters enables selective steering of vibronic wavepackets. Our approach provides a quantitative methodology for screening polaritonic catalysts and opens new avenues for designing reproducible and effective cavity-controlled chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06364v1-abstract-full').style.display = 'none'; document.getElementById('2501.06364v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main manuscript: 18 pages, 4 figures. Supplementary material: 47 pages (pages 19-65), 35 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05684">arXiv:2501.05684</a> <span> [<a href="https://arxiv.org/pdf/2501.05684">pdf</a>, <a href="https://arxiv.org/format/2501.05684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Data driven discovery of human mobility models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+H">Hao Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Weiyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Junjie Yang</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+Y">Yuanqiao Hou</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+L">Lei Dong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05684v1-abstract-short" style="display: inline;"> Human mobility is a fundamental aspect of social behavior, with broad applications in transportation, urban planning, and epidemic modeling. However, for decades new mathematical formulas to model mobility phenomena have been scarce and usually discovered by analogy to physical processes, such as the gravity model and the radiation model. These sporadic discoveries are often thought to rely on int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05684v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05684v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05684v1-abstract-full" style="display: none;"> Human mobility is a fundamental aspect of social behavior, with broad applications in transportation, urban planning, and epidemic modeling. However, for decades new mathematical formulas to model mobility phenomena have been scarce and usually discovered by analogy to physical processes, such as the gravity model and the radiation model. These sporadic discoveries are often thought to rely on intuition and luck in fitting empirical data. Here, we propose a systematic approach that leverages symbolic regression to automatically discover interpretable models from human mobility data. Our approach finds several well-known formulas, such as the distance decay effect and classical gravity models, as well as previously unknown ones, such as an exponential-power-law decay that can be explained by the maximum entropy principle. By relaxing the constraints on the complexity of model expressions, we further show how key variables of human mobility are progressively incorporated into the model, making this framework a powerful tool for revealing the underlying mathematical structures of complex social phenomena directly from observational data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05684v1-abstract-full').style.display = 'none'; document.getElementById('2501.05684v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05099">arXiv:2501.05099</a> <span> [<a href="https://arxiv.org/pdf/2501.05099">pdf</a>, <a href="https://arxiv.org/format/2501.05099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Recovery of activation propagation and self-sustained oscillation abilities in stroke brain networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yingpeng Liu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jiao Wu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+K">Kesheng Xu</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+M">Muhua Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05099v1-abstract-short" style="display: inline;"> Healthy brain networks usually show highly efficient information communication and self-sustained oscillation abilities. However, how the brain network structure affects these dynamics after an injury (stroke) is not very clear. The recovery of structure and dynamics of stroke brain networks over time is still not known precisely. Based on the analysis of a large number of strokes' brain network d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05099v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05099v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05099v1-abstract-full" style="display: none;"> Healthy brain networks usually show highly efficient information communication and self-sustained oscillation abilities. However, how the brain network structure affects these dynamics after an injury (stroke) is not very clear. The recovery of structure and dynamics of stroke brain networks over time is still not known precisely. Based on the analysis of a large number of strokes' brain network data, we show that stroke changes the network properties in connection weights, average degree, clustering, community, etc. Yet, they will recover gradually over time to some extent. We then adopt a simplified reaction-diffusion model to investigate stroke patients' activation propagation and self-sustained oscillation abilities. Our results reveal that the stroke slows the adoption time across different brain scales, indicating a weakened brain's activation propagation ability. In addition, we show that the lifetime of self-sustained oscillatory patterns at three months post-stroke patients' brains significantly departs from the healthy one. Finally, we examine the properties of core networks of self-sustained oscillatory patterns, in which the directed edges denote the main pathways of activation propagation. Our results demonstrate that the lifetime and recovery of self-sustaining patterns are related to the properties of core networks, and the properties in the post-stroke greatly vary from those in the healthy group. Most importantly, the strokes' activation propagation and self-sustained oscillation abilities significantly improve at one year post-stroke, driven by structural connection repair. This work may help us to understand the relationship between structure and function in brain disorders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05099v1-abstract-full').style.display = 'none'; document.getElementById('2501.05099v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02503">arXiv:2501.02503</a> <span> [<a href="https://arxiv.org/pdf/2501.02503">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Materials Discovery in Combinatorial and High-throughput Synthesis and Processing: A New Frontier for SPM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Slautin%2C+B+N">Boris N. Slautin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yongtao Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Emery%2C+R">Reece Emery</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+S">Seungbum Hong</a>, <a href="/search/physics?searchtype=author&query=Dubey%2C+A">Astita Dubey</a>, <a href="/search/physics?searchtype=author&query=Shvartsman%2C+V+V">Vladimir V. Shvartsman</a>, <a href="/search/physics?searchtype=author&query=Lupascu%2C+D+C">Doru C. Lupascu</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+S+L">Sheryl L. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Ahmadi%2C+M">Mahshid Ahmadi</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y">Yunseok Kim</a>, <a href="/search/physics?searchtype=author&query=Strelcov%2C+E">Evgheni Strelcov</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+K+A">Keith A. Brown</a>, <a href="/search/physics?searchtype=author&query=Rack%2C+P+D">Philip D. Rack</a>, <a href="/search/physics?searchtype=author&query=Kalinin%2C+S+V">Sergei V. Kalinin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02503v1-abstract-short" style="display: inline;"> For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have predominantly been downstream, with images and spectra serving as a qualitative source of data on the microstructure and properties of materials, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02503v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02503v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02503v1-abstract-full" style="display: none;"> For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have predominantly been downstream, with images and spectra serving as a qualitative source of data on the microstructure and properties of materials, and in rare cases of fundamental physical knowledge. However, the fast growing developments in accelerated material synthesis via self-driving labs and established applications such as combinatorial spread libraries are poised to change this paradigm. Rapid synthesis demands matching capabilities to probe structure and functionalities of materials on small scales and with high throughput, which are characteristically inherent to SPM. Here, we overview SPM methods applicable to these emerging applications and emphasize their quantitativeness, focusing on piezoresponse force microscopy, electrochemical strain microscopy, conductive, and surface photovoltage measurements. We discuss the challenges and opportunities ahead, asserting that SPM will play a crucial role in closing the loop from material prediction and synthesis to characterization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02503v1-abstract-full').style.display = 'none'; document.getElementById('2501.02503v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02326">arXiv:2501.02326</a> <span> [<a href="https://arxiv.org/pdf/2501.02326">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Rotational Flow Dominates Abrupt Seasonal Change in Zonally Asymmetric Tropical Meridional Circulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yao%2C+W">Wuqiushi Yao</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+J">Jianhua Lu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yimin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02326v1-abstract-short" style="display: inline;"> The seasonality of the tropical meridional circulation evolves differently across different regions, governs the onset and retreat of monsoons and migration of tropical precipitation, thereby influencing agricultural productivity and disaster preparedness in the tropics and subtropics. By defining a pseudo meridional overturning streamfunction (唯pseudo) and defining a new vector-type, dual-compone… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02326v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02326v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02326v1-abstract-full" style="display: none;"> The seasonality of the tropical meridional circulation evolves differently across different regions, governs the onset and retreat of monsoons and migration of tropical precipitation, thereby influencing agricultural productivity and disaster preparedness in the tropics and subtropics. By defining a pseudo meridional overturning streamfunction (唯pseudo) and defining a new vector-type, dual-component index (ASCI), we diagnose zonally asymmetric abrupt seasonal change (ASC) of tropical meridional circulation. 唯pseudo converges to traditional, meridional overturning streamfunction (唯m) after being averaged over a zonal circle around any latitude. By applying the Helmholtz decomposition to horizontal velocity fields so as to decompose 唯pseudo into rotational and divergent components, we quantitatively compare the contributions of horizontally rotational and divergent flows to the abrupt seasonal change. We find that the zonal sectors associated with strong deep convection exhibit the most pronounced ASC of tropical meridional circulation, and all of subregions exhibiting ASC contain landmass with low heat inertia. Particularly, in contrast to the case of zonally symmetric Hadley cell, rotational flow, rather than the thermal-direct divergent flow, dominates the zonally asymmetric ASC in the tropics, although the divergent flow also contributes to the ASC over the zonal sectors associated with deep convection. We suggest that the interplay between tropical Rossby-type eddies with extratropical eddies and tropical circulation is essential to the zonally asymmetric ASC of tropical Hadley circulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02326v1-abstract-full').style.display = 'none'; document.getElementById('2501.02326v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be submitted to Nature Geoscience</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01173">arXiv:2501.01173</a> <span> [<a href="https://arxiv.org/pdf/2501.01173">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Sensitivity Imaging and Modeling of Ultra-Weak Photon Emission in Plants Under Stress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yan-Xia Liu</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+H">Hai-Yu Fan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yu-Hao Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan-Liang Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Sheng-Wen Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shi-Jian Li</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+X">Xu-Ri Yao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Q">Qing Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01173v1-abstract-short" style="display: inline;"> Ultra-weak photon emission (UPE) is a noninvasive diagnostic tool that effectively reflects the function and health status of plant cells. However, current UPE measurement techniques are limited by resolution and sensitivity, particularly when monitoring different plant species and stress types. This study analyzes the delayed luminescence (DL) properties of Hydrocotyle vulgaris, Arabidopsis leave… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01173v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01173v1-abstract-full" style="display: none;"> Ultra-weak photon emission (UPE) is a noninvasive diagnostic tool that effectively reflects the function and health status of plant cells. However, current UPE measurement techniques are limited by resolution and sensitivity, particularly when monitoring different plant species and stress types. This study analyzes the delayed luminescence (DL) properties of Hydrocotyle vulgaris, Arabidopsis leaves, and Ginkgo leaves under both stress and control conditions using an independently developed UPE imaging system. The results showed a significant increase in initial DL intensity and an accelerated oxidative metabolic rate under mechanical injury and oxidative stress. DL decay characteristics were significantly correlated with the plant's physiological state, with stress conditions exhibiting decay curves that closely matched theoretical models. These findings confirm the established correlation between DL and plant stress responses. The high-resolution, low-noise imaging system significantly improves the accuracy of plant physiological state monitoring and provides new insights into the potential of optical signals for non-chemical communication research and agricultural applications. This technology has great potential for monitoring plant growth, assessing environmental stress, and supporting precision agriculture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01173v1-abstract-full').style.display = 'none'; document.getElementById('2501.01173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20693">arXiv:2412.20693</a> <span> [<a href="https://arxiv.org/pdf/2412.20693">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Diffractive Magic Cube Network with Super-high Capacity Enabled by Mechanical Reconfiguration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+P">Peijie Feng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fubei Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuanfeng Liu</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+M">Mingzhe Chong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zongkun Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Q">Qian Zhao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jingbo Sun</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Ji Zhou</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yunhua Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20693v2-abstract-short" style="display: inline;"> Multiplexing and dynamic reconfigurable metasurfaces have been extensively studied to enhance system capacity in response to the challenges posed by the exponential growth of optical information. Among them, the mechanically reconfigurable strategy offers a cost-effective and low-complexity approach for capacity enhancement. However, the channel numbers achieved in current studies are insufficient… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20693v2-abstract-full').style.display = 'inline'; document.getElementById('2412.20693v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20693v2-abstract-full" style="display: none;"> Multiplexing and dynamic reconfigurable metasurfaces have been extensively studied to enhance system capacity in response to the challenges posed by the exponential growth of optical information. Among them, the mechanically reconfigurable strategy offers a cost-effective and low-complexity approach for capacity enhancement. However, the channel numbers achieved in current studies are insufficient for practical applications because of inadequate mechanical transformations and suboptimal optimization methods. In this article, a diffractive magic cube network (DMCN) is proposed to advance the multiplexing capacity of mechanically reconfigurable metasurfaces. We utilized the deep diffractive neural network (D2NN) model to jointly optimize the subset of channels generated by the combination of three mechanical operations, permutation, translation, and rotation. The 144-channel holograms, 108-channel single-focus/multi-focus, and 60-channel orbital angular momentum (OAM) beam/comb generation were numerically achieved and experimentally validated using a spatial light modulator (SLM) and a reflective mirror. Our strategy not only provides a novel paradigm to improve metasurface capacity to super-high level with low crosstalk, but also paves the way for new advancements in optical storage, computing, communication, and photolithography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20693v2-abstract-full').style.display = 'none'; document.getElementById('2412.20693v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17232">arXiv:2412.17232</a> <span> [<a href="https://arxiv.org/pdf/2412.17232">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Robust altermagnetism and compensated ferrimagnetism in MnPX$_3$-based (X = S or Se) heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yunsong Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yanlong Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xuefei Wang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+N">Nan Xia</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+G">Guifang Xu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Haifeng Wang</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17232v3-abstract-short" style="display: inline;"> The recent research interests in the non-relativistic spin splitting of electronic band structures have led to the exploration of altermagnets and other compensated magnets. Here, we show that various types of non-relativistic spin splitting can be robustly induced by constructing Van der Waals heterostructures consisting of materials with intra-plane anti-ferromagnetic orders and suitable substra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17232v3-abstract-full').style.display = 'inline'; document.getElementById('2412.17232v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17232v3-abstract-full" style="display: none;"> The recent research interests in the non-relativistic spin splitting of electronic band structures have led to the exploration of altermagnets and other compensated magnets. Here, we show that various types of non-relativistic spin splitting can be robustly induced by constructing Van der Waals heterostructures consisting of materials with intra-plane anti-ferromagnetic orders and suitable substrates. Using MnPX$_3$ (X = S or Se) as an example, which has a N茅el magnetic order, we demonstrate that altermagnetic spin splitting can arise in the AA-stacking MnPX$_3$/MPX$_3$ (M = Cd, Mg, or Zn) heterostructures. For the AB-stacking heterostructures that are semiconducting, ferrimagnetic-type spin splitting emerges, and the fully compensated magnetization is protected by the Luttinger theorem. By combining with a Van der Waals ferroelectric substrate like CuInP$_2$S$_6$, MnPX$_3$-based heterostructures can show tunable spin splitting and spin-related properties that depend on the electronic band structures and ferroelectric polarization, which can be non-volatilely reversed by applying an out-of-plane electric field. Our study provides a route to induce tunable non-relativistic spin splitting in experimentally synthesizable two-dimensional magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17232v3-abstract-full').style.display = 'none'; document.getElementById('2412.17232v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16736">arXiv:2412.16736</a> <span> [<a href="https://arxiv.org/pdf/2412.16736">pdf</a>, <a href="https://arxiv.org/format/2412.16736">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> An automated framework for exploring and learning potential-energy surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuanbin Liu</a>, <a href="/search/physics?searchtype=author&query=Morrow%2C+J+D">Joe D. Morrow</a>, <a href="/search/physics?searchtype=author&query=Ertural%2C+C">Christina Ertural</a>, <a href="/search/physics?searchtype=author&query=Fragapane%2C+N+L">Natascia L. Fragapane</a>, <a href="/search/physics?searchtype=author&query=Gardner%2C+J+L+A">John L. A. Gardner</a>, <a href="/search/physics?searchtype=author&query=Naik%2C+A+A">Aakash A. Naik</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yuxing Zhou</a>, <a href="/search/physics?searchtype=author&query=George%2C+J">Janine George</a>, <a href="/search/physics?searchtype=author&query=Deringer%2C+V+L">Volker L. Deringer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16736v1-abstract-short" style="display: inline;"> Machine learning has become ubiquitous in materials modelling and now routinely enables large-scale atomistic simulations with quantum-mechanical accuracy. However, developing machine-learned interatomic potentials requires high-quality training data, and the manual generation and curation of such data can be a major bottleneck. Here, we introduce an automated framework for the exploration and fit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16736v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16736v1-abstract-full" style="display: none;"> Machine learning has become ubiquitous in materials modelling and now routinely enables large-scale atomistic simulations with quantum-mechanical accuracy. However, developing machine-learned interatomic potentials requires high-quality training data, and the manual generation and curation of such data can be a major bottleneck. Here, we introduce an automated framework for the exploration and fitting of potential-energy surfaces, implemented in an openly available software package that we call autoplex (`automatic potential-landscape explorer'). We discuss design choices, particularly the interoperability with existing software architectures, and the ability for the end user to easily use the computational workflows provided. We show wide-ranging capability demonstrations: for the titanium-oxygen system, SiO2, crystalline and liquid water, as well as phase-change memory materials. More generally, our study illustrates how automation can speed up atomistic machine learning -- with a long-term vision of making it a genuine mainstream tool in physics, chemistry, and materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16736v1-abstract-full').style.display = 'none'; document.getElementById('2412.16736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16573">arXiv:2412.16573</a> <span> [<a href="https://arxiv.org/pdf/2412.16573">pdf</a>, <a href="https://arxiv.org/format/2412.16573">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generalizable 3D Diffusion Framework for Low-Dose and Few-View Cardiac SPECT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xie%2C+H">Huidong Xie</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+W">Weijie Gan</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiongchao Chen</a>, <a href="/search/physics?searchtype=author&query=Alashi%2C+A">Alaa Alashi</a>, <a href="/search/physics?searchtype=author&query=Thorn%2C+S+L">Stephanie L. Thorn</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+B">Bo Zhou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qiong Liu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+M">Menghua Xia</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xueqi Guo</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Hwa Liu</a>, <a href="/search/physics?searchtype=author&query=An%2C+H">Hongyu An</a>, <a href="/search/physics?searchtype=author&query=Kamilov%2C+U+S">Ulugbek S. Kamilov</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Ge Wang</a>, <a href="/search/physics?searchtype=author&query=Sinusas%2C+A+J">Albert J. Sinusas</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16573v1-abstract-short" style="display: inline;"> Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, lim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16573v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16573v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16573v1-abstract-full" style="display: none;"> Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, limiting their applicability in reality. This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning. Using both image and projection data, a consistency strategy is proposed to ensure that diffusion sampling at each step aligns with the low-dose/few-view projection measurements, the image data, and the scanner geometry, thus enabling generalization to different low-dose/few-view settings. Incorporating anatomical spatial information from CT and total variation constraint, we proposed a 2.5D conditional strategy to allow the DiffSPECT-3D to observe 3D contextual information from the entire image volume, addressing the 3D memory issues in diffusion model. We extensively evaluated the proposed method on 1,325 clinical 99mTc tetrofosmin stress/rest studies from 795 patients. Each study was reconstructed into 5 different low-count and 5 different few-view levels for model evaluations, ranging from 1% to 50% and from 1 view to 9 view, respectively. Validated against cardiac catheterization results and diagnostic comments from nuclear cardiologists, the presented results show the potential to achieve low-dose and few-view SPECT imaging without compromising clinical performance. Additionally, DiffSPECT-3D could be directly applied to full-dose SPECT images to further improve image quality, especially in a low-dose stress-first cardiac SPECT imaging protocol. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16573v1-abstract-full').style.display = 'none'; document.getElementById('2412.16573v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 2 tables. Paper under review. Oral presentation at IEEE MIC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12699">arXiv:2412.12699</a> <span> [<a href="https://arxiv.org/pdf/2412.12699">pdf</a>, <a href="https://arxiv.org/format/2412.12699">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Quadrupole topological behavior of elastic waves in two-dimensional square lattices with nonsymmorphic symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yijie Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yuyang Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoyang Guo</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zhi-Kang Lin</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+D">Di Zhou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+F">Feng Li</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Ying Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12699v1-abstract-short" style="display: inline;"> We investigate a novel higher-order topological behavior in elastic lattices characterized by nonsymmorphic symmetries. In the theoretical spring-mass lattice, altering the vertex mass allows for fine-tuning of the topological features within the bandgap. We analyze the quadrupole topological behavior in square lattices with nonsymmorphic symmetries using nested Wannier bands. Beyond second-order… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12699v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12699v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12699v1-abstract-full" style="display: none;"> We investigate a novel higher-order topological behavior in elastic lattices characterized by nonsymmorphic symmetries. In the theoretical spring-mass lattice, altering the vertex mass allows for fine-tuning of the topological features within the bandgap. We analyze the quadrupole topological behavior in square lattices with nonsymmorphic symmetries using nested Wannier bands. Beyond second-order topological metamaterials, a single-phase topological configuration promotes energy localization at the corners due to a non-zero relative quadrupole moment. Our findings are validated through experimental observations of higher-order topological corner states, which show excellent agreement with simulated results and theoretical predictions. Additionally, the elastic lattices in the self-similar system exhibit fractal higher-order topological behaviors, revealing numerous topological edge and corner states. The self-similar lattice also demonstrates enhanced energy localization, with the number of topological states showing a linear correlation to the corner dimension. This study provides new insights into elastic higher-order topological insulators and inspires innovative strategies for simulating topological elastic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12699v1-abstract-full').style.display = 'none'; document.getElementById('2412.12699v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12584">arXiv:2412.12584</a> <span> [<a href="https://arxiv.org/pdf/2412.12584">pdf</a>, <a href="https://arxiv.org/format/2412.12584">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast high-fidelity state readout of single neutral atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+D">Dong-Yu Huang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xiao-Long Zhou</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z">Ze-Min Shen</a>, <a href="/search/physics?searchtype=author&query=He%2C+S">Si-Jian He</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Q">Qi-Yang Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Jia Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12584v1-abstract-short" style="display: inline;"> The capability to measure the state of a quantum system is vital to a practical quantum network, for applications including distributed quantum computing and long-distance quantum communication. As a thriving platform for quantum information technology, single neutral atoms suffer from low achievable photon scattering rate and shallow trapping potential, which limits the fidelity and speed of stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12584v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12584v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12584v1-abstract-full" style="display: none;"> The capability to measure the state of a quantum system is vital to a practical quantum network, for applications including distributed quantum computing and long-distance quantum communication. As a thriving platform for quantum information technology, single neutral atoms suffer from low achievable photon scattering rate and shallow trapping potential, which limits the fidelity and speed of state readout process. Here, by coupling an single neutral atom with a high-finesse fiber-based Fabry-P茅rot microcavity (FFPC) in Purcell regime, we realize strong enhancement of the atomic photoemission rate, which enables ultrafast and high-fidelity discrimination of bright and dark hyperfine states of the atom. The readout fidelity can reach 99.1(2)% within 200 ns and 99.985(8)% within 9 $渭$s. Furthermore, we demonstrate that state preparation via optical pumping can be efficiently accelerated by real-time decision protocol based on ultrafast state readout. This work paves the way to the implementation of quantum networking protocols with high communication rate and high fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12584v1-abstract-full').style.display = 'none'; document.getElementById('2412.12584v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures, 53 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11562">arXiv:2412.11562</a> <span> [<a href="https://arxiv.org/pdf/2412.11562">pdf</a>, <a href="https://arxiv.org/format/2412.11562">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.053401">10.1103/PhysRevLett.134.053401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Purcell-Enhanced Generation of Photonic Bell States via the Inelastic Scattering of Single Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xiao-Long Zhou</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z">Ze-Min Shen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+D">Dong-Yu Huang</a>, <a href="/search/physics?searchtype=author&query=He%2C+S">Si-Jian He</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Q">Qi-Yang Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Jia Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11562v1-abstract-short" style="display: inline;"> Single atoms trapped in optical cavities exhibit immense potential as key nodes in future quantum information processing. They have already demonstrated significant advancement in various quantum technologies, particularly regarding the generation of nonclassical light. Here, we efficiently produce genuine photonic Bell states through the inelastic scattering process of single two-level intracavit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11562v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11562v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11562v1-abstract-full" style="display: none;"> Single atoms trapped in optical cavities exhibit immense potential as key nodes in future quantum information processing. They have already demonstrated significant advancement in various quantum technologies, particularly regarding the generation of nonclassical light. Here, we efficiently produce genuine photonic Bell states through the inelastic scattering process of single two-level intracavity atoms. An experimental violation of the Bell inequality, arising from the interference between the probability amplitudes of two photons, validates the intrinsic nature of energy-time entanglement. Coupling atoms with an optical cavity in the Purcell regime substantially enhances the two-photon scattering. This Bell state generation process does not require atomic spin control, thereby rendering it inherently immune to decoherence effects. This work advances the comprehension of resonance fluorescence and has the potential to broaden the landscape of quantum technologies and facilitate the application of photonic Bell states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11562v1-abstract-full').style.display = 'none'; document.getElementById('2412.11562v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, 47 reference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10830">arXiv:2412.10830</a> <span> [<a href="https://arxiv.org/pdf/2412.10830">pdf</a>, <a href="https://arxiv.org/format/2412.10830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2025.170290">10.1016/j.nima.2025.170290 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Novel Low-Background Photomultiplier Tube Developed for Xenon Based Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yun%2C+Y">Youhui Yun</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhizhen Zhou</a>, <a href="/search/physics?searchtype=author&query=An%2C+B">Baoguo An</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Z">Zhixing Gao</a>, <a href="/search/physics?searchtype=author&query=Han%2C+K">Ke Han</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianglai Liu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yuanzi Liang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Y">Yue Meng</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+Z">Zhicheng Qian</a>, <a href="/search/physics?searchtype=author&query=Shang%2C+X">Xiaofeng Shang</a>, <a href="/search/physics?searchtype=author&query=Si%2C+L">Lin Si</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Z">Ziyan Song</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingxin Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shaobo Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L">Liangyu Wu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yuan Wu</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+B">Binbin Yan</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X">Xiyu Yan</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Q">Qiang Zhao</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+X">Xinning Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10830v2-abstract-short" style="display: inline;"> Photomultiplier tubes (PMTs) are essential in xenon detectors like PandaX, LZ, and XENON experiments for dark matter searches and neutrino properties measurement. To minimize PMT-induced backgrounds, stringent requirements on PMT radioactivity are crucial. A novel 2-inch low-background R12699 PMT has been developed through a collaboration between the PandaX team and Hamamatsu Photonics K.K. corpor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10830v2-abstract-full').style.display = 'inline'; document.getElementById('2412.10830v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10830v2-abstract-full" style="display: none;"> Photomultiplier tubes (PMTs) are essential in xenon detectors like PandaX, LZ, and XENON experiments for dark matter searches and neutrino properties measurement. To minimize PMT-induced backgrounds, stringent requirements on PMT radioactivity are crucial. A novel 2-inch low-background R12699 PMT has been developed through a collaboration between the PandaX team and Hamamatsu Photonics K.K. corporation. Radioactivity measurements conducted with a high-purity germanium detector show levels of approximately 0.08 mBq/PMT for $\rm^{60}Co$ and 0.06~mBq/PMT for the $\rm^{238}U$ late chain, achieving a 15-fold reduction compared to R11410 PMT used in PandaX-4T. The radon emanation rate is below 3.2 $\rm 渭$Bq/PMT (@90\% confidence level), while the surface $\rm^{210}Po$ activity is less than 18.4 $渭$Bq/cm$^2$. The electrical performance of these PMTs at cryogenic temperature was evaluated. With an optimized readout base, the gain was enhanced by 30\%, achieving an average gain of $4.23 \times 10^6$ at -1000~V and -100~$^{\circ}$C. The dark count rate averaged 2.5~Hz per channel. Compactness, low radioactivity, and robust electrical performance in the cryogenic temperature make the R12699 PMT ideal for next-generation liquid xenon detectors and other rare event searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10830v2-abstract-full').style.display = 'none'; document.getElementById('2412.10830v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10129">arXiv:2412.10129</a> <span> [<a href="https://arxiv.org/pdf/2412.10129">pdf</a>, <a href="https://arxiv.org/format/2412.10129">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> TIGRE v3: Efficient and easy to use iterative computed tomographic reconstruction toolbox for real datasets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Biguri%2C+A">Ander Biguri</a>, <a href="/search/physics?searchtype=author&query=Sadakane%2C+T">Tomoyuki Sadakane</a>, <a href="/search/physics?searchtype=author&query=Lindroos%2C+R">Reuben Lindroos</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi Liu</a>, <a href="/search/physics?searchtype=author&query=Landman%2C+M+S">Malena Sabat茅 Landman</a>, <a href="/search/physics?searchtype=author&query=Du%2C+Y">Yi Du</a>, <a href="/search/physics?searchtype=author&query=Lohvithee%2C+M">Manasavee Lohvithee</a>, <a href="/search/physics?searchtype=author&query=Kaser%2C+S">Stefanie Kaser</a>, <a href="/search/physics?searchtype=author&query=Hatamikia%2C+S">Sepideh Hatamikia</a>, <a href="/search/physics?searchtype=author&query=Bryll%2C+R">Robert Bryll</a>, <a href="/search/physics?searchtype=author&query=Valat%2C+E">Emilien Valat</a>, <a href="/search/physics?searchtype=author&query=Wonglee%2C+S">Sarinrat Wonglee</a>, <a href="/search/physics?searchtype=author&query=Blumensath%2C+T">Thomas Blumensath</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6nlieb%2C+C">Carola-Bibiane Sch枚nlieb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10129v1-abstract-short" style="display: inline;"> Computed Tomography (CT) has been widely adopted in medicine and it is increasingly being used in scientific and industrial applications. Parallelly, research in different mathematical areas concerning discrete inverse problems has led to the development of new sophisticated numerical solvers that can be applied in the context of CT. The Tomographic Iterative GPU-based Reconstruction (TIGRE) toolb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10129v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10129v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10129v1-abstract-full" style="display: none;"> Computed Tomography (CT) has been widely adopted in medicine and it is increasingly being used in scientific and industrial applications. Parallelly, research in different mathematical areas concerning discrete inverse problems has led to the development of new sophisticated numerical solvers that can be applied in the context of CT. The Tomographic Iterative GPU-based Reconstruction (TIGRE) toolbox was born almost a decade ago precisely in the gap between mathematics and high performance computing for real CT data, providing user-friendly open-source software tools for image reconstruction. However, since its inception, the tools' features and codebase have had over a twenty-fold increase, and are now including greater geometric flexibility, a variety of modern algorithms for image reconstruction, high-performance computing features and support for other CT modalities, like proton CT. The purpose of this work is two-fold: first, it provides a structured overview of the current version of the TIGRE toolbox, providing appropriate descriptions and references, and serving as a comprehensive and peer-reviewed guide for the user; second, it is an opportunity to illustrate the performance of several of the available solvers showcasing real CT acquisitions, which are typically not be openly available to algorithm developers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10129v1-abstract-full').style.display = 'none'; document.getElementById('2412.10129v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09932">arXiv:2412.09932</a> <span> [<a href="https://arxiv.org/pdf/2412.09932">pdf</a>, <a href="https://arxiv.org/format/2412.09932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of edge solitons and their phase transition in a trimer circuit lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+R">Rujiang Li</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+X">Xiangyu Kong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wencai Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yixi Wang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Y">Yichen Zhong</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+Y">Yongtao Jia</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+H">Huibin Tao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Ying Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09932v1-abstract-short" style="display: inline;"> In nonlinear topological systems, edge solitons emerge either as bifurcations of linear topological edge states or as nonlinearity-induced localized states without topological protection. Although electrical circuits have proven to be a versatile platform for realizing various types of topological insulators, observing edge solitons and their phase transition in circuit lattices remains challengin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09932v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09932v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09932v1-abstract-full" style="display: none;"> In nonlinear topological systems, edge solitons emerge either as bifurcations of linear topological edge states or as nonlinearity-induced localized states without topological protection. Although electrical circuits have proven to be a versatile platform for realizing various types of topological insulators, observing edge solitons and their phase transition in circuit lattices remains challenging. Here, we realize quench dynamics in nonlinear electrical circuits and experimentally demonstrate the existence of both topological and nontopological edge solitons in a trimer circuit lattice, as well as the phase transition between these two types of edge solitons. Under weak nonlinearity, we observe antisymmetric and symmetric edge solitons bifurcating from their respective linear topological edge states. In contrast, under strong nonlinearity, nontopological edge solitons with antisymmetric, symmetric, and asymmetric internal structures are discovered. Our work paves the way for exploring exotic nonlinear states and novel phase diagrams in nonlinear topological systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09932v1-abstract-full').style.display = 'none'; document.getElementById('2412.09932v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07627">arXiv:2412.07627</a> <span> [<a href="https://arxiv.org/pdf/2412.07627">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Terabit-class coherent communications enabled by an integrated photonics erbium doped amplifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Che%2C+D">Di Che</a>, <a href="/search/physics?searchtype=author&query=Grillanda%2C+S">Stefano Grillanda</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+Z">Zheru Qiu</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+X">Xinru Ji</a>, <a href="/search/physics?searchtype=author&query=Raybon%2C+G">Gregory Raybon</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xi Chen</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K">Kwangwoong Kim</a>, <a href="/search/physics?searchtype=author&query=Kippenberg%2C+T+J">Tobias J. Kippenberg</a>, <a href="/search/physics?searchtype=author&query=Blanco-Redondo%2C+A">Andrea Blanco-Redondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07627v2-abstract-short" style="display: inline;"> Coherent technologies have revolutionized optical communications, driving the capacity per fiber to multi-terabit per second (Tb/s) in combination with wavelength division multiplexing (WDM). With an ever-increasing deployment density of coherent systems, the demand for highly integrated WDM coherent transceivers has been rising. While tremendous progress has been made on silicon photonics compati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07627v2-abstract-full').style.display = 'inline'; document.getElementById('2412.07627v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07627v2-abstract-full" style="display: none;"> Coherent technologies have revolutionized optical communications, driving the capacity per fiber to multi-terabit per second (Tb/s) in combination with wavelength division multiplexing (WDM). With an ever-increasing deployment density of coherent systems, the demand for highly integrated WDM coherent transceivers has been rising. While tremendous progress has been made on silicon photonics compatible high-speed modulation and photodetection on chip, a solution for monolithically integrable amplifier with high gain and output power remains a challenge. Recently, an erbium doped waveguide amplifier based on ultra-low loss silicon nitride waveguides has demonstrated gain and output power levels potentially suitable for Terabit class coherent communications. Here, we demonstrate a WDM coherent system enabled by this integrated photonic amplification solution. The system uses the waveguide amplifier as a booster amplifier of 16 WDM signals each carrying a net data rate of 1.6 Tb/s, achieving 25.6-Tb/s net capacity over 81-km fiber transmission. Our results highlight a fully integrated solution for highly parallel coherent transceivers including amplification, that has the potential to transform future optical communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07627v2-abstract-full').style.display = 'none'; document.getElementById('2412.07627v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added acknowledgements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07365">arXiv:2412.07365</a> <span> [<a href="https://arxiv.org/pdf/2412.07365">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Object kinetic Monte Carlo simulations on the difference between fission neutron and heavy ion irradiation induced void evolution in Fe-Cr alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+F">Fengping Luo</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yuxin Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jin Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Denghuang Chen</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xun Guo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chenxu Wang</a>, <a href="/search/physics?searchtype=author&query=Zinkle%2C+S+J">Steven J. Zinkle</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yugang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07365v2-abstract-short" style="display: inline;"> Experimental results show significant difference between neutrons and ions irradiation of alloys, while the underlying reasons remain unclear. Herein, we performed object kinetic Monte Carlo (OKMC) simulations on void evolution in Fe-Cr alloys under neutron and ion irradiations, focusing on the effects of dose rate, irradiation particle type and temperature. Binary Collision Approximation and Mole… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07365v2-abstract-full').style.display = 'inline'; document.getElementById('2412.07365v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07365v2-abstract-full" style="display: none;"> Experimental results show significant difference between neutrons and ions irradiation of alloys, while the underlying reasons remain unclear. Herein, we performed object kinetic Monte Carlo (OKMC) simulations on void evolution in Fe-Cr alloys under neutron and ion irradiations, focusing on the effects of dose rate, irradiation particle type and temperature. Binary Collision Approximation and Molecular Dynamics are applied to obtain the cascade morphology of ion irradiation in order to study the effect of spatial correlation of cascades along the ion track, which is considered as a significant difference between the neutron and ion irradiations. Systematic OKMC simulations were performed at a wide range of dose rate from $10^{-7}$ to $10^{-3}$ dpa/s and temperature from 300 to 500$^\circ C$. Simulation results show that both a higher dose rate and a lower temperature can lead to a higher density and a smaller average size of voids. High dose rate greatly promotes the interaction frequency between small defects and inhibit the absorption of vacancies by one vacancy cluster, thus enhancing the nucleation of vacancy clusters. This dose rate effect explains the major difference of microstructure between fission neutron and heavy ion irradiation. High temperature enhances the migration of small defects and the absorption of vacancies by vacancy clusters, and thus enlarge the vacancy clusters. The impact of irradiation particle types that has influence on the primary knock-on atom spectrum and cascade morphology is less important to void evolution compared with dose rate and irradiation temperature. This work provides fundamental insights into the difference in void evolution between fission neutron and heavy ion irradiations that are important to the application of ion irradiations in study irradiation effects of nuclear materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07365v2-abstract-full').style.display = 'none'; document.getElementById('2412.07365v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Liu%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>