CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;42 of 42 results for author: <span class="mathjax">Steel, M J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Steel%2C+M+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Steel, M J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Steel%2C+M+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Steel, M J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11214">arXiv:2410.11214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11214">pdf</a>, <a href="https://arxiv.org/format/2410.11214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Quasi-solitons and stable superluminal opto-acoustic pulses in Brillouin scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Runge%2C+A+F+J">Antoine F. J. Runge</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Solntsev%2C+A+S">Alexander S. Solntsev</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11214v1-abstract-short" style="display: inline;"> We theoretically and numerically study the evolution of soliton-like waves supported by stimulated Brillouin scattering. First, the emergence and unusual behaviour of resonant solitary waves are investigated for both backward and forward three wave interactions. We find that these waves can be characterized by the ratio between the optical and acoustic damping coefficients. We also examine a secon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11214v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11214v1-abstract-full" style="display: none;"> We theoretically and numerically study the evolution of soliton-like waves supported by stimulated Brillouin scattering. First, the emergence and unusual behaviour of resonant solitary waves are investigated for both backward and forward three wave interactions. We find that these waves can be characterized by the ratio between the optical and acoustic damping coefficients. We also examine a second class of non-resonant anti-symmetric soliton-like waves, which have a more complicated pulse shape than traditional solitons. These waves are superluminal, with pulse velocities that can be tuned by the input Stokes and pump fields. We discuss the excitation of these types of waves and the physical conditions required for their observation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11214v1-abstract-full').style.display = 'none'; document.getElementById('2410.11214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14756">arXiv:2409.14756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14756">pdf</a>, <a href="https://arxiv.org/format/2409.14756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Anti-resonant reflecting acoustic rib waveguides for strong opto-acoustic interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dinter%2C+T">Thomas Dinter</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14756v1-abstract-short" style="display: inline;"> Few known material systems can simultaneously guide optical and elastic fields through total internal reflection. This natural limit has restricted the realization of strong optoacoustic effects to highly-specialised and purpose-built platforms which employ either exotic materials, or complex waveguide designs. Here we apply the concept of Anti-Resonant Reflecting Acoustic Waveguides (ARRAWs) as a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14756v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14756v1-abstract-full" style="display: none;"> Few known material systems can simultaneously guide optical and elastic fields through total internal reflection. This natural limit has restricted the realization of strong optoacoustic effects to highly-specialised and purpose-built platforms which employ either exotic materials, or complex waveguide designs. Here we apply the concept of Anti-Resonant Reflecting Acoustic Waveguides (ARRAWs) as a potential solution to this issue. ARRAWs confine the elastic field to a high-elastic-velocity core via the anti-resonances of a cladding layer of lower elastic velocity. We numerically study the appearance and dispersion of ARRAW-guided modes in a conventional silicon-on-insulator rib waveguide geometry. Applying the technique to the problem of efficient backwards Stimulated Brillouin Scattering (SBS), we predict that ARRAW guidance, in conjunction with conventional optical confinement, can produce Brillouin gains comparable to those of more exotic geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14756v1-abstract-full').style.display = 'none'; document.getElementById('2409.14756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.01009">arXiv:2308.01009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.01009">pdf</a>, <a href="https://arxiv.org/format/2308.01009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Brillouin light storage for 100 pulse widths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Jaksch%2C+K">Kevin Jaksch</a>, <a href="/search/physics?searchtype=author&amp;query=Piotrowski%2C+J">Johannes Piotrowski</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Mikolaj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Vu%2C+K">Khu Vu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+P">Pan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S">Stephen Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.01009v1-abstract-short" style="display: inline;"> Signal processing based on stimulated Brillouin scattering (SBS) is limited by the narrow linewidth of the optoacoustic response, which confines many Brillouin applications to continuous wave signals or optical pulses longer than several nanoseconds. In this work, we experimentally demonstrate Brillouin interactions at the 150 ps time scale and a delay for a record 15 ns which corresponds to a del&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01009v1-abstract-full').style.display = 'inline'; document.getElementById('2308.01009v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.01009v1-abstract-full" style="display: none;"> Signal processing based on stimulated Brillouin scattering (SBS) is limited by the narrow linewidth of the optoacoustic response, which confines many Brillouin applications to continuous wave signals or optical pulses longer than several nanoseconds. In this work, we experimentally demonstrate Brillouin interactions at the 150 ps time scale and a delay for a record 15 ns which corresponds to a delay of 100 pulse widths. This breakthrough experimental result was enabled by the high local gain of the chalcogenide waveguides as the optoacoustic interaction length reduces with pulse width. We successfully transfer 150ps-long pulses to traveling acoustic waves within a Brillouin-based memory setup. The information encoded in the optical pulses is stored for 15 ns in the acoustic field. We show the retrieval of eight amplitude levels, multiple consecutive pulses and low distortion in pulse shape. The extension of Brillouin-based storage to the ultra-short pulse regime is an important step for the realisation of practical Brillouin-based delay lines and other optical processing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01009v1-abstract-full').style.display = 'none'; document.getElementById('2308.01009v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15152">arXiv:2306.15152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.15152">pdf</a>, <a href="https://arxiv.org/format/2306.15152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Molecular optomechanics in the anharmonic regime: from nonclassical mechanical states to mechanical lasing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15152v1-abstract-short" style="display: inline;"> Cavity optomechanics aims to establish optical control over vibrations of mechanical systems, to heat, cool or to drive them toward coherent, or nonclassical states. This field was recently extended to include molecular optomechanics, which describes the dynamics of THz molecular vibrations coupled to the optical fields of lossy cavities via Raman transitions, and was developed to understand the a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15152v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15152v1-abstract-full" style="display: none;"> Cavity optomechanics aims to establish optical control over vibrations of mechanical systems, to heat, cool or to drive them toward coherent, or nonclassical states. This field was recently extended to include molecular optomechanics, which describes the dynamics of THz molecular vibrations coupled to the optical fields of lossy cavities via Raman transitions, and was developed to understand the anomalous amplification of optical phonons in Surface-Enhanced Raman Scattering experiments. But the molecular platform should prove suitable for demonstrating more sophisticated optomechanical effects, including engineering of nonclassical mechanical states, or inducing coherent molecular vibrations. In this work, we propose two pathways towards implementing these effects, enabled or revealed by the strong intrinsic anharmonicities of molecular vibrations. First, to prepare a nonclassical mechanical state, we propose an incoherent analogue of the mechanical blockade, in which the molecular aharmonicity and optical response of hybrid cavities isolate the two lowest-energy vibrational states. Secondly, we show that for a strongly driven optomechanical system, the anharmonicity can effectively suppress the mechanical amplification, shifting and reshaping the onset of coherent mechanical oscillations. Our estimates indicate that both effects should be within reach of the existing implementations of the Surface Enhanced Raman Scattering, opening the pathway towards the coherent and nonclassical effects in molecular optomechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15152v1-abstract-full').style.display = 'none'; document.getElementById('2306.15152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12877">arXiv:2212.12877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12877">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optimizing performance for on-chip SBS-based isolator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lai%2C+C+K">Choon Kong Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Merklein%2C+M">Moritz Merklein</a>, <a href="/search/physics?searchtype=author&amp;query=Bedoya%2C+A+C">Alvaro Casas Bedoya</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">Stephen J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12877v1-abstract-short" style="display: inline;"> Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic back-reflection and controlling optical crosstalk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12877v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12877v1-abstract-full" style="display: none;"> Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic back-reflection and controlling optical crosstalk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a +/- 10 nm fabrication-induced width error, such isolation can be maintained over a 5-10 nm bandwidth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12877v1-abstract-full').style.display = 'none'; document.getElementById('2212.12877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13249">arXiv:2211.13249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13249">pdf</a>, <a href="https://arxiv.org/format/2211.13249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Identifying unbound strong bunching and the breakdown of the Rotating Wave Approximation in the quantum Rabi model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nodar%2C+%C3%81">脕lvaro Nodar</a>, <a href="/search/physics?searchtype=author&amp;query=Esteban%2C+R">Ruben Esteban</a>, <a href="/search/physics?searchtype=author&amp;query=Muniain%2C+U">Unai Muniain</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Aizpurua%2C+J">Javier Aizpurua</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13249v2-abstract-short" style="display: inline;"> We use a recently derived gauge-invariant formulation of the problem of a two-level system coupled to an optical cavity, to explore the transition between the weak, and the ultra-strong coupling regimes of light-matter interaction. We explore this transition using the intensity correlations $g^{(2)}(蟿)$ of the emitted light, and find strong, unbounded bunching of the emission from systems governed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13249v2-abstract-full').style.display = 'inline'; document.getElementById('2211.13249v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13249v2-abstract-full" style="display: none;"> We use a recently derived gauge-invariant formulation of the problem of a two-level system coupled to an optical cavity, to explore the transition between the weak, and the ultra-strong coupling regimes of light-matter interaction. We explore this transition using the intensity correlations $g^{(2)}(蟿)$ of the emitted light, and find strong, unbounded bunching of the emission from systems governed by the Rabi Hamiltonian. Surprisingly, this effect is observed not only in the ultra-strong coupling regime, but also for weakly coupled systems, where the Jaynes-Cummings Hamiltonian would predict the opposite, antibunched emission. This suggests that the higher-order correlations are a particularly sensitive probe of the divergence between the Jaynes-Cummings and Rabi Hamiltonians, and can serve as an indicator of the breakdown of the rotating wave approximation. Our findings indicate also that the boundary between the weakly, strongly, and ultra-strongly coupled dynamics, is much richer than currently accepted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13249v2-abstract-full').style.display = 'none'; document.getElementById('2211.13249v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.02945">arXiv:2108.02945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.02945">pdf</a>, <a href="https://arxiv.org/format/2108.02945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.439926">10.1364/OE.439926 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise in Brillouin Based Information Storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nieves%2C+O+A">Oscar A. Nieves</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+M+D">Matthew D. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.02945v1-abstract-short" style="display: inline;"> We theoretically and numerically study the efficiency of Brillouin-based opto-acoustic data storage in a photonic waveguide in the presence of thermal noise and laser phase noise. We compare the physics of the noise processes and how they affect different storage techniques, examining both amplitude and phase storage schemes. We investigate the effects of storage time and pulse properties on the q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02945v1-abstract-full').style.display = 'inline'; document.getElementById('2108.02945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.02945v1-abstract-full" style="display: none;"> We theoretically and numerically study the efficiency of Brillouin-based opto-acoustic data storage in a photonic waveguide in the presence of thermal noise and laser phase noise. We compare the physics of the noise processes and how they affect different storage techniques, examining both amplitude and phase storage schemes. We investigate the effects of storage time and pulse properties on the quality of the retrieved signal, and find that phase storage is less sensitive to thermal noise than amplitude storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02945v1-abstract-full').style.display = 'none'; document.getElementById('2108.02945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12185">arXiv:2106.12185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12185">pdf</a>, <a href="https://arxiv.org/format/2106.12185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.428809">10.1364/JOSAB.428809 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical Simulation of Noise in Pulsed Brillouin Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nieves%2C+O+A">Oscar A. Nieves</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+M+D">Matthew D. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Mikolaj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12185v1-abstract-short" style="display: inline;"> We present a numerical method for modelling noise in Stimulated Brillouin Scattering (SBS). The model applies to dynamic cases such as optical pulses, and accounts for both thermal noise and phase noise from the input lasers. Using this model, we compute the statistical properties of the optical and acoustic power in the pulsed spontaneous and stimulated Brillouin cases, and investigate the effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12185v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12185v1-abstract-full" style="display: none;"> We present a numerical method for modelling noise in Stimulated Brillouin Scattering (SBS). The model applies to dynamic cases such as optical pulses, and accounts for both thermal noise and phase noise from the input lasers. Using this model, we compute the statistical properties of the optical and acoustic power in the pulsed spontaneous and stimulated Brillouin cases, and investigate the effects of gain and pulse width on noise levels. We find that thermal noise plays an important role in the statistical properties of the fields, and that laser phase noise impacts the SBS interaction when the laser coherence time is close to the time-scale of the optical pulses. This algorithm is applicable to arbitrary waveguide geometries and material properties, and thus presents a versatile way of performing noise-based SBS numerical simulations, which are important in signal processing, sensing, microwave photonics and opto-acoustic memory storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12185v1-abstract-full').style.display = 'none'; document.getElementById('2106.12185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the Optical Society of America B Vol. 38, Issue 8, pp. 2343-2352 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08338">arXiv:2011.08338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08338">pdf</a>, <a href="https://arxiv.org/format/2011.08338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.414420">10.1364/OE.414420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise and Pulse Dynamics in Backward Stimulated Brillouin Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nieves%2C+O+A">Oscar A. Nieves</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+M+D">Matthew D. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08338v1-abstract-short" style="display: inline;"> We theoretically and numerically study the effects of thermal noise on pulses in backwards Stimulated Brillouin Scattering (SBS). Using a combination of stochastic calculus and numerical methods, we derive a theoretical model that can be used to quantitatively predict noise measurements. We study how the optical pulse configuration, including the input powers of the pump and Stokes fields, pulse d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08338v1-abstract-full').style.display = 'inline'; document.getElementById('2011.08338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08338v1-abstract-full" style="display: none;"> We theoretically and numerically study the effects of thermal noise on pulses in backwards Stimulated Brillouin Scattering (SBS). Using a combination of stochastic calculus and numerical methods, we derive a theoretical model that can be used to quantitatively predict noise measurements. We study how the optical pulse configuration, including the input powers of the pump and Stokes fields, pulse durations and interaction time, affects the noise in the output Stokes field. We investigate the effects on the noise of the optical loss and waveguide length, and we find that the signal-to-noise ratio can be significantly improved, or reduced, for specific combinations of waveguide properties and pulse parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08338v1-abstract-full').style.display = 'none'; document.getElementById('2011.08338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express Vol. 29, Issue 3, pp. 3132-3146 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01834">arXiv:2003.01834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.01834">pdf</a>, <a href="https://arxiv.org/format/2003.01834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033153">10.1103/PhysRevResearch.2.033153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Acoustic diamond resonators with ultra-small mode volumes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01834v2-abstract-short" style="display: inline;"> Quantum acoustodynamics (QAD) is a rapidly developing field of research, offering possibilities to realize and study macroscopic quantum-mechanical systems in a new range of frequencies, and implement transducers and new types of memories for hybrid quantum devices. Here we propose a novel design for a versatile diamond QAD cavity operating at GHz frequencies, exhibiting effective mode volumes of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01834v2-abstract-full').style.display = 'inline'; document.getElementById('2003.01834v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01834v2-abstract-full" style="display: none;"> Quantum acoustodynamics (QAD) is a rapidly developing field of research, offering possibilities to realize and study macroscopic quantum-mechanical systems in a new range of frequencies, and implement transducers and new types of memories for hybrid quantum devices. Here we propose a novel design for a versatile diamond QAD cavity operating at GHz frequencies, exhibiting effective mode volumes of about $10^{-4}位^3$. Our phononic crystal waveguide cavity implements a non-resonant analogue of the optical lightning-rod effect to localize the energy of an acoustic mode into a deeply-subwavelength volume. We demonstrate that this confinement can readily enhance the orbit-strain interaction with embedded nitrogen-vacancy (NV) centres towards the high-cooperativity regime, and enable efficient resonant cooling of the acoustic vibrations towards the ground state using a single NV. This architecture can be readily translated towards setup with multiple cavities in one- or two-dimensional phononic crystals, and the underlying non-resonant localization mechanism will pave the way to further enhance optoacoustic coupling in phoxonic crystal cavities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01834v2-abstract-full').style.display = 'none'; document.getElementById('2003.01834v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033153 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01632">arXiv:1909.01632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01632">pdf</a>, <a href="https://arxiv.org/format/1909.01632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab7d79">10.1088/1367-2630/ab7d79 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ARRAW: Anti-resonant reflecting acoustic waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Brien%2C+M+C">Matthew C. O&#39;Brien</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01632v2-abstract-short" style="display: inline;"> Development of acoustic and optoacoustic on-chip technologies calls for new solutions to guiding, storing and interfacing acoustic and optical waves in integrated silicon-on-insulator (SOI) systems. One of the biggest challenges in this field is to suppress the radiative dissipation of the propagating acoustic waves, while co-localizing the optical and acoustic fields in the same region of an inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01632v2-abstract-full').style.display = 'inline'; document.getElementById('1909.01632v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01632v2-abstract-full" style="display: none;"> Development of acoustic and optoacoustic on-chip technologies calls for new solutions to guiding, storing and interfacing acoustic and optical waves in integrated silicon-on-insulator (SOI) systems. One of the biggest challenges in this field is to suppress the radiative dissipation of the propagating acoustic waves, while co-localizing the optical and acoustic fields in the same region of an integrated waveguide. Here we address this problem by introducing Anti-Resonant Reflecting Acoustic Waveguides (ARRAWs) -- mechanical analogues of the Anti-Resonant Reflecting Optical Waveguides (ARROWs). We discuss the principles of anti-resonant guidance and establish guidelines for designing efficient ARRAWs. Finally, we demonstrate examples of the simplest silicon/silica ARRAW platforms that can simultaneously serve as near-IR optical waveguides, and support strong backward Brillouin scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01632v2-abstract-full').style.display = 'none'; document.getElementById('1909.01632v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 22, 053011 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.10219">arXiv:1811.10219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.10219">pdf</a>, <a href="https://arxiv.org/format/1811.10219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JLT.2019.2920844">10.1109/JLT.2019.2920844 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NumBAT: The integrated, open source Numerical Brillouin Analysis Tool </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sturmberg%2C+B+C+P">Bj枚rn C. P. Sturmberg</a>, <a href="/search/physics?searchtype=author&amp;query=Dossou%2C+K+B">Kokou B. Dossou</a>, <a href="/search/physics?searchtype=author&amp;query=Smith%2C+M+J+A">Michael J. A. Smith</a>, <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+B">Blair Morrison</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.10219v1-abstract-short" style="display: inline;"> We describe NumBAT, an open-source software tool for modelling stimulated Brillouin scattering in waveguides of arbitrary cross-section. It provides rapid calculation of optical and elastic dispersion relations, field profiles and gain with an easy-to-use Python front end. Additionally, we provide an open and extensible set of standard problems and reference materials to facilitate the bench-marki&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10219v1-abstract-full').style.display = 'inline'; document.getElementById('1811.10219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.10219v1-abstract-full" style="display: none;"> We describe NumBAT, an open-source software tool for modelling stimulated Brillouin scattering in waveguides of arbitrary cross-section. It provides rapid calculation of optical and elastic dispersion relations, field profiles and gain with an easy-to-use Python front end. Additionally, we provide an open and extensible set of standard problems and reference materials to facilitate the bench-marking of NumBAT against subsequent tools. Such a resource is needed to help settle discrepancies between existing formulations and implementations, and to facilitate comparison between results in the literature. The resulting standardised testing framework will allow the community to gain confidence in new algorithms and will provide a common tool for the comparison of experimental designs of opto-acoustic waveguides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10219v1-abstract-full').style.display = 'none'; document.getElementById('1811.10219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Lightwave Technology, vol. 37, no. 15, pp. 3791-3804, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02749">arXiv:1811.02749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02749">pdf</a>, <a href="https://arxiv.org/format/1811.02749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.27.004976">10.1364/OE.27.004976 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suspended mid-infrared waveguides for Stimulated Brillouin Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Mashanovich%2C+G+Z">Goran Z. Mashanovich</a>, <a href="/search/physics?searchtype=author&amp;query=Reed%2C+G+T">Graham T. Reed</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02749v1-abstract-short" style="display: inline;"> We theoretically investigate a new class of silicon waveguides for achieving Stimulated Brillouin Scattering (SBS) in the mid-infrared (MIR). The waveguide consists of a rectangular core supporting a low-loss optical mode, suspended in air by a series of transverse ribs. The ribs are patterned to form a finite quasi-one-dimensional phononic crystal, with the complete stopband suppressing the trans&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02749v1-abstract-full').style.display = 'inline'; document.getElementById('1811.02749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02749v1-abstract-full" style="display: none;"> We theoretically investigate a new class of silicon waveguides for achieving Stimulated Brillouin Scattering (SBS) in the mid-infrared (MIR). The waveguide consists of a rectangular core supporting a low-loss optical mode, suspended in air by a series of transverse ribs. The ribs are patterned to form a finite quasi-one-dimensional phononic crystal, with the complete stopband suppressing the transverse leakage of acoustic waves, and confining them to the core of the waveguide. We derive a theoretical formalism that can be used to compute the opto-acoustic interaction in such periodic structures, and find forward intramodal-SBS gains up to $1750~\text{m}^{-1}\text{W}^{-1}$, which compares favorably with the proposed MIR SBS designs based on buried germanium waveguides. This large gain is achieved thanks to the nearly complete suppression of acoustic radiative losses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02749v1-abstract-full').style.display = 'none'; document.getElementById('1811.02749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02038">arXiv:1802.02038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02038">pdf</a>, <a href="https://arxiv.org/format/1802.02038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.064301">10.1103/PhysRevLett.121.064301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastic Purcell effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+M+K">Miko艂aj K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02038v2-abstract-short" style="display: inline;"> In this work, we introduce an elastic analog of the Purcell effect and show theoretically that spherical nanoparticles can serve as tunable and robust antennas for modifying the emission from localized elastic sources. This effect can be qualitatively described by introducing elastic counterparts of the familiar electromagnetic parameters: local density of elastic states, elastic Purcell factor, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02038v2-abstract-full').style.display = 'inline'; document.getElementById('1802.02038v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02038v2-abstract-full" style="display: none;"> In this work, we introduce an elastic analog of the Purcell effect and show theoretically that spherical nanoparticles can serve as tunable and robust antennas for modifying the emission from localized elastic sources. This effect can be qualitatively described by introducing elastic counterparts of the familiar electromagnetic parameters: local density of elastic states, elastic Purcell factor, and effective volume of elastic modes. To illustrate our framework, we consider the example of a submicron gold sphere as a generic elastic GHz antenna and find that shear and mixed modes of low orders in such systems offer considerable elastic Purcell factors. This formalism opens pathways towards extended control over dissipation of vibrations in various optomechanical systems and contributes to closing the gap between classical and quantum-mechanical treatments of phonons localized in elastic nanoresonators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02038v2-abstract-full').style.display = 'none'; document.getElementById('1802.02038v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In the revised version we discuss elastic response of a submicron gold nanoparticle with resonant response in GHz</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 064301 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.03277">arXiv:1801.03277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.03277">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.35.002153">10.1364/JOSAB.35.002153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperbolic Metamaterial Resonator-Antenna Scheme for Large, Broadband Emission Enhancement and Single Photon Collection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Inam%2C+F+A">F. A. Inam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+N">N. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Castelletto%2C+S">S. Castelletto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.03277v3-abstract-short" style="display: inline;"> We model the broadband enhancement of single-photon emission from color centres in silicon carbide nanocrystals coupled to a planar hyperbolic metamaterial, HMM resonator. The design is based on positioning the single photon emitters within the HMM resonator, made of a dielectric index-matched with silicon-carbide material. The broadband response results from the successive resonance peaks of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03277v3-abstract-full').style.display = 'inline'; document.getElementById('1801.03277v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.03277v3-abstract-full" style="display: none;"> We model the broadband enhancement of single-photon emission from color centres in silicon carbide nanocrystals coupled to a planar hyperbolic metamaterial, HMM resonator. The design is based on positioning the single photon emitters within the HMM resonator, made of a dielectric index-matched with silicon-carbide material. The broadband response results from the successive resonance peaks of the lossy Fabry Perot structure modes arising within the high-index HMM cavity. To capture this broadband enhancement in the single photon emitters spontaneous emission, we placed a simple gold based cylindrical antenna on top of the HMM resonator. We analyzed the performance of this HMM coupled antenna structure in terms of the Purcell enhancement, quantum efficiency, collection efficiency and overall collected photon rate. For perpendicular dipole orientation relative to the interface, the HMM coupled antenna resonator leads to a significantly large spontaneous emission enhancement with Purcell factor of the order of 250 along with a very high average total collected photon rate, CPR of about 30 over a broad emission spectrum, 700 nm to 1000 nm. The peak CPR increases to about 80 at 900 nm, corresponding to the emission of silicon-carbide quantum emitters. This is a state of the art improvement considering the previous computational designs have reported a maximum average CPR of 25 across the nitrogen-vacancy centre emission spectrum, 600 nm to 800 nm with the highest value being about 40 at 650 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03277v3-abstract-full').style.display = 'none'; document.getElementById('1801.03277v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.00106">arXiv:1609.00106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.00106">pdf</a>, <a href="https://arxiv.org/format/1609.00106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.073603">10.1103/PhysRevLett.118.073603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parasitic Photon-Pair Suppression via Photonic Stop-Band Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Branczyk%2C+A+M">Agata M. Branczyk</a>, <a href="/search/physics?searchtype=author&amp;query=Liscidini%2C+M">Marco Liscidini</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.00106v2-abstract-short" style="display: inline;"> We calculate that an appropriate modification of the field associated with only one of the photons of a photon pair can suppress generation of the pair entirely. From this general result, we develop a method for suppressing the generation of undesired photon pairs utilizing photonic stop bands. For a third-order nonlinear optical source of frequency-degenerate photons we calculate the modified fre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00106v2-abstract-full').style.display = 'inline'; document.getElementById('1609.00106v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.00106v2-abstract-full" style="display: none;"> We calculate that an appropriate modification of the field associated with only one of the photons of a photon pair can suppress generation of the pair entirely. From this general result, we develop a method for suppressing the generation of undesired photon pairs utilizing photonic stop bands. For a third-order nonlinear optical source of frequency-degenerate photons we calculate the modified frequency spectrum (joint spectral intensity) and show a significant increase in a standard metric, the coincidence to accidental ratio. These results open a new avenue for photon-pair frequency correlation engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00106v2-abstract-full').style.display = 'none'; document.getElementById('1609.00106v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 073603 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07385">arXiv:1608.07385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.07385">pdf</a>, <a href="https://arxiv.org/format/1608.07385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.25.002552">10.1364/OE.25.002552 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital Waveguide Adiabatic Passage Part 2: Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ng%2C+V">Vincent Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Vaitkus%2C+J+A">Jesse A. Vaitkus</a>, <a href="/search/physics?searchtype=author&amp;query=Chaboyer%2C+Z+J">Zachary J. Chaboyer</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+T">Thach Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Dawes%2C+J+M">Judith M. Dawes</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a>, <a href="/search/physics?searchtype=author&amp;query=Greentree%2C+A+D">Andrew D. Greentree</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07385v2-abstract-short" style="display: inline;"> Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07385v2-abstract-full').style.display = 'inline'; document.getElementById('1608.07385v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07385v2-abstract-full" style="display: none;"> Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($&gt;\!90\%$) over a 60nm bandwidth, centered at $\sim 823$nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07385v2-abstract-full').style.display = 'none'; document.getElementById('1608.07385v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 25, 2552-2559 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07384">arXiv:1608.07384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.07384">pdf</a>, <a href="https://arxiv.org/format/1608.07384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.25.005466">10.1364/OE.25.005466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital Waveguide Adiabatic Passage Part 1: Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vaitkus%2C+J+A">Jesse A. Vaitkus</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Greentree%2C+A+D">Andrew D. Greentree</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07384v2-abstract-short" style="display: inline;"> Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07384v2-abstract-full').style.display = 'inline'; document.getElementById('1608.07384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07384v2-abstract-full" style="display: none;"> Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07384v2-abstract-full').style.display = 'none'; document.getElementById('1608.07384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.04740">arXiv:1607.04740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.04740">pdf</a>, <a href="https://arxiv.org/ps/1607.04740">ps</a>, <a href="https://arxiv.org/format/1607.04740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa599e">10.1088/1367-2630/aa599e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cascaded forward Brillouin scattering to all Stokes orders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Stiller%2C+B">Birgit Stiller</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin. J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.04740v2-abstract-short" style="display: inline;"> Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04740v2-abstract-full').style.display = 'inline'; document.getElementById('1607.04740v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.04740v2-abstract-full" style="display: none;"> Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we show that cascaded intra-mode FBS results in a pure phase modulation and discuss how this necessitates specific experimental methods for the observation of fibre-based and integrated FBS. Further, we discuss how the descriptions that have been established in these two classes of waveguides connect to each other and to the broader context of cavity opto-mechanics and Raman scattering. Finally, we draw an unexpected striking similarity between FBS and discrete diffraction phenomena in waveguide arrays, which makes FBS an interesting candidate for future research in quantum-optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04740v2-abstract-full').style.display = 'none'; document.getElementById('1607.04740v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00091">arXiv:1606.00091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.00091">pdf</a>, <a href="https://arxiv.org/ps/1606.00091">ps</a>, <a href="https://arxiv.org/format/1606.00091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4961627">10.1063/1.4961627 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proposal for an Integrated Raman-free Correlated Photon Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blay%2C+D+R">Daniel R. Blay</a>, <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00091v1-abstract-short" style="display: inline;"> We propose a dual-pump third-order nonlinear scheme for producing pairs of correlated photons that is less susceptible to Raman noise than typical spontaneous four wave mixing methods (SFWM). Beginning with the full multimode Hamiltonian we derive a general expression for the joint spectral amplitude, from which the probability of producing a pair of photons can be calculated. As an example, we de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00091v1-abstract-full').style.display = 'inline'; document.getElementById('1606.00091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00091v1-abstract-full" style="display: none;"> We propose a dual-pump third-order nonlinear scheme for producing pairs of correlated photons that is less susceptible to Raman noise than typical spontaneous four wave mixing methods (SFWM). Beginning with the full multimode Hamiltonian we derive a general expression for the joint spectral amplitude, from which the probability of producing a pair of photons can be calculated. As an example, we demonstrate that a probability of 0.028 pairs per pulse can be achieved in an appropriately designed fused silica microfiber. As compared with single pump SFWM in standard fiber, we calculate that our process shows significant suppression of the spontaneous Raman scattering and an improvement in the signal to noise ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00091v1-abstract-full').style.display = 'none'; document.getElementById('1606.00091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures (two containing 2 subfigures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81V80 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.07348">arXiv:1510.07348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.07348">pdf</a>, <a href="https://arxiv.org/ps/1510.07348">ps</a>, <a href="https://arxiv.org/format/1510.07348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/2/025003">10.1088/1367-2630/18/2/025003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-locking in cascaded stimulated Brillouin scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=B%C3%BCttner%2C+T+F+S">Thomas F. S. B眉ttner</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Hudson%2C+D+D">Darren D. Hudson</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.07348v1-abstract-short" style="display: inline;"> Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07348v1-abstract-full').style.display = 'inline'; document.getElementById('1510.07348v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.07348v1-abstract-full" style="display: none;"> Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07348v1-abstract-full').style.display = 'none'; document.getElementById('1510.07348v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.03122">arXiv:1510.03122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.03122">pdf</a>, <a href="https://arxiv.org/format/1510.03122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4937374">10.1063/1.4937374 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Z">Zhizhong Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+Y">Yuwen Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Ams%2C+M">Martin Ams</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.03122v2-abstract-short" style="display: inline;"> We demonstrate a monolithically integrable heralded photon source in a femtosecond laser direct written glass waveguide. The generation of photon pairs with a wide wavelength separation requires a concomitant large birefringence in the normal dispersion regime. Here, by incorporation of side-stress tracks, we produce a waveguide with a birefringence of $1.64\times~10^{-4}$ and propagation loss as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03122v2-abstract-full').style.display = 'inline'; document.getElementById('1510.03122v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.03122v2-abstract-full" style="display: none;"> We demonstrate a monolithically integrable heralded photon source in a femtosecond laser direct written glass waveguide. The generation of photon pairs with a wide wavelength separation requires a concomitant large birefringence in the normal dispersion regime. Here, by incorporation of side-stress tracks, we produce a waveguide with a birefringence of $1.64\times~10^{-4}$ and propagation loss as low as 0.21 dB/cm near 980~nm. We measure photon pairs with 300~nm wavelength separation at an internal generation rate exceeding $5.05\times10^6$/s. The second order correlations indicate that the generated photon pairs are in a strongly non-classical regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.03122v2-abstract-full').style.display = 'none'; document.getElementById('1510.03122v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 107, 231106 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00079">arXiv:1510.00079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.00079">pdf</a>, <a href="https://arxiv.org/ps/1510.00079">ps</a>, <a href="https://arxiv.org/format/1510.00079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/2/025006">10.1088/1367-2630/18/2/025006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Brillouin resonance broadening due to structural variations in nanoscale waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Van+Laer%2C+R">Raphael Van Laer</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00079v2-abstract-short" style="display: inline;"> We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an homogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00079v2-abstract-full').style.display = 'inline'; document.getElementById('1510.00079v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00079v2-abstract-full" style="display: none;"> We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an homogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00079v2-abstract-full').style.display = 'none'; document.getElementById('1510.00079v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.01017">arXiv:1509.01017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.01017">pdf</a>, <a href="https://arxiv.org/format/1509.01017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/4/045004">10.1088/1367-2630/18/4/045004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Hamiltonian treatment of stimulated Brillouin scattering in nanoscale integrated waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sipe%2C+J+E">J. E. Sipe</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.01017v1-abstract-short" style="display: inline;"> We present a multimode Hamiltonian formulation for the problem of opto-acoustic interactions in optical waveguides. We establish a Hamiltonian representation of the acoustic field and then introduce a full system with a simple opto-acoustic coupling that includes both photoelastic/electrostrictive and radiation pressure/moving boundary effects. The Heisenberg equations of motion are used to obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01017v1-abstract-full').style.display = 'inline'; document.getElementById('1509.01017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.01017v1-abstract-full" style="display: none;"> We present a multimode Hamiltonian formulation for the problem of opto-acoustic interactions in optical waveguides. We establish a Hamiltonian representation of the acoustic field and then introduce a full system with a simple opto-acoustic coupling that includes both photoelastic/electrostrictive and radiation pressure/moving boundary effects. The Heisenberg equations of motion are used to obtain coupled mode equations for quantized envelope operators for the optical and acoustic fields. We show that the coupling coefficients obtained coincide with those established earlier, but our formalism provides a much simpler demonstration of the connection between radiation pressure and moving boundary effects than in previous work [C. Wolff et al, Physical Review A 92, 013836 (2015)]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01017v1-abstract-full').style.display = 'none'; document.getElementById('1509.01017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages: 20 pages for main article + 19 pages supplementary information; 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.02458">arXiv:1508.02458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.02458">pdf</a>, <a href="https://arxiv.org/ps/1508.02458">ps</a>, <a href="https://arxiv.org/format/1508.02458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.23.026628">10.1364/OE.23.026628 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Gutsche%2C+P">Philipp Gutsche</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.02458v1-abstract-short" style="display: inline;"> We derive a set of design guidelines and a figure of merit to aid the engineering process of on-chip waveguides for strong Stimulated Brillouin Scattering (SBS). To this end, we examine the impact of several types of loss on the total amplification of the Stokes wave that can be achieved via SBS. We account for linear loss and nonlinear loss of third order (two-photon absorption, 2PA) and fifth or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.02458v1-abstract-full').style.display = 'inline'; document.getElementById('1508.02458v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.02458v1-abstract-full" style="display: none;"> We derive a set of design guidelines and a figure of merit to aid the engineering process of on-chip waveguides for strong Stimulated Brillouin Scattering (SBS). To this end, we examine the impact of several types of loss on the total amplification of the Stokes wave that can be achieved via SBS. We account for linear loss and nonlinear loss of third order (two-photon absorption, 2PA) and fifth order, most notably 2PA-induced free carrier absorption (FCA). From this, we derive an upper bound for the output power of continuous-wave Brillouin-lasers and show that the optimal operating conditions and maximal realisable Stokes amplification of any given waveguide structure are determined by a dimensionless parameter $\mathcal{F}$ involving the SBS-gain and all loss parameters. We provide simple expressions for optimal pump power, waveguide length and realisable amplification and demonstrate their utility in two example systems. Notably, we find that 2PA-induced FCA is a serious limitation to SBS in silicon and germanium for wavelengths shorter than 2200nm and 3600nm, respectively. In contrast, three-photon absorption is of no practical significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.02458v1-abstract-full').style.display = 'none'; document.getElementById('1508.02458v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 23, 26628-26638 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.02517">arXiv:1505.02517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.02517">pdf</a>, <a href="https://arxiv.org/ps/1505.02517">ps</a>, <a href="https://arxiv.org/format/1505.02517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.32.001968">10.1364/JOSAB.32.001968 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of nonlinear loss on Stimulated Brillouin Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Gutsche%2C+P">Philipp Gutsche</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.02517v1-abstract-short" style="display: inline;"> We study the impact of two-photon absorption (2PA) and fifth-order nonlinear loss such as 2PA-induced free-carrier absorption in semiconductors on the performance of Stimulated Brillouin Scattering devices. We formulate the equations of motion including effective loss coefficients, whose explicit expressions are provided for numerical evaluation in any waveguide geometry. We find that 2PA results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02517v1-abstract-full').style.display = 'inline'; document.getElementById('1505.02517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.02517v1-abstract-full" style="display: none;"> We study the impact of two-photon absorption (2PA) and fifth-order nonlinear loss such as 2PA-induced free-carrier absorption in semiconductors on the performance of Stimulated Brillouin Scattering devices. We formulate the equations of motion including effective loss coefficients, whose explicit expressions are provided for numerical evaluation in any waveguide geometry. We find that 2PA results in a monotonic, algebraic relationship between amplification, waveguide length and pump power, whereas fifth-order losses lead to a non-monotonic relationship. We define a figure of merit for materials and waveguide designs in the presence of fifth-order losses. From this, we determine the optimal waveguide length for the case of 2PA alone and upper bounds for the total Stokes amplification for the case of 2PA as well as fifth-order losses. The analysis is performed analytically using a small-signal approximation and is compared to numerical solutions of the full nonlinear modal equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.02517v1-abstract-full').style.display = 'none'; document.getElementById('1505.02517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Opt. Soc. Am. B 32, 1968-1978 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0809">arXiv:1412.0809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.0809">pdf</a>, <a href="https://arxiv.org/format/1412.0809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep12557">10.1038/srep12557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jizan%2C+I">Iman Jizan</a>, <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Chae%2C+C+J">Chang Joon Chae</a>, <a href="/search/physics?searchtype=author&amp;query=Liscidini%2C+M">Marco Liscidini</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0809v1-abstract-short" style="display: inline;"> The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterization. A promising tool for such characterization uses the classical stimulated process, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0809v1-abstract-full').style.display = 'inline'; document.getElementById('1412.0809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0809v1-abstract-full" style="display: none;"> The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterization. A promising tool for such characterization uses the classical stimulated process, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a $蠂^{(2)}$ integrated source in A.~Eckstein \emph{et al.}, Laser Photon. Rev. \textbf{8}, L76 (2014). In this work we extend these results to $蠂^{(3)}$ sources, demonstrating spectral correlation measurements via stimulated four-wave mixing for the first time in a integrated optical waveguide, namely a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that additional resolution can be gained when compared to traditional coincidence measurements. As pump pulse duration can influence the degree of spectral entanglement, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral entanglement regardless of pump pulse duration, and cements its place as an essential characterization method for the development of future quantum integrated devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0809v1-abstract-full').style.display = 'none'; document.getElementById('1412.0809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 5, 12557 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8639">arXiv:1410.8639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.8639">pdf</a>, <a href="https://arxiv.org/ps/1410.8639">ps</a>, <a href="https://arxiv.org/format/1410.8639">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.22.032489">10.1364/OE.22.032489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formal selection rules for Brillouin scattering in integrated waveguides and structured fibers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">C. Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">C. G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8639v2-abstract-short" style="display: inline;"> We derive formal selection rules for Stimulated Brillouin Scattering (SBS) in structured waveguides. Using a group-theoretical approach, we show how the waveguide symmetry determines which optical and acoustic modes interact for both forward and backward SBS. We present a general framework for determining this interaction and give important examples for SBS in waveguides with rectangular, triangul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8639v2-abstract-full').style.display = 'inline'; document.getElementById('1410.8639v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8639v2-abstract-full" style="display: none;"> We derive formal selection rules for Stimulated Brillouin Scattering (SBS) in structured waveguides. Using a group-theoretical approach, we show how the waveguide symmetry determines which optical and acoustic modes interact for both forward and backward SBS. We present a general framework for determining this interaction and give important examples for SBS in waveguides with rectangular, triangular and hexagonal symmetry. The important role played by degeneracy of the optical modes is illustrated. These selection rules are important for SBS-based device design and for a full understanding the physics of SBS in structured waveguides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8639v2-abstract-full').style.display = 'none'; document.getElementById('1410.8639v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.3521">arXiv:1407.3521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.3521">pdf</a>, <a href="https://arxiv.org/ps/1407.3521">ps</a>, <a href="https://arxiv.org/format/1407.3521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.92.013836">10.1103/PhysRevA.92.013836 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stimulated Brillouin Scattering in integrated photonic waveguides: forces, scattering mechanisms and coupled mode analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wolff%2C+C">Christian Wolff</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Poulton%2C+C+G">Christopher G. Poulton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.3521v4-abstract-short" style="display: inline;"> Recent theoretical studies of Stimulated Brillouin Scattering (SBS) in nanoscale devices have led to an intense research effort dedicated to the demonstration and application of this nonlinearity in on-chip systems. The key feature of SBS in integrated photonic waveguides is that small, high-contrast waveguides are predicted to experience powerful optical forces on the waveguide boundaries, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3521v4-abstract-full').style.display = 'inline'; document.getElementById('1407.3521v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.3521v4-abstract-full" style="display: none;"> Recent theoretical studies of Stimulated Brillouin Scattering (SBS) in nanoscale devices have led to an intense research effort dedicated to the demonstration and application of this nonlinearity in on-chip systems. The key feature of SBS in integrated photonic waveguides is that small, high-contrast waveguides are predicted to experience powerful optical forces on the waveguide boundaries, which are predicted to further boost the SBS gain that is already expected to grow dramatically in such structures because of the higher mode confinement alone. In all recent treatments, the effect of radiation pressure is included separately from the scattering action that the acoustic field exerts on the optical field. In contrast to this, we show here that the effects of radiation pressure and motion of the waveguide boundaries are inextricably linked. Central to this insight is a new formulation of the SBS interaction that unifies the treatment of light and sound, incorporating all relevant interaction mechanisms --- radiation pressure, waveguide boundary motion, electrostriction and photoelasticity --- from a rigorous thermodynamic perspective. Our approach also clarifies important points of ambiguity in the literature, such as the nature of edge-effects with regard to electrostriction, and of body-forces with respect to radiation pressure. This new perspective on Brillouin processes leads to physical insight with implications for the design and fabrication of SBS-based nanoscale devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3521v4-abstract-full').style.display = 'none'; document.getElementById('1407.3521v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 92, 013836 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.7202">arXiv:1402.7202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.7202">pdf</a>, <a href="https://arxiv.org/format/1402.7202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.201400027">10.1002/lpor.201400027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid photonic circuit for multiplexed heralded single photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meany%2C+T">Thomas Meany</a>, <a href="/search/physics?searchtype=author&amp;query=Ngah%2C+L+A">Lutfi A. Ngah</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+R+J">Robert J. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a>, <a href="/search/physics?searchtype=author&amp;query=Alibart%2C+O">Olivier Alibart</a>, <a href="/search/physics?searchtype=author&amp;query=Tanzilli%2C+S">S茅bastien Tanzilli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.7202v1-abstract-short" style="display: inline;"> A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (&gt;1 MHz) fibre coupled electro-optic switches. Hybr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7202v1-abstract-full').style.display = 'inline'; document.getElementById('1402.7202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.7202v1-abstract-full" style="display: none;"> A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (&gt;1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7202v1-abstract-full').style.display = 'none'; document.getElementById('1402.7202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, double column, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser Photonics Rev. 8, No. 3, L42-L46 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.4041">arXiv:1312.4041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.4041">pdf</a>, <a href="https://arxiv.org/ps/1312.4041">ps</a>, <a href="https://arxiv.org/format/1312.4041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Effective photons in weakly absorptive dielectric media and the Beer-Lambert-Bouguer law </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Judge%2C+A+C">A C Judge</a>, <a href="/search/physics?searchtype=author&amp;query=Brownless%2C+J+S">J S Brownless</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+N+A+R">N A R Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Sipe%2C+J+E">J E Sipe</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M J Steel</a>, <a href="/search/physics?searchtype=author&amp;query=de+Sterke%2C+C+M">C Martijn de Sterke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.4041v2-abstract-short" style="display: inline;"> We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers-Kronig dielectric in the limit of weak absorption. Each mode is associated with an effective line-width which determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer-Lambert-Bouguer law absorption coefficient f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.4041v2-abstract-full').style.display = 'inline'; document.getElementById('1312.4041v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.4041v2-abstract-full" style="display: none;"> We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers-Kronig dielectric in the limit of weak absorption. Each mode is associated with an effective line-width which determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer-Lambert-Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.4041v2-abstract-full').style.display = 'none'; document.getElementById('1312.4041v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.7278">arXiv:1305.7278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.7278">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms3582">10.1038/ncomms3582 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrated spatial multiplexing of heralded single photon sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Rey%2C+I+H">Isabella H. Rey</a>, <a href="/search/physics?searchtype=author&amp;query=Vo%2C+T+D">Trung D. Vo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jiakun He</a>, <a href="/search/physics?searchtype=author&amp;query=Shahnia%2C+S">Shayan Shahnia</a>, <a href="/search/physics?searchtype=author&amp;query=Reardon%2C+C">Christopher Reardon</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+T+F">Thomas F. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.7278v1-abstract-short" style="display: inline;"> The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4%&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7278v1-abstract-full').style.display = 'inline'; document.getElementById('1305.7278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.7278v1-abstract-full" style="display: none;"> The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7278v1-abstract-full').style.display = 'none'; document.getElementById('1305.7278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 4, 2582 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.0068">arXiv:1305.0068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.0068">pdf</a>, <a href="https://arxiv.org/ps/1305.0068">ps</a>, <a href="https://arxiv.org/format/1305.0068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4807503">10.1063/1.4807503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parasitic nonlinearities in photon pair generation via integrated spontaneous four-wave mixing: critical problem or distraction? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Sipe%2C+J+E">J. E. Sipe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.0068v1-abstract-short" style="display: inline;"> We consider integrated photon pair sources based on spontaneous four-wave mixing and derive expressions for the pump powers at which various nonlinear processes become relevant for a variety of source materials and structures. These expressions serve as rules of thumb in identifying reasonable parameter regimes for the design of such sources. We demonstrate that if pump powers are kept low enough&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.0068v1-abstract-full').style.display = 'inline'; document.getElementById('1305.0068v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.0068v1-abstract-full" style="display: none;"> We consider integrated photon pair sources based on spontaneous four-wave mixing and derive expressions for the pump powers at which various nonlinear processes become relevant for a variety of source materials and structures. These expressions serve as rules of thumb in identifying reasonable parameter regimes for the design of such sources. We demonstrate that if pump powers are kept low enough to suppress cross-phase modulation, multi-pair events as well as many other nonlinear effects are often also constrained to negligible levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.0068v1-abstract-full').style.display = 'none'; document.getElementById('1305.0068v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl.Phys.Lett. 102 (2013) 201106:1-5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.4401">arXiv:1209.4401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.4401">pdf</a>, <a href="https://arxiv.org/ps/1209.4401">ps</a>, <a href="https://arxiv.org/format/1209.4401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.87.033824">10.1103/PhysRevA.87.033824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Canonical quantization of macroscopic electrodynamics in a linear, inhomogeneous magneto-electric medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Judge%2C+A+C">A. C. Judge</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Sipe%2C+J+E">J. E. Sipe</a>, <a href="/search/physics?searchtype=author&amp;query=de+Sterke%2C+C+M">C. M. de Sterke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.4401v1-abstract-short" style="display: inline;"> We present a canonical quantization of macroscopic electrodynamics. The results apply to inhomogeneous media with a broad class of linear magneto-electric responses which are consistent with the Kramers-Kronig and Onsager relations. Through its ability to accommodate strong dispersion and loss, our theory provides a rigorous foundation for the study of quantum optical processes in structures incor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.4401v1-abstract-full').style.display = 'inline'; document.getElementById('1209.4401v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.4401v1-abstract-full" style="display: none;"> We present a canonical quantization of macroscopic electrodynamics. The results apply to inhomogeneous media with a broad class of linear magneto-electric responses which are consistent with the Kramers-Kronig and Onsager relations. Through its ability to accommodate strong dispersion and loss, our theory provides a rigorous foundation for the study of quantum optical processes in structures incorporating metamaterials, provided these may be modeled as magneto-electric media. Previous canonical treatments of dielectric and magneto-dielectric media have expressed the electromagnetic field operators in either a Green function or mode expansion representation. Here we present our results in the mode expansion picture with a view to applications in guided wave and cavity quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.4401v1-abstract-full').style.display = 'none'; document.getElementById('1209.4401v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Physical Review A 24/07/2012</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.4154">arXiv:1208.4154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.4154">pdf</a>, <a href="https://arxiv.org/format/1208.4154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.20.026895">10.1364/OE.20.026895 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-classical interference in integrated 3D multiports </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meany%2C+T">Thomas Meany</a>, <a href="/search/physics?searchtype=author&amp;query=Delanty%2C+M">Michael Delanty</a>, <a href="/search/physics?searchtype=author&amp;query=Gross%2C+S">Simon Gross</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+G+D">Graham D. Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.4154v1-abstract-short" style="display: inline;"> We demonstrate three and four input multiports in a three dimensional glass platform, fabricated using the femtosecond laser direct-write technique. Hong-Ou-Mandel (HOM) interference is observed and a full quantum characterisation is performed, obtaining two photon correlation matrices for all combinations of input and output ports. For the three-port case, the quantum visibilities are accurately&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4154v1-abstract-full').style.display = 'inline'; document.getElementById('1208.4154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.4154v1-abstract-full" style="display: none;"> We demonstrate three and four input multiports in a three dimensional glass platform, fabricated using the femtosecond laser direct-write technique. Hong-Ou-Mandel (HOM) interference is observed and a full quantum characterisation is performed, obtaining two photon correlation matrices for all combinations of input and output ports. For the three-port case, the quantum visibilities are accurately predicted solely from measurement of the classical coupling ratios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4154v1-abstract-full').style.display = 'none'; document.getElementById('1208.4154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 16 figures, journal article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.2138">arXiv:1104.2138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.2138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.36.002988">10.1364/OL.36.002988 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Point-by-point inscription of apodized fiber Bragg gratings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Williams%2C+R+J">Robert J. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Voigtl%C3%A4nder%2C+C">Christian Voigtl盲nder</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+G+D">Graham D. Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=T%C3%BCnnermann%2C+A">Andreas T眉nnermann</a>, <a href="/search/physics?searchtype=author&amp;query=Nolte%2C+S">Stefan Nolte</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.2138v1-abstract-short" style="display: inline;"> We demonstrate apodized fiber Bragg gratings inscribed with a point-by-point technique. We tailor the grating phase and coupling amplitude through precise control over the longitudinal and transverse position of each laser-inscribed modification. This method of apodization is facilitated by the highly-localized, high-contrast modifications generated by focussed IR femtosecond laser inscription. Ou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2138v1-abstract-full').style.display = 'inline'; document.getElementById('1104.2138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.2138v1-abstract-full" style="display: none;"> We demonstrate apodized fiber Bragg gratings inscribed with a point-by-point technique. We tailor the grating phase and coupling amplitude through precise control over the longitudinal and transverse position of each laser-inscribed modification. This method of apodization is facilitated by the highly-localized, high-contrast modifications generated by focussed IR femtosecond laser inscription. Our technique provides a simple method for the design and implementation of point-by-point fiber Bragg gratings with complex apodization profiles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.2138v1-abstract-full').style.display = 'none'; document.getElementById('1104.2138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, article in review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt.Lett. 36 (2011) 2988-2990 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.0051">arXiv:1102.0051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.0051">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/13/7/073012">10.1088/1367-2630/13/7/073012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced spontaneous emission from nanodiamond colour centres on opal photonic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Inam%2C+F+A">Faraz A Inam</a>, <a href="/search/physics?searchtype=author&amp;query=Gaebel%2C+T">Torsten Gaebel</a>, <a href="/search/physics?searchtype=author&amp;query=Bradac%2C+C">Carlo Bradac</a>, <a href="/search/physics?searchtype=author&amp;query=Stewart%2C+L">Luke Stewart</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J Withford</a>, <a href="/search/physics?searchtype=author&amp;query=Dawes%2C+J+M">Judith M Dawes</a>, <a href="/search/physics?searchtype=author&amp;query=Rabeau%2C+J+R">James R Rabeau</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">Michael J Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.0051v2-abstract-short" style="display: inline;"> Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for developing efficient single photon sources with high collection efficiency. A number of groups have produced enhancement in the emission rate over narrow wavelength r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.0051v2-abstract-full').style.display = 'inline'; document.getElementById('1102.0051v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.0051v2-abstract-full" style="display: none;"> Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for developing efficient single photon sources with high collection efficiency. A number of groups have produced enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. Here we characterise in detail the spontaneous emission rates of nitrogen-vacancy centres positioned in various locations on a structured substrate. We show an average factor of 1.5 enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observe changes in the lifetime distribution. We present a model to explain these observations and associate the lifetime properties with dipole orientation and polarization effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.0051v2-abstract-full').style.display = 'none'; document.getElementById('1102.0051v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 13 073012 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2691">arXiv:1011.2691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.2691">pdf</a>, <a href="https://arxiv.org/ps/1011.2691">ps</a>, <a href="https://arxiv.org/format/1011.2691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.19.000325">10.1364/OE.19.000325 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+J">Jens Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Jovanovic%2C+N">Nemanja Jovanovic</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+R+G">Ria G. Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+G+D">Graham D. Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a>, <a href="/search/physics?searchtype=author&amp;query=T%C3%BCnnermann%2C+A">Andreas T眉nnermann</a>, <a href="/search/physics?searchtype=author&amp;query=Nolte%2C+S">Stefan Nolte</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2691v1-abstract-short" style="display: inline;"> The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs con- siderably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBG&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2691v1-abstract-full').style.display = 'inline'; document.getElementById('1011.2691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2691v1-abstract-full" style="display: none;"> The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs con- siderably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBGs can span a full octave in the spectrum and are very pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the strength of resonant coupling and find that coupling into cladding modes of higher azimuthal order is very sensitive to the position of the modification in the core. Exploiting these properties allows precise control of such reflections and may lead to many new sensing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2691v1-abstract-full').style.display = 'none'; document.getElementById('1011.2691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submission to OE, 16 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.1688">arXiv:1011.1688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.1688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3549744">10.1063/1.3549744 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of correlated photon pairs in a chalcogenide As2S3 waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">C. Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+G+D">G. D. Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=Peruzzo%2C+A">A. Peruzzo</a>, <a href="/search/physics?searchtype=author&amp;query=Lobino%2C+M">M. Lobino</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">A. S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D+-">D. -Y. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Madden%2C+S+J">S. J. Madden</a>, <a href="/search/physics?searchtype=author&amp;query=Natarajan%2C+C+M">C. M. Natarajan</a>, <a href="/search/physics?searchtype=author&amp;query=Tanner%2C+M+G">M. G. Tanner</a>, <a href="/search/physics?searchtype=author&amp;query=Hadfield%2C+R+H">R. H. Hadfield</a>, <a href="/search/physics?searchtype=author&amp;query=Dorenbos%2C+S+N">S. N. Dorenbos</a>, <a href="/search/physics?searchtype=author&amp;query=Zijlstra%2C+T">T. Zijlstra</a>, <a href="/search/physics?searchtype=author&amp;query=Zwiller%2C+V">V. Zwiller</a>, <a href="/search/physics?searchtype=author&amp;query=Thompson%2C+M+G">M. G. Thompson</a>, <a href="/search/physics?searchtype=author&amp;query=Rarity%2C+J+G">J. G. Rarity</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Luther-Davies%2C+B">B. Luther-Davies</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">B. J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Brien%2C+J+L">J. L. O&#39;Brien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.1688v1-abstract-short" style="display: inline;"> We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to accidental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.1688v1-abstract-full" style="display: none;"> We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to accidental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.1688v1-abstract-full').style.display = 'none'; document.getElementById('1011.1688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 98, 051101 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.0920">arXiv:0907.0920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0907.0920">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photonic band structure and eigenmodes of magnetophotonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khanikaev%2C+A+B">A. B. Khanikaev</a>, <a href="/search/physics?searchtype=author&amp;query=Yayoi%2C+K">K. Yayoi</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Baryshev%2C+A+V">A. V. Baryshev</a>, <a href="/search/physics?searchtype=author&amp;query=Inoue%2C+M">M. Inoue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.0920v1-abstract-short" style="display: inline;"> We study photonic band structure of two- and three-dimensional magnetophotonic crystals and the polarization properties of their eigenmodes using a plane wave expansion method. The alteration of the photonic band structure and eigenmodes by magnetization are examined. Two orientations are studied: in-plane magnetization and perpendicular magnetization. The magnetization-induced symmetry breaking&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.0920v1-abstract-full').style.display = 'inline'; document.getElementById('0907.0920v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.0920v1-abstract-full" style="display: none;"> We study photonic band structure of two- and three-dimensional magnetophotonic crystals and the polarization properties of their eigenmodes using a plane wave expansion method. The alteration of the photonic band structure and eigenmodes by magnetization are examined. Two orientations are studied: in-plane magnetization and perpendicular magnetization. The magnetization-induced symmetry breaking effects are shown to be responsible for the formation of exotic magnetic Bloch modes, comprised of two or more coupled symmetric and antisymmetric Bloch modes of the corresponding non-magnetic photonic crystal. These results imply that uncoupled states of non-magnetic photonic crystals can be excited, or become coupled, in magnetic structures. We show that the polarization state of magnetic Bloch modes is very complicated. In the particular case of perpendicular to plane magnetization they represent in-plane elliptically (or even circularly) polarized waves with large longitudinal component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.0920v1-abstract-full').style.display = 'none'; document.getElementById('0907.0920v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0902.4053">arXiv:0902.4053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0902.4053">pdf</a>, <a href="https://arxiv.org/ps/0902.4053">ps</a>, <a href="https://arxiv.org/format/0902.4053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Fano Resonance Between Mie and Bragg Scattering in Photonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rybin%2C+M+V">M. V. Rybin</a>, <a href="/search/physics?searchtype=author&amp;query=Khanikaev%2C+A+B">A. B. Khanikaev</a>, <a href="/search/physics?searchtype=author&amp;query=Inoue%2C+M">M. Inoue</a>, <a href="/search/physics?searchtype=author&amp;query=Samusev%2C+K+B">K. B. Samusev</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Yushin%2C+G">G. Yushin</a>, <a href="/search/physics?searchtype=author&amp;query=Limonov%2C+M+F">M. F. Limonov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0902.4053v1-abstract-short" style="display: inline;"> We report the observation of a Fano resonance between continuum Mie scattering and a narrow Bragg band in synthetic opal photonic crystals. The resonance leads to a transmission spectrum exhibiting a Bragg dip with an asymmetric profile, which can be tunably reversed to a Bragg rise. The Fano asymmetry parameter is linked with the dielectric contrast between the permittivity of the filler and th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.4053v1-abstract-full').style.display = 'inline'; document.getElementById('0902.4053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0902.4053v1-abstract-full" style="display: none;"> We report the observation of a Fano resonance between continuum Mie scattering and a narrow Bragg band in synthetic opal photonic crystals. The resonance leads to a transmission spectrum exhibiting a Bragg dip with an asymmetric profile, which can be tunably reversed to a Bragg rise. The Fano asymmetry parameter is linked with the dielectric contrast between the permittivity of the filler and the specific value determined by the opal matrix. The existence of the Fano resonance is directly related to disorder due to non-uniformity of a-SiO2 opal spheres. Proposed theoretical &#34;quasi-3D&#34; model produces results in excellent agreement with the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.4053v1-abstract-full').style.display = 'none'; document.getElementById('0902.4053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0711.1403">arXiv:0711.1403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0711.1403">pdf</a>, <a href="https://arxiv.org/ps/0711.1403">ps</a>, <a href="https://arxiv.org/format/0711.1403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.15.017954">10.1364/OE.15.017954 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Slow light with flat or offset band edges in multi-mode fiber with two gratings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sukhorukov%2C+A+A">Andrey A. Sukhorukov</a>, <a href="/search/physics?searchtype=author&amp;query=Handmer%2C+C+J">C. J. Handmer</a>, <a href="/search/physics?searchtype=author&amp;query=de+Sterke%2C+C+M">C. Martijn de Sterke</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0711.1403v1-abstract-short" style="display: inline;"> We consider mode coupling in multimode optical fibers using either two Bragg gratings or a Bragg grating and a long-period grating. We show that the magnitude of the band edge curvature can be controlled leading to a flat, quartic band-edge or to two band edges at distinct, nonequivalent $k$-values, allowing precise control of slow light propagation. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0711.1403v1-abstract-full" style="display: none;"> We consider mode coupling in multimode optical fibers using either two Bragg gratings or a Bragg grating and a long-period grating. We show that the magnitude of the band edge curvature can be controlled leading to a flat, quartic band-edge or to two band edges at distinct, nonequivalent $k$-values, allowing precise control of slow light propagation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.1403v1-abstract-full').style.display = 'none'; document.getElementById('0711.1403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 15, 17954-17959 (2007); http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17954 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10