CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 107 results for author: <span class="mathjax">Ren, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Ren%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ren, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ren%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ren, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21462">arXiv:2410.21462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21462">pdf</a>, <a href="https://arxiv.org/format/2410.21462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Constrained Transformer-Based Porous Media Generation to Spatial Distribution of Rock Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zihan Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Srinivasan%2C+S">Sanjay Srinivasan</a>, <a href="/search/physics?searchtype=author&amp;query=Crandall%2C+D">Dustin Crandall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21462v1-abstract-short" style="display: inline;"> Pore-scale modeling of rock images based on information in 3D micro-computed tomography data is crucial for studying complex subsurface processes such as CO2 and brine multiphase flow during Geologic Carbon Storage (GCS). While deep learning models can generate 3D rock microstructures that match static rock properties, they have two key limitations: they don&#39;t account for the spatial distribution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21462v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21462v1-abstract-full" style="display: none;"> Pore-scale modeling of rock images based on information in 3D micro-computed tomography data is crucial for studying complex subsurface processes such as CO2 and brine multiphase flow during Geologic Carbon Storage (GCS). While deep learning models can generate 3D rock microstructures that match static rock properties, they have two key limitations: they don&#39;t account for the spatial distribution of rock properties that can have an important influence on the flow and transport characteristics (such as permeability and relative permeability) of the rock and they generate structures below the representative elementary volume (REV) scale for those transport properties. Addressing these issues is crucial for building a consistent workflow between pore-scale analysis and field-scale modeling. To address these challenges, we propose a two-stage modeling framework that combines a Vector Quantized Variational Autoencoder (VQVAE) and a transformer model for spatial upscaling and arbitrary-size 3D porous media reconstruction in an autoregressive manner. The VQVAE first compresses and quantizes sub-volume training images into low-dimensional tokens, while we train a transformer to spatially assemble these tokens into larger images following specific spatial order. By employing a multi-token generation strategy, our approach preserves both sub-volume integrity and spatial relationships among these sub-image patches. We demonstrate the effectiveness of our multi-token transformer generation approach and validate it using real data from a test well, showcasing its potential to generate models for the porous media at the well scale using only a spatial porosity model. The interpolated representative porous media that reflect field-scale geological properties accurately model transport properties, including permeability and multiphase flow relative permeability of CO2 and brine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21462v1-abstract-full').style.display = 'none'; document.getElementById('2410.21462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16756">arXiv:2410.16756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16756">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast control of braiding topology in non-Hermitian metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuze Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+M">Mingyu Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Ziheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Fujia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q">Qiaolu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+T">Tian Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yihao Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16756v1-abstract-short" style="display: inline;"> The mathematical theory of braids, influential across scientific disciplines, has emerged as a compelling strategy for light manipulation. Existing approaches to creating braids in photonics, whether in momentum-space bandstructures or real-space fields, often face limitations associated with static nature of devices and lack of tunability. Here, we experimentally demonstrate ultrafast control of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16756v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16756v1-abstract-full" style="display: none;"> The mathematical theory of braids, influential across scientific disciplines, has emerged as a compelling strategy for light manipulation. Existing approaches to creating braids in photonics, whether in momentum-space bandstructures or real-space fields, often face limitations associated with static nature of devices and lack of tunability. Here, we experimentally demonstrate ultrafast control of eigen-spectrum braids of Jones matrices within mere picoseconds, in reconfigurable non-Hermitian metasurfaces. The Jones matrices of the metasurface exhibit a complex eigen-spectrum that braids in the three-dimensional eigenvalue-frequency space, thereby creating arbitrary elements within the two-string braid group, B2. By exciting the photoconductive semiconductor terahertz metasurface with a femtosecond infrared pulse, we achieve ultrafast switching of the braids, transitioning from the Solomon link to either the Trefoil knot or Hopf link. Our approach serves as a pivotal tool for elucidating non-trivial topology of braids and studying ultrafast topological optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16756v1-abstract-full').style.display = 'none'; document.getElementById('2410.16756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12556">arXiv:2409.12556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12556">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Increased resistance to photooxidation in Dion-Jacobson lead halide perovskites -- implication for perovskite device stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhilin Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Ov%C4%8Dar%2C+J">Juraj Ov膷ar</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+T+L">Tik Lun Leung</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yanling He</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+X">Xinshun Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Mo%2C+H">Hongbo Mo</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zhengtian Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Bing%2C+J">Jueming Bing</a>, <a href="/search/physics?searchtype=author&amp;query=Bucknall%2C+M+P">Martin P. Bucknall</a>, <a href="/search/physics?searchtype=author&amp;query=Grisanti%2C+L">Luca Grisanti</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+M+U">Muhammad Umair Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+P">Peng Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+T">Tao Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Syed%2C+A+A">Ali Ashger Syed</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">Jingyang Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jingbo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Abdul-Khaleed"> Abdul-Khaleed</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+W">Wenting Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Gangyue Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+A+M+C">Alan Man Ching Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Ho-Baillie%2C+A+W+Y">Anita W. Y. Ho-Baillie</a>, <a href="/search/physics?searchtype=author&amp;query=Lon%C4%8Dari%C4%87%2C+I">Ivor Lon膷ari膰</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12556v1-abstract-short" style="display: inline;"> 2D metal halide perovskites have enabled significant stability improvements in perovskite devices, particularly in resistance to moisture. However, some 2D perovskites are even more susceptible to photooxidation compared to 3D perovskites. This is particularly true for more commonly investigated Ruddlesden-Popper (RP) perovskites that exhibit increased susceptibility to photoinduced degradation co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12556v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12556v1-abstract-full" style="display: none;"> 2D metal halide perovskites have enabled significant stability improvements in perovskite devices, particularly in resistance to moisture. However, some 2D perovskites are even more susceptible to photooxidation compared to 3D perovskites. This is particularly true for more commonly investigated Ruddlesden-Popper (RP) perovskites that exhibit increased susceptibility to photoinduced degradation compared to Dion-Jacobson (DJ) perovskites. Comparisons between different RP and DJ perovskites reveal that this phenomenon cannot be explained by commonly proposed differences in superoxide ion generation, interlayer distance and lattice structural rigidity differences. Instead, the resistance to photooxidation of DJ perovskites can be attributed to decreased likelihood of double deprotonation events (compared to single deprotonation events in RP perovskites) required for the loss of organic cations and the perovskite decomposition. Consequently, DJ perovskites are less susceptible to oxidative degradation (both photo- and electrochemically induced), which leads to improved operational stability of solar cells based on these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12556v1-abstract-full').style.display = 'none'; document.getElementById('2409.12556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 19 pages, 6 figures, supplementary information: 62 pages, 47 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05361">arXiv:2409.05361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05361">pdf</a>, <a href="https://arxiv.org/format/2409.05361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Apparatus for producing single strontium atoms in an optical tweezer array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wen%2C+K">Kai Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Huijin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X">Xu Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejian Ren</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chengdong He</a>, <a href="/search/physics?searchtype=author&amp;query=Hajiyev%2C+E">Elnur Hajiyev</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+P+T+F">Preston Tsz Fung Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+G">Gyu-Boong Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05361v1-abstract-short" style="display: inline;"> We outline an experimental setup for efficiently preparing a tweezer array of $^{88}$Sr atoms. Our setup uses permanent magnets to maintain a steady-state two-dimensional magneto-optical trap (MOT) which results in a loading rate of up to $10^{8}$ s$^{-1}$ at 5 mK for the three-dimensional blue MOT. This enables us to trap $2\times10^{6}$ $^{88}$Sr atoms at 2 $渭$K in a narrow-line red MOT with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05361v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05361v1-abstract-full" style="display: none;"> We outline an experimental setup for efficiently preparing a tweezer array of $^{88}$Sr atoms. Our setup uses permanent magnets to maintain a steady-state two-dimensional magneto-optical trap (MOT) which results in a loading rate of up to $10^{8}$ s$^{-1}$ at 5 mK for the three-dimensional blue MOT. This enables us to trap $2\times10^{6}$ $^{88}$Sr atoms at 2 $渭$K in a narrow-line red MOT with the $^{1}$S$_{0}$ $\rightarrow$ $^{3}$P$_{1}$ intercombination transition at 689 nm. With the Sisyphus cooling and pairwise loss processes, single atoms are trapped and imaged in 813 nm optical tweezers, exhibiting a lifetime of 2.5 minutes. We further investigate the survival fraction of a single atom in the tweezers and characterize the optical tweezer array using a release and recapture technique. Our platform paves the way for potential applications in atomic clocks, precision measurements, and quantum simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05361v1-abstract-full').style.display = 'none'; document.getElementById('2409.05361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14054">arXiv:2408.14054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14054">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> One-dimensional Photonic Crystal Structure Enhanced External-Magnetic-Field-Free Spintronic Terahertz High-Field Emitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zehao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiahui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shaojie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Mingxuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+C">Chunyan Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiaojun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14054v1-abstract-short" style="display: inline;"> Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, cost-effectiveness, large-size and ease for-integration have become one of the most promising alter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14054v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14054v1-abstract-full" style="display: none;"> Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, cost-effectiveness, large-size and ease for-integration have become one of the most promising alternative for the next generation of intense THz sources. Nevertheless, the typical W| Co20Fe60B20 | Pt necessitates an external-magnetic-field to saturate magnetization for stable operation, limiting its scalability for achieving higher THz field with uniform distribution over larger sample areas. Here we demonstrate the methodologies of enhancing the high-field THz radiation of external-magnetic-field-free IrMn3 | Co20Fe60B20 |W heterostructure via optimizing the substrate with superior thermal conductivity and integrating a one-dimensional photonic crystal (PC) structure to maximize the radiation efficiency. Under the excitation of a Ti: sapphire femtosecond laser amplifier with central wavelength of 800 nm, pulse duration of 35 fs, and repetition rate of 1 kHz and maximum single pulse energy of 5.5 mJ, we successfully generate intense THz radiation with focal peak electric field up to 1.1 MV/cm with frequency range covering 0.1-10 THz without external-magnetic-fields. These high-field STEs will also enable other applications such as ultra-broadband high-field THz spectroscopy and polarization-based large-size strong-field THz imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14054v1-abstract-full').style.display = 'none'; document.getElementById('2408.14054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21320">arXiv:2407.21320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21320">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> MetaOpenFOAM: an LLM-based multi-agent framework for CFD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuxuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21320v2-abstract-short" style="display: inline;"> Remarkable progress has been made in automated problem solving through societies of agents based on large language models (LLMs). Computational fluid dynamics (CFD), as a complex problem, presents unique challenges in automated simulations that require sophisticated solutions. MetaOpenFOAM, as a novel multi-agent collaborations framework, aims to complete CFD simulation tasks with only natural lan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21320v2-abstract-full').style.display = 'inline'; document.getElementById('2407.21320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21320v2-abstract-full" style="display: none;"> Remarkable progress has been made in automated problem solving through societies of agents based on large language models (LLMs). Computational fluid dynamics (CFD), as a complex problem, presents unique challenges in automated simulations that require sophisticated solutions. MetaOpenFOAM, as a novel multi-agent collaborations framework, aims to complete CFD simulation tasks with only natural language as input. These simulation tasks include mesh pre-processing, simulation and so on. MetaOpenFOAM harnesses the power of MetaGPT&#39;s assembly line paradigm, which assigns diverse roles to various agents, efficiently breaking down complex CFD tasks into manageable subtasks. Langchain further complements MetaOpenFOAM by integrating Retrieval-Augmented Generation (RAG) technology, which enhances the framework&#39;s ability by integrating a searchable database of OpenFOAM tutorials for LLMs. Tests on a benchmark for natural language-based CFD solver, consisting of eight CFD simulation tasks, have shown that MetaOpenFOAM achieved a high pass rate per test (85%), with each test case costing only $0.22 on average. The eight CFD simulation tasks encompass a range of multidimensional flow problems, covering compressible and incompressible flows with different physical processes. This demonstrates the capability to automate CFD simulations using only natural language input, iteratively correcting errors to achieve the desired simulations. An ablation study was conducted to verify the necessity of each component in the multi-agent system and the RAG technology. A sensitivity study on the randomness of LLM showed that LLM with low randomness can obtain more stable and accurate results. Additionally, MetaOpenFOAM owns the ability to identify and modify key parameters in user requirements, and excels in correcting bugs when failure match occur,which demonstrates the generalization of MetaOpenFOAM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21320v2-abstract-full').style.display = 'none'; document.getElementById('2407.21320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages,11 figures, 11 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16425">arXiv:2407.16425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16425">pdf</a>, <a href="https://arxiv.org/format/2407.16425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> COLOSS: Complex-scaled Optical and couLOmb Scattering Solver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Junzhe Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+J">Jin Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhongzhou Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16425v1-abstract-short" style="display: inline;"> We introduce COLOSS, a program designed to address the scattering problem using a bound-state technique known as complex scaling. In this method, the oscillatory boundary conditions of the wave function are transformed into exponentially decaying ones, accommodating the long-range Coulomb interaction. The program implements the Woods-Saxon form of a realistic optical potential, with all potential&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16425v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16425v1-abstract-full" style="display: none;"> We introduce COLOSS, a program designed to address the scattering problem using a bound-state technique known as complex scaling. In this method, the oscillatory boundary conditions of the wave function are transformed into exponentially decaying ones, accommodating the long-range Coulomb interaction. The program implements the Woods-Saxon form of a realistic optical potential, with all potential parameters included in a well-designed input format for ease of use. This design offers users straightforward access to compute \(S\)-matrices and cross-sections of the scattering process. We provide thorough discussions on the precision of Lagrange functions and their benefits in evaluating matrix elements. Additionally, COLOSS incorporates two distinct rotation methods, making it adaptable to potentials without analytical expressions. Comparative results demonstrate that COLOSS achieves high accuracy when compared with the direct integration method, Numerov, underscoring its utility and effectiveness in scattering calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16425v1-abstract-full').style.display = 'none'; document.getElementById('2407.16425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11665">arXiv:2407.11665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11665">pdf</a>, <a href="https://arxiv.org/format/2407.11665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-reservoir enhanced loading of tweezer atom arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X">Xu Yan</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chengdong He</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+K">Kai Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejian Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+P+T+F">Preston Tsz Fung Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Hajiyev%2C+E">Elnur Hajiyev</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+G">Gyu-Boong Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11665v1-abstract-short" style="display: inline;"> We introduce a species-independent method for improved loading into a single-atom optical tweezer array, utilizing iterative loading with multiple reservoir tweezers. Demonstrated with dual wavelength tweezer arrays of $^{88}$Sr atoms, our approach achieves a 96$\%$ loading rate after four reload cycles. This method can significantly enhance existing tweezer rearrangement protocols, potentially re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11665v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11665v1-abstract-full" style="display: none;"> We introduce a species-independent method for improved loading into a single-atom optical tweezer array, utilizing iterative loading with multiple reservoir tweezers. Demonstrated with dual wavelength tweezer arrays of $^{88}$Sr atoms, our approach achieves a 96$\%$ loading rate after four reload cycles. This method can significantly enhance existing tweezer rearrangement protocols, potentially reducing iteration time and optical power consumption, thereby enabling a larger number of atoms in a quantum logic device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11665v1-abstract-full').style.display = 'none'; document.getElementById('2407.11665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures ; supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03201">arXiv:2407.03201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03201">pdf</a>, <a href="https://arxiv.org/format/2407.03201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s44306-024-00035-2">10.1038/s44306-024-00035-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wideband Coherent Microwave Conversion via Magnon Nonlinearity in Hybrid Quantum System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jiahao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zheyu Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+M+Y">Man Yin Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+W+K">Wai Kuen Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Ho%2C+K+O">Kin On Ho</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiangrong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03201v1-abstract-short" style="display: inline;"> Frequency conversion is a widely realized physical process in nonlinear systems of optics and electronics. As an emerging nonlinear platform, spintronic devices have the potential to achieve stronger frequency conversion. Here, we demonstrated a microwave frequency conversion method in a hybrid quantum system, integrating nitrogen-vacancy centers in diamond with magnetic thin film CoFeB. We achiev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03201v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03201v1-abstract-full" style="display: none;"> Frequency conversion is a widely realized physical process in nonlinear systems of optics and electronics. As an emerging nonlinear platform, spintronic devices have the potential to achieve stronger frequency conversion. Here, we demonstrated a microwave frequency conversion method in a hybrid quantum system, integrating nitrogen-vacancy centers in diamond with magnetic thin film CoFeB. We achieve a conversion bandwidth ranging from 0.1 to 12GHz, presenting an up to $\mathrm{25^{th}}$ order frequency conversion and further display the application of this method for frequency detection and qubits coherent control. Distinct from traditional frequency conversion techniques based on nonlinear electric response, our approach employs nonlinear magnetic response in spintronic devices. The nonlinearity, originating from the symmetry breaking such as domain walls in magnetic films, presents that our method can be adapted to hybrid systems of other spintronic devices and spin qubits, expanding the application scope of spintronic devices and providing a promising on-chip platform for coupling quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03201v1-abstract-full').style.display = 'none'; document.getElementById('2407.03201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Spintronics volume 2, Article number: 30 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17638">arXiv:2406.17638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17638">pdf</a>, <a href="https://arxiv.org/format/2406.17638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards Hypernuclei from Nuclear Lattice Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hildenbrand%2C+F">Fabian Hildenbrand</a>, <a href="/search/physics?searchtype=author&amp;query=Elhatisari%2C+S">Serdar Elhatisari</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhengxue Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17638v2-abstract-short" style="display: inline;"> Understanding the strong interactions within baryonic systems beyond the up and down quark sector is pivotal for a comprehensive description of nuclear forces. This study explores the interactions involving hyperons, particularly the $螞$ particle, within the framework of nuclear lattice effective field theory (NLEFT). By incorporating $螞$ hyperons into the NLEFT framework, we extend our investigat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17638v2-abstract-full').style.display = 'inline'; document.getElementById('2406.17638v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17638v2-abstract-full" style="display: none;"> Understanding the strong interactions within baryonic systems beyond the up and down quark sector is pivotal for a comprehensive description of nuclear forces. This study explores the interactions involving hyperons, particularly the $螞$ particle, within the framework of nuclear lattice effective field theory (NLEFT). By incorporating $螞$ hyperons into the NLEFT framework, we extend our investigation into the $S = -1$ sector, allowing us to probe the third dimension of the nuclear chart. We calculate the $螞$ separation energies ($B_螞$) of hypernuclei up to the medium-mass region, providing valuable insights into hyperon-nucleon ($YN$) and hyperon-nucleon-nucleon ($YNN$) interactions. Our calculations employ high-fidelity chiral interactions at N${}^3$LO for nucleons and extend it to $螞$ hyperons with leading-order S-wave $YN$ interactions as well as $YNN$ forces constrained only by the $A=4,5$ systems. Our results contribute to a deeper understanding of the SU(3) symmetry breaking and establish a foundation for future improvements in hypernuclear calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17638v2-abstract-full').style.display = 'none'; document.getElementById('2406.17638v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, 9 tables, typos corrected, extended discussion, final version accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01821">arXiv:2403.01821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01821">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Complete Interband Transitions for Non-Hermitian Spin-Orbit-Coupled Cold-Atom Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejian Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+W+C">Wai Chun Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+E">Entong Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chengdong He</a>, <a href="/search/physics?searchtype=author&amp;query=Pak%2C+K+K">Ka Kwan Pak</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+G">Gyu-Boong Jo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jensen Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01821v1-abstract-short" style="display: inline;"> Recently, synthetic spin-orbit coupling has been introduced into cold-atom systems for more flexible control of the Hamiltonian, which was further made time-varying through two-photon detuning to achieve dynamic control of the cold-atom state. While an intraband transition can be adiabatically obtained, a complete interband transition, rather than a superposition of different bands, obtained throu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01821v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01821v1-abstract-full" style="display: none;"> Recently, synthetic spin-orbit coupling has been introduced into cold-atom systems for more flexible control of the Hamiltonian, which was further made time-varying through two-photon detuning to achieve dynamic control of the cold-atom state. While an intraband transition can be adiabatically obtained, a complete interband transition, rather than a superposition of different bands, obtained through fast sweeping is usually guaranteed by having the positions of the initial and final states be far away from any band gap in the quasimomentum space. Here, by introducing an additional non-Hermitian parameter through an atom-loss contrast together with two-photon detuning as two controllable external parameters, both intraband and complete interband transitions can be achieved independent of the positions of the initial and final states. In addition, a point-source diagram approach in the 2D external parameter space is developed to visualize and predict the locations of any nonadiabatic transitions. This control protocol can have potential applications in quantum state control and quantum simulations using cold-atom systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01821v1-abstract-full').style.display = 'none'; document.getElementById('2403.01821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06014">arXiv:2401.06014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06014">pdf</a>, <a href="https://arxiv.org/format/2401.06014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Creation of a tweezer array for cold atoms utilizing a generative neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejian Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X">Xu Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+K">Kai Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Huijin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hajiyev%2C+E">Elnur Hajiyev</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chengdong He</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+G">Gyu-Boong Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06014v2-abstract-short" style="display: inline;"> Optical tweezers have become essential tools for dynamically manipulating objects, ranging from microspheres or biological molecules to neutral atoms. In this study, we demonstrate the creation of tweezer arrays using a generative neural network, which allows for the trapping of neutral atoms with tunable atom arrays. We have successfully loaded cold strontium atoms into various optical tweezer pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06014v2-abstract-full').style.display = 'inline'; document.getElementById('2401.06014v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06014v2-abstract-full" style="display: none;"> Optical tweezers have become essential tools for dynamically manipulating objects, ranging from microspheres or biological molecules to neutral atoms. In this study, we demonstrate the creation of tweezer arrays using a generative neural network, which allows for the trapping of neutral atoms with tunable atom arrays. We have successfully loaded cold strontium atoms into various optical tweezer patterns generated by a spatial light modulator (SLM) integrated with generative models. Our approach shortens the process time to control the SLM wtih minimal time delay, eliminating the need for repeated re-optimization of the hologram for the SLM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06014v2-abstract-full').style.display = 'none'; document.getElementById('2401.06014v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01861">arXiv:2312.01861</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01861">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Versatile manipulation of light- and dark- seeking particles on demand </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zheng Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chenchen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+W">Wenxiang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jianping Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01861v1-abstract-short" style="display: inline;"> We propose a novel approach to enable the agile manipulation of light- and dark-seeking particles. Our approach involves introducing a two-curvilinear perfect optical vortex beam (TC-POVB) generated by superimposing a pair of curved beams. The TC-POVB exhibits the property of a perfect optical vortex, which means that its size remains constant regardless of its topological charge. Additionally, ea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01861v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01861v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01861v1-abstract-full" style="display: none;"> We propose a novel approach to enable the agile manipulation of light- and dark-seeking particles. Our approach involves introducing a two-curvilinear perfect optical vortex beam (TC-POVB) generated by superimposing a pair of curved beams. The TC-POVB exhibits the property of a perfect optical vortex, which means that its size remains constant regardless of its topological charge. Additionally, each curve of the TC-POVB can support a distinct orbital flow density (OFD). This enables the application of torques to produce a dark channel that satisfies the requirements for particle size and drives the revolution or rotation motion of the confined dark-seeking particles. To demonstrate the effectiveness of our approach, we manipulate light- and dark-seeking particles experimentally, making them perform various curvilinear trajectories simultaneously, including moving, revolving, and rotating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01861v1-abstract-full').style.display = 'none'; document.getElementById('2312.01861v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04342">arXiv:2309.04342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04342">pdf</a>, <a href="https://arxiv.org/format/2309.04342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Revealing the preference for correcting separated aberrations in joint optic-image design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jingwen Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shiqi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenguan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+J">Jiapu Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Huajun Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yueting Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04342v3-abstract-short" style="display: inline;"> The joint design of the optical system and the downstream algorithm is a challenging and promising task. Due to the demand for balancing the global optimal of imaging systems and the computational cost of physical simulation, existing methods cannot achieve efficient joint design of complex systems such as smartphones and drones. In this work, starting from the perspective of the optical design, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04342v3-abstract-full').style.display = 'inline'; document.getElementById('2309.04342v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04342v3-abstract-full" style="display: none;"> The joint design of the optical system and the downstream algorithm is a challenging and promising task. Due to the demand for balancing the global optimal of imaging systems and the computational cost of physical simulation, existing methods cannot achieve efficient joint design of complex systems such as smartphones and drones. In this work, starting from the perspective of the optical design, we characterize the optics with separated aberrations. Additionally, to bridge the hardware and software without gradients, an image simulation system is presented to reproduce the genuine imaging procedure of lenses with large field-of-views. As for aberration correction, we propose a network to perceive and correct the spatially varying aberrations and validate its superiority over state-of-the-art methods. Comprehensive experiments reveal that the preference for correcting separated aberrations in joint design is as follows: longitudinal chromatic aberration, lateral chromatic aberration, spherical aberration, field curvature, and coma, with astigmatism coming last. Drawing from the preference, a 10% reduction in the total track length of the consumer-level mobile phone lens module is accomplished. Moreover, this procedure spares more space for manufacturing deviations, realizing extreme-quality enhancement of computational photography. The optimization paradigm provides innovative insight into the practical joint design of sophisticated optical systems and post-processing algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04342v3-abstract-full').style.display = 'none'; document.getElementById('2309.04342v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03116">arXiv:2309.03116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03116">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Strong magnon-magnon coupling in an ultralow damping all-magnetic-insulator heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+Y">Yuzan Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J">Jingming Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xuezhao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheung%2C+S+K">Shun Kong Cheung</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zheyu Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+R">Ruizi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Christy%2C+A">Andrew Christy</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zehan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Nugraha%2C+F+P">Ferris Prima Nugraha</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xi-Xiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+C+W">Chi Wah Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03116v1-abstract-short" style="display: inline;"> Magnetic insulators such as yttrium iron garnets (YIGs) are of paramount importance for spin-wave or magnonic devices as their ultralow damping enables ultralow power dissipation that is free of Joule heating, exotic magnon quantum state, and coherent coupling to other wave excitations. Magnetic insulator heterostructures bestow superior structural and magnetic properties and house immense design&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03116v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03116v1-abstract-full" style="display: none;"> Magnetic insulators such as yttrium iron garnets (YIGs) are of paramount importance for spin-wave or magnonic devices as their ultralow damping enables ultralow power dissipation that is free of Joule heating, exotic magnon quantum state, and coherent coupling to other wave excitations. Magnetic insulator heterostructures bestow superior structural and magnetic properties and house immense design space thanks to the strong and engineerable exchange interaction between individual layers. To fully unleash their potential, realizing low damping and strong exchange coupling simultaneously is critical, which often requires high quality interface. Here, we show that such a demand is realized in an all-insulator thulium iron garnet (TmIG)/YIG bilayer system. The ultralow dissipation rates in both YIG and TmIG, along with their significant spin-spin interaction at the interface, enable strong and coherent magnon-magnon coupling with a benchmarking cooperativity value larger than the conventional ferromagnetic metal-based heterostructures. The coupling strength can be tuned by varying the magnetic insulator layer thickness and magnon modes, which is consistent with analytical calculations and micromagnetic simulations. Our results demonstrate TmIG/YIG as a novel platform for investigating hybrid magnonic phenomena and open opportunities in magnon devices comprising all-insulator heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03116v1-abstract-full').style.display = 'none'; document.getElementById('2309.03116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 18 figures, and 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15428">arXiv:2308.15428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15428">pdf</a>, <a href="https://arxiv.org/ps/2308.15428">ps</a>, <a href="https://arxiv.org/format/2308.15428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-biased magnetoelectric Ni/LiNbO3/Ni for body embedded electronic energy harvesters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T">Tianwen Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Becerra%2C+L">Lo茂c Becerra</a>, <a href="/search/physics?searchtype=author&amp;query=Gensbittel%2C+A">Aur茅lie Gensbittel</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yunlin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Talleb%2C+H">Hakeim Talleb</a>, <a href="/search/physics?searchtype=author&amp;query=Salas%2C+U+A">Ulises Acevedo Salas</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuoxiang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Marangolo%2C+M">Massimiliano Marangolo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15428v1-abstract-short" style="display: inline;"> In this study, we present the fabrication and characterization of Ni/LiNbO3/Ni trilayers using RF sputtering. These trilayers exhibit thick Ni layers (10 microns) and excellent adherence to the substrate, enabling high magnetoelectric coefficients. By engineering the magnetic anisotropy of Nickel through anisotropic thermal residual stress induced during fabrication, and by selecting a carefully c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15428v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15428v1-abstract-full" style="display: none;"> In this study, we present the fabrication and characterization of Ni/LiNbO3/Ni trilayers using RF sputtering. These trilayers exhibit thick Ni layers (10 microns) and excellent adherence to the substrate, enabling high magnetoelectric coefficients. By engineering the magnetic anisotropy of Nickel through anisotropic thermal residual stress induced during fabrication, and by selecting a carefully chosen cut angle for the LiNbO3 substrate, we achieved a self-biased behavior. We demonstrate that these trilayers can power medical implant devices remotely using a small AC magnetic field excitation, thereby eliminating the need for a DC magnetic field and bulky magnetic field sources. The results highlight the potential of these trilayers for the wireless and non-invasive powering of medical implants. This work contributes to the advancement of magnetoelectric materials and their applications in healthcare technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15428v1-abstract-full').style.display = 'none'; document.getElementById('2308.15428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10050">arXiv:2308.10050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10050">pdf</a>, <a href="https://arxiv.org/ps/2308.10050">ps</a>, <a href="https://arxiv.org/format/2308.10050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Complex unit lattice cell for low-emittance storage ring light source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhiliang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Z">Zhenghe Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+P">Penghui Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Hongliang Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10050v1-abstract-short" style="display: inline;"> To achieve the true diffraction-limited emittance of a storage ring light source, such as ~10 pm.rad for medium-energy electron beams, within a limited circumference, it is generally necessary to increase the number of bending magnets in a multi-bend achromat (MBA) lattice, as in the future upgrade plan of MAX IV with a 19BA replacing the current 7BA. However, this comes with extremely strong quad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10050v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10050v1-abstract-full" style="display: none;"> To achieve the true diffraction-limited emittance of a storage ring light source, such as ~10 pm.rad for medium-energy electron beams, within a limited circumference, it is generally necessary to increase the number of bending magnets in a multi-bend achromat (MBA) lattice, as in the future upgrade plan of MAX IV with a 19BA replacing the current 7BA. However, this comes with extremely strong quadrupole and sextupole magnets and very limited space. The former can result in very small vacuum chambers, increasing the coupling impedance and thus enhancing the beam instabilities, and the latter can pose significant challenges in accommodating the necessary diagnostics and vacuum components. Inspired by the hybrid MBA lattice concept, in this paper we propose a new unit lattice concept called the complex unit lattice cell, which can reduce the magnet strengths and also save space. The complex unit cell is numerically studied using a simplified model. Then as an example, a 17BA lattice based on the complex unit cell concept is designed for a 3 GeV storage ring light source with a circumference of 537.6 m, which has a natural emittance of 19.3 pm.rad. This 17BA lattice is also compared with the 17BA lattice designed with conventional unit cells to showcase the benefits of the complex unit cell concept. This 17BA lattice also suggests a new type of MBA lattice, which we call the MBA lattice with semi-distributed chromatic correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10050v1-abstract-full').style.display = 'none'; document.getElementById('2308.10050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00942">arXiv:2308.00942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00942">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-023-01340-x">10.1038/s41377-023-01340-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the use of deep learning for phase recovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Kaiqiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+L">Li Song</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chutian Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhenbo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+G">Guangyuan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Dou%2C+J">Jiazhen Dou</a>, <a href="/search/physics?searchtype=author&amp;query=Di%2C+J">Jianglei Di</a>, <a href="/search/physics?searchtype=author&amp;query=Barbastathis%2C+G">George Barbastathis</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+R">Renjie Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianlin Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lam%2C+E+Y">Edmund Y. Lam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00942v1-abstract-short" style="display: inline;"> Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In recent years, deep learning (DL), often imple&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00942v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00942v1-abstract-full" style="display: none;"> Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In recent years, deep learning (DL), often implemented through deep neural networks, has provided unprecedented support for computational imaging, leading to more efficient solutions for various PR problems. In this review, we first briefly introduce conventional methods for PR. Then, we review how DL provides support for PR from the following three stages, namely, pre-processing, in-processing, and post-processing. We also review how DL is used in phase image processing. Finally, we summarize the work in DL for PR and outlook on how to better use DL to improve the reliability and efficiency in PR. Furthermore, we present a live-updating resource (https://github.com/kqwang/phase-recovery) for readers to learn more about PR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00942v1-abstract-full').style.display = 'none'; document.getElementById('2308.00942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">82 pages, 32 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light: Science &amp; Applications 13, 4 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05371">arXiv:2307.05371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05371">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.3c01416">10.1021/acs.jpclett.3c01416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with UV-Vis: A Case Study for Cubic Boron Arsenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Hong Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+F">Fengjiao Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+S">Shuai Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+C">Chengzhen Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Hadjiev%2C+V">Viktor Hadjiev</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+F">Fei Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinfeng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+F">Feng Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhiming Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhifeng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+J">Jiming Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05371v1-abstract-short" style="display: inline;"> The Tauc plot method is widely used to determine the bandgap of semiconductors via UV-visible optical spectroscopy due to its simplicity and perceived accuracy. However, the actual Tauc plot often exhibits significant baseline absorption below the expected bandgap, leading to discrepancies in the calculated bandgap depending on whether the linear fit is extrapolated to zero or non-zero baseline. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05371v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05371v1-abstract-full" style="display: none;"> The Tauc plot method is widely used to determine the bandgap of semiconductors via UV-visible optical spectroscopy due to its simplicity and perceived accuracy. However, the actual Tauc plot often exhibits significant baseline absorption below the expected bandgap, leading to discrepancies in the calculated bandgap depending on whether the linear fit is extrapolated to zero or non-zero baseline. In this study, we show that both extrapolation methods can produce significant errors by simulating Tauc plots with varying levels of baseline absorption. To address this issue, we propose a new method that involves idealizing the absorption spectrum by removing its baseline before constructing the Tauc plot. Experimental verification of this method using a gallium phosphide (GaP) wafer with intentionally introduced baseline absorptions shows promising results. Furthermore, we apply this new method to cubic boron arsenide (c-BAs) and resolve discrepancies in c-BAs bandgap values reported by different groups, obtaining a converging bandgap of 1.835 eV based on both previous and new transmission spectra. The method is applicable to both indirect and direct bandgap semiconductors, regardless of whether the absorption spectrum is measured via transmission or diffuse reflectance, will become essential to obtain accurate values of their bandgaps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05371v1-abstract-full').style.display = 'none'; document.getElementById('2307.05371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00275">arXiv:2307.00275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00275">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Terahertz spin currents in nanoscale spatial resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Jiahua Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+M">Mingcong Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Sai Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiaqi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+H">Hongting Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shaojie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiaojun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00275v1-abstract-short" style="display: inline;"> The ability to generate, detect, and control coherent terahertz (THz) spin currents with femtosecond temporal and nanoscale spatial resolution has significant ramifications. The diffraction limit of concentrated THz radiation, which has a wavelength range of 5 渭m-1.5 mm, has impeded the accumulation of nanodomain data of magnetic structures and spintronic dynamics despite its potential benefits. C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00275v1-abstract-full').style.display = 'inline'; document.getElementById('2307.00275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00275v1-abstract-full" style="display: none;"> The ability to generate, detect, and control coherent terahertz (THz) spin currents with femtosecond temporal and nanoscale spatial resolution has significant ramifications. The diffraction limit of concentrated THz radiation, which has a wavelength range of 5 渭m-1.5 mm, has impeded the accumulation of nanodomain data of magnetic structures and spintronic dynamics despite its potential benefits. Contemporary spintronic optoelectronic apparatuses with dimensions 100 nm presented a challenge for researchers due to this restriction. In this study, we demonstrate the use of spintronic THz emission nanoscopy (STEN), which allows for the efficient injection and precise coherent detection of ultrafast THz spin currents at the nanoscale. Furthermore, STEN is an effective method that does not require invasion for characterising and etching nanoscale spintronic heterostructures. The cohesive integration of nanophotonics, nanospintronics, and THz-nano technology into a single platform is poised to accelerate the development of high-frequency spintronic optoelectronic nanodevices and their revolutionary technical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00275v1-abstract-full').style.display = 'none'; document.getElementById('2307.00275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10747">arXiv:2306.10747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10747">pdf</a>, <a href="https://arxiv.org/format/2306.10747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A dynamic combustion model for supersonic turbulent combustion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+J">Jian An</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nana Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10747v1-abstract-short" style="display: inline;"> Supersonic combustion plays a vital role in various applications, including scramjets, dual-mode ramjets, and pulse detonation engines. However, the flame characteristics can vary significantly, depending on the application. To model supersonic combustion, large eddy simulation coupled with a partially stirred reactor (PaSR) is commonly used. This method assumes that reactions occur at turbulent f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10747v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10747v1-abstract-full" style="display: none;"> Supersonic combustion plays a vital role in various applications, including scramjets, dual-mode ramjets, and pulse detonation engines. However, the flame characteristics can vary significantly, depending on the application. To model supersonic combustion, large eddy simulation coupled with a partially stirred reactor (PaSR) is commonly used. This method assumes that reactions occur at turbulent fine flame structure in a computational cell, making it less effective for flames governed by not only turbulent mixing but also homogenous autoignition, which is common under supersonic flow. To address this limitation, this study proposes a novel dynamic combustion model to enable more versatile modeling of supersonic flames. The model utilizes a two-delta probability density function, which represents the sub-grid composition variation and models the filtered sub-grid reaction rate. The corresponding weights are dynamically modeled based on the level of cell composition inhomogeneity. The new dynamic model is tested in a supersonic combustion case study with a strut-cavity flame holder. Results demonstrate that the new dynamic model can properly recover the limits of supersonic flames that are primarily governed by homogenous autoignition and turbulent mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10747v1-abstract-full').style.display = 'none'; document.getElementById('2306.10747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10662">arXiv:2306.10662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10662">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> An investigation of subgrid mixing timescale modelling in LES of supersonic turbulent flames </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+J">Jian An</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+J">Jieli Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Zhanga%2C+J">Jian Zhanga</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10662v1-abstract-short" style="display: inline;"> The predictive numerical simulation of supersonic turbulent combustion, in which the turbulent intensity is high and the fuel/air mixture is near the flammability limit, remains challenging. An investigation of subgrid mixing timescale modelling in large eddy simulation (LES) of supersonic turbulent flames was carried out in this study. In the Partially Stirred Reactor (PaSR) combustion model, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10662v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10662v1-abstract-full" style="display: none;"> The predictive numerical simulation of supersonic turbulent combustion, in which the turbulent intensity is high and the fuel/air mixture is near the flammability limit, remains challenging. An investigation of subgrid mixing timescale modelling in large eddy simulation (LES) of supersonic turbulent flames was carried out in this study. In the Partially Stirred Reactor (PaSR) combustion model, the dissipation-rate-based models estimate the mixing timescale by modeling dissipation rate, which may lead to incorrect estimation of mixing times at different grid resolutions. To solve the existing problem, a gradient-based mixing timescale estimation method was proposed. Subsequently, different approaches of subgrid mixing timescale in PaSR are compared and validated on a supersonic mixing layer, including a dissipation-rate-based model and the proposed gradient-based model. Sensitivity analysis of the model constants and grid resolution was also studied and compared with detailed DNS data. The results highlight the importance of mixing models to correctly handle turbulence/chemistry interactions in supersonic combustion and clearly indicate the proposed model can correctly estimate the subgrid mixing timescale at coarse grids and decline rapidly as it tends to DNS limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10662v1-abstract-full').style.display = 'none'; document.getElementById('2306.10662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12208">arXiv:2305.12208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12208">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> New orbital angular momentum multiplexing strategy: beyond the capacity limit of free-space optical communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+W">Wenxiang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+X">Xian Long</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zheng Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jianping Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12208v1-abstract-short" style="display: inline;"> Free space optical (FSO) communication can exploit mode-division multiplexing using orthogonal spatial modes of Laguerre Gaussian beams, such as orbital angular momentum (OAM) modes, wherein OAM multiplexing offers potentially infinite information capacity due to the arbitrary quantization of OAM. Combined with polarization-division multiplexing and wavelength-division multiplexing, OAM multiplexi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12208v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12208v1-abstract-full" style="display: none;"> Free space optical (FSO) communication can exploit mode-division multiplexing using orthogonal spatial modes of Laguerre Gaussian beams, such as orbital angular momentum (OAM) modes, wherein OAM multiplexing offers potentially infinite information capacity due to the arbitrary quantization of OAM. Combined with polarization-division multiplexing and wavelength-division multiplexing, OAM multiplexing is a promising solution for future capacity demands. However, the practically addressable number of spatial subchannels is severely limited by the receiver size and the rapid beam expansion with increasing mode order and communication distance. Based on the intrinsic and distinctive property that the divergent degree of the innermost ring of a Laguerre-Gaussian beam is significantly slower than that of the beam cross-section during propagation, here we propose theoretically and demonstrate experimentally a novel communication strategy innermost ring dominated OAM (IRD-OAM) multiplexingn that can overcome these limits and achieve up to 1238% capacity of conventional OAM multiplexing in a canonical FSO link system without any additional hardware modifications. Alternatively, our strategy can also enable longer communication distance (403% of that for conventional OAM multiplexing), or smaller receiver (26.9% in size compared to conventional OAM multiplexing), while maintaining the same capacity as conventional OAM multiplexing. Our work will hasten the development of future FSO communications with ultra high capacity, ultra long distance and highly-integrated devices for deep space, near Earth and Earth surface applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12208v1-abstract-full').style.display = 'none'; document.getElementById('2305.12208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages,6 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10515">arXiv:2305.10515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10515">pdf</a>, <a href="https://arxiv.org/format/2305.10515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05065">10.1088/1748-0221/19/05/P05065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LHCb upgrade I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/physics?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/physics?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Achard%2C+C">C. Achard</a>, <a href="/search/physics?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/physics?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afsharnia%2C+H">H. Afsharnia</a>, <a href="/search/physics?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/physics?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/physics?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/physics?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Albero%2C+A+A">A. Alfonso Albero</a>, <a href="/search/physics?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/physics?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/physics?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/physics?searchtype=author&amp;query=Amato%2C+S">S. Amato</a> , et al. (1298 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10515v2-abstract-short" style="display: inline;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their select&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10515v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10515v2-abstract-full" style="display: none;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment&#39;s tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment&#39;s software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'none'; document.getElementById('2305.10515v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2022-002.html (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-DP-2022-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03631">arXiv:2305.03631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03631">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Capping Layer Effects on $Sb_{2}S_{3}$-based Reconfigurable Photonic Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Teo%2C+T+Y">Ting Yu Teo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+N">Nanxi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tobing%2C+L+Y+M">Landobasa Y. M. Tobing</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+A+S+K">Amy S. K. Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+D+K+T">Doris K. T. Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhihao Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+C">Chengkuo Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+L+Y+T">Lennon Y. T. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Simpson%2C+R+E">Robert Edward Simpson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03631v1-abstract-short" style="display: inline;"> Capping layers are essential for protecting phase change materials (PCMs) used in non-volatile photonics technologies. This work demonstrates how $(ZnS)_{0.8}-(SiO_2)_{0.2}$ caps radically influence the performance of $Sb_{2}S_{3}$ and Ag-doped $Sb_{2}S_{3}$ integrated photonic devices. We found that at least 30 nm of capping material is necessary to protect the material from Sulfur loss. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03631v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03631v1-abstract-full" style="display: none;"> Capping layers are essential for protecting phase change materials (PCMs) used in non-volatile photonics technologies. This work demonstrates how $(ZnS)_{0.8}-(SiO_2)_{0.2}$ caps radically influence the performance of $Sb_{2}S_{3}$ and Ag-doped $Sb_{2}S_{3}$ integrated photonic devices. We found that at least 30 nm of capping material is necessary to protect the material from Sulfur loss. However, adding this cap affects the crystallization temperatures of the two PCMs in different ways. The crystallization temperature of $Sb_{2}S_{3}$ and Ag-doped $Sb_{2}S_{3}$ increased and decreased respectively, which is attributed to interfacial energy differences. Capped and uncapped Ag-doped $Sb_{2}S_{3}$ microring resonator (MRR) devices were fabricated and measured to understand how the cap affects the device performance. Surprisingly, the resonant frequency of the MRR exhibited a larger red-shift upon crystallization for the capped PCMs. This effect was due to the cap increasing the modal overlap with the PCM layer. Caps can, therefore, be used to provide a greater optical phase shift per unit length, thus reducing the overall footprint of these programmable devices. Overall, we conclude that caps on PCMs are not just useful for stabilizing the PCM layer, but can also be used to tune the PCM crystallization temperature and reduce device footprint. Moreover, the capping layer can be exploited to enhance light-matter interactions with the PCM element. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03631v1-abstract-full').style.display = 'none'; document.getElementById('2305.03631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06521">arXiv:2304.06521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06521">pdf</a>, <a href="https://arxiv.org/format/2304.06521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-Contact Force-Sensing Guitar for Training and Therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhiyi Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Hsu%2C+C">Chun-Cheng Hsu</a>, <a href="/search/physics?searchtype=author&amp;query=Kocabalkanli%2C+C">Can Kocabalkanli</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+K">Khanh Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Iordachita%2C+I+I">Iulian I. Iordachita</a>, <a href="/search/physics?searchtype=author&amp;query=Bastepe-Gray%2C+S">Serap Bastepe-Gray</a>, <a href="/search/physics?searchtype=author&amp;query=Scott%2C+N">Nathan Scott</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06521v1-abstract-short" style="display: inline;"> Hand injuries from repetitive high-strain and physical overload can hamper or even end a musician&#39;s career. To help musicians develop safer playing habits, we developed a multiplecontact force-sensing array that can substitute as a guitar fretboard. The system consists of 72 individual force sensing modules, each containing a flexure and a photointerrupter that measures the corresponding deflectio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06521v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06521v1-abstract-full" style="display: none;"> Hand injuries from repetitive high-strain and physical overload can hamper or even end a musician&#39;s career. To help musicians develop safer playing habits, we developed a multiplecontact force-sensing array that can substitute as a guitar fretboard. The system consists of 72 individual force sensing modules, each containing a flexure and a photointerrupter that measures the corresponding deflection when forces are applied. The system is capable of measuring forces between 0-25 N applied anywhere within the first 12 frets at a rate of 20 Hz with an average accuracy of 0.4 N and a resolution of 0.1 N. Accompanied with a GUI, the resulting prototype was received positively as a useful tool for learning and injury prevention by novice and expert musicians. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06521v1-abstract-full').style.display = 'none'; document.getElementById('2304.06521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE Sensor Conference, 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01533">arXiv:2304.01533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01533">pdf</a>, <a href="https://arxiv.org/format/2304.01533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Interactions of a collapsing laser-induced cavitation bubble with a hemispherical droplet attached to a rigid boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zibo Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+H">Huan Han</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+H">Hao Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tagawa%2C+Y">Yoshiyuki Tagawa</a>, <a href="/search/physics?searchtype=author&amp;query=Zuo%2C+Z">Zhigang Zuo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuhong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01533v2-abstract-short" style="display: inline;"> We investigate experimentally and theoretically the interactions between a cavitation bubble and a hemispherical pendant oil droplet immersed in water. In experiments, the cavitation bubble is generated by a focused laser pulse right below the pendant droplet with well-controlled bubble-wall distances and bubble-droplet size ratios. By high-speed imaging, four typical interactions are observed, na&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01533v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01533v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01533v2-abstract-full" style="display: none;"> We investigate experimentally and theoretically the interactions between a cavitation bubble and a hemispherical pendant oil droplet immersed in water. In experiments, the cavitation bubble is generated by a focused laser pulse right below the pendant droplet with well-controlled bubble-wall distances and bubble-droplet size ratios. By high-speed imaging, four typical interactions are observed, namely, oil droplet rupture, water droplet entrapment, oil droplet large deformation, and oil droplet mild deformation. The bubble jetting at the end of collapse and the migration of the bubble centroid are particularly different in each bubble-droplet interaction. We propose theoretical models based on the method of images for calculating the Kelvin impulse and the anisotropy parameter which quantitatively reflects the migration of the bubble centroid at the end of the collapse. Finally, we explain that a combination of the Weber number and the anisotropy parameter determines the regimes of the bubble-droplet interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01533v2-abstract-full').style.display = 'none'; document.getElementById('2304.01533v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17042">arXiv:2303.17042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17042">pdf</a>, <a href="https://arxiv.org/format/2303.17042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous activity and attenuation estimation in TOF-PET with TV-constrained nonconvex optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhimei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Sidky%2C+E+Y">Emil Y. Sidky</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+R+F">Rina Foygel Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Kao%2C+C">Chien-Min Kao</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+X">Xiaochuan Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17042v2-abstract-short" style="display: inline;"> An alternating direction method of multipliers (ADMM) framework is developed for nonsmooth biconvex optimization for inverse problems in imaging. In particular, the simultaneous estimation of activity and attenuation (SAA) problem in time-of-flight positron emission tomography (TOF-PET) has such a structure when maximum likelihood estimation (MLE) is employed. The ADMM framework is applied to MLE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17042v2-abstract-full').style.display = 'inline'; document.getElementById('2303.17042v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17042v2-abstract-full" style="display: none;"> An alternating direction method of multipliers (ADMM) framework is developed for nonsmooth biconvex optimization for inverse problems in imaging. In particular, the simultaneous estimation of activity and attenuation (SAA) problem in time-of-flight positron emission tomography (TOF-PET) has such a structure when maximum likelihood estimation (MLE) is employed. The ADMM framework is applied to MLE for SAA in TOF-PET, resulting in the ADMM-SAA algorithm. This algorithm is extended by imposing total variation (TV) constraints on both the activity and attenuation map, resulting in the ADMM-TVSAA algorithm. The performance of this algorithm is illustrated using the penalized maximum likelihood activity and attenuation estimation (P-MLAA) algorithm as a reference. Additional results on step-size tuning and on the use of unconstrained ADMM-SAA are presented in the previous arXiv submission: arXiv:2303.17042v1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17042v2-abstract-full').style.display = 'none'; document.getElementById('2303.17042v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript accepted at IEEE transactions on medical imaging. This version contains the appendix for the ADMM-TVSAA pseudocode</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10060">arXiv:2209.10060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10060">pdf</a>, <a href="https://arxiv.org/format/2209.10060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.473770">10.1364/OE.473770 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observing a topological phase transition with deep neural networks from experimental images of ultracold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+E">Entong Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Mak%2C+T+H">Ting Hin Mak</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chengdong He</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejian Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Pak%2C+K+K">Ka Kwan Pak</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu-Jun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+G">Gyu-Boong Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10060v2-abstract-short" style="display: inline;"> Although classifying topological quantum phases have attracted great interests, the absence of local order parameter generically makes it challenging to detect a topological phase transition from experimental data. Recent advances in machine learning algorithms enable physicists to analyze experimental data with unprecedented high sensitivities, and identify quantum phases even in the presence of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10060v2-abstract-full').style.display = 'inline'; document.getElementById('2209.10060v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10060v2-abstract-full" style="display: none;"> Although classifying topological quantum phases have attracted great interests, the absence of local order parameter generically makes it challenging to detect a topological phase transition from experimental data. Recent advances in machine learning algorithms enable physicists to analyze experimental data with unprecedented high sensitivities, and identify quantum phases even in the presence of unavoidable noises. Here, we report a successful identification of topological phase transitions using a deep convolutional neural network trained with low signal-to-noise-ratio (SNR) experimental data obtained in a symmetry-protected topological system of spin-orbit-coupled fermions. We apply the trained network to unseen data to map out a whole phase diagram, which predicts the positions of the two topological phase transitions that are consistent with the results obtained by using the conventional method on higher SNR data. By visualizing the filters and post-convolutional results of the convolutional layer, we further find that the CNN uses the same information to make the classification in the system as the conventional analysis, namely spin imbalance, but with an advantage concerning SNR. Our work highlights the potential of machine learning techniques to be used in various quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10060v2-abstract-full').style.display = 'none'; document.getElementById('2209.10060v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09443">arXiv:2209.09443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09443">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Cryogenic in-memory computing using tunable chiral edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yuting Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+A">Albert Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+K">Kun Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Haoran He</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zheyu Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Cheung%2C+S+K">Shun Kong Cheung</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yaoyin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Z">Zichao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhihua Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhongrui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09443v1-abstract-short" style="display: inline;"> Energy-efficient hardware implementation of machine learning algorithms for quantum computation requires nonvolatile and electrically-programmable devices, memristors, working at cryogenic temperatures that enable in-memory computing. Magnetic topological insulators are promising candidates due to their tunable magnetic order by electrical currents with high energy efficiency. Here, we utilize mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09443v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09443v1-abstract-full" style="display: none;"> Energy-efficient hardware implementation of machine learning algorithms for quantum computation requires nonvolatile and electrically-programmable devices, memristors, working at cryogenic temperatures that enable in-memory computing. Magnetic topological insulators are promising candidates due to their tunable magnetic order by electrical currents with high energy efficiency. Here, we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a chiral edge state-based cryogenic in-memory computing scheme. On the one hand, the chiral edge state can be tuned from left-handed to right-handed chirality through spin-momentum locked topological surface current injection. On the other hand, the chiral edge state exhibits giant and bipolar anomalous Hall resistance, which facilitates the electrical readout. The memristive switching and reading of the chiral edge state exhibit high energy efficiency, high stability, and low stochasticity. We achieve high accuracy in a proof-of-concept classification task using four magnetic topological memristors. Furthermore, our algorithm-level and circuit-level simulations of large-scale neural networks based on magnetic topological memristors demonstrate a software-level accuracy and lower energy consumption for image recognition and quantum state preparation compared with existing memristor technologies. Our results may inspire further topological quantum physics-based novel computing schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09443v1-abstract-full').style.display = 'none'; document.getElementById('2209.09443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01862">arXiv:2209.01862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01862">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Kinetics Parameter Optimization via Neural Ordinary Differential Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+X">Xingyu Su</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+W">Weiqi Ji</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+J">Jian An</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+S">Sili Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Law%2C+C+K">Chung K. Law</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01862v1-abstract-short" style="display: inline;"> Chemical kinetics mechanisms are essential for understanding, analyzing, and simulating complex combustion phenomena. In this study, a Neural Ordinary Differential Equation (Neural ODE) framework is employed to optimize kinetics parameters of reaction mechanisms. Given experimental or high-cost simulated observations as training data, the proposed algorithm can optimally recover the hidden charact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01862v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01862v1-abstract-full" style="display: none;"> Chemical kinetics mechanisms are essential for understanding, analyzing, and simulating complex combustion phenomena. In this study, a Neural Ordinary Differential Equation (Neural ODE) framework is employed to optimize kinetics parameters of reaction mechanisms. Given experimental or high-cost simulated observations as training data, the proposed algorithm can optimally recover the hidden characteristics in the data. Different datasets of various sizes, types, and noise levels are tested. A classic toy problem of stiff Robertson ODE is first used to demonstrate the learning capability, efficiency, and robustness of the Neural ODE approach. A 41-species, 232-reactions JP-10 skeletal mechanism and a 34-species, 121-reactions n-heptane skeletal mechanism are then optimized with species&#39; temporal profiles and ignition delay times, respectively. Results show that the proposed algorithm can optimize stiff chemical models with sufficient accuracy and efficiency. It is noted that the trained mechanism not only fits the data perfectly but also retains its physical interpretability, which can be further integrated and validated in practical turbulent combustion simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01862v1-abstract-full').style.display = 'none'; document.getElementById('2209.01862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01723">arXiv:2209.01723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01723">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Customizable Laguerre-Gaussian Perfect Vortex Beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+W">Wenxiang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zheng Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jianping Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01723v1-abstract-short" style="display: inline;"> The recognition in the 1990s that vortex beams (VBs), paraxial light beams with optical vortices, carry orbital angular momentum (OAM), has benefited applications ranging from optical manipulation to high-dimensional classical and quantum information communications. The transverse profiles of common VBs, e.g., Laguerre-Gaussian beam and high-order Bessel beam, are hollow donuts whose radii grow up&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01723v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01723v1-abstract-full" style="display: none;"> The recognition in the 1990s that vortex beams (VBs), paraxial light beams with optical vortices, carry orbital angular momentum (OAM), has benefited applications ranging from optical manipulation to high-dimensional classical and quantum information communications. The transverse profiles of common VBs, e.g., Laguerre-Gaussian beam and high-order Bessel beam, are hollow donuts whose radii grow up with OAM inevitably. The inherently unperfect character of the VBs that the radius is always positively correlated with OAM, restricts the application of the VBs in many scenarios like fiber optic data transmission, spatial OAM mode (de)multiplexing communication, and particle manipulation, which call for VBs to have the same scale with distinct OAM or even the small vortex ring for large OAM. Here, we derived a theory based on the most widely used Laguerre-Gaussian beam to generate a brand new type of VB with OAM-independent radii that moves away from the common unperfect constraint, called Laguerre-Gaussian Perfect Vortex Beam (LGPVB). LGPVBs have the self-similar property like common Laguerre-Gaussian beams but can self-heal after suffering disturbance and always remain &#39;perfection&#39; when propagating. Our Fourier-space design not only allows us to shape the LGPVB&#39;s propagating intensity at will, but it also gives LGPVB the fascinating potential to arbitrarily self-accelerate while still perfectly propagating, self-similar, and self-healing. This customizable self-healing LGPVB, whose properties inform our most expectations of VBs, offers a better alternative for application scenarios of common VBs in a wide range of areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01723v1-abstract-full').style.display = 'none'; document.getElementById('2209.01723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages,9 figures. arXiv admin note: text overlap with arXiv:2209.00481</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00481">arXiv:2209.00481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.00481">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Versatile Non-diffracting Perfect Vortex Beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+W">Wenxiang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zheng Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Weng%2C+Z">Zhe Weng</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jianping Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00481v1-abstract-short" style="display: inline;"> The rapid scale broadening and divergence increasing of vortex beams (VBs) with orbital angular momentum (OAM), e.g., Laguerre-Gaussian beams, severely impede the wide applications of VBs ranging from optical manipulation to high-dimensional quantum information communications, which call for VBs to have the same transverse scale and divergence for distinct OAM or even the small vortex ring for lar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00481v1-abstract-full').style.display = 'inline'; document.getElementById('2209.00481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00481v1-abstract-full" style="display: none;"> The rapid scale broadening and divergence increasing of vortex beams (VBs) with orbital angular momentum (OAM), e.g., Laguerre-Gaussian beams, severely impede the wide applications of VBs ranging from optical manipulation to high-dimensional quantum information communications, which call for VBs to have the same transverse scale and divergence for distinct OAM or even the small vortex ring for large OAM. Non-diffracting beams, on the other hand, that are capable of overcoming diffraction without divergence, are very evocative and indeed appealing in numerous applications including atom optics and medical imaging. Here, we propose theoretically and demonstrate experimentally a brand new type of VB having OAM-independent radii meanwhile holding propagation-invariant without divergence as well as self-healing properties, named non-diffracting perfect vortex beam (NDPVB). We work out a versatile toolkit based on Fourier-space analysis to multidimensionally customize NDPVBs at will so that it is of propagating intensity and phase controllability with intriguing customizable behaviors of self-accelerating, self-similar, and self-rotating. This goes beyond tailoring the transverse plane to the higher-dimensional propagating characteristics in structured light beams. A deeper insight into the internal flow revealed and confirmed that the multidimensional customization of NDPVBs is dominated by inducing corresponding multidimensional internal flow, facilitating our understanding of how our design scheme of propagating properties manipulates the internal flows, unveiling the nature of structure formation and behavior transformation of structured light beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00481v1-abstract-full').style.display = 'none'; document.getElementById('2209.00481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages,14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13473">arXiv:2208.13473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13473">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2022JC019166">10.1029/2022JC019166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On Tsunami Waves induced by Atmospheric Pressure Shock Waves after the 2022 Hunga Tonga-Hunga Ha&#39;apai Volcano Eruption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhiyuan Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Higuera%2C+P">Pablo Higuera</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+P+L">Philip Li-Fan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13473v1-abstract-short" style="display: inline;"> Employing a linear shallow water equation (LSWE) model in the spherical coordinates, this paper investigates the tsunami waves generated by the atmospheric pressure shock waves due to the explosion of the submarine volcano Hunga Tonga-Hunga Ha&#39;apai on January 15, 2022. Using the selected 59 atmospheric pressure records in the Pacific Ocean, an empirical atmospheric pressure model is first construc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13473v1-abstract-full').style.display = 'inline'; document.getElementById('2208.13473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13473v1-abstract-full" style="display: none;"> Employing a linear shallow water equation (LSWE) model in the spherical coordinates, this paper investigates the tsunami waves generated by the atmospheric pressure shock waves due to the explosion of the submarine volcano Hunga Tonga-Hunga Ha&#39;apai on January 15, 2022. Using the selected 59 atmospheric pressure records in the Pacific Ocean, an empirical atmospheric pressure model is first constructed. Applying the atmospheric pressure model and realistic bathymetric data in the LSWE model, tsunami generation and propagation are simulated in the Pacific Ocean. The numerical results show clearly the co-existence of the leading locked waves, propagating with the speed of the atmospheric pressure waves (~1,100 km/hr), and the trailing free waves, propagating with long gravity ocean wave celerity (~ 750 km/hr). During the event, tsunamis were reported by 41 DART buoys in the Pacific Ocean, which require corrections because of the occurrence of atmospheric pressure waves. The numerically simulated tsunami arrival time and the amplitudes of the wave crest and trough of the leading locked waves compare reasonably well with the corrected DART measurements. The comparisons for the trailing waves are less satisfactory, since free waves could also have been generated by other tsunami generation mechanisms, which have not been considered in the present model, and by the scattering of locked waves over changing bathymetry. In this regard, the numerical results show clearly that the deep Tonga trench (~ 10 km) amplifies the trailing waves in the Southeast part of the Pacific Ocean via the Proudman resonance condition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13473v1-abstract-full').style.display = 'none'; document.getElementById('2208.13473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08604">arXiv:2207.08604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08604">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Manipulating propagation and evolution of polarization singularities in composite Bessel-like fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wand%2C+X">Xinglin Wand</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+W">Wenxiang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zheng Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jianping Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08604v1-abstract-short" style="display: inline;"> Structured optical fields embedded with polarization singularities (PSs) have attracted extensive attention due to their capability to retain topological invariance during propagation. Many advances in PSs research have been made over the past 20 years in the areas of mathematical description, generation and detection technologies, propagation dynamics, and applications. However, one of the most c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08604v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08604v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08604v1-abstract-full" style="display: none;"> Structured optical fields embedded with polarization singularities (PSs) have attracted extensive attention due to their capability to retain topological invariance during propagation. Many advances in PSs research have been made over the past 20 years in the areas of mathematical description, generation and detection technologies, propagation dynamics, and applications. However, one of the most crucial and difficult tasks continues to be manipulating PSs with multiple degrees of freedom, especially in three-dimensional (3D) tailored optical fields. We propose and demonstrate the longitudinal PS lines obtained by superimposing Bessel-like modes with orthogonal polarization states on composite vector optical fields (VOFs). The embedded PSs in the fields can be manipulated to propagate robustly along arbitrary trajectories, or to annihilate, revive, and transform each other at on-demand positions in 3D space, allowing complex PSs topological morphology and intensity pattern to be flexibly customized. Our findings could spur further research into singular optics and help with applications such as micromanipulation, microstructure fabrication, and optical encryption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08604v1-abstract-full').style.display = 'none'; document.getElementById('2207.08604v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02209">arXiv:2207.02209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02209">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Tackling Data Scarcity with Transfer Learning: A Case Study of Thickness Characterization from Optical Spectra of Perovskite Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+S+I+P">Siyu Isaac Parker Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zekun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Venkataraj%2C+S">Selvaraj Venkataraj</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yuanhang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Bash%2C+D">Daniil Bash</a>, <a href="/search/physics?searchtype=author&amp;query=Oviedo%2C+F">Felipe Oviedo</a>, <a href="/search/physics?searchtype=author&amp;query=Senthilnath%2C+J">J. Senthilnath</a>, <a href="/search/physics?searchtype=author&amp;query=Chellappan%2C+V">Vijila Chellappan</a>, <a href="/search/physics?searchtype=author&amp;query=Lim%2C+Y">Yee-Fun Lim</a>, <a href="/search/physics?searchtype=author&amp;query=Aberle%2C+A+G">Armin G. Aberle</a>, <a href="/search/physics?searchtype=author&amp;query=MacLeod%2C+B+P">Benjamin P MacLeod</a>, <a href="/search/physics?searchtype=author&amp;query=Parlane%2C+F+G+L">Fraser G. L. Parlane</a>, <a href="/search/physics?searchtype=author&amp;query=Berlinguette%2C+C+P">Curtis P. Berlinguette</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qianxiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Buonassisi%2C+T">Tonio Buonassisi</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhe Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02209v2-abstract-short" style="display: inline;"> Transfer learning increasingly becomes an important tool in handling data scarcity often encountered in machine learning. In the application of high-throughput thickness as a downstream process of the high-throughput optimization of optoelectronic thin films with autonomous workflows, data scarcity occurs especially for new materials. To achieve high-throughput thickness characterization, we propo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02209v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02209v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02209v2-abstract-full" style="display: none;"> Transfer learning increasingly becomes an important tool in handling data scarcity often encountered in machine learning. In the application of high-throughput thickness as a downstream process of the high-throughput optimization of optoelectronic thin films with autonomous workflows, data scarcity occurs especially for new materials. To achieve high-throughput thickness characterization, we propose a machine learning model called thicknessML that predicts thickness from UV-Vis spectrophotometry input and an overarching transfer learning workflow. We demonstrate the transfer learning workflow from generic source domain of generic band-gapped materials to specific target domain of perovskite materials, where the target domain data only come from limited number (18) of refractive indices from literature. The target domain can be easily extended to other material classes with a few literature data. Defining thickness prediction accuracy to be within-10% deviation, thicknessML achieves 92.2% (with a deviation of 3.6%) accuracy with transfer learning compared to 81.8% (with a deviation of 3.6%) 11.7% without (lower mean and larger standard deviation). Experimental validation on six deposited perovskite films also corroborates the efficacy of the proposed workflow by yielding a 10.5% mean absolute percentage error (MAPE). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02209v2-abstract-full').style.display = 'none'; document.getElementById('2207.02209v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04968">arXiv:2206.04968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04968">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> What Information is Necessary and Sufficient to Predict Materials Properties using Machine Learning? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+S+I+P">Siyu Isaac Parker Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Walsh%2C+A">Aron Walsh</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zekun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qianxiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Buonassisi%2C+T">Tonio Buonassisi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04968v2-abstract-short" style="display: inline;"> Conventional wisdom of materials modelling stipulates that both chemical composition and crystal structure are integral in the prediction of physical properties. However, recent developments challenge this by reporting accurate property-prediction machine learning (ML) frameworks using composition alone without knowledge of the local atomic environments or long-range order. To probe this behavior,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04968v2-abstract-full').style.display = 'inline'; document.getElementById('2206.04968v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04968v2-abstract-full" style="display: none;"> Conventional wisdom of materials modelling stipulates that both chemical composition and crystal structure are integral in the prediction of physical properties. However, recent developments challenge this by reporting accurate property-prediction machine learning (ML) frameworks using composition alone without knowledge of the local atomic environments or long-range order. To probe this behavior, we conduct a systematic comparison of supervised ML models built on composition only vs. composition plus structure features. Similar performance for property prediction is found using both models for compounds close to the thermodynamic convex hull. We hypothesize that composition embeds structural information of ground-state structures in support of composition-centric models for property prediction and inverse design of stable compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04968v2-abstract-full').style.display = 'none'; document.getElementById('2206.04968v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10361">arXiv:2205.10361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10361">pdf</a>, <a href="https://arxiv.org/format/2205.10361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac715a">10.3847/2041-8213/ac715a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current-sheet Oscillations Caused by Kelvin-Helmholtz Instability at the Loop Top of Solar Flares </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yulei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zining Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+M">Mingde Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10361v1-abstract-short" style="display: inline;"> Current sheets (CSs), long stretching structures of magnetic reconnection above solar flare loops, are usually observed to oscillate, their origins, however, are still puzzled at present. Based on a high-resolution 2.5-dimensional MHD simulation of magnetic reconnection, we explore the formation mechanism of the CS oscillations. We find that large-amplitude transverse waves are excited by the Kelv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10361v1-abstract-full').style.display = 'inline'; document.getElementById('2205.10361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10361v1-abstract-full" style="display: none;"> Current sheets (CSs), long stretching structures of magnetic reconnection above solar flare loops, are usually observed to oscillate, their origins, however, are still puzzled at present. Based on a high-resolution 2.5-dimensional MHD simulation of magnetic reconnection, we explore the formation mechanism of the CS oscillations. We find that large-amplitude transverse waves are excited by the Kelvin-Helmholtz instability (KHI) at the highly turbulent cusp-shaped region. The perturbations propagate upward along the CS with a phase speed close to local Alfv茅n speed thus resulting in the CS oscillations we observe. Though the perturbations damp after propagating for a long distance, the CS oscillations are still detectable. In terms of detected CS oscillations, with a combination of differential emission measure technique, we propose a new method for measuring the magnetic field strength of the CSs and its distribution in height. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10361v1-abstract-full').style.display = 'none'; document.getElementById('2205.10361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in The Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07829">arXiv:2204.07829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.07829">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-022-01046-3">10.1038/s41566-022-01046-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient and ultra-stable perovskite light-emitting diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bingbing Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+R">Runchen Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+S">Sijie Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+Y">Yaxiao Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhixiang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Puyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X">Xuhui Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Xing%2C+S">Shiyu Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yaxin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weiwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+C">Chen Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mengyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Cheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+B">Baodan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Di%2C+D">Dawei Di</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07829v1-abstract-short" style="display: inline;"> Perovskite light-emitting diodes (PeLEDs) have emerged as a strong contender for next-generation display and information technologies. However, similar to perovskite solar cells, the poor operational stability remains the main obstacle toward commercial applications. Here we demonstrate ultra-stable and efficient PeLEDs with extraordinary operational lifetimes (T50) of 1.0x10^4 h, 2.8x10^4 h, 5.4x&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07829v1-abstract-full').style.display = 'inline'; document.getElementById('2204.07829v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07829v1-abstract-full" style="display: none;"> Perovskite light-emitting diodes (PeLEDs) have emerged as a strong contender for next-generation display and information technologies. However, similar to perovskite solar cells, the poor operational stability remains the main obstacle toward commercial applications. Here we demonstrate ultra-stable and efficient PeLEDs with extraordinary operational lifetimes (T50) of 1.0x10^4 h, 2.8x10^4 h, 5.4x10^5 h, and 1.9x10^6 h at initial radiance (or current densities) of 3.7 W/sr/m2 (~5 mA/cm2), 2.1 W/sr/m2 (~3.2 mA/cm2), 0.42 W/sr/m2 (~1.1 mA/cm2), and 0.21 W/sr/m2 (~0.7 mA/cm2) respectively, and external quantum efficiencies of up to 22.8%. Key to this breakthrough is the introduction of a dipolar molecular stabilizer, which serves two critical roles simultaneously. First, it prevents the detrimental transformation and decomposition of the alpha-phase FAPbI3 perovskite, by inhibiting the formation of lead and iodide intermediates. Secondly, hysteresis-free device operation and microscopic luminescence imaging experiments reveal substantially suppressed ion migration in the emissive perovskite. The record-long PeLED lifespans are encouraging, as they now satisfy the stability requirement for commercial organic LEDs (OLEDs). These results remove the critical concern that halide perovskite devices may be intrinsically unstable, paving the path toward industrial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07829v1-abstract-full').style.display = 'none'; document.getElementById('2204.07829v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a preprint of the paper prior to peer review. New and updated results may be available in the final version from the publisher</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics 16, 637-643 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04175">arXiv:2204.04175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04175">pdf</a>, <a href="https://arxiv.org/format/2204.04175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0094498">10.1063/5.0094498 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear manipulation of orbital angular momentum spectra with second- and third- harmonic generation in a quasi-periodically poled crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yu-Xiang Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+B">Bo-Wen Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+Y">Yan-Chao Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zi-Mo Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi-Feng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jianping Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04175v1-abstract-short" style="display: inline;"> Optical orbital angular momentum (OAM), as an important degree of freedom of light, has been attracted extensive attention, due to its intrinsic feature of natural discrete infinite dimension. Manipulation of OAM spectra is crucial for many impressive applications from classical to quantum realms, in particular, nonlinear manipulation of OAM spectra. Here we realized the nonlinear manipulation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04175v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04175v1-abstract-full" style="display: none;"> Optical orbital angular momentum (OAM), as an important degree of freedom of light, has been attracted extensive attention, due to its intrinsic feature of natural discrete infinite dimension. Manipulation of OAM spectra is crucial for many impressive applications from classical to quantum realms, in particular, nonlinear manipulation of OAM spectra. Here we realized the nonlinear manipulation of OAM spectra by using the simultaneous second- and third-harmonic generation in a single nonlinear crystal of quasi-periodically poled potassium titanyl phosphate, for fundamental waves with a variety of OAM spectra, especially for customized OAM spectra of the second and third harmonics. The experimental results confirmed the theoretical predictions. Our approach not only provides a novel way to manipulate OAM spectra at new shorter wavelengths that are hard to be directly generated, but also may find new applications towards multiplexing in classical optics and high-dimensional information processing in quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04175v1-abstract-full').style.display = 'none'; document.getElementById('2204.04175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04173">arXiv:2204.04173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04173">pdf</a>, <a href="https://arxiv.org/format/2204.04173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.449590">10.1364/OPTICA.449590 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Third-harmonic generation of spatially structured light in a quasi-periodically poled crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lou%2C+Y">Yan-Chao Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zi-Mo Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yu-Xiang Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jianping Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04173v1-abstract-short" style="display: inline;"> Nonlinear optical processes of spatially structured light, including optical vortex and vector optical fields, have stimulated a lot of interesting physical effects and found a variety of important applications ranging from optical imaging to quantum information processing. However, high harmonic generation of vector optical fields with space-varying polarization states is still a challenge. Here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04173v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04173v1-abstract-full" style="display: none;"> Nonlinear optical processes of spatially structured light, including optical vortex and vector optical fields, have stimulated a lot of interesting physical effects and found a variety of important applications ranging from optical imaging to quantum information processing. However, high harmonic generation of vector optical fields with space-varying polarization states is still a challenge. Here we demonstrate third harmonic generation of spatially structured light including vector optical fields, in a nonlinear Sagnac interferometer containing a carefully designed quasi-periodically poled potassium titanyl phosphate for the first time. The experimental results are in good agreement with the theoretical predictions. Our results will enable to manipulate spatially structured light or photons at new wavelengths and carrying higher orbital angular momentum. Our approach has the potential applications for the research of optical skyrmions and may open up new opportunities to produce spatially structured entangled photons for quantum communication and computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04173v1-abstract-full').style.display = 'none'; document.getElementById('2204.04173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optica 9, 183-186 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01387">arXiv:2110.01387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.01387">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhe Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rolston%2C+N">Nicholas Rolston</a>, <a href="/search/physics?searchtype=author&amp;query=Flick%2C+A+C">Austin C. Flick</a>, <a href="/search/physics?searchtype=author&amp;query=Colburn%2C+T+W">Thomas W. Colburn</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zekun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Dauskardt%2C+R+H">Reinhold H. Dauskardt</a>, <a href="/search/physics?searchtype=author&amp;query=Buonassisi%2C+T">Tonio Buonassisi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01387v4-abstract-short" style="display: inline;"> Perovskite photovoltaics (PV) have achieved rapid development in the past decade in terms of power conversion efficiency of small-area lab-scale devices; however, successful commercialization still requires further development of low-cost, scalable, and high-throughput manufacturing techniques. One of the critical challenges of developing a new fabrication technique is the high-dimensional paramet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01387v4-abstract-full').style.display = 'inline'; document.getElementById('2110.01387v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01387v4-abstract-full" style="display: none;"> Perovskite photovoltaics (PV) have achieved rapid development in the past decade in terms of power conversion efficiency of small-area lab-scale devices; however, successful commercialization still requires further development of low-cost, scalable, and high-throughput manufacturing techniques. One of the critical challenges of developing a new fabrication technique is the high-dimensional parameter space for optimization, but machine learning (ML) can readily be used to accelerate perovskite PV scaling. Herein, we present an ML-guided framework of sequential learning for manufacturing process optimization. We apply our methodology to the Rapid Spray Plasma Processing (RSPP) technique for perovskite thin films in ambient conditions. With a limited experimental budget of screening 100 process conditions, we demonstrated an efficiency improvement to 18.5% as the best-in-our-lab device fabricated by RSPP, and we also experimentally found 10 unique process conditions to produce the top-performing devices of more than 17% efficiency, which is 5 times higher rate of success than the control experiments with pseudo-random Latin hypercube sampling. Our model is enabled by three innovations: (a) flexible knowledge transfer between experimental processes by incorporating data from prior experimental data as a probabilistic constraint; (b) incorporation of both subjective human observations and ML insights when selecting next experiments; (c) adaptive strategy of locating the region of interest using Bayesian optimization first, and then conducting local exploration for high-efficiency devices. Furthermore, in virtual benchmarking, our framework achieves faster improvements with limited experimental budgets than traditional design-of-experiments methods (e.g., one-variable-at-a-time sampling). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01387v4-abstract-full').style.display = 'none'; document.getElementById('2110.01387v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12900">arXiv:2109.12900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.12900">pdf</a>, <a href="https://arxiv.org/format/2109.12900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> How the Avengers Assembled? Analysis of Marvel Hero Social Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+C">Chongyang Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xuan Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Ziyang Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12900v1-abstract-short" style="display: inline;"> The movies of Marvel universe are very popular among young people. Almost every young people nowadays know some of the heroes in Marvel universe, such as iron man and spider man. The data set named The Marvel Universe Social Network (MUSN) describe the social relationships of the heroes. By analyzing the MUSN, we establish a social network of Marvel heroes. We derive some basic statistics from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12900v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12900v1-abstract-full" style="display: none;"> The movies of Marvel universe are very popular among young people. Almost every young people nowadays know some of the heroes in Marvel universe, such as iron man and spider man. The data set named The Marvel Universe Social Network (MUSN) describe the social relationships of the heroes. By analyzing the MUSN, we establish a social network of Marvel heroes. We derive some basic statistics from the Marvel network, such as the number of nodes and links, the hubs, the components, the shortest path lengths and the diameter. In the next part, we analyze the structure of the Marvel network and obtain some results of the connectedness, the clustering, the degree distribution, the degree correlation. Meanwhile, we fit the power law and divide the network into different communities. In this process, we not only find that the network appears to have the small world nature, since it is obviously a scale-free network, but also find that it is very similar to the real-world social network. Further, based on the work of Loverkar et al., we do a hypothesis test on the small world nature of the network. We find that the Marvel network does have small world property. In the end, we visualize the Marvel network to give a better understanding of the network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12900v1-abstract-full').style.display = 'none'; document.getElementById('2109.12900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11148">arXiv:2109.11148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11148">pdf</a>, <a href="https://arxiv.org/format/2109.11148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.083605">10.1103/PhysRevLett.128.083605 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Interference between Photons and Single Quanta of Stored Atomic Coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xingchang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jianmin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhiqiang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+R">Rong Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Siviloglou%2C+G+A">Georgios A. Siviloglou</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+F">J. F. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11148v2-abstract-short" style="display: inline;"> Essential for building quantum networks over remote independent nodes, the indistinguishability of photons has been extensively studied by observing the coincidence dip in the Hong-Ou-Mandel interferometer. However, indistinguishability is not limited to the same type of bosons. For the first time, we hereby observe quantum interference between flying photons and a single quantum of stored atomic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11148v2-abstract-full').style.display = 'inline'; document.getElementById('2109.11148v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11148v2-abstract-full" style="display: none;"> Essential for building quantum networks over remote independent nodes, the indistinguishability of photons has been extensively studied by observing the coincidence dip in the Hong-Ou-Mandel interferometer. However, indistinguishability is not limited to the same type of bosons. For the first time, we hereby observe quantum interference between flying photons and a single quantum of stored atomic coherence (magnon) in an atom-light beam splitter interface. We demonstrate that the Hermiticity of this interface determines the type of quantum interference between photons and magnons. Consequently, not only the bunching behavior that characterizes bosons is observed, but counterintuitively, fermionlike antibunching as well. The hybrid nature of the demonstrated magnon-photon quantum interface can be applied to versatile quantum memory platforms, and can lead to fundamentally different photon distributions from those occurring in boson sampling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11148v2-abstract-full').style.display = 'none'; document.getElementById('2109.11148v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages (6 pages for main text, 9 pages for supplemental material), 9 figures (4 figures for main text, 5 figures for supplemental material), 1 table (1 table for supplemental material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 083605 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00697">arXiv:2109.00697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00697">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Accelerated automated screening of viscous graphene suspensions with various surfactants for optimal electrical conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bash%2C+D">Daniil Bash</a>, <a href="/search/physics?searchtype=author&amp;query=Chenardi%2C+F+H">Frederick Hubert Chenardi</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zekun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jayce Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Buonassisi%2C+T">Tonio Buonassisi</a>, <a href="/search/physics?searchtype=author&amp;query=Oliveira%2C+R">Ricardo Oliveira</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+J">Jatin Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Hippalgaonkar%2C+K">Kedar Hippalgaonkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00697v1-abstract-short" style="display: inline;"> Functional composite thin films have a wide variety of applications in flexible and/or electronic devices, telecommunications and multifunctional emerging coatings. Rapid screening of their properties is a challenging task, especially with multiple components defining the targeted properties. In this work we present a manifold for accelerated automated screening of viscous graphene suspensions for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00697v1-abstract-full').style.display = 'inline'; document.getElementById('2109.00697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00697v1-abstract-full" style="display: none;"> Functional composite thin films have a wide variety of applications in flexible and/or electronic devices, telecommunications and multifunctional emerging coatings. Rapid screening of their properties is a challenging task, especially with multiple components defining the targeted properties. In this work we present a manifold for accelerated automated screening of viscous graphene suspensions for optimal electrical conductivity. Using Opentrons OT2 robotic auto-pipettor, we tested 3 most industrially significant surfactants - PVP, SDS and T80 - by fabricating 288 samples of graphene suspensions in aqueous hydroxypropylmethylcellulose. Enabled by our custom motorized 4-point probe measurement setup and computer vision algorithms, we then measured electrical conductivity of every sample using custom and identified that the highest performance is achieved for PVP-based samples, peaking at 10.4 mS/cm. The automation of the experimental procedure allowed us to perform majority of the experiments using robots, while involvement of human researcher was kept to minimum. Overall the experiment was completed in less than 18 hours, only 3 of which involved humans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00697v1-abstract-full').style.display = 'none'; document.getElementById('2109.00697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11510">arXiv:2107.11510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.11510">pdf</a>, <a href="https://arxiv.org/format/2107.11510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Neural Differential Equations for Inverse Modeling in Model Combustors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+X">Xingyu Su</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+W">Weiqi Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Long Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+W">Wantong Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+S">Sili Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11510v1-abstract-short" style="display: inline;"> Monitoring the dynamics processes in combustors is crucial for safe and efficient operations. However, in practice, only limited data can be obtained due to limitations in the measurable quantities, visualization window, and temporal resolution. This work proposes an approach based on neural differential equations to approximate the unknown quantities from available sparse measurements. The approa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11510v1-abstract-full').style.display = 'inline'; document.getElementById('2107.11510v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11510v1-abstract-full" style="display: none;"> Monitoring the dynamics processes in combustors is crucial for safe and efficient operations. However, in practice, only limited data can be obtained due to limitations in the measurable quantities, visualization window, and temporal resolution. This work proposes an approach based on neural differential equations to approximate the unknown quantities from available sparse measurements. The approach tackles the challenges of nonlinearity and the curse of dimensionality in inverse modeling by representing the dynamic signal using neural network models. In addition, we augment physical models for combustion with neural differential equations to enable learning from sparse measurements. We demonstrated the inverse modeling approach in a model combustor system by simulating the oscillation of an industrial combustor with a perfectly stirred reactor. Given the sparse measurements of the temperature inside the combustor, upstream fluctuations in compositions and/or flow rates can be inferred. Various types of fluctuations in the upstream, as well as the responses in the combustor, were synthesized to train and validate the algorithm. The results demonstrated that the approach can efficiently and accurately infer the dynamics of the unknown inlet boundary conditions, even without assuming the types of fluctuations. Those demonstrations shall open a lot of opportunities in utilizing neural differential equations for fault diagnostics and model-based dynamic control of industrial power systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11510v1-abstract-full').style.display = 'none'; document.getElementById('2107.11510v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06172">arXiv:2107.06172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06172">pdf</a>, <a href="https://arxiv.org/format/2107.06172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Arrhenius.jl: A Differentiable Combustion SimulationPackage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ji%2C+W">Weiqi Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+X">Xingyu Su</a>, <a href="/search/physics?searchtype=author&amp;query=Pang%2C+B">Bin Pang</a>, <a href="/search/physics?searchtype=author&amp;query=Cassady%2C+S+J">Sean Joseph Cassady</a>, <a href="/search/physics?searchtype=author&amp;query=Ferris%2C+A+M">Alison M. Ferris</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yujuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Hanson%2C+R">Ronald Hanson</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+S">Sili Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06172v1-abstract-short" style="display: inline;"> Combustion kinetic modeling is an integral part of combustion simulation, and extensive studies have been devoted to developing both high fidelity and computationally affordable models. Despite these efforts, modeling combustion kinetics is still challenging due to the demand for expert knowledge and optimization against experiments, as well as the lack of understanding of the associated uncertain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06172v1-abstract-full').style.display = 'inline'; document.getElementById('2107.06172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06172v1-abstract-full" style="display: none;"> Combustion kinetic modeling is an integral part of combustion simulation, and extensive studies have been devoted to developing both high fidelity and computationally affordable models. Despite these efforts, modeling combustion kinetics is still challenging due to the demand for expert knowledge and optimization against experiments, as well as the lack of understanding of the associated uncertainties. Therefore, data-driven approaches that enable efficient discovery and calibration of kinetic models have received much attention in recent years, the core of which is the optimization based on big data. Differentiable programming is a promising approach for learning kinetic models from data by efficiently computing the gradient of objective functions to model parameters. However, it is often challenging to implement differentiable programming in practice. Therefore, it is still not available in widely utilized combustion simulation packages such as CHEMKIN and Cantera. Here, we present a differentiable combustion simulation package leveraging the eco-system in Julia, including DifferentialEquations.jl for solving differential equations, ForwardDiff.jl for auto-differentiation, and Flux.jl for incorporating neural network models into combustion simulations and optimizing neural network models using the state-of-the-art deep learning optimizers. We demonstrate the benefits of differentiable programming in efficient and accurate gradient computations, with applications in uncertainty quantification, kinetic model reduction, data assimilation, and model discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06172v1-abstract-full').style.display = 'none'; document.getElementById('2107.06172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03637">arXiv:2107.03637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03637">pdf</a>, <a href="https://arxiv.org/format/2107.03637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cnsns.2022.106322">10.1016/j.cnsns.2022.106322 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-peak solitons in nonlocal nonlinear system with sine-oscillation response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+L">Lanhua Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Dang%2C+D">Dalong Dang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhanmei Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q">Qi Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03637v1-abstract-short" style="display: inline;"> The multi-peak solitons and their stability are investigated for the nonlocal nonlinear system with the sine-oscillation response, including both the cases of positive and negative Kerr coefficients. The Hermite-Gaussian-type multi-peak solitons and the ranges of the degree of nonlocality within which the solitons exist are analytically obtained by the variational approach. This is the first time,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03637v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03637v1-abstract-full" style="display: none;"> The multi-peak solitons and their stability are investigated for the nonlocal nonlinear system with the sine-oscillation response, including both the cases of positive and negative Kerr coefficients. The Hermite-Gaussian-type multi-peak solitons and the ranges of the degree of nonlocality within which the solitons exist are analytically obtained by the variational approach. This is the first time, to our knowledge at least, to discuss the solution existence range of the multi-peak solitons analytically, although approximately. The variational analytical results are confirmed by the numerical ones. The stability of the multi-peak solitons are addressed by the linear stability analysis. It is found that the upper thresholds of the peak-number of the stable solitons are five and four for the system with negative and positive Kerr coefficients, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03637v1-abstract-full').style.display = 'none'; document.getElementById('2107.03637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04093">arXiv:2106.04093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.04093">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Large eddy simulation of a supersonic lifted hydrogen flame with sparse-Lagrangian multiple mapping conditioning approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhiwei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Cleary%2C+M+J">Matthew J. Cleary</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zhuyin Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Huangwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04093v1-abstract-short" style="display: inline;"> The Multiple Mapping Conditioning / Large Eddy Simulation (MMC-LES) approach is used to simulate a supersonic lifted hydrogen jet flame, which features shock-induced autoignition, shock-flame interaction, lifted flame stabilization, and finite-rate chemistry effects. The shocks and expansion waves, shock-reaction interactions and overall flame characteristics are accurately reproduced by the model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04093v1-abstract-full').style.display = 'inline'; document.getElementById('2106.04093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04093v1-abstract-full" style="display: none;"> The Multiple Mapping Conditioning / Large Eddy Simulation (MMC-LES) approach is used to simulate a supersonic lifted hydrogen jet flame, which features shock-induced autoignition, shock-flame interaction, lifted flame stabilization, and finite-rate chemistry effects. The shocks and expansion waves, shock-reaction interactions and overall flame characteristics are accurately reproduced by the model. Predictions are compared with the detailed experimental data for the mean axial velocity, mean and root-mean-square temperature, species mole fractions, and mixture fraction at various locations. The predicted and experimentally observed flame structures are compared through scatter plots of species mole fractions and temperature against mixture fraction. Unlike most past MMC-LES which has been applied to low-Mach flames, in this supersonic flame case pressure work and viscous heating are included in the stochastic FDF equations. Analysis indicates that the pressure work plays an important role in autoignition induction and flame stabilization, whereas viscous heating is only significant in shear layers (but still negligibly small compared to the pressure work). The evolutions of particle information subject to local gas dynamics are extracted through trajectory analysis on representative fuel and oxidizer particles. The particles intermittently enter the extinction region and may be deviated from the full burning or mixing lines under the effects of shocks, expansion waves and viscous heating. The chemical explosive mode analysis performed on the Lagrangian particles shows that temperature, the H and OH radicals contribute dominantly to CEM respectively in the central fuel jet, fuel-rich and fuel-lean sides. The pronounced particle Damk枚hler numbers first occur in the fuel jet / coflow shear layer, enhanced at the first shock intersection point and peak around the flame stabilization point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04093v1-abstract-full').style.display = 'none'; document.getElementById('2106.04093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01309">arXiv:2106.01309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01309">pdf</a>, <a href="https://arxiv.org/format/2106.01309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking the Performance of Bayesian Optimization across Multiple Experimental Materials Science Domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Q">Qiaohao Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Gongora%2C+A+E">Aldair E. Gongora</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zekun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Tiihonen%2C+A">Armi Tiihonen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhe Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Shijing Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Deneault%2C+J+R">James R. Deneault</a>, <a href="/search/physics?searchtype=author&amp;query=Bash%2C+D">Daniil Bash</a>, <a href="/search/physics?searchtype=author&amp;query=Mekki-Berrada%2C+F">Flore Mekki-Berrada</a>, <a href="/search/physics?searchtype=author&amp;query=Khan%2C+S+A">Saif A. Khan</a>, <a href="/search/physics?searchtype=author&amp;query=Hippalgaonkar%2C+K">Kedar Hippalgaonkar</a>, <a href="/search/physics?searchtype=author&amp;query=Maruyama%2C+B">Benji Maruyama</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+K+A">Keith A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Fisher%2C+J">John Fisher III</a>, <a href="/search/physics?searchtype=author&amp;query=Buonassisi%2C+T">Tonio Buonassisi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01309v1-abstract-short" style="display: inline;"> In the field of machine learning (ML) for materials optimization, active learning algorithms, such as Bayesian Optimization (BO), have been leveraged for guiding autonomous and high-throughput experimentation systems. However, very few studies have evaluated the efficiency of BO as a general optimization algorithm across a broad range of experimental materials science domains. In this work, we eva&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01309v1-abstract-full').style.display = 'inline'; document.getElementById('2106.01309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01309v1-abstract-full" style="display: none;"> In the field of machine learning (ML) for materials optimization, active learning algorithms, such as Bayesian Optimization (BO), have been leveraged for guiding autonomous and high-throughput experimentation systems. However, very few studies have evaluated the efficiency of BO as a general optimization algorithm across a broad range of experimental materials science domains. In this work, we evaluate the performance of BO algorithms with a collection of surrogate model and acquisition function pairs across five diverse experimental materials systems, namely carbon nanotube polymer blends, silver nanoparticles, lead-halide perovskites, as well as additively manufactured polymer structures and shapes. By defining acceleration and enhancement metrics for general materials optimization objectives, we find that for surrogate model selection, Gaussian Process (GP) with anisotropic kernels (automatic relevance detection, ARD) and Random Forests (RF) have comparable performance and both outperform the commonly used GP without ARD. We discuss the implicit distributional assumptions of RF and GP, and the benefits of using GP with anisotropic kernels in detail. We provide practical insights for experimentalists on surrogate model selection of BO during materials optimization campaigns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01309v1-abstract-full').style.display = 'none'; document.getElementById('2106.01309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Ren%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10