CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 286 results for author: <span class="mathjax">Liu, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Liu%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09857">arXiv:2412.09857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09857">pdf</a>, <a href="https://arxiv.org/format/2412.09857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orthogonal Geometry of Magneto-Optical Kerr Effect Enabled by Magnetization Multipole of Berry Curvature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pan%2C+H">Haolin Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Han Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jixiang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+M">Mingyue Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Y">Yanan Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Daxiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xintong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wenzhi Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhenguo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+X">Xiao Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+Z">Zhigao Sheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianzhe Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lingfei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qian Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+Q">Qian Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qinghui Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+D">Dazhi Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09857v1-abstract-short" style="display: inline;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09857v1-abstract-full" style="display: none;"> The Magneto-Optical Kerr Effect (MOKE) is a fundamental tool in magnetometry, pivotal for advancing research in optics, magnetism, and spintronics as a direct probe of magnetization. Traditional MOKE measurements primarily detect the magnetization components parallel to the Poynting vector, which can only access the magnitude but not the direction of the orthogonal component. In this study, we introduce an orthogonal MOKE geometry in which the Kerr signal detects both the magnitude and direction of the magnetization component perpendicular to the Poynting vector. We demonstrate the broad applicability of this orthogonal geometry through the MOKE measurements in cubic ferromagnets and van der Waals ferromagnet. We theoretically show that the orthogonal MOKE geometry is enabled by the multipolar structure of Berry curvature in the magnetization space, which generally induces a Voigt vector orthogonal to the magnetization, thereby accounting for the unique magnetization angle dependence distinct from conventional MOKE. The establishment of the orthogonal MOKE geometry not only introduces a new paradigm for magneto-optical measurements but also provides a framework for exploring the magnetization multipoles of Berry curvature across the electromagnetic spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09857v1-abstract-full').style.display = 'none'; document.getElementById('2412.09857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06634">arXiv:2412.06634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06634">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Observation of vortex-pair dance and oscillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dadong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lai Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Li-Gang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06634v1-abstract-short" style="display: inline;"> Vortex dynamics, which encompass the motion, evolution, and propagation of vortices, elicit both fascination and challenges across various domains such as fluid dynamics, atmospheric science, and physics. This study focuses on fundamental dynamics of vortex-pair fields, specifically known as vortex-pair beams (VPBs) in optics. VPBs have gained increasing attention due to their unique properties, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06634v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06634v1-abstract-full" style="display: none;"> Vortex dynamics, which encompass the motion, evolution, and propagation of vortices, elicit both fascination and challenges across various domains such as fluid dynamics, atmospheric science, and physics. This study focuses on fundamental dynamics of vortex-pair fields, specifically known as vortex-pair beams (VPBs) in optics. VPBs have gained increasing attention due to their unique properties, including vortex attraction and repulsion. Here, we explore the dynamics of pure-phase VPBs (PPVPBs) and observe intriguing helical and intertwined behaviors of vortices, resembling a vortex-pair dance. We uncover the oscillation property of the intervortex distance for PPVPBs in free space. The observed dancing and oscillation phenomena are intricately tied to the initial intervortex distance and can be explained well in the hydrodynamic picture. Notably, the vortex dancing and oscillation alter the process of vortex-pair annihilation, extending the survival range for opposite vortices. This discovery enhances our understanding of vortex interactions and sheds light on the intricate dynamics of both vortex-vortex and vortex-antivortex interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06634v1-abstract-full').style.display = 'none'; document.getElementById('2412.06634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 22 figures, 4 movies(in https://github.com/wangligangZJU/video)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00699">arXiv:2412.00699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00699">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A one-dimensional mixing model to investigate the impact of Ablative Rayleigh-Taylor Instability on compression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongxue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+T">Tao Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Q">Qing Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00699v1-abstract-short" style="display: inline;"> We propose a one-dimensional mixing model to investigate the impact of Ablative Rayleigh-Taylor Instability (ARTI) on compression, addressing the limitations of high-dimensional simulations. In this model, the scale of the mixed region is predicted using an ablative buoyancy drag model and the mass-weighted average field distributions in the direction of acceleration are obtained by interpolating&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00699v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00699v1-abstract-full" style="display: none;"> We propose a one-dimensional mixing model to investigate the impact of Ablative Rayleigh-Taylor Instability (ARTI) on compression, addressing the limitations of high-dimensional simulations. In this model, the scale of the mixed region is predicted using an ablative buoyancy drag model and the mass-weighted average field distributions in the direction of acceleration are obtained by interpolating between the initial and final isothermal molecule mixing states based on the mixing extent, defined by the percentage of maximum specific turbulent kinetic energy and a free multiplier f, which varies from chunk mixing (0) to atomic mixing (1). After validation through two-dimensional simulations, the model is integrated into a Lagrangian framework and applied to spherical implosion scenarios. The results indicate that the compression of the inflight shell is diminished, leading to a reduced time interval between the convergence of the main shock and stagnation, potentially providing a measurable signal in single-shot experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00699v1-abstract-full').style.display = 'none'; document.getElementById('2412.00699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12392">arXiv:2411.12392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12392">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Extended Buoyancy-Drag Model for Ablative Rayleigh-Taylor Instability Seeded by Various Perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongxue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+T">Tao Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Q">Qing Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12392v1-abstract-short" style="display: inline;"> In inertial confinement fusion (ICF), affected by non-steady ablation and various physical mechanisms, we extend the classical buoyancy-drag (BD) model into an ablative version for evaluating and controlling nonlinear ablative Rayleigh-Taylor instability (ARTI) in real space. The application of our ablative BD model in the nonlinear phase lies in a single adjustable coefficient influenced by initi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12392v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12392v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12392v1-abstract-full" style="display: none;"> In inertial confinement fusion (ICF), affected by non-steady ablation and various physical mechanisms, we extend the classical buoyancy-drag (BD) model into an ablative version for evaluating and controlling nonlinear ablative Rayleigh-Taylor instability (ARTI) in real space. The application of our ablative BD model in the nonlinear phase lies in a single adjustable coefficient influenced by initial perturbations, linear growth rate and terminal velocity. After validating the effectiveness and sensitivity of this model through simulations, we propose a strategy to shift the dominant mode away from the &#34;most dangerous mode&#34;, which depends on initial perturbations. Our findings suggest that the &#34;most dangerous mode&#34; may clarify gain differences among targets of similar qualities and provide guidance for target manufacturing and pulse optimization in proximity to the ignition cliff. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12392v1-abstract-full').style.display = 'none'; document.getElementById('2411.12392v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09713">arXiv:2411.09713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Wafer-scale Semiconductor Grafting: Enabling High-Performance, Lattice-Mismatched Heterojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qiming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+H">Haris Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+H">Haining Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+J">Jisoo Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+W">Wei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+D">Donghyeok Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+T+K">Tien Khee Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+H">Hokyung Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haiyan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ooi%2C+B+S">Boon S. Ooi</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09713v1-abstract-short" style="display: inline;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. Howeve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09713v1-abstract-full" style="display: none;"> Semiconductor heterojunctions are foundational to many advanced electronic and optoelectronic devices. However, achieving high-quality, lattice-mismatched interfaces remains challenging, limiting both scalability and device performance. Semiconductor grafting offers a promising solution by directly forming electrically active, lattice-mismatched heterojunctions between dissimilar materials. However, its scalability and uniformity at the wafer level have yet to be demonstrated. This work demonstrates the achievement of highly uniform, reproducible results across silicon, sapphire, and gallium nitride (GaN) substrates using wafer-scale semiconductor grafting. To illustrate this scalability, we conducted an in-depth study of a grafted Si/GaN heterojunction, examining band alignment through X-ray photoelectron spectroscopy and confirming crystallinity and interfacial integrity with scanning transmission electron microscopy. The resulting p-n diodes exhibit significantly enhanced electrical performance and wafer-scale uniformity compared to conventional approaches. This work establishes wafer-scale semiconductor grafting as a versatile and scalable technology, bridging the gap between laboratory-scale research and industrial manufacturing for heterogeneous semiconductor integration, and paving the way for novel, high-performance electronic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09713v1-abstract-full').style.display = 'none'; document.getElementById('2411.09713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09345">arXiv:2411.09345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09345">pdf</a>, <a href="https://arxiv.org/format/2411.09345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DarkSHINE Baseline Design Report: Physics Prospects and Detector Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji-Yuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jun-Feng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Chang-Bo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yi-Han Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jia-Lin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yu-ming Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dan-Ning Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi-Bin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Ze-Jia Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+M">Meng Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Si-Yuan Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jian-Nan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+W">Wei-Shi Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiao-Long Wang</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09345v2-abstract-short" style="display: inline;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09345v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09345v2-abstract-full" style="display: none;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics goals, experimental setups, details of each sub-detector system technical designs, signal and backgground modelings, expected search sensitivities and future prospects, which mark an important step towards the further prototyping and technical demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'none'; document.getElementById('2411.09345v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06373">arXiv:2411.06373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06373">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved scaling of the scrape-off layer particle flux width by the Bayes theorem on EAST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D+C">D. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">L. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+X+F">X. F. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06373v1-abstract-short" style="display: inline;"> The scaling of scrape-off layer (SOL) power width (位q) is essential for advancing the understanding of particle and heat transport in the SOL. Due to the sparse layout of divertor Langmuir probes (Div-LPs) and probe erosion during long-pulse, high-performance operations on EAST, estimating SOL particle flux width (位js, used to approximate 位q) from the ion saturation current density profile (js) of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06373v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06373v1-abstract-full" style="display: none;"> The scaling of scrape-off layer (SOL) power width (位q) is essential for advancing the understanding of particle and heat transport in the SOL. Due to the sparse layout of divertor Langmuir probes (Div-LPs) and probe erosion during long-pulse, high-performance operations on EAST, estimating SOL particle flux width (位js, used to approximate 位q) from the ion saturation current density profile (js) often incurs substantial uncertainty. This study presents a maximum a posteriori (MAP) estimation method based on Bayes&#39; theorem, achieving approximately 30% improvement in fitting accuracy over traditional ordinary least squares. Using this method and the FreeGS equilibrium code, we updated databases from Liu et al., Nucl. Fusion 64 (2024). Revised 位js scalings for L-mode and H-mode in deuterium and helium plasmas demonstrate better regression quality and slightly altered regression results. Unified L-mode and H-mode scalings in deuterium and helium are: 位_js^L = 0.11 L_c^1.06 n_e^0.35 Z^0.32 P_SOL^0.25 p^(-0.26) and 位_js^H = 0.11 L_c^1.28 n_e^0.56 Z^0.36 P_SOL^0.30, where L_c is the average SOL connection length, n_e the line-averaged electron density, Z the charge number, PSOL the power crossing the last closed flux surface, and p the core-averaged plasma pressure. Key findings include: (i) 位js strongly depends on SOL connection length, indicating a machine size dependence absent in the Eich scaling, and (ii) helium 位js is slightly larger than deuterium 位js. Extrapolated scalings suggest 位q ~ 6 mm for ITER L-mode (Ip = 12 MA) and ~13 mm for H-mode (Ip = 15 MA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06373v1-abstract-full').style.display = 'none'; document.getElementById('2411.06373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03120">arXiv:2411.03120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03120">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A numerical study on temperature destratification induced by bubble plumes in idealized reservoirs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03120v1-abstract-short" style="display: inline;"> An in-house numerical model has been developed to study the temperature destratification induced by bubble plumes in reservoirs. The mean flow of the mixed fluid phase is solved using the Reynolds-Averaged Navier-Stokes Equations, while the bubble phase is calculated by employing the advection-diffusion equation of air concentration. The change of water temperature is tracked by solving the energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03120v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03120v1-abstract-full" style="display: none;"> An in-house numerical model has been developed to study the temperature destratification induced by bubble plumes in reservoirs. The mean flow of the mixed fluid phase is solved using the Reynolds-Averaged Navier-Stokes Equations, while the bubble phase is calculated by employing the advection-diffusion equation of air concentration. The change of water temperature is tracked by solving the energy equation. The two-equation turbulence model, considering the effect of bubble buoyancy and the change of temperature, is adopted to model the turbulent dissipation in two-phase fluid. To validate the accuracy of the numerical model, the numerical results are compared with available experimental data. In addition, the destratification of temperature-layered water in a tank by bubble plumes is simulated by the numerical model, which is also validated by experimental data and the numerical results of another model. This three-dimensional model can reflect various physical quantities in the entire computed filed, such as thermal structure, gas concentration distribution, velocity distribution and turbulence intensity. Furthermore, by utilizing the validated model, a series of factors on reservoir destratification, including the aeration rate and the aeration location are analyzed and discussed in this study. A non-dimensional number Nt is introduced to determine the optimal aeration rate of the fasted destratification. The extent to which bubble plumes can affect the destratification is also simulated and discussed. Meanwhile, the mechanism of destratification in a large water area is described in detail. Suggestions on how to apply bubble plumes to improve the water quality of a reservoir are given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03120v1-abstract-full').style.display = 'none'; document.getElementById('2411.03120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&amp;query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&amp;query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09328">arXiv:2410.09328</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09328">pdf</a>, <a href="https://arxiv.org/ps/2410.09328">ps</a>, <a href="https://arxiv.org/format/2410.09328">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> On the Acceleration of the Young Solar Wind from Different Source Regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+Y">Yiming Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+D">Ying D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+W">Wenshuai Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ran%2C+H">Hao Ran</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09328v2-abstract-short" style="display: inline;"> The acceleration of the young solar wind is studied using the first 17 encounters of Parker Solar Probe. We identify wind intervals from different source regions: coronal hole (CH) interiors, streamers, and low Mach number boundary layers (LMBLs), i.e. the inner boundaries of coronal holes. We present their statistical trends in the acceleration process. Most of the observations can be reproduced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09328v2-abstract-full').style.display = 'inline'; document.getElementById('2410.09328v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09328v2-abstract-full" style="display: none;"> The acceleration of the young solar wind is studied using the first 17 encounters of Parker Solar Probe. We identify wind intervals from different source regions: coronal hole (CH) interiors, streamers, and low Mach number boundary layers (LMBLs), i.e. the inner boundaries of coronal holes. We present their statistical trends in the acceleration process. Most of the observations can be reproduced by a two-fluid hydrodynamic model with realistic corona temperatures. In such a model, the solar wind is accelerated by the combined thermal pressures of protons and electrons,but it is mainly the difference in the proton pressure that leads to the difference in the solar wind speed. The proton pressure is the highest in the fastest CH wind, with a high initial proton temperature that decreases slowly. It is lower in the relatively slow LMBL wind, and the lowest in the slowest streamer wind. The proton temperature is quadratically correlated with the wind speed when scaled to the same distance. In contrast, the electron temperature shows no significant differences for different wind types or wind speeds, indicating more similar contributions from the electron pressure. The model gives reasonable locations for the sonic critical point, which is on average at 3.6-7.3 solar radii and can also extend to large distances when the proton temperature is extremely low, as in the LMBL wind. In addition to the thermal pressure, we raise the possibility that Alfv茅n waves may contribute to the solar wind acceleration, especially for the fast CH wind. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09328v2-abstract-full').style.display = 'none'; document.getElementById('2410.09328v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication by ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19870">arXiv:2409.19870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19870">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Frequency-shifted laser feedback interferometry in non-planar ring oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+R">Rong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+X">Xuezhen Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenxun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+G">Ghuobin Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+W">Weitong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Danqing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+C">Chunzhao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jie Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">Changlei Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Yeh%2C+H">Hsien-Chi Yeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19870v1-abstract-short" style="display: inline;"> Laser feedback interferometry (LFI) has a wide range of applications such as displacement, distance and velocity measurements. LFI has been realized in many types of lasers but has never been reported in non-planar ring oscillators (NPRO) to the best of our knowledge. In this letter, we present a new type of LFI based on an NPRO laser. The intrinsic resistance to optical feedback in NPROs is broke&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19870v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19870v1-abstract-full" style="display: none;"> Laser feedback interferometry (LFI) has a wide range of applications such as displacement, distance and velocity measurements. LFI has been realized in many types of lasers but has never been reported in non-planar ring oscillators (NPRO) to the best of our knowledge. In this letter, we present a new type of LFI based on an NPRO laser. The intrinsic resistance to optical feedback in NPROs is broken under weak-magnetic-intensity condition, where stable bidirectional lasing is initiated in the ring cavity. The interference signal, i.e., the beat of the bidirectional lasing is with frequency from a few hundred of kilohertz to a few megahertz which is mainly determined by the applied magnetic intensity in NPRO. Frequency-shifted LFI is thus constructed in NPRO without using acousto-optic modulators as mostly used in conventional LFI. A theoretical model is established to well describe the phenomenon. In the end, micro-vibrational measurements are demonstrated to prove the potential application, where vibration-detection amplitude limit below 30 pm, vibration-detection frequency range from a few kilohertz to a few hundred kilohertz is achieved. Benefiting from the characteristics of tiny footprint, ruggedized structure, long lifetime and ultralow-noise of NPRO lasers, NPRO-based LFI may find important applications in industry, scientific research, military and aerospace. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19870v1-abstract-full').style.display = 'none'; document.getElementById('2409.19870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15017">arXiv:2409.15017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15017">pdf</a>, <a href="https://arxiv.org/format/2409.15017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad7ead">10.3847/1538-4357/ad7ead <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Limb Observations of Global Solar Coronal Extreme-ultraviolet Wavefronts: The Inclination, Kinematics, Coupling with the Expanding Coronal Mass Ejections, and Connection with the Coronal Mass Ejection Driven Shocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huidong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+B">Bei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+D">Ying D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiaowei Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15017v3-abstract-short" style="display: inline;"> We select and investigate six global solar extreme-ultraviolet (EUV) wave events using data from the Solar Dynamics Observatory and the Solar and Heliospheric Observatory. These eruptions are all on the limb but recorded as halo coronal mass ejections (CMEs) because the CME-driven shocks have expanded laterally to the opposite side. With the limb observations avoiding the projection effect, we hav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15017v3-abstract-full').style.display = 'inline'; document.getElementById('2409.15017v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15017v3-abstract-full" style="display: none;"> We select and investigate six global solar extreme-ultraviolet (EUV) wave events using data from the Solar Dynamics Observatory and the Solar and Heliospheric Observatory. These eruptions are all on the limb but recorded as halo coronal mass ejections (CMEs) because the CME-driven shocks have expanded laterally to the opposite side. With the limb observations avoiding the projection effect, we have measured the inclination and speed of the EUV wavefront from 1.05 to 1.25 $R_\odot$. We also investigate the coupling and connection of the EUV wavefront with the CME boundary and the CME-driven shock, respectively. The major findings in the six events are: (1) the forward inclination of the primary and coronal-hole-transmitted EUV wavefronts is estimated, respectively, and the origins of these inclinations and their effects on the estimate of actual wavefronts speed are investigated; (2) the wavefront speed can be elevated by loop systems near the coronal base, and the average speed in the low corona has no clear correlation with the lateral expansion of the CME-driven shock in the high corona; (3) the fast magnetosonic Mach number of the wavefront is larger than unity from the coronal base; (4) the EUV wavefront is coupled with the CME driver throughout the propagation in two events; (5) after the EUV wavefront vanishes, the CME-driven shock continues traveling on the opposite side and disconnects from the EUV wavefront in four events. These results and their implications are discussed, which provide insight into the properties of global EUV waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15017v3-abstract-full').style.display = 'none'; document.getElementById('2409.15017v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 10 figures, 2 tables; accepted by ApJ; added necessary revisions according to proof</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 976 9 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13989">arXiv:2409.13989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13989">pdf</a>, <a href="https://arxiv.org/format/2409.13989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xuesong He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhi%2C+X">Xuyang Zhi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feiyang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Deguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Huadong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zimu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shijin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guoping Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guiquan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E">Enhong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13989v1-abstract-short" style="display: inline;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13989v1-abstract-full" style="display: none;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals. To this end, we propose \textbf{\textit{ChemEval}}, which provides a comprehensive assessment of the capabilities of LLMs across a wide range of chemical domain tasks. Specifically, ChemEval identified 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks which are informed by open-source data and the data meticulously crafted by chemical experts, ensuring that the tasks have practical value and can effectively evaluate the capabilities of LLMs. In the experiment, we evaluate 12 mainstream LLMs on ChemEval under zero-shot and few-shot learning contexts, which included carefully selected demonstration examples and carefully designed prompts. The results show that while general LLMs like GPT-4 and Claude-3.5 excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge. Conversely, specialized LLMs exhibit enhanced chemical competencies, albeit with reduced literary comprehension. This suggests that LLMs have significant potential for enhancement when tackling sophisticated tasks in the field of chemistry. We believe our work will facilitate the exploration of their potential to drive progress in chemistry. Our benchmark and analysis will be available at {\color{blue} \url{https://github.com/USTC-StarTeam/ChemEval}}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'none'; document.getElementById('2409.13989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11492">arXiv:2409.11492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11492">pdf</a>, <a href="https://arxiv.org/ps/2409.11492">ps</a>, <a href="https://arxiv.org/format/2409.11492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> A Pileup of Coronal Mass Ejections Produced the Largest Geomagnetic Storm in Two Decades </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+D">Ying D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huidong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiaowei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11492v1-abstract-short" style="display: inline;"> The largest geomagnetic storm in two decades occurred in 2024 May with a minimum $D_{\rm st}$ of $-412$ nT. We examine its solar and interplanetary origins by combining multipoint imaging and in situ observations. The source active region, NOAA AR 13664, exhibited extraordinary activity and produced successive halo eruptions, which were responsible for two complex ejecta observed at the Earth. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11492v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11492v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11492v1-abstract-full" style="display: none;"> The largest geomagnetic storm in two decades occurred in 2024 May with a minimum $D_{\rm st}$ of $-412$ nT. We examine its solar and interplanetary origins by combining multipoint imaging and in situ observations. The source active region, NOAA AR 13664, exhibited extraordinary activity and produced successive halo eruptions, which were responsible for two complex ejecta observed at the Earth. In situ measurements from STEREO A, which was $12.6^{\circ}$ apart, allow us to compare the ``geo-effectiveness&#34; at the Earth and STEREO A. We obtain key findings concerning the formation of solar superstorms and how mesoscale variations of coronal mass ejections affect geo-effectiveness: (1) the 2024 May storm supports the hypothesis that solar superstorms are ``perfect storms&#34; in nature, i.e., a combination of circumstances resulting in an event of an unusual magnitude; (2) the first complex ejecta, which caused the geomagnetic superstorm, shows considerable differences in the magnetic field and associated ``geo-effectiveness&#34; between the Earth and STEREO A, despite a mesoscale separation; and (3) two contrasting cases of complex ejecta are found in terms of the geo-effectiveness at the Earth, which is largely due to different magnetic field configurations within the same active region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11492v1-abstract-full').style.display = 'none'; document.getElementById('2409.11492v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09752">arXiv:2409.09752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09752">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Grafted AlGaAs/GeSn Optical Pumping Laser Operating up to 130 K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Vincent%2C+D">Daniel Vincent</a>, <a href="/search/physics?searchtype=author&amp;query=Acharya%2C+S">Sudip Acharya</a>, <a href="/search/physics?searchtype=author&amp;query=Ojo%2C+S">Solomon Ojo</a>, <a href="/search/physics?searchtype=author&amp;query=Abrand%2C+A">Alireza Abrand</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Haessly%2C+S">Samuel Haessly</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J">Jianping Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shining Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yiran Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Stanchu%2C+H">Hryhorii Stanchu</a>, <a href="/search/physics?searchtype=author&amp;query=Mawst%2C+L">Luke Mawst</a>, <a href="/search/physics?searchtype=author&amp;query=Claflin%2C+B">Bruce Claflin</a>, <a href="/search/physics?searchtype=author&amp;query=Mohseni%2C+P+K">Parsian K. Mohseni</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhenqiang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S">Shui-Qing Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09752v1-abstract-short" style="display: inline;"> Group IV GeSn double-heterostructure (DHS) lasers offer unique advantages of a direct bandgap and CMOS compatibility. However, further improvements in laser performance have been bottlenecked by limited junction properties of GeSn through conventional epitaxy and wafer bonding. This work leverages semiconductor grafting to synthesize and characterize optically pumped ridge edge-emitting lasers (EE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09752v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09752v1-abstract-full" style="display: none;"> Group IV GeSn double-heterostructure (DHS) lasers offer unique advantages of a direct bandgap and CMOS compatibility. However, further improvements in laser performance have been bottlenecked by limited junction properties of GeSn through conventional epitaxy and wafer bonding. This work leverages semiconductor grafting to synthesize and characterize optically pumped ridge edge-emitting lasers (EELs) with an AlGaAs nanomembrane (NM) transfer-printed onto an epitaxially grown GeSn substrate, interfaced by an ultrathin Al2O3 layer. The grafted AlGaAs/GeSn DHS lasers show a lasing threshold of 11.06 mW at 77 K and a maximum lasing temperature of 130 K. These results highlight the potential of the grafting technique for enhancing charge carrier and optical field confinements, paving the way for room-temperature electrically injected GeSn lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09752v1-abstract-full').style.display = 'none'; document.getElementById('2409.09752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures. Supplementary Information included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04283">arXiv:2409.04283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04283">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Water-induced high-performance quantum-dot light-emitting diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jin%2C+W">Wangxiao Jin</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S">Siyu He</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+X">Xiuyuan Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xitong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dijiong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+G">Guolong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y">Yanlei Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X">Xiaolin Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Y">Yiran Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Longjia Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+X">Xiongfeng Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+W">Wenjun Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W">Weiran Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X">Xiaoci Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yunzhou Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+Y">Yizheng Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04283v1-abstract-short" style="display: inline;"> Solution-processed light-emitting diodes (LEDs) are appealing for their potential in the low-cost fabrication of large-area devices. However, the limited performance of solution-processed blue LEDs, particularly their short operation lifetime, is hindering their practical use in display technologies. Here, we demonstrate that trace water in device, previously considered detrimental to most solutio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04283v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04283v1-abstract-full" style="display: none;"> Solution-processed light-emitting diodes (LEDs) are appealing for their potential in the low-cost fabrication of large-area devices. However, the limited performance of solution-processed blue LEDs, particularly their short operation lifetime, is hindering their practical use in display technologies. Here, we demonstrate that trace water in device, previously considered detrimental to most solution-processed LEDs, dramatically enhances the performance of quantum-dot LEDs (QLEDs). This breakthrough stems from our comprehensive mechanism investigations into the positive ageing phenomenon, a long-standing puzzle in the QLED field. Our findings reveal that water passivation on the surface of electron-transport layers, which are composed of zinc-oxide-based nanoparticles, improves charge transport and enhances exciton radiative recombination during device operation. Combined with the advanced top-emitting architecture, our blue QLEDs achieve a high current efficiency of 35.5 cd A-1, a blue index (colour coordinate corrected current efficiency) of over 470 cd A-1 CIEy-1, and unprecedented stability, with an extrapolated T95 lifetime (at an initial brightness of 1,000 cd m-2) of 287 hours. Our work may inspire further exploration into surface passivation of nanocrystalline functional layers, critical for the advancement of emerging solution-processed optoelectronic and electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04283v1-abstract-full').style.display = 'none'; document.getElementById('2409.04283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages,13 figures,1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01802">arXiv:2409.01802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01802">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Circularly-Symmetric Alternating Optical Vortex Lattices and their Focusing Characteristics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dadong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Li-Gang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01802v1-abstract-short" style="display: inline;"> Generating controllable optical vortex (OV) lattices (OVLs) with arbitrary-order topological charge (TC) and superior optical characteristics are highly desirable for various applications. Here, we report an experimental realization of circularly-symmetric OVLs with alternating positive and negative TCs of order +/-n, referred to the $n$th-order circularly-symmetric alternating OVL (CSAOVL). The f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01802v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01802v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01802v1-abstract-full" style="display: none;"> Generating controllable optical vortex (OV) lattices (OVLs) with arbitrary-order topological charge (TC) and superior optical characteristics are highly desirable for various applications. Here, we report an experimental realization of circularly-symmetric OVLs with alternating positive and negative TCs of order +/-n, referred to the $n$th-order circularly-symmetric alternating OVL (CSAOVL). The focusing fields of such CSAOVLs exhibit the very interesting patterns with a period of 4 for different n values, and their intensity and phase distributions can be regulated using the radial and azimuthal parameters. Particularly, the formed central bright spot in the focusing fields of those CSAOVLs with n equaling to a multiple of 4 is observed to be much smaller than a Gaussian spot. The results can promote significantly the exploration of structured OVLs and provide potential applications in particle manipulation, imaging, and the realization of complex interactions between optical lattices and microscope particles such as atoms and micro- or nano-particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01802v1-abstract-full').style.display = 'none'; document.getElementById('2409.01802v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 table and plus the supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01315">arXiv:2409.01315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01315">pdf</a>, <a href="https://arxiv.org/format/2409.01315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Multi-frequency Neural Born Iterative Method for Solving 2-D Inverse Scattering Problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Daoqi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shan%2C+T">Tao Shan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Maokun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shenheng Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01315v1-abstract-short" style="display: inline;"> In this work, we propose a deep learning-based imaging method for addressing the multi-frequency electromagnetic (EM) inverse scattering problem (ISP). By combining deep learning technology with EM physical laws, we have successfully developed a multi-frequency neural Born iterative method (NeuralBIM), guided by the principles of the single-frequency NeuralBIM. This method integrates multitask lea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01315v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01315v1-abstract-full" style="display: none;"> In this work, we propose a deep learning-based imaging method for addressing the multi-frequency electromagnetic (EM) inverse scattering problem (ISP). By combining deep learning technology with EM physical laws, we have successfully developed a multi-frequency neural Born iterative method (NeuralBIM), guided by the principles of the single-frequency NeuralBIM. This method integrates multitask learning techniques with NeuralBIM&#39;s efficient iterative inversion process to construct a robust multi-frequency Born iterative inversion model. During training, the model employs a multitask learning approach guided by homoscedastic uncertainty to adaptively allocate the weights of each frequency&#39;s data. Additionally, an unsupervised learning method, constrained by the physical laws of ISP, is used to train the multi-frequency NeuralBIM model, eliminating the need for contrast and total field data. The effectiveness of the multi-frequency NeuralBIM is validated through synthetic and experimental data, demonstrating improvements in accuracy and computational efficiency for solving ISP. Moreover, this method exhibits strong generalization capabilities and noise resistance. The multi-frequency NeuralBIM method explores a novel inversion method for multi-frequency EM data and provides an effective solution for the electromagnetic ISP of multi-frequency data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01315v1-abstract-full').style.display = 'none'; document.getElementById('2409.01315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35Q61 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.6; G.1.8; G.1.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05414">arXiv:2408.05414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05414">pdf</a>, <a href="https://arxiv.org/format/2408.05414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Physics-informed neural network for nonlinear dynamics of self-trapped necklace beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongshuai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yanxia Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+D">Dianyuan Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05414v1-abstract-short" style="display: inline;"> A physics-informed neural network (PINN) is used to produce a variety of self-trapped necklace solutions of the (2+1)-dimensional nonlinear Schr枚dinger/Gross-Pitaevskii equation. We elaborate the analysis for the existence and evolution of necklace patterns with integer, half-integer, and fractional reduced orbital angular momenta by means of PINN. The patterns exhibit phenomena similar to rotatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05414v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05414v1-abstract-full" style="display: none;"> A physics-informed neural network (PINN) is used to produce a variety of self-trapped necklace solutions of the (2+1)-dimensional nonlinear Schr枚dinger/Gross-Pitaevskii equation. We elaborate the analysis for the existence and evolution of necklace patterns with integer, half-integer, and fractional reduced orbital angular momenta by means of PINN. The patterns exhibit phenomena similar to rotation of rigid bodies and centrifugal force. Even though the necklaces slowly expand (or shrink), they preserve their structure in the course of the quasi-stable propagation over several diffraction lengths, which is completely different from the ordinary fast diffraction-dominated dynamics. By comparing different ingredients, including the training time, loss value and $\mathbb{L}_{2}$ error, PINN accurately predicts specific nonlinear dynamical properties of the evolving necklace patterns. Furthermore, we perform the data-driven discovery of parameters for both clean and perturbed training data, adding $1\%$ random noise in the latter case. The results reveal that PINN not only effectively emulates the solution of partial differential equations, but also offers applications for predicting the nonlinear dynamics of physically relevant types of patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05414v1-abstract-full').style.display = 'none'; document.getElementById('2408.05414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures, to be published in Optics Express</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02693">arXiv:2408.02693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02693">pdf</a>, <a href="https://arxiv.org/format/2408.02693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Diff-PIC: Revolutionizing Particle-In-Cell Nuclear Fusion Simulation with Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chunshu Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S">Shihui Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mingkai Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J+C">James Chenhao Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+M">Michael Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+C">Chuang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongfang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y+N">Ying Nian Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+T">Tong Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02693v3-abstract-short" style="display: inline;"> The rapid development of AI highlights the pressing need for sustainable energy, a critical global challenge for decades. Nuclear fusion, generally seen as an ultimate solution, has been the focus of intensive research for nearly a century, with investments reaching hundreds of billions of dollars. Recent advancements in Inertial Confinement Fusion have drawn significant attention to fusion resear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02693v3-abstract-full').style.display = 'inline'; document.getElementById('2408.02693v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02693v3-abstract-full" style="display: none;"> The rapid development of AI highlights the pressing need for sustainable energy, a critical global challenge for decades. Nuclear fusion, generally seen as an ultimate solution, has been the focus of intensive research for nearly a century, with investments reaching hundreds of billions of dollars. Recent advancements in Inertial Confinement Fusion have drawn significant attention to fusion research, in which Laser-Plasma Interaction (LPI) is critical for ensuring fusion stability and efficiency. However, the complexity of LPI upon fusion ignition makes analytical approaches impractical, leaving researchers depending on extremely computation-demanding Particle-in-Cell (PIC) simulations to generate data, presenting a significant bottleneck to advancing fusion research. In response, this work introduces Diff-PIC, a novel framework that leverages conditional diffusion models as a computationally efficient alternative to PIC simulations for generating high-fidelity scientific LPI data. In this work, physical patterns captured by PIC simulations are distilled into diffusion models associated with two tailored enhancements: (1) To effectively capture the complex relationships between physical parameters and corresponding outcomes, the parameters are encoded in a physically-informed manner. (2) To further enhance efficiency while maintaining high fidelity and physical validity, the rectified flow technique is employed to transform our model into a one-step conditional diffusion model. Experimental results show that Diff-PIC achieves 16,200$\times$ speedup compared to traditional PIC on a 100 picosecond simulation, with an average reduction in MAE / RMSE / FID of 59.21% / 57.15% / 39.46% with respect to two other SOTA data generation approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02693v3-abstract-full').style.display = 'none'; document.getElementById('2408.02693v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02187">arXiv:2408.02187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02187">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Noise Suppression for CRP Gathers Based on Self2Self with Dropout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Z">Zhenbin Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dawei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaokai Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wenchao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Juan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+L">Leiming Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02187v1-abstract-short" style="display: inline;"> Noise suppression in seismic data processing is a crucial research focus for enhancing subsequent imaging and reservoir prediction. Deep learning has shown promise in computer vision and holds significant potential for seismic data processing. However, supervised learning, which relies on clean labels to train network prediction models, faces challenges due to the unavailability of clean labels fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02187v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02187v1-abstract-full" style="display: none;"> Noise suppression in seismic data processing is a crucial research focus for enhancing subsequent imaging and reservoir prediction. Deep learning has shown promise in computer vision and holds significant potential for seismic data processing. However, supervised learning, which relies on clean labels to train network prediction models, faces challenges due to the unavailability of clean labels for seismic exploration data. In contrast, self-supervised learning substitutes traditional supervised learning with surrogate tasks by different auxiliary means, exploiting internal input data information. Inspired by Self2Self with Dropout, this paper presents a self-supervised learning-based noise suppression method called Self-Supervised Deep Convolutional Networks (SSDCN), specifically designed for Common Reflection Point (CRP) gathers. We utilize pairs of Bernoulli-sampled instances of the input noisy image as surrogate tasks to leverage its inherent structure. Furthermore, SSDCN incorporates geological knowledge through the normal moveout correction technique, which capitalizes on the approximately horizontal behavior and strong self-similarity observed in useful signal events within CRP gathers. By exploiting the discrepancy in self-similarity between the useful signals and noise in CRP gathers, SSDCN effectively extracts self-similarity features during training iterations, prioritizing the extraction of useful signals to achieve noise suppression. Experimental results on synthetic and actual CRP gathers demonstrate that SSDCN achieves high-fidelity noise suppression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02187v1-abstract-full').style.display = 'none'; document.getElementById('2408.02187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17800">arXiv:2407.17800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17800">pdf</a>, <a href="https://arxiv.org/format/2407.17800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of a LYSO Crystal Electromagnetic Calorimeter for DarkSHINE Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zhiyu Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qibin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jiyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Junfeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Danning Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Siyuan Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yufeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Haijun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yuming Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+R">Rui Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yulei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yunlong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+B">Baihong Zhou</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17800v2-abstract-short" style="display: inline;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17800v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17800v2-abstract-full" style="display: none;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consists of 21$\times$21$\times$11 LYSO crystals, each measuring 2.5$\times$2.5$\times$4 cm$^3$, arranged in a staggered layout to improve signal detection efficiency. A 4 GeV energy dynamic range was established to ensure accurate energy measurements without saturation, which is essential for background rejection and signal identification. A detailed digitization model was developed to simulate the scintillation, SiPM, and ADC behaviors, providing a more realistic representation of detector performance. Additionally, the study assessed radiation damage in the ECAL region, highlighting the necessity of radiation-resistant scintillators and silicon sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'none'; document.getElementById('2407.17800v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17360">arXiv:2407.17360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17360">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Si/AlN p-n heterojunction interfaced with ultrathin SiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+H+N">Haris Naeem Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Ding Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Jiarui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+R">Ranveer Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Mi%2C+Z">Zetian Mi</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zhenqiang Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17360v2-abstract-short" style="display: inline;"> Ultra-wide bandgap (UWBG) materials hold immense potential for high-power RF electronics and deep ultraviolet photonics. Among these, AlGaN emerges as a promising candidate, offering a tunable bandgap from 3.4 eV (GaN) to 6.1 eV (AlN) and remarkable material characteristics. However, achieving efficient p-type doping in high aluminum composition AlGaN remains a formidable challenge. This study pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17360v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17360v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17360v2-abstract-full" style="display: none;"> Ultra-wide bandgap (UWBG) materials hold immense potential for high-power RF electronics and deep ultraviolet photonics. Among these, AlGaN emerges as a promising candidate, offering a tunable bandgap from 3.4 eV (GaN) to 6.1 eV (AlN) and remarkable material characteristics. However, achieving efficient p-type doping in high aluminum composition AlGaN remains a formidable challenge. This study presents an alternative approach to address this issue by fabricating a p+ Si/n-AlN/n+ AlGaN heterojunction structure by following the semiconductor grafting technique. Atomic force microscopy (AFM) analysis revealed that the AlN and the nanomembrane surface exhibited a smooth topography with a roughness of 1.96 nm and 0.545 nm, respectively. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirmed a sharp and well-defined Si/AlN interface, with minimal defects and strong chemical bonding, crucial for efficient carrier transport. X-ray photoelectron spectroscopy (XPS) measurements demonstrated a type-I heterojunction with a valence band offset of 2.73 eV-2.84 eV and a conduction band offset of 2.22 eV -2.11 eV. The pn diode devices exhibited a linear current-voltage (I-V) characteristic, an ideality factor of 1.92, and a rectification ratio of 3.3E4, with a turn-on voltage of indicating effective p-n heterojunction. Temperature-dependent I-V measurements showed stable operation up to 90 C. The heterojunction&#39;s high-quality interface and electrical performance showcase its potential for advanced AlGaN-based optoelectronic and electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17360v2-abstract-full').style.display = 'none'; document.getElementById('2407.17360v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12450">arXiv:2407.12450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12450">pdf</a>, <a href="https://arxiv.org/format/2407.12450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Interim report for the International Muon Collider Collaboration (IMCC) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">C. Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adrian%2C+S">S. Adrian</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">R. Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">C. Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A9%2C+C">C. Aim茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aksoy%2C+A">A. Aksoy</a>, <a href="/search/physics?searchtype=author&amp;query=Alberghi%2C+G+L">G. L. Alberghi</a>, <a href="/search/physics?searchtype=author&amp;query=Alden%2C+S">S. Alden</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">N. Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">D. Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">P. Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">F. Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">R. Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">A. Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">P. Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">M. Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">J. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">A. Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+K+J">K. J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">L. Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Balli%2C+F">F. Balli</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">L. Bandiera</a>, <a href="/search/physics?searchtype=author&amp;query=Barbagallo%2C+C">C. Barbagallo</a> , et al. (362 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12450v1-abstract-short" style="display: inline;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&amp;D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12450v1-abstract-full" style="display: none;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&amp;D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accelerator complex, detectors and physics for a future muon collider. In 2023, European Commission support was obtained for a design study of a muon collider (MuCol) [3]. This project started on 1st March 2023, with work-packages aligned with the overall muon collider studies. In preparation of and during the 2021-22 U.S. Snowmass process, the muon collider project parameters, technical studies and physics performance studies were performed and presented in great detail. Recently, the P5 panel [4] in the U.S. recommended a muon collider R&amp;D, proposed to join the IMCC and envisages that the U.S. should prepare to host a muon collider, calling this their &#34;muon shot&#34;. In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been instrumental in studies of concepts and technologies for a muon collider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'none'; document.getElementById('2407.12450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document summarises the International Muon Collider Collaboration (IMCC) progress and status of the Muon Collider R&amp;D programme</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10613">arXiv:2407.10613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10613">pdf</a>, <a href="https://arxiv.org/format/2407.10613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Global destabilization of drift-tearing mode with coupling to discretized electron drift-wave instability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bao%2C+J">J. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W+L">W. L. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Z. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H+S">H. S. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D+J">D. J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+T">H. T. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">C. Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J+T">J. T. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">D. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10613v1-abstract-short" style="display: inline;"> The global linear behaviors of 2/1 DTM in the collisional regime are investigated based on a concisely resistive drift-MHD model. Besides DTM, extra normal modes including EDW and SAW are coupled together and destabilized in different parameter regimes by considering resistivity in this system. The EVP approach is applied for solving the eigenstate spectra with the distribution of all unstable sol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10613v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10613v1-abstract-full" style="display: none;"> The global linear behaviors of 2/1 DTM in the collisional regime are investigated based on a concisely resistive drift-MHD model. Besides DTM, extra normal modes including EDW and SAW are coupled together and destabilized in different parameter regimes by considering resistivity in this system. The EVP approach is applied for solving the eigenstate spectra with the distribution of all unstable solutions. It is found that in the small EDD frequency (omega_*e) regime, DTM growth rate agrees well with local theory that is reduced with increasing omega_*e. However, when omega_*e exceeds a critical threshold omega_*crit, the strongly linear coupling between DTM and other discretized EDW instabilities happens so that the free energies from current and pressure channels can be released together and thus enhance the DTM, of which growth rate increases with increasing omega_*e and deviates from local theory results qualitatively. Correspondingly, a cross-scale mode structure forms with mixed polarization, namely, phi perturbation is dominated by electrostatic polarized short-wavelength oscillation as EDW instability character, and A_para perturbation remains typical tearing mode solution of Alfvenic polarized macroscopic structure. Within omega_*e &gt; omega_*crit, the additional IDD causes phi oscillating structure to shift towards small density gradient domain, which cancels the extra drive from ion channel and thus DTM growth rate is insensitive to IDD frequency. Compared to EDD effects, the IDD effect alone with zero-omega_*e only leads to the stabilization of RTM that shows agreements between global simulation and local theory, which is no longer the condition for DTM regime. These results are useful for clarifying the DTM global properties with underlying physics mechanisms, which occurs in the regime of omega_*e &gt;&gt; gamma_c that is relevant to nowadays tokamak discharges with hot plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10613v1-abstract-full').style.display = 'none'; document.getElementById('2407.10613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figues</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10460">arXiv:2407.10460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10460">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> An electromagnetic-thermal-mechanical coupling model of dry-wound HTS coil based on T-A formulation with Neumann boundary condition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yunkai Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Sijian Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Donghui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yong%2C+H">Huadong Yong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Youhe Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10460v1-abstract-short" style="display: inline;"> The multi-physics coupling behaviours of HTS coils have now received much attention. In particular, the electromagnetic field, temperature field and mechanical deformation interact with each other during quench of high-field magnets. Accurate analysis of coupling behaviours becomes the key to designing magnets and quench protection. In this paper, a multi-physics coupling model is proposed based o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10460v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10460v1-abstract-full" style="display: none;"> The multi-physics coupling behaviours of HTS coils have now received much attention. In particular, the electromagnetic field, temperature field and mechanical deformation interact with each other during quench of high-field magnets. Accurate analysis of coupling behaviours becomes the key to designing magnets and quench protection. In this paper, a multi-physics coupling model is proposed based on T-A formulation with Neumann boundary conditions. It is convenient to analyse the effects of deformation and temperature on the electromagnetic field, as well as the redistribution of the current between the different layers during quench. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10460v1-abstract-full').style.display = 'none'; document.getElementById('2407.10460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01035">arXiv:2407.01035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01035">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.watres.2024.122541">10.1016/j.watres.2024.122541 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Off-site production of plasma-activated water for efficient sterilization: the crucial role of high-valence NOx and new chemical pathways </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zifeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiangyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shenghang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+R">Renwu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Mingyan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wanchun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zizhu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Luge Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jinkun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jishen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+L">Li Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Pei%2C+D">Dandan Pei</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dingxin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+M">Mingzhe Rong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01035v1-abstract-short" style="display: inline;"> Efficient sterilization of pathogens with cleaner methods is a critical concern for environmental disinfection and clinical anti-infective treatment. Plasma-activated water (PAW) is a promising alternative to chemical disinfectants and antibiotics for its strong sterilization ability and not inducing any acute toxicity, and only water and air are consumed during production. For more efficient wate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01035v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01035v1-abstract-full" style="display: none;"> Efficient sterilization of pathogens with cleaner methods is a critical concern for environmental disinfection and clinical anti-infective treatment. Plasma-activated water (PAW) is a promising alternative to chemical disinfectants and antibiotics for its strong sterilization ability and not inducing any acute toxicity, and only water and air are consumed during production. For more efficient water activation, plasma sources are commonly placed near or fully in contact with water as possible, but the risks of electrode corrosion and metal contamination of water threaten the safety and stability of PAW production. Herein, plasma-activated gas rich in high-valence NOx is generated by a hybrid plasma configuration and introduced into water for off-site PAW production. Plasma-generated O3 is found to dominate the gas-phase reactions for the formation of high-valence NOx. With the time-evolution of O3 concentration, gaseous NO3 radicals are produced behind N2O5 formation, but will be decomposed before N2O5 quenching. By decoupling the roles of gaseous NO3, N2O5, and O3 in the water activation, results show that short-lived aqueous species induced by gaseous NO3 radicals play the most crucial role in PAW sterilization, and the acidic environment induced by N2O5 is also essential. Moreover, SEM photographs and biomacromolecule leakage assays demonstrate that PAW disrupts the cell membranes of bacteria to achieve inactivation. In real-life applications, an integrated device for off-site PAW production with a yield of 2 L/h and a bactericidal efficiency of &gt;99.9% is developed. The PAW of 50mL produced in 3 minutes using this device is more effective in disinfection than 0.5% NaClO and 3% H2O2 with the same bacterial contact time. This work provides new avenues for efficient PAW production and deepens insights into the fundamental processes that govern the reactive chemistry in PAW sterilization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01035v1-abstract-full').style.display = 'none'; document.getElementById('2407.01035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15432">arXiv:2406.15432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15432">pdf</a>, <a href="https://arxiv.org/format/2406.15432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> A theoretical framework for multi-physics modeling of poro-visco-hyperelasticity-induced time-dependent fracture of blood clots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongxu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+N">Nhung Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+Q">Tinh Quoc Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Pocivavsek%2C+L">Luka Pocivavsek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15432v2-abstract-short" style="display: inline;"> Fracture resistance of blood clots plays a crucial role in physiological hemostasis and pathological thromboembolism. Although recent experimental and computational studies uncovered the poro-viscoelastic property of blood clots and its connection to the time-dependent deformation behavior, the effect of these time-dependent processes on clot fracture and the underlying time-dependent fracture mec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15432v2-abstract-full').style.display = 'inline'; document.getElementById('2406.15432v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15432v2-abstract-full" style="display: none;"> Fracture resistance of blood clots plays a crucial role in physiological hemostasis and pathological thromboembolism. Although recent experimental and computational studies uncovered the poro-viscoelastic property of blood clots and its connection to the time-dependent deformation behavior, the effect of these time-dependent processes on clot fracture and the underlying time-dependent fracture mechanisms are not well understood. This work aims to formulate a thermodynamically consistent, multi-physics theoretical framework for describing the time-dependent deformation and fracture of blood clots. This theory concurrently couples fluid transport through porous fibrin networks, non-linear visco-hyperelastic deformation of the solid skeleton, solid/fluid interactions, mechanical degradation of tissues, gradient enhancement of energy, and protein unfolding of fibrin molecules. The constitutive relations of tissue constituents and the governing equation of fluid transport are derived within the framework of porous media theory by extending non-linear continuum thermodynamics at large strains. A physics-based, compressible network model is developed for the fibrin network of blood clots to describe its mechanical response. An energy-based damage model is developed to predict the damage and fracture of blood clots, and a transient non-local characterization length function is proposed to limit the damage zone bandwidth. The proposed model is experimentally validated using single-edge cracked clot specimens with different constituents. The fracture of blood clots subject to different loading conditions is simulated, and the mechanisms of clot fracture are systematically analyzed. Computational results show that the viscoelasticity and fluid transport play essential roles in the fracture of blood clots under physiological loading. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15432v2-abstract-full').style.display = 'none'; document.getElementById('2406.15432v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13603">arXiv:2406.13603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13603">pdf</a>, <a href="https://arxiv.org/ps/2406.13603">ps</a>, <a href="https://arxiv.org/format/2406.13603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Formation of a Magnetic Cloud from the Merging of Two Successive Coronal Mass Ejections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+D">Ying D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+B">Bei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huidong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13603v1-abstract-short" style="display: inline;"> On 2022 March 28 two successive coronal mass ejections (CMEs) were observed by multiple spacecraft and resulted in a magnetic cloud (MC) at 1 AU. We investigate the propagation and interaction properties of the two CMEs correlated with the MC using coordinated multi-point remote sensing and in situ observations from Solar Orbiter, STEREO A, SOHO, and Wind. The first CME was triggered by a filament&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13603v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13603v1-abstract-full" style="display: none;"> On 2022 March 28 two successive coronal mass ejections (CMEs) were observed by multiple spacecraft and resulted in a magnetic cloud (MC) at 1 AU. We investigate the propagation and interaction properties of the two CMEs correlated with the MC using coordinated multi-point remote sensing and in situ observations from Solar Orbiter, STEREO A, SOHO, and Wind. The first CME was triggered by a filament eruption with a high inclination angle. Roughly 9 hr later, the second CME originating from the same active region erupted with a smaller tilt angle and faster speed compared to the first one. The second CME overtook the preceding CME and formed a merged front at approximately 75 \rsun{}, which developed into a complex ejecta at 1 AU. The descending speed and low proton temperature inside the complex ejecta suggest that the two CMEs have fully merged before reaching 1 AU, leading them to begin expanding rather than compressing against each other. The complex ejecta appears to have the magnetic field and plasma signatures of an MC, although there is a discontinuity in the magnetic field implying previous interactions. The cross section of the complex ejecta, reconstructed from in situ data using a Grad-Shafranov technique, exhibits a right--handed flux rope structure. These results highlight that an MC--like complex ejecta lacking interaction features could arise from the complete merging of two CMEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13603v1-abstract-full').style.display = 'none'; document.getElementById('2406.13603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11826">arXiv:2405.11826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11826">pdf</a>, <a href="https://arxiv.org/format/2405.11826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Data quality control system and long-term performance monitor of the LHAASO-KM2A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+W">W. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bukevich%2C+A+V">A. V. Bukevich</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+X">H. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">S. Chen</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11826v3-abstract-short" style="display: inline;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'inline'; document.getElementById('2405.11826v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11826v3-abstract-full" style="display: none;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'none'; document.getElementById('2405.11826v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07303">arXiv:2405.07303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07303">pdf</a>, <a href="https://arxiv.org/format/2405.07303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for solar axions by Primakoff effect with the full dataset of the CDEX-1B Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S+K">S. K. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07303v1-abstract-short" style="display: inline;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}&lt;2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07303v1-abstract-full" style="display: none;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}&lt;2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axions with mass up to 100 eV/$c^2$. Within the hadronic model of KSVZ, our results exclude axion mass $&gt;5.3~\rm{eV}/c^2$ at 95\% C.L. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'none'; document.getElementById('2405.07303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07148">arXiv:2405.07148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07148">pdf</a>, <a href="https://arxiv.org/format/2405.07148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Investigate the efficiency of incompressible flow simulations on CPUs and GPUs with BSAMR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dewen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S">Shuai He</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+H">Haoran Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Y">Yadong Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07148v1-abstract-short" style="display: inline;"> Adaptive mesh refinement (AMR) is a classical technique about local refinement in space where needed, thus effectively reducing computational costs for HPC-based physics simulations. Although AMR has been used for many years, little reproducible research discusses the impact of software-based parameters on block-structured AMR (BSAMR) efficiency and how to choose them. This article primarily does&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07148v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07148v1-abstract-full" style="display: none;"> Adaptive mesh refinement (AMR) is a classical technique about local refinement in space where needed, thus effectively reducing computational costs for HPC-based physics simulations. Although AMR has been used for many years, little reproducible research discusses the impact of software-based parameters on block-structured AMR (BSAMR) efficiency and how to choose them. This article primarily does parametric studies to investigate the computational efficiency of incompressible flows on a block-structured adaptive mesh. The parameters include refining block size, refining frequency, maximum level, and cycling method. A new projection skipping (PS) method is proposed, which brings insights about when and where the projections on coarser levels are safe to be omitted. We conduct extensive tests on different CPUs/GPUs for various 2D/3D incompressible flow cases, including bubble, RT instability, Taylor Green vortex, etc. Several valuable empirical conclusions are obtained to help guide simulations with BSAMR. Codes and all profiling data are available on GitHub. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07148v1-abstract-full').style.display = 'none'; document.getElementById('2405.07148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages include reference, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06274">arXiv:2405.06274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06274">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Hybrid thin-film lithium niobate micro-ring acousto-optic modulator for microwave-to-optical conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+L">Lei Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jiying Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+M">Meixun Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Huan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Wenfeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhiqiang Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuping Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Huilong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+S">Siqing Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shuixian Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+D">Daoxin Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhaohui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06274v1-abstract-short" style="display: inline;"> Highly efficient acousto-optic modulation plays a vital role in the microwave-to-optical conversion. Herein, we demonstrate a hybrid thin-film lithium niobate (TFLN) racetrack micro-ring acousto-optic modulator (AOM) implemented with low-loss chalcogenide (ChG) waveguide. By engineering the electrode configuration of the interdigital transducer, the double-arm micro-ring acousto-optic modulation i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06274v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06274v1-abstract-full" style="display: none;"> Highly efficient acousto-optic modulation plays a vital role in the microwave-to-optical conversion. Herein, we demonstrate a hybrid thin-film lithium niobate (TFLN) racetrack micro-ring acousto-optic modulator (AOM) implemented with low-loss chalcogenide (ChG) waveguide. By engineering the electrode configuration of the interdigital transducer, the double-arm micro-ring acousto-optic modulation is experimentally confirmed in nonsuspended ChG loaded TFLN waveguide platform. Varying the position of blue-detuned bias point, the half-wave-voltage-length product VpaiL of the hybrid TFLN micro-ring AOM is as small as 9 mVcm. Accordingly, the acousto-optic coupling strength is estimated to be 0.48 Hz s1/2 at acoustic frequency of 0.84 GHz. By analyzing the generation of phonon number from the piezoelectric transducer, the microwave-to-optical conversion efficiency is calculated to be 0.05%, approximately one order of magnitude larger than that of the state-of-the-art suspended counterpart. Efficient microwave-to-optical conversion thus provides new opportunities for low-power-consumption quantum information transduction using the TFLN-ChG hybrid piezo-optomechanical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06274v1-abstract-full').style.display = 'none'; document.getElementById('2405.06274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09793">arXiv:2404.09793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09793">pdf</a>, <a href="https://arxiv.org/format/2404.09793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First Search for Light Fermionic Dark Matter Absorption on Electrons Using Germanium Detector in CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+X">J. X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09793v1-abstract-short" style="display: inline;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09793v1-abstract-full" style="display: none;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present new constraints of cross section in the DM range of 0.1--10 keV/$c^2$ for vector and axial-vector interaction. The upper limit on the cross section is set to be $\rm 5.5\times10^{-46}~cm^2$ for vector interaction, and $\rm 1.8\times10^{-46}~cm^2$ for axial-vector interaction at DM mass of 5 keV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'none'; document.getElementById('2404.09793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07458">arXiv:2404.07458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07458">pdf</a>, <a href="https://arxiv.org/format/2404.07458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> I-mode Plasma Confinement Improvement by Real-time Lithium Injection and its Classification on EAST Tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+X+M">X. M. Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X+L">X. L. Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+A+D">A. D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+T">Y. T. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+G">G. Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H+Q">H. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+L+Q">L. Q. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+E+Z">E. Z. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zuo%2C+G+Z">G. Z. Zuo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">C. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+W+X">W. X. Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+L+T">L. T. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+F">S. F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+W">W. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+T+Q">T. Q. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Zang%2C+Q">Q. Zang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H+L">H. L. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">M. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H+D">H. D. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X+J">X. J. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">X. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+X+D">X. D. Lin</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07458v1-abstract-short" style="display: inline;"> I-mode is a promising regime for future fusion reactors due to the high energy confinement and the moderate particle confinement. However, the effect of lithium, which has been widely applied for particle recycling and impurity control, on I-mode plasma is still unclear. Recently, experiments of real-time lithium powder injection on I-mode plasma have been carried out in EAST Tokamak. It was found&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07458v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07458v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07458v1-abstract-full" style="display: none;"> I-mode is a promising regime for future fusion reactors due to the high energy confinement and the moderate particle confinement. However, the effect of lithium, which has been widely applied for particle recycling and impurity control, on I-mode plasma is still unclear. Recently, experiments of real-time lithium powder injection on I-mode plasma have been carried out in EAST Tokamak. It was found that the confinement performance of the I-mode can be improved by the lithium powder injection, which can strongly reduce electron turbulence (ET) and then trigger ion turbulence (IT). Four different regimes of I-mode have been identified in EAST. The Type I I-mode plasma is characterized by the weakly coherent mode (WCM) and the geodesic-acoustic mode (GAM). The Type II I-mode is featured as the WCM and the edge temperature ring oscillation (ETRO). The Type III I-mode corresponds to the plasma with the co-existence of ETRO, GAM, and WCM. The Type IV I-mode denotes the plasma with only WCM but without ETRO and GAM. It has been observed that WCM and ETRO are increased with lithium powder injection due to the reduction of ion and electron turbulence, and the enhancement of the pedestal electron temperature gradient. EAST experiments demonstrate that lithium powder injection is an effective tool for real-time control and confinement improvement of I-mode plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07458v1-abstract-full').style.display = 'none'; document.getElementById('2404.07458v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05557">arXiv:2404.05557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05557">pdf</a>, <a href="https://arxiv.org/format/2404.05557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Origin and Properties of the Near Subsonic Solar Wind Observed by Parker Solar Probe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+W">Wenshuai Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+D">Ying D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ran%2C+H">Hao Ran</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+Y">Yiming Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Stevens%2C+M+L">Michael L. Stevens</a>, <a href="/search/physics?searchtype=author&amp;query=Kasper%2C+J+C">Justin C. Kasper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05557v3-abstract-short" style="display: inline;"> We identify and examine the solar wind intervals near the sonic critical point (i.e., $M_S \sim 1$) observed by the Parker Solar Probe (PSP). The near subsonic wind intervals show similar properties: a low density, an extremely low velocity, a low proton temperature, and essentially no magnetic field deflections compared with the surrounding solar wind. The extremely low velocity is the primary co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05557v3-abstract-full').style.display = 'inline'; document.getElementById('2404.05557v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05557v3-abstract-full" style="display: none;"> We identify and examine the solar wind intervals near the sonic critical point (i.e., $M_S \sim 1$) observed by the Parker Solar Probe (PSP). The near subsonic wind intervals show similar properties: a low density, an extremely low velocity, a low proton temperature, and essentially no magnetic field deflections compared with the surrounding solar wind. The extremely low velocity is the primary contributor to the near crossing of the sonic critical point rather than the sound speed, which is roughly constant in these intervals. Source tracing with a potential field source surface (PFSS) model suggests that the near subsonic intervals all connect to the boundaries inside coronal holes. Heliospheric current sheet (HCS) and partial HCS crossings around the near subsonic intervals indicate that the near subsonic wind is a transition layer between the slow and fast wind. The above scenario is consistent with the nature of the near subsonic wind as a low Mach-number boundary layer (LMBL), which facilitates the crossing of the sonic critical point at 15-20 $R_S$. Moreover, we find a dependence of the amplitude of switchbacks on the radial sonic Mach number. Magnetic field deflections essentially disappear near the sonic critical point, which suggests that switchbacks originate from above the sonic critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05557v3-abstract-full').style.display = 'none'; document.getElementById('2404.05557v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20276">arXiv:2403.20276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20276">pdf</a>, <a href="https://arxiv.org/format/2403.20276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the Blazar-Boosted Dark Matter from the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+R">R. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20276v1-abstract-short" style="display: inline;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20276v1-abstract-full" style="display: none;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for DM masses between 10 keV and 1 GeV, and the results derived from BL Lacertae exclude DM-nucleon elastic scattering cross sections from $2.4\times 10^{-34}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for the same range of DM masses. The constraints correspond to the best sensitivities among solid-state detector experiments in the sub-MeV mass range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'none'; document.getElementById('2403.20276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20263">arXiv:2403.20263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20263">pdf</a>, <a href="https://arxiv.org/format/2403.20263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2446-2">10.1007/s11433-024-2446-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Dark Matter Particles from Evaporating Primordial Black Holes via Electron Scattering in the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20263v2-abstract-short" style="display: inline;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$&#34;) has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'inline'; document.getElementById('2403.20263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20263v2-abstract-full" style="display: none;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$&#34;) has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range from 1$\times$10$^{15}$ to 7$\times$10$^{16}$ g under the current limits of PBH abundance $f_{PBH}$. Using 205.4 kg$\cdot$day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory, we exclude the $蠂$--electron ($蠂$--$e$) elastic-scattering cross section $蟽_{蠂e} \sim 5\times10^{-29}$ cm$^2$ for $蠂$ with a mass $m_蠂\lesssim$ 0.1 keV from our results. With the higher radiation background but lower energy threshold (160 eV), CDEX-10 fill a part of the gap in the previous work. If ($m_蠂$, $蟽_{蠂e}$) can be determined in the future, DD experiments are expected to impose strong constraints on $f_{PBH}$ for large $M_{PBH}$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'none'; document.getElementById('2403.20263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 3 tables. Version updated to match SCPMA version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 101011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12347">arXiv:2403.12347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12347">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Octave-wide broadening of ultraviolet dispersive wave driven by soliton-splitting dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+T">Tiandao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jinyu Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhiyuan Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Y">Yue Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Donghan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+X">Xinshuo Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhengzheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+W">Wenbin He</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xin Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Pang%2C+M">Meng Pang</a>, <a href="/search/physics?searchtype=author&amp;query=Leng%2C+Y">Yuxin Leng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Ruxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12347v1-abstract-short" style="display: inline;"> Coherent dispersive wave emission, as an important phenomenon of soliton dynamics, manifests itself in multiple platforms of nonlinear optics from fibre waveguides to integrated photonics. Limited by its resonance nature, efficient generation of coherent dispersive wave with ultra-broad bandwidth has, however, proved difficult to realize. Here, we unveil a new regime of soliton dynamics in which t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12347v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12347v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12347v1-abstract-full" style="display: none;"> Coherent dispersive wave emission, as an important phenomenon of soliton dynamics, manifests itself in multiple platforms of nonlinear optics from fibre waveguides to integrated photonics. Limited by its resonance nature, efficient generation of coherent dispersive wave with ultra-broad bandwidth has, however, proved difficult to realize. Here, we unveil a new regime of soliton dynamics in which the dispersive wave emission process strongly couples with the splitting dynamics of the driving pulse. High-order dispersion and self-steepening effects, accumulated over soliton self-compression, break the system symmetry, giving rise to high-efficiency generation of coherent dispersive wave in the ultraviolet region. Simultaneously, asymmetric soliton splitting results in the appearance of a temporally-delayed ultrashort pulse with high intensity, overlapping and copropagating with the dispersive wave pulse. Intense cross-phase modulations lead to octave-wide broadening of the dispersive wave spectrum, covering 200 to 400 nm wavelengths. The highly-coherent, octave-wide ultraviolet spectrum, generated from the simple capillary fibre set-up, is in great demand for time-resolved spectroscopy, ultrafast electron microscopy and frequency metrology applications, and the critical role of the secondary pulse in this process reveals some new opportunities for all-optical control of versatile soliton dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12347v1-abstract-full').style.display = 'none'; document.getElementById('2403.12347v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06450">arXiv:2403.06450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06450">pdf</a>, <a href="https://arxiv.org/format/2403.06450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ad1e69">10.1088/1674-1056/ad1e69 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of Pseudo-Random Number Generators in QMC-SSE Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong-Xu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+W">Wei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xue-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06450v1-abstract-short" style="display: inline;"> In the quantum Monte Carlo (QMC) method, the Pseudo-Random Number Generator (PRNG) plays a crucial role in determining the computation time. However, the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process. Here, we systematically analyze the performance of the different PRNGs on the widely used QMC method -- stochastic series expansion (SSE) algorit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06450v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06450v1-abstract-full" style="display: none;"> In the quantum Monte Carlo (QMC) method, the Pseudo-Random Number Generator (PRNG) plays a crucial role in determining the computation time. However, the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process. Here, we systematically analyze the performance of the different PRNGs on the widely used QMC method -- stochastic series expansion (SSE) algorithm. To quantitatively compare them, we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms. After testing several representative observables of the Heisenberg model in one and two dimensions, we recommend using LCG as the best choice of PRNGs. Our work can not only help improve the performance of the SSE method but also shed light on the other Markov-chain-based numerical algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06450v1-abstract-full').style.display = 'none'; document.getElementById('2403.06450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure, almost published version, comments are welcome and more information at http://cqutp.org/users/xfzhang/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published in Chin. Phys. B 33, 037509 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01821">arXiv:2403.01821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01821">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Complete Interband Transitions for Non-Hermitian Spin-Orbit-Coupled Cold-Atom Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejian Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+C">Wai Chun Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+E">Entong Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chengdong He</a>, <a href="/search/physics?searchtype=author&amp;query=Pak%2C+K+K">Ka Kwan Pak</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+G">Gyu-Boong Jo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jensen Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01821v1-abstract-short" style="display: inline;"> Recently, synthetic spin-orbit coupling has been introduced into cold-atom systems for more flexible control of the Hamiltonian, which was further made time-varying through two-photon detuning to achieve dynamic control of the cold-atom state. While an intraband transition can be adiabatically obtained, a complete interband transition, rather than a superposition of different bands, obtained throu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01821v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01821v1-abstract-full" style="display: none;"> Recently, synthetic spin-orbit coupling has been introduced into cold-atom systems for more flexible control of the Hamiltonian, which was further made time-varying through two-photon detuning to achieve dynamic control of the cold-atom state. While an intraband transition can be adiabatically obtained, a complete interband transition, rather than a superposition of different bands, obtained through fast sweeping is usually guaranteed by having the positions of the initial and final states be far away from any band gap in the quasimomentum space. Here, by introducing an additional non-Hermitian parameter through an atom-loss contrast together with two-photon detuning as two controllable external parameters, both intraband and complete interband transitions can be achieved independent of the positions of the initial and final states. In addition, a point-source diagram approach in the 2D external parameter space is developed to visualize and predict the locations of any nonadiabatic transitions. This control protocol can have potential applications in quantum state control and quantum simulations using cold-atom systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01821v1-abstract-full').style.display = 'none'; document.getElementById('2403.01821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13447">arXiv:2402.13447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13447">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Inverse-designed Photonic Computing Core for Parallel Matrix-vector Multiplication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Kaiyuan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yunlong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+T">Tiange Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Deming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+S">Shuang Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Minming Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13447v1-abstract-short" style="display: inline;"> On-chip optical neural networks (ONNs) have recently emerged as an attractive hardware accelerator for deep learning applications, characterized by high computing density, low latency, and compact size. As these networks rely heavily on massive matrix multiplication, photonic computing cores for matrix computation become crucial components for on-chip ONNs, which harness the degree of freedoms (DO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13447v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13447v1-abstract-full" style="display: none;"> On-chip optical neural networks (ONNs) have recently emerged as an attractive hardware accelerator for deep learning applications, characterized by high computing density, low latency, and compact size. As these networks rely heavily on massive matrix multiplication, photonic computing cores for matrix computation become crucial components for on-chip ONNs, which harness the degree of freedoms (DOFs) in photonics including space, wavelength and mode dimensions. However, previous photonic computing devices have not fully utilized the orthogonality and the conversion characteristic of the waveguide modes, which as we show here, allows for the simultaneous parallel computing of several independent matrix-vector multiplications within the same device. In this work, we propose an inverse-designed photonic computing core for parallel matrix-vector multiplication. The matrices are implemented through a mode conversion process, where the input fundamental modes are simultaneously converted into several orthogonal output modes. Specifically, we target the complex-valued conversion matrices between input and output modes and inversely design the dielectric distribution within the device to achieve parallel matrix-vector multiplication. As a demonstration, the proposed photonic computing core supports simultaneous parallel computing of two independent matrix-vector multiplications, with an ultra-compact footprint and high computing precision (relative error &lt; 8%) at 1550 nm wavelength. The inverse-designed photonic computing devices hold great potential for high-performance on-chip ONNs with low energy consumption and high computing density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13447v1-abstract-full').style.display = 'none'; document.getElementById('2402.13447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05058">arXiv:2402.05058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05058">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A modified J model for efficiently calculating the electromagnetic fields of ReBCO no-insulation pancake coils using an explicit-implicit hybrid algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yunkai Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Donghui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shan%2C+S">Shouhong Shan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongke Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+X">Xiaohui Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhen%2C+S">Shuiliang Zhen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yong%2C+H">Huadong Yong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05058v1-abstract-short" style="display: inline;"> Rare-earth (Re)Ba2Cu3O7-x (ReBCO) no-insulation (NI) coil is widely concerned due to its excellent electromagnetic and thermal properties. However, the presence of the turn-to-turn shunts in NI coils leads to that complexity of numerical simulation is increased. In this paper, a modified J model is proposed and the corresponding explicit-implicit hybrid algorithm is designed to calculate NI coils.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05058v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05058v1-abstract-full" style="display: none;"> Rare-earth (Re)Ba2Cu3O7-x (ReBCO) no-insulation (NI) coil is widely concerned due to its excellent electromagnetic and thermal properties. However, the presence of the turn-to-turn shunts in NI coils leads to that complexity of numerical simulation is increased. In this paper, a modified J model is proposed and the corresponding explicit-implicit hybrid algorithm is designed to calculate NI coils. The numerical results are in good agreement with the experimental data and the circuit model. The homogenization model is also proposed to simulate the large-scale NI coils in the background magnets. The modified J model has good accuracy and fast calculation speed, which can also be used to solve electromagnetic fields of insulation coils efficiently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05058v1-abstract-full').style.display = 'none'; document.getElementById('2402.05058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04738">arXiv:2402.04738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04738">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Unveiling a crystal&#39;s entropy of disorder via electron diffraction. A statistical mechanics approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongxin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Elishav%2C+O">Oren Elishav</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+J">Jiarui Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Sakakibara%2C+M">Masaya Sakakibara</a>, <a href="/search/physics?searchtype=author&amp;query=Yamanouchi%2C+K">Kaoru Yamanouchi</a>, <a href="/search/physics?searchtype=author&amp;query=Hirshberg%2C+B">Barak Hirshberg</a>, <a href="/search/physics?searchtype=author&amp;query=Nakamuro%2C+T">Takayuki Nakamuro</a>, <a href="/search/physics?searchtype=author&amp;query=Nakamura%2C+E">Eiichi Nakamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04738v2-abstract-short" style="display: inline;"> Upon melting, the molecules in the crystal explore numerous configurations, reflecting an increase in disorder. The molar entropy of disorder can be defined by Bolzmann&#39;s formula dSd = Rln(Wd) where Wd is the increase in the number of microscopic states, so far inaccessible experimentally. We found that the Arrhenius frequency factor A of the electron diffraction signal decay provides Wd via an ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04738v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04738v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04738v2-abstract-full" style="display: none;"> Upon melting, the molecules in the crystal explore numerous configurations, reflecting an increase in disorder. The molar entropy of disorder can be defined by Bolzmann&#39;s formula dSd = Rln(Wd) where Wd is the increase in the number of microscopic states, so far inaccessible experimentally. We found that the Arrhenius frequency factor A of the electron diffraction signal decay provides Wd via an experimental equation A = AINTWd where AINT is an inelastic scattering cross-section. The method connects Clausius and Boltzmann experimentally and supplements the Clausius approach, being applicable to a femtogram quantity of thermally unstable and biomolecular crystals. The data also showed that crystal disordering and crystallization of melt are reciprocal, both governed by the entropy change, but manifesting in opposite directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04738v2-abstract-full').style.display = 'none'; document.getElementById('2402.04738v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16006">arXiv:2401.16006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16006">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Hyperbolic photonic topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+L">Lei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Lu He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Weixuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huizhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongning Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xue Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+K">Kaiyu Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yidong Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiangdong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16006v1-abstract-short" style="display: inline;"> Topological photonics provides a new degree of freedom to robustly control electromagnetic fields. To date, most of established topological states in photonics have been employed in Euclidean space. Motivated by unique properties of hyperbolic lattices, which are regular tessellations in non-Euclidean space with a constant negative curvature, the boundarydominated hyperbolic topological states hav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16006v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16006v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16006v1-abstract-full" style="display: none;"> Topological photonics provides a new degree of freedom to robustly control electromagnetic fields. To date, most of established topological states in photonics have been employed in Euclidean space. Motivated by unique properties of hyperbolic lattices, which are regular tessellations in non-Euclidean space with a constant negative curvature, the boundarydominated hyperbolic topological states have been proposed. However, limited by highly crowded boundary resonators and complicated site couplings, the hyperbolic topological insulator has only been experimentally constructed in electric circuits. How to achieve hyperbolic photonic topological insulators is still an open question. Here, we report the experimental realization of hyperbolic photonic topological insulators using coupled ring resonators on silicon chips. Boundary-dominated one-way edge states with pseudospindependent propagation directions have been observed. Furthermore, the robustness of edge states in hyperbolic photonic topological insulators is also verified. Our findings have potential applications in the field of designing high-efficient topological photonic devices with enhanced boundary responses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16006v1-abstract-full').style.display = 'none'; document.getElementById('2401.16006v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14506">arXiv:2401.14506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14506">pdf</a>, <a href="https://arxiv.org/format/2401.14506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Opposite variations for pore pressure on and off the fault during simulated earthquakes in the laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Brantut%2C+N">Nicolas Brantut</a>, <a href="/search/physics?searchtype=author&amp;query=Aben%2C+F+M">Franciscus M. Aben</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14506v1-abstract-short" style="display: inline;"> We measured the spatiotemporal evolution of pore pressure on- and off-fault during failure and slip in initially intact Westerly granite under triaxial conditions. The pore pressure perturbations in the fault zone and the surrounding bulk presented opposite signs upon shear failure, resulting in large pore pressure gradients over small distances (up to 10 MPa/cm). The on-fault pore pressure droppe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14506v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14506v1-abstract-full" style="display: none;"> We measured the spatiotemporal evolution of pore pressure on- and off-fault during failure and slip in initially intact Westerly granite under triaxial conditions. The pore pressure perturbations in the fault zone and the surrounding bulk presented opposite signs upon shear failure, resulting in large pore pressure gradients over small distances (up to 10 MPa/cm). The on-fault pore pressure dropped due to localised fault dilation associated with fracture coalescence and fault slip, and the off-fault pore pressure increased due to bulk compaction resulting from the closure of dilatant microcracks mostly parallel to the maximum compression axis. Using a simplified analytical pore pressure diffusion model, we were able to capture our observations qualitatively. A quantitative fit could not be achieved, likely due to model simplifications and experimental variability. We show that a reduction in bulk porosity and relatively undrained conditions during failure are necessary for the presence of the off-fault pore pressure elevation. Considering this phenomenon as a consequence of a main shock, we further show that off-fault pore pressure increase have the potential to trigger neighbouring fault instabilities. In nature, we expect the phenomenon of off-fault pore pressure increase to be most relevant to misoriented faults, where the pre-rupture stresses can be large enough to reach the dilatancy threshold in the wall rocks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14506v1-abstract-full').style.display = 'none'; document.getElementById('2401.14506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10457">arXiv:2401.10457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10457">pdf</a>, <a href="https://arxiv.org/format/2401.10457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> The Alpha-Proton Differential Flow in the Alfv茅nic Young Solar Wind: From Sub-Alfv茅nic to Super-Alfv茅nic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ran%2C+H">Hao Ran</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+D">Ying D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Mostafavi%2C+P">Parisa Mostafavi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10457v1-abstract-short" style="display: inline;"> Data obtained from Parker Solar Probe (PSP) since 2021 April have shown the first in situ observation of the solar corona, where the solar wind is formed and accelerated. Here we investigate the alpha-proton differential flow and its characteristics across the critical Alfv茅n surface (CAS) using data from PSP during encounters 8-10 and 12-13. We first show the positive correlation between the alph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10457v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10457v1-abstract-full" style="display: none;"> Data obtained from Parker Solar Probe (PSP) since 2021 April have shown the first in situ observation of the solar corona, where the solar wind is formed and accelerated. Here we investigate the alpha-proton differential flow and its characteristics across the critical Alfv茅n surface (CAS) using data from PSP during encounters 8-10 and 12-13. We first show the positive correlation between the alpha-proton differential velocity and the bulk solar wind speed at PSP encounter distances. Then we explore how the characteristics of the differential flow vary across the CAS and how they are affected by Alfv茅nic fluctuations including switchbacks. We find that the differential velocity below the CAS is generally smaller than that above the CAS, and the local Alfv茅n speed well limits the differential speed both above and below the CAS. The deviations from the alignment between the differential velocity and the local magnetic field vector are accompanied by large-amplitude Alfv茅nic fluctuations and decreases in the differential speed. Moreover, we observe that $V_{伪p}$ increases from $M_A &lt; 1$ to $M_A \simeq 2$ and then starts to decrease, which suggests that alphas may remain preferentially accelerated well above the CAS. Our results also reveal that in the sub-Alfv茅nic solar wind both protons and alphas show a strong correlation between their velocity fluctuations and magnetic field fluctuations, with a weaker correlation for alphas. In contrast, in the super-Alfv茅nic regime the correlation remains high for protons, but is reduced for alphas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10457v1-abstract-full').style.display = 'none'; document.getElementById('2401.10457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06449">arXiv:2401.06449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06449">pdf</a>, <a href="https://arxiv.org/ps/2401.06449">ps</a>, <a href="https://arxiv.org/format/2401.06449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct In Situ Measurements of a Fast Coronal Mass Ejection and Associated Structures in the Corona </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+D">Ying D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+B">Bei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ran%2C+H">Hao Ran</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huidong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Mingzhe Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiaowei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Stevens%2C+M+L">Michael L. Stevens</a>, <a href="/search/physics?searchtype=author&amp;query=Bale%2C+S+D">Stuart D. Bale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06449v1-abstract-short" style="display: inline;"> We report on the first direct in situ measurements of a fast coronal mass ejection (CME) and shock in the corona, which occurred on 2022 September 5. In situ measurements from the Parker Solar Probe (PSP) spacecraft near perihelion suggest two shocks with the second one decayed, which is consistent with more than one eruptions in coronagraph images. Despite a flank crossing, the measurements indic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06449v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06449v1-abstract-full" style="display: none;"> We report on the first direct in situ measurements of a fast coronal mass ejection (CME) and shock in the corona, which occurred on 2022 September 5. In situ measurements from the Parker Solar Probe (PSP) spacecraft near perihelion suggest two shocks with the second one decayed, which is consistent with more than one eruptions in coronagraph images. Despite a flank crossing, the measurements indicate unique features of the young ejecta: a plasma much hotter than the ambient medium suggestive of a hot solar source, and a large plasma $尾$ implying a highly non-force-free state and the importance of thermal pressure gradient for CME acceleration and expansion. Reconstruction of the global coronal magnetic fields shows a long-duration change in the heliospheric current sheet (HCS), and the observed field polarity reversals agree with a more warped HCS configuration. Reconnection signatures are observed inside an HCS crossing as deep as the sonic critical point. As the reconnection occurs in the sub-Alfv茅nic wind, the reconnected flux sunward of the reconnection site can close back to the Sun, which helps balance magnetic flux in the heliosphere. The nature of the sub-Alfv茅nic wind after the HCS crossing as a low Mach-number boundary layer (LMBL) leads to in situ measurements of the near subsonic plasma at a surprisingly large distance. Specifically, an LMBL may provide favorable conditions for the crossings of the sonic critical point in addition to the Alfv茅n surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06449v1-abstract-full').style.display = 'none'; document.getElementById('2401.06449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03014">arXiv:2312.03014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.03014">pdf</a>, <a href="https://arxiv.org/format/2312.03014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Foundation Models for Weather and Climate Data Understanding: A Comprehensive Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shengchao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+G">Guodong Long</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Jing Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dikai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chengqi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03014v1-abstract-short" style="display: inline;"> As artificial intelligence (AI) continues to rapidly evolve, the realm of Earth and atmospheric sciences is increasingly adopting data-driven models, powered by progressive developments in deep learning (DL). Specifically, DL techniques are extensively utilized to decode the chaotic and nonlinear aspects of Earth systems, and to address climate challenges via understanding weather and climate data&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03014v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03014v1-abstract-full" style="display: none;"> As artificial intelligence (AI) continues to rapidly evolve, the realm of Earth and atmospheric sciences is increasingly adopting data-driven models, powered by progressive developments in deep learning (DL). Specifically, DL techniques are extensively utilized to decode the chaotic and nonlinear aspects of Earth systems, and to address climate challenges via understanding weather and climate data. Cutting-edge performance on specific tasks within narrower spatio-temporal scales has been achieved recently through DL. The rise of large models, specifically large language models (LLMs), has enabled fine-tuning processes that yield remarkable outcomes across various downstream tasks, thereby propelling the advancement of general AI. However, we are still navigating the initial stages of crafting general AI for weather and climate. In this survey, we offer an exhaustive, timely overview of state-of-the-art AI methodologies specifically engineered for weather and climate data, with a special focus on time series and text data. Our primary coverage encompasses four critical aspects: types of weather and climate data, principal model architectures, model scopes and applications, and datasets for weather and climate. Furthermore, in relation to the creation and application of foundation models for weather and climate data understanding, we delve into the field&#39;s prevailing challenges, offer crucial insights, and propose detailed avenues for future research. This comprehensive approach equips practitioners with the requisite knowledge to make substantial progress in this domain. Our survey encapsulates the most recent breakthroughs in research on large, data-driven models for weather and climate data understanding, emphasizing robust foundations, current advancements, practical applications, crucial resources, and prospective research opportunities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03014v1-abstract-full').style.display = 'none'; document.getElementById('2312.03014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Ongoing work. Survey Paper. 35 pages, 2 figures, 4 tables. The first work to comprehensively and systematically summarize DL-based weather and climate data understanding, paving the way for the development of weather and climate foundation models</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+D&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10