CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 84 results for author: <span class="mathjax">Gong, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Gong%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gong, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gong%2C+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gong, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gong%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gong%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gong%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11826">arXiv:2405.11826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11826">pdf</a>, <a href="https://arxiv.org/format/2405.11826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Data quality control system and long-term performance monitor of the LHAASO-KM2A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+W">W. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bukevich%2C+A+V">A. V. Bukevich</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+X">H. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">S. Chen</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11826v3-abstract-short" style="display: inline;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'inline'; document.getElementById('2405.11826v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11826v3-abstract-full" style="display: none;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'none'; document.getElementById('2405.11826v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07303">arXiv:2405.07303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07303">pdf</a>, <a href="https://arxiv.org/format/2405.07303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for solar axions by Primakoff effect with the full dataset of the CDEX-1B Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S+K">S. K. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07303v1-abstract-short" style="display: inline;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}&lt;2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07303v1-abstract-full" style="display: none;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}&lt;2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axions with mass up to 100 eV/$c^2$. Within the hadronic model of KSVZ, our results exclude axion mass $&gt;5.3~\rm{eV}/c^2$ at 95\% C.L. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'none'; document.getElementById('2405.07303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09793">arXiv:2404.09793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09793">pdf</a>, <a href="https://arxiv.org/format/2404.09793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First Search for Light Fermionic Dark Matter Absorption on Electrons Using Germanium Detector in CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+X">J. X. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09793v1-abstract-short" style="display: inline;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09793v1-abstract-full" style="display: none;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present new constraints of cross section in the DM range of 0.1--10 keV/$c^2$ for vector and axial-vector interaction. The upper limit on the cross section is set to be $\rm 5.5\times10^{-46}~cm^2$ for vector interaction, and $\rm 1.8\times10^{-46}~cm^2$ for axial-vector interaction at DM mass of 5 keV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'none'; document.getElementById('2404.09793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20276">arXiv:2403.20276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20276">pdf</a>, <a href="https://arxiv.org/format/2403.20276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the Blazar-Boosted Dark Matter from the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+R">R. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20276v1-abstract-short" style="display: inline;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20276v1-abstract-full" style="display: none;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for DM masses between 10 keV and 1 GeV, and the results derived from BL Lacertae exclude DM-nucleon elastic scattering cross sections from $2.4\times 10^{-34}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for the same range of DM masses. The constraints correspond to the best sensitivities among solid-state detector experiments in the sub-MeV mass range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'none'; document.getElementById('2403.20276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20263">arXiv:2403.20263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20263">pdf</a>, <a href="https://arxiv.org/format/2403.20263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2446-2">10.1007/s11433-024-2446-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Dark Matter Particles from Evaporating Primordial Black Holes via Electron Scattering in the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20263v2-abstract-short" style="display: inline;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$&#34;) has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'inline'; document.getElementById('2403.20263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20263v2-abstract-full" style="display: none;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$&#34;) has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range from 1$\times$10$^{15}$ to 7$\times$10$^{16}$ g under the current limits of PBH abundance $f_{PBH}$. Using 205.4 kg$\cdot$day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory, we exclude the $蠂$--electron ($蠂$--$e$) elastic-scattering cross section $蟽_{蠂e} \sim 5\times10^{-29}$ cm$^2$ for $蠂$ with a mass $m_蠂\lesssim$ 0.1 keV from our results. With the higher radiation background but lower energy threshold (160 eV), CDEX-10 fill a part of the gap in the previous work. If ($m_蠂$, $蟽_{蠂e}$) can be determined in the future, DD experiments are expected to impose strong constraints on $f_{PBH}$ for large $M_{PBH}$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'none'; document.getElementById('2403.20263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 3 tables. Version updated to match SCPMA version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 101011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14982">arXiv:2309.14982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14982">pdf</a>, <a href="https://arxiv.org/format/2309.14982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.171001">10.1103/PhysRevLett.132.171001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Limits on Solar Reflected Dark Matter with a New Approach on Accelerated-Dark-Matter-Electron Analysis in Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+Y">Z. Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14982v3-abstract-short" style="display: inline;"> Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HP&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14982v3-abstract-full').style.display = 'inline'; document.getElementById('2309.14982v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14982v3-abstract-full" style="display: none;"> Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HPGe detector-based accelerated DM-electron analysis is realized. Utilizing the method, the first germanium based constraint on sub-GeV solar reflected DM-electron interaction is presented with the 205.4 kg$\cdot$day dataset from the CDEX-10 experiment. In the heavy mediator scenario, our result excels in the mass range of 5$-$15 keV/$c^2$, achieving a 3 orders of magnitude improvement comparing with previous semiconductor experiments. In the light mediator scenario, the strongest laboratory constraint for DM lighter than 0.1 MeV/$c^2$ is presented. The result proves the feasibility and demonstrates the vast potential of the VCA technique in future accelerated DM-electron analyses with semiconductor detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14982v3-abstract-full').style.display = 'none'; document.getElementById('2309.14982v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Version updated to match PRL version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 171001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01843">arXiv:2309.01843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01843">pdf</a>, <a href="https://arxiv.org/format/2309.01843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/07/009">10.1088/1475-7516/2024/07/009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP sensitivity of the CDEX-50 dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01843v2-abstract-short" style="display: inline;"> CDEX-50 is a next-generation project of the China Dark Matter Experiment (CDEX) that aims to search for dark matter using a 50-kg germanium detector array. This paper comprises a thorough summary of the CDEX-50 dark matter experiment, including an investigation of potential background sources and the development of a background model. Based on the baseline model, the projected sensitivity of weakl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01843v2-abstract-full').style.display = 'inline'; document.getElementById('2309.01843v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01843v2-abstract-full" style="display: none;"> CDEX-50 is a next-generation project of the China Dark Matter Experiment (CDEX) that aims to search for dark matter using a 50-kg germanium detector array. This paper comprises a thorough summary of the CDEX-50 dark matter experiment, including an investigation of potential background sources and the development of a background model. Based on the baseline model, the projected sensitivity of weakly interacting massive particle (WIMP) is also presented. The expected background level within the energy region of interest, set to 2--2.5 keVee, is $\sim$0.01 counts keVee$^{-1}$ kg$^{-1}$ day$^{-1}$. At 90\% confidence level, the expected sensitivity to spin-independent WIMP-nucleon couplings is estimated to reach a cross-section of 5.1 $\times$ 10$^{-45}$ cm$^{2}$ for a WIMP mass of 5 GeV/c$^{2}$ with an exposure objective of 150 kg$\cdot$year and an analysis threshold of 160 eVee. This science goal will correspond to the most sensitive results for WIMPs with a mass of 2.2--8 GeV/c$^{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01843v2-abstract-full').style.display = 'none'; document.getElementById('2309.01843v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures. Version updated to match JCAP version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 07 (2024) 009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00894">arXiv:2305.00894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00894">pdf</a>, <a href="https://arxiv.org/format/2305.00894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad597b">10.1088/1674-1137/ad597b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for $^{76}$Ge neutrinoless double beta decay with the CDEX-1B experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B+T">B. T. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J+Z">J. Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">X. Jiang</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00894v3-abstract-short" style="display: inline;"> We operated a p-type point contact high purity germanium (PPCGe) detector (CDEX-1B, 1.008 kg) in the China Jinping Underground Laboratory (CJPL) for 500.3 days to search for neutrinoless double beta ($0谓尾尾$) decay of $^{76}$Ge. A total of 504.3 kg$\cdot$day effective exposure data was accumulated. The anti-coincidence and the multi/single-site event (MSE/SSE) discrimination methods were used to su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00894v3-abstract-full').style.display = 'inline'; document.getElementById('2305.00894v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00894v3-abstract-full" style="display: none;"> We operated a p-type point contact high purity germanium (PPCGe) detector (CDEX-1B, 1.008 kg) in the China Jinping Underground Laboratory (CJPL) for 500.3 days to search for neutrinoless double beta ($0谓尾尾$) decay of $^{76}$Ge. A total of 504.3 kg$\cdot$day effective exposure data was accumulated. The anti-coincidence and the multi/single-site event (MSE/SSE) discrimination methods were used to suppress the background in the energy region of interest (ROI, 1989$-$2089 keV for this work) with a factor of 23. A background level of 0.33 counts/(keV$\cdot$kg$\cdot$yr) was realized. The lower limit on the half life of $^{76}$Ge $0谓尾尾$ decay was constrained as $T_{1/2}^{0谓}\ &gt; \ {1.0}\times 10^{23}\ \rm yr\ (90\% \ C.L.)$, corresponding to the upper limits on the effective Majorana neutrino mass: $\langle m_{尾尾}\rangle &lt; $3.2$-$7.5$\ \mathrm{eV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00894v3-abstract-full').style.display = 'none'; document.getElementById('2305.00894v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, 2 tables. Version updated to match CPC version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C 48, 101001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08455">arXiv:2303.08455</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> On the uncertainty analysis of the data-enabled physics-informed neural network for solving neutron diffusion eigenvalue problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">Helin Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qihong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yangtao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Q">Qiaolin He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shiquan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08455v3-abstract-short" style="display: inline;"> In practical engineering experiments, the data obtained through detectors are inevitably noisy. For the already proposed data-enabled physics-informed neural network (DEPINN) \citep{DEPINN}, we investigate the performance of DEPINN in calculating the neutron diffusion eigenvalue problem from several perspectives when the prior data contain different scales of noise. Further, in order to reduce the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08455v3-abstract-full').style.display = 'inline'; document.getElementById('2303.08455v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08455v3-abstract-full" style="display: none;"> In practical engineering experiments, the data obtained through detectors are inevitably noisy. For the already proposed data-enabled physics-informed neural network (DEPINN) \citep{DEPINN}, we investigate the performance of DEPINN in calculating the neutron diffusion eigenvalue problem from several perspectives when the prior data contain different scales of noise. Further, in order to reduce the effect of noise and improve the utilization of the noisy prior data, we propose innovative interval loss functions and give some rigorous mathematical proofs. The robustness of DEPINN is examined on two typical benchmark problems through a large number of numerical results, and the effectiveness of the proposed interval loss function is demonstrated by comparison. This paper confirms the feasibility of the improved DEPINN for practical engineering applications in nuclear reactor physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08455v3-abstract-full').style.display = 'none'; document.getElementById('2303.08455v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The experiments in Figures 6 and 10 in the article have errors that need to be corrected. Moreover, we intend to make massive changes to the content of the article, and therefore need to withdraw the article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02911">arXiv:2303.02911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.02911">pdf</a>, <a href="https://arxiv.org/format/2303.02911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Design of the Readout Electronics for the TRIDENT Pathfinder Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+G+H">G. H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+P">P. Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Z+Y">Z. Y. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J+N">J. N. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+W+H">W. H. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+D+L">D. L. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02911v1-abstract-short" style="display: inline;"> The tRopIcal DEep-sea Neutrino Telescope (TRIDENT) is a future large-scale next-generation neutrino telescope. In September 2021, the TRIDENT pathfinder experiment (TRIDENT EXplorer, T-REX for short) completed in-situ measurements of deep-sea water properties in the South China Sea. The T-REX apparatus integrates two independent and complementary systems, a photomultiplier tube (PMT) and a camera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02911v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02911v1-abstract-full" style="display: none;"> The tRopIcal DEep-sea Neutrino Telescope (TRIDENT) is a future large-scale next-generation neutrino telescope. In September 2021, the TRIDENT pathfinder experiment (TRIDENT EXplorer, T-REX for short) completed in-situ measurements of deep-sea water properties in the South China Sea. The T-REX apparatus integrates two independent and complementary systems, a photomultiplier tube (PMT) and a camera system, to measure the optical and radioactive properties of the deep-sea water. One light emitter module and two light receiver modules were deployed, which were synchronized by using White Rabbit (WR) technology. The light emitter module generates nanosecond-width LED pulses, while the light receiver module hosts three PMTs and a camera to detect photons. The submerged apparatus and the data acquisition system (DAQ) perform real-time command and data transmission. We report the design and performance of the readout electronics for T-REX, including hardware modules, firmware design for digital signal processing, and host-computer software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02911v1-abstract-full').style.display = 'none'; document.getElementById('2303.02911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07477">arXiv:2211.07477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07477">pdf</a>, <a href="https://arxiv.org/format/2211.07477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.052006">10.1103/PhysRevD.108.052006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for boosted keV-MeV light dark matter particles from evaporating primordial black holes at the CDEX-10 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">X. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07477v2-abstract-short" style="display: inline;"> We present novel constraints on boosted light dark matter particles (denoted as ``$蠂$&#39;&#39;) from evaporating primordial black holes (PBHs) using 205.4 kg$\cdot$day data from the China Jinping Underground Laboratory&#39;s CDEX-10 p-type point contact germanium detector with a 160 eVee analysis threshold. $蠂$ from PBHs with masses ranging from 1$\times$10$^{15}$ g to 7$\times$10$^{16}$ g are searched in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07477v2-abstract-full').style.display = 'inline'; document.getElementById('2211.07477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07477v2-abstract-full" style="display: none;"> We present novel constraints on boosted light dark matter particles (denoted as ``$蠂$&#39;&#39;) from evaporating primordial black holes (PBHs) using 205.4 kg$\cdot$day data from the China Jinping Underground Laboratory&#39;s CDEX-10 p-type point contact germanium detector with a 160 eVee analysis threshold. $蠂$ from PBHs with masses ranging from 1$\times$10$^{15}$ g to 7$\times$10$^{16}$ g are searched in this work. In the presence of PBH abundance compatible with present bounds, our result excludes the $蠂$-nucleon elastic-scattering cross section region from 3.4$\times$10$^{-32}$ cm$^{2}$ to 2.3$\times$10$^{-29}$ cm$^{2}$ for $蠂$ of 1 keV to 24 MeV from PBHs with masses of 5$\times$10$^{15}$ g, as well as from 1.1$\times$10$^{-28}$ cm$^{2}$ to 7.6$\times$10$^{-28}$ cm$^{2}$ for $蠂$ of 1 keV to 0.6 MeV from PBHs with masses of 7$\times$10$^{16}$ g. If the $蠂$-nucleon elastic-scattering cross section can be determined in the future, the abundance of PBHs may be severely constrained by $蠂$ evaporation. With the lower threshold (160 eVee) of the CDEX-10 experiment compared to the previously used experiments, this work allows for a better reach at soft spectra produced by heavier PBHs, which demonstrates the vast potential of such a technical route to pursue $蠂$ from larger PBHs with a low threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07477v2-abstract-full').style.display = 'none'; document.getElementById('2211.07477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures. Version updated to match PRD version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 052006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01604">arXiv:2210.01604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.01604">pdf</a>, <a href="https://arxiv.org/format/2210.01604">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.112002">10.1103/PhysRevD.107.112002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for exotic interactions of solar neutrinos in the CDEX-10 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">X. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Karmakar%2C+S">S. Karmakar</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01604v2-abstract-short" style="display: inline;"> We investigate exotic neutrino interactions using the 205.4 kg$\cdot$day dataset from the CDEX-10 experiment at the China Jinping Underground Laboratory. New constraints on the mass and couplings of new gauge bosons are presented. Two nonstandard neutrino interactions are considered: a $U(1)_{B-L}$ gauge-boson-induced interaction between an active neutrino and electron/nucleus, and a dark-photon-i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01604v2-abstract-full').style.display = 'inline'; document.getElementById('2210.01604v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01604v2-abstract-full" style="display: none;"> We investigate exotic neutrino interactions using the 205.4 kg$\cdot$day dataset from the CDEX-10 experiment at the China Jinping Underground Laboratory. New constraints on the mass and couplings of new gauge bosons are presented. Two nonstandard neutrino interactions are considered: a $U(1)_{B-L}$ gauge-boson-induced interaction between an active neutrino and electron/nucleus, and a dark-photon-induced interaction between a sterile neutrino and electron/nucleus via kinetic mixing with a photon. This work probes an unexplored parameter space involving sterile neutrino coupling with a dark photon. New laboratory limits are derived on dark photon masses below $1~{\rm eV}/c^{2}$ at some benchmark values of $螖m_{41}^{2}$ and $g^{\prime2}{\rm{sin}}^{2}2胃_{14}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01604v2-abstract-full').style.display = 'none'; document.getElementById('2210.01604v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Version updated to match PRD version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 112002 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00884">arXiv:2209.00884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.00884">pdf</a>, <a href="https://arxiv.org/format/2209.00884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNS.2022.3233895">10.1109/TNS.2022.3233895 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and Energy Extraction of Nuclear Detector Signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ai%2C+P">Pengcheng Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zhi Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">Hui Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Ran%2C+X">Xinchi Ran</a>, <a href="/search/physics?searchtype=author&amp;query=Lang%2C+Z">Zijian Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00884v2-abstract-short" style="display: inline;"> Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00884v2-abstract-full').style.display = 'inline'; document.getElementById('2209.00884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00884v2-abstract-full" style="display: none;"> Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00884v2-abstract-full').style.display = 'none'; document.getElementById('2209.00884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE Transactions on Nuclear Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13483">arXiv:2208.13483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13483">pdf</a>, <a href="https://arxiv.org/format/2208.13483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">Helin Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shiquan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qihong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Q">Qiaolin He</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13483v3-abstract-short" style="display: inline;"> We present a data-enabled physics-informed neural network (DEPINN) with comprehensive numerical study for solving industrial scale neutron diffusion eigenvalue problems (NDEPs). In order to achieve an engineering acceptable accuracy for complex engineering problems, a very small amount of prior data from physical experiments are suggested to be used, to improve the accuracy and efficiency of train&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13483v3-abstract-full').style.display = 'inline'; document.getElementById('2208.13483v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13483v3-abstract-full" style="display: none;"> We present a data-enabled physics-informed neural network (DEPINN) with comprehensive numerical study for solving industrial scale neutron diffusion eigenvalue problems (NDEPs). In order to achieve an engineering acceptable accuracy for complex engineering problems, a very small amount of prior data from physical experiments are suggested to be used, to improve the accuracy and efficiency of training. We design an adaptive optimization procedure with Adam and LBFGS to accelerate the convergence in the training stage. We discuss the effect of different physical parameters, sampling techniques, loss function allocation and the generalization performance of the proposed DEPINN model for solving complex problem. The feasibility of proposed DEPINN model is tested on three typical benchmark problems, from simple geometry to complex geometry, and from mono-energetic equation to two-group equations. Numerous numerical results show that DEPINN can efficiently solve NDEPs with an appropriate optimization procedure. The proposed DEPINN can be generalized for other input parameter settings once its structure been trained. This work confirms the possibility of DEPINN for practical engineering applications in nuclear reactor physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13483v3-abstract-full').style.display = 'none'; document.getElementById('2208.13483v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04128">arXiv:2206.04128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04128">pdf</a>, <a href="https://arxiv.org/format/2206.04128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.221301">10.1103/PhysRevLett.129.221301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on Sub-GeV Dark Matter--Electron Scattering from the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z+Y">Z. Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">X. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04128v2-abstract-short" style="display: inline;"> We present improved germanium-based constraints on sub-GeV dark matter via dark matter--electron ($蠂$-$e$) scattering using the 205.4 kg$\cdot$day dataset from the CDEX-10 experiment. Using a novel calculation technique, we attain predicted $蠂$-$e$ scattering spectra observable in high-purity germanium detectors. In the heavy mediator scenario, our results achieve 3 orders of magnitude of improvem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04128v2-abstract-full').style.display = 'inline'; document.getElementById('2206.04128v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04128v2-abstract-full" style="display: none;"> We present improved germanium-based constraints on sub-GeV dark matter via dark matter--electron ($蠂$-$e$) scattering using the 205.4 kg$\cdot$day dataset from the CDEX-10 experiment. Using a novel calculation technique, we attain predicted $蠂$-$e$ scattering spectra observable in high-purity germanium detectors. In the heavy mediator scenario, our results achieve 3 orders of magnitude of improvement for $m_蠂$ larger than 80 MeV/c$^2$ compared to previous germanium-based $蠂$-$e$ results. We also present the most stringent $蠂$-$e$ cross-section limit to date among experiments using solid-state detectors for $m_蠂$ larger than 90 MeV/c$^2$ with heavy mediators and $m_蠂$ larger than 100 MeV/c$^2$ with electric dipole coupling. The result proves the feasibility and demonstrates the vast potential of a new $蠂$-$e$ detection method with high-purity germanium detectors in ultralow radioactive background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04128v2-abstract-full').style.display = 'none'; document.getElementById('2206.04128v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures. Version updated to match PRL version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 221301 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02375">arXiv:2206.02375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.02375">pdf</a>, <a href="https://arxiv.org/format/2206.02375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167241">10.1016/j.nima.2022.167241 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of TPC detector prototype integrated with UV laser tracks for the circular collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z+Y">Z. Y. Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+H+R">H. R. Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+L+W">L. W. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Y+M">Y. M. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H+Y">H. Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+Q">Q. Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+L">Y. L. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02375v1-abstract-short" style="display: inline;"> Several new experimental concepts in high-energy particle physics have been proposed in recent years. The physical goals include precisely measuring the properties of particles such as Higgs, Z and W, and even looking for signs of new physics at future colliders. To meet the evolving requirements for particle track detector, Time Projection Chamber(TPC) detector prototype integrated with a UV lase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02375v1-abstract-full').style.display = 'inline'; document.getElementById('2206.02375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02375v1-abstract-full" style="display: none;"> Several new experimental concepts in high-energy particle physics have been proposed in recent years. The physical goals include precisely measuring the properties of particles such as Higgs, Z and W, and even looking for signs of new physics at future colliders. To meet the evolving requirements for particle track detector, Time Projection Chamber(TPC) detector prototype integrated with a UV laser track system was developed for the main track detector at Circular Electron Positron Collider(CEPC). This prototype consists of 6 horizontal laser tracks around TPC detector chamber, a fast electronics readout of 1280 channels, a GEM detector with $200\times 200\,mm^2$ active area, and the DAQ system. The hit resolution, dE/dx resolution and drift velocity were studied by measuring and analyzing using the TPC prototype and UV laser tracks. The dE/dx resolution of the prototype was measured to be $(8.9\pm0.4)\,\%$. Extrapolating this to CEPC TPC with 220 layers and longer track, the resolution was estimated to be $(3.36\pm0.26)\,\%$. All results indicated that the TPC detector prototype integrated with UV laser tracks can work well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02375v1-abstract-full').style.display = 'none'; document.getElementById('2206.02375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10718">arXiv:2205.10718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10718">pdf</a>, <a href="https://arxiv.org/format/2205.10718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.032012">10.1103/PhysRevD.106.032012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Neutrinoless Double-Beta Decay of $^{76}$Ge with a Natural Broad Energy Germanium Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CDEX+collaboration"> CDEX collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">H. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=She%2C+Z">Z. She</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">X. Jiang</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10718v2-abstract-short" style="display: inline;"> A natural broad energy germanium (BEGe) detector is operated in the China Jinping Underground Laboratory (CJPL) for a feasibility study of building the next generation experiment of the neutrinoless double-beta (0{$谓尾尾$}) decay of $^{76}$Ge. The setup of the prototype facility, characteristics of the BEGe detector, background reduction methods, and data analysis are described in this paper. A back&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10718v2-abstract-full').style.display = 'inline'; document.getElementById('2205.10718v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10718v2-abstract-full" style="display: none;"> A natural broad energy germanium (BEGe) detector is operated in the China Jinping Underground Laboratory (CJPL) for a feasibility study of building the next generation experiment of the neutrinoless double-beta (0{$谓尾尾$}) decay of $^{76}$Ge. The setup of the prototype facility, characteristics of the BEGe detector, background reduction methods, and data analysis are described in this paper. A background index of 6.4$\times$10$^{-3}$ counts/(keV$\cdot$kg$\cdot$day) is achieved and 1.86 times lower than our previous result of the CDEX-1 detector. No signal is observed with an exposure of 186.4 kg$\cdot$day, thus a limit on the half life of $^{76}$Ge 0$谓尾尾$ decay is set at T$_{1/2}^{0谓}$ $&gt;$ 5.62$\times$10$^{22}$ yr at 90% C.L.. The limit corresponds to an effective Majorana neutrino mass in the range of 4.6 $\sim$ 10.3 eV, dependent on the nuclear matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10718v2-abstract-full').style.display = 'none'; document.getElementById('2205.10718v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 106, 032012 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08830">arXiv:2205.08830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08830">pdf</a>, <a href="https://arxiv.org/format/2205.08830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/10/033">10.1088/1475-7516/2022/10/033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (577 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08830v2-abstract-short" style="display: inline;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08830v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08830v2-abstract-full" style="display: none;"> We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced neutral current (NC) background turns out to be the most critical background, whose uncertainty is carefully evaluated from both the spread of model predictions and an envisaged \textit{in situ} measurement. We also make a careful study on the background suppression with the pulse shape discrimination (PSD) and triple coincidence (TC) cuts. With latest DSNB signal predictions, more realistic background evaluation and PSD efficiency optimization, and additional TC cut, JUNO can reach the significance of 3$蟽$ for 3 years of data taking, and achieve better than 5$蟽$ after 10 years for a reference DSNB model. In the pessimistic scenario of non-observation, JUNO would strongly improve the limits and exclude a significant region of the model parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08830v2-abstract-full').style.display = 'none'; document.getElementById('2205.08830v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures, final published version in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2022) 033 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08629">arXiv:2205.08629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08629">pdf</a>, <a href="https://arxiv.org/format/2205.08629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-11002-8">10.1140/epjc/s10052-022-11002-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass Testing and Characterization of 20-inch PMTs for JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andre%2C+J+P+A+M">Joao Pedro Athayde Marcondes de Andre</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a> , et al. (541 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08629v2-abstract-short" style="display: inline;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08629v2-abstract-full" style="display: none;"> Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08629v2-abstract-full').style.display = 'none'; document.getElementById('2205.08629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01704">arXiv:2201.01704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01704">pdf</a>, <a href="https://arxiv.org/format/2201.01704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.052008">10.1103/PhysRevD.106.052008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on sub-GeV dark matter boosted by cosmic rays from the CDEX-10 experiment at the China Jinping Underground Laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+R">R. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">X. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01704v3-abstract-short" style="display: inline;"> We present new constraints on light dark matter boosted by cosmic rays (CRDM) using the 205.4 kg day data of the CDEX-10 experiment conducted at the China Jinping Underground Laboratory. The Monte Carlo simulation package CJPL\_ESS was employed to evaluate the Earth shielding effect. Several key factors have been introduced and discussed in our CRDM analysis, including the contributions from heavi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01704v3-abstract-full').style.display = 'inline'; document.getElementById('2201.01704v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01704v3-abstract-full" style="display: none;"> We present new constraints on light dark matter boosted by cosmic rays (CRDM) using the 205.4 kg day data of the CDEX-10 experiment conducted at the China Jinping Underground Laboratory. The Monte Carlo simulation package CJPL\_ESS was employed to evaluate the Earth shielding effect. Several key factors have been introduced and discussed in our CRDM analysis, including the contributions from heavier CR nuclei than proton and helium, the inhomogeneity of CR distribution, and the impact of the form factor in the Earth attenuation calculation. Our result excludes the dark matter--nucleon elastic scattering cross-section region from $1.7\times 10^{-30}$ to $10^{-26}~\rm cm^2$ for dark matter of 10 keV$/c^2$ to 1 GeV$/c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01704v3-abstract-full').style.display = 'none'; document.getElementById('2201.01704v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures. Version updated to match PRD version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 052008 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11243">arXiv:2111.11243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.11243">pdf</a>, <a href="https://arxiv.org/format/2111.11243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.052005">10.1103/PhysRevD.105.052005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Studies of the Earth shielding effect to direct dark matter searches at the China Jinping Underground Laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z+Z">Z. Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Yeh%2C+C+H">C. H. Yeh</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H+T">H. T. Jia</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11243v2-abstract-short" style="display: inline;"> Dark matter direct detection experiments mostly operate at deep underground laboratories. It is necessary to consider shielding effect of the Earth, especially for dark matter particles interacting with a large cross section. We analyzed and simulated the Earth shielding effect for dark matter at the China Jinping Underground Laboratory (CJPL) with a simulation package, CJPL Earth Shielding Simula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11243v2-abstract-full').style.display = 'inline'; document.getElementById('2111.11243v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11243v2-abstract-full" style="display: none;"> Dark matter direct detection experiments mostly operate at deep underground laboratories. It is necessary to consider shielding effect of the Earth, especially for dark matter particles interacting with a large cross section. We analyzed and simulated the Earth shielding effect for dark matter at the China Jinping Underground Laboratory (CJPL) with a simulation package, CJPL Earth Shielding Simulation code (CJPL\_ESS), which is applicable to other underground locations. The further constraints on the $蠂$-N cross section exclusion regions are derived based on the studies with CDEX experiment data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11243v2-abstract-full').style.display = 'none'; document.getElementById('2111.11243v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures, 2 tables. Version updated to match PRD version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 052005 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03669">arXiv:2107.03669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03669">pdf</a>, <a href="https://arxiv.org/format/2107.03669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2021)102">10.1007/JHEP11(2021)102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radioactivity control strategy for the JUNO detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Blin%2C+S">Sylvie Blin</a> , et al. (578 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03669v2-abstract-short" style="display: inline;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'inline'; document.getElementById('2107.03669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03669v2-abstract-full" style="display: none;"> JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz in the default fiducial volume, above an energy threshold of 0.7 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03669v2-abstract-full').style.display = 'none'; document.getElementById('2107.03669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.16900">arXiv:2103.16900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.16900">pdf</a>, <a href="https://arxiv.org/format/2103.16900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Design and Sensitivity of JUNO&#39;s scintillator radiopurity pre-detector OSIRIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (582 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.16900v1-abstract-short" style="display: inline;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'inline'; document.getElementById('2103.16900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.16900v1-abstract-full" style="display: none;"> The OSIRIS detector is a subsystem of the liquid scintillator fillling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $10^{-16}$ g/g of $^{238}$U and $^{232}$Th requires a large ($\sim$20 m$^3$) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16900v1-abstract-full').style.display = 'none'; document.getElementById('2103.16900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.09627">arXiv:2102.09627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.09627">pdf</a>, <a href="https://arxiv.org/format/2102.09627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X2142015X">10.1142/S0217751X2142015X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Feasibility study of TPC detector at high luminosity $Z$ pole on the circular collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zhiyang Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+H">Huirong Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Yue Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Ye Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hongyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yuanbo Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Y">Yiming Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yulan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zhi Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">Hui Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.09627v1-abstract-short" style="display: inline;"> With the development of the circular collider, it is necessary to make accurate physics experimental measurements of particle properties at higher luminosity $Z$ pole. Micro-pattern gaseous detectors (MPGDs), which contain Gaseous Electron Multiplier (GEM) and Micro-mesh gaseous structures (Micromegas), have excellent potential for development as the readout devices of the time projection chamber&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09627v1-abstract-full').style.display = 'inline'; document.getElementById('2102.09627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.09627v1-abstract-full" style="display: none;"> With the development of the circular collider, it is necessary to make accurate physics experimental measurements of particle properties at higher luminosity $Z$ pole. Micro-pattern gaseous detectors (MPGDs), which contain Gaseous Electron Multiplier (GEM) and Micro-mesh gaseous structures (Micromegas), have excellent potential for development as the readout devices of the time projection chamber (TPC) tracker detector. To meet the updated physics requirements of the high luminosity $Z$ from the preliminary concept design report (preCDR) to concept design report (CDR) at the circular electron positron collider (CEPC), In this paper, the space charge distortion of the TPC detector is simulated with the CEPC beam structure. Using the multi-physics simulation software package, the distribution of ion estimated by Geant4 is used as the input for the differential equation, and the relationship between the ion density distribution and electric field in the detector chamber is simulated. These simulation results show that the maximum deviation for Higgs $\mathcal{O}$(25 $渭$m) meets the performance requirements in CEPC TPC detector at the high luminosity $Z$ pole, while it is still a considerable challenge for $Z$ pole, with the maximum deviation $\mathcal{O}$($&gt;100~渭$m). According to the previous developments, the cascaded structure of GEM and Micromegas detector has been measured. The new considerations of the detector&#39;s requirements were given, the gain needs to be reached to about 2000 with IBF$\times$Gain under 0.1, and IBF means the ions back flow ratio of the detector. The pixel TPC is a potential option to replace the traditional MPGDs with the low gain, low occupancy, and outstanding pattern recognition. Finally, some update parameters and experiments results were compared. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09627v1-abstract-full').style.display = 'none'; document.getElementById('2102.09627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 png figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14622">arXiv:2012.14622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14622">pdf</a>, <a href="https://arxiv.org/format/2012.14622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09414-z">10.1140/epjc/s10052-021-09414-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction and On-site Performance of the LHAASO WFCTA Camera </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+L+X">L. X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J+T">J. T. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+X+C">X. C. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B+M">B. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+H">S. H. Chen</a> , et al. (234 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14622v2-abstract-short" style="display: inline;"> The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14622v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14622v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14622v2-abstract-full" style="display: none;"> The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14622v2-abstract-full').style.display = 'none'; document.getElementById('2012.14622v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 21 figures, article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 657 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.06405">arXiv:2011.06405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.06405">pdf</a>, <a href="https://arxiv.org/format/2011.06405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)004">10.1007/JHEP03(2021)004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration Strategy of the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Birkenfeld%2C+T">Thilo Birkenfeld</a> , et al. (571 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.06405v3-abstract-short" style="display: inline;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'inline'; document.getElementById('2011.06405v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.06405v3-abstract-full" style="display: none;"> We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.06405v3-abstract-full').style.display = 'none'; document.getElementById('2011.06405v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.15555">arXiv:2007.15555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.15555">pdf</a>, <a href="https://arxiv.org/format/2007.15555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-020-1666-8">10.1007/s11433-020-1666-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First experimental constraints on WIMP couplings in the effective field theory framework from CDEX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Z">Z. Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chiang%2C+C+Y">C. Y. Chiang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H+J">H. J. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.15555v2-abstract-short" style="display: inline;"> We present weakly interacting massive particles (WIMPs) search results performed using two approaches of effective field theory from the China Dark Matter Experiment (CDEX), based on the data from both CDEX-1B and CDEX-10 stages. In the nonrelativistic effective field theory approach, both time-integrated and annual modulation analyses were used to set new limits for the coupling of WIMP-nucleon e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15555v2-abstract-full').style.display = 'inline'; document.getElementById('2007.15555v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.15555v2-abstract-full" style="display: none;"> We present weakly interacting massive particles (WIMPs) search results performed using two approaches of effective field theory from the China Dark Matter Experiment (CDEX), based on the data from both CDEX-1B and CDEX-10 stages. In the nonrelativistic effective field theory approach, both time-integrated and annual modulation analyses were used to set new limits for the coupling of WIMP-nucleon effective operators at 90% confidence level (C.L.) and improve over the current bounds in the low $m_蠂$ region. In the chiral effective field theory approach, data from CDEX-10 were used to set an upper limit on WIMP-pion coupling at 90% C.L. We for the first time extended the limit to the $m_蠂&lt;$ 6 GeV/$c^2$ region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15555v2-abstract-full').style.display = 'none'; document.getElementById('2007.15555v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted by Science China-PMA, 8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China-Phys. Mech. Astron. 64, 281011 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00314">arXiv:2007.00314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00314">pdf</a>, <a href="https://arxiv.org/format/2007.00314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bay%2C+D">Daya Bay</a>, <a href="/search/physics?searchtype=author&amp;query=collaborations%2C+J">JUNO collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">A. Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">T. Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">S. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">S. Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">M. Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">N. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G+P">G. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">G. Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">V. Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">T. Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">B. Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">J. P. A. M. de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">A. Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">W. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">M. Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">E. Baussan</a> , et al. (642 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00314v1-abstract-short" style="display: inline;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'inline'; document.getElementById('2007.00314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00314v1-abstract-full" style="display: none;"> To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and &lt;0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00314v1-abstract-full').style.display = 'none'; document.getElementById('2007.00314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15386">arXiv:2006.15386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15386">pdf</a>, <a href="https://arxiv.org/format/2006.15386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abe84b">10.1088/1674-1137/abe84b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dalager%2C+O">O. Dalager</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dohnal%2C+T">T. Dohnal</a>, <a href="/search/physics?searchtype=author&amp;query=Dove%2C+J">J. Dove</a>, <a href="/search/physics?searchtype=author&amp;query=Dvorak%2C+M">M. Dvorak</a> , et al. (161 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15386v4-abstract-short" style="display: inline;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'inline'; document.getElementById('2006.15386v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15386v4-abstract-full" style="display: none;"> Providing a possible connection between neutrino emission and gravitational-wave (GW) bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge. In the Daya Bay experiment, using data collected from December 2011 to August 2017, a search has been performed for electron-antineutrino signals coinciding with detected GW events, including GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817. We used three time windows of $\mathrm{\pm 10~s}$, $\mathrm{\pm 500~s}$, and $\mathrm{\pm 1000~s}$ relative to the occurrence of the GW events, and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates. The detected electron-antineutrino candidates are consistent with the expected background rates for all the three time windows. Assuming monochromatic spectra, we found upper limits (90% confidence level) on electron-antineutrino fluence of $(1.13~-~2.44) \times 10^{11}~\rm{cm^{-2}}$ at 5 MeV to $8.0 \times 10^{7}~\rm{cm^{-2}}$ at 100 MeV for the three time windows. Under the assumption of a Fermi-Dirac spectrum, the upper limits were found to be $(5.4~-~7.0)\times 10^{9}~\rm{cm^{-2}}$ for the three time windows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15386v4-abstract-full').style.display = 'none'; document.getElementById('2006.15386v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11760">arXiv:2006.11760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11760">pdf</a>, <a href="https://arxiv.org/format/2006.11760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+collaboration"> JUNO collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11760v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11760v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO&#39;s features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid scintillator detectors. In this paper we present a comprehensive assessment of JUNO&#39;s potential for detecting $^8$B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2~MeV threshold on the recoil electron energy is found to be achievable assuming the intrinsic radioactive background $^{238}$U and $^{232}$Th in the liquid scintillator can be controlled to 10$^{-17}$~g/g. With ten years of data taking, about 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the tension between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If $螖m^{2}_{21}=4.8\times10^{-5}~(7.5\times10^{-5})$~eV$^{2}$, JUNO can provide evidence of neutrino oscillation in the Earth at the about 3$蟽$~(2$蟽$) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moveover, JUNO can simultaneously measure $螖m^2_{21}$ using $^8$B solar neutrinos to a precision of 20\% or better depending on the central value and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help elucidate the current tension between the value of $螖m^2_{21}$ reported by solar neutrino experiments and the KamLAND experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11760v1-abstract-full').style.display = 'none'; document.getElementById('2006.11760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 plots, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11705">arXiv:2006.11705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11705">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.anucene.2020.108102">10.1016/j.anucene.2020.108102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> UO2/BeO interfacial thermal resistance and its effect on fuel thermal conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xueyan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+R">Rui Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">Hengfeng Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+D">De-Ye Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+H">Haifeng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11705v1-abstract-short" style="display: inline;"> UO2/BeO interfacial thermal resistance (ITR) is calculated by diffuse mismatch model (DMM) and the effects of ITR on UO2-BeO thermal conductivity are investigated. ITR predicted by DMM is on the order of 10-9 m2K/W. Using this ITR, UO2-BeO thermal conductivities are calculated by theoretical models and compared with experimental data. The results indicate that DMM prediction is applicable to the i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11705v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11705v1-abstract-full" style="display: none;"> UO2/BeO interfacial thermal resistance (ITR) is calculated by diffuse mismatch model (DMM) and the effects of ITR on UO2-BeO thermal conductivity are investigated. ITR predicted by DMM is on the order of 10-9 m2K/W. Using this ITR, UO2-BeO thermal conductivities are calculated by theoretical models and compared with experimental data. The results indicate that DMM prediction is applicable to the interface between UO2 and dispersed BeO, while not applicable to the interface between UO2 and continuous BeO. If the thermal conductivity of UO2 containing continuous BeO was to be in agreement with experimental data, its ITR should be on the order of 10-6 - 10-5 m2K/W. Therefore, the vibrational mismatch between UO2 and BeO considered by DMM is the major mechanism for attenuating the heat flux through UO2/dispersed-BeO interface, but not for UO2/continuous-BeO interface. Furthermore, it is found that the presence of ITR leads to the dependence of the thermal conductivity of UO2 containing dispersed BeO on BeO size. With the decrease in BeO size, UO2-BeO thermal conductivity decreases. When BeO size is smaller than a critical value, UO2-BeO thermal conductivity becomes even smaller than UO2 thermal conductivity. For UO2 containing continuous BeO, the thermal conductivity decreases with the decrease in the size of UO2 granule surrounded by BeO, but not necessarily smaller than UO2 thermal conductivity. Under a critical temperature, UO2-BeO thermal conductivity is always larger than UO2 thermal conductivity. Above the critical temperature, UO2-BeO thermal conductivity is larger than UO2 thermal conductivity only when UO2 granule size is large enough. The conditions for achieving the targeted enhancement of UO2 thermal conductivity by doping with BeO are derived. These conditions can be used to design and optimize the distribution, content, size of BeO, and the size of UO2 granule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11705v1-abstract-full').style.display = 'none'; document.getElementById('2006.11705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Annals of Nuclear Energy, Volume 154, May 2021, 108102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08745">arXiv:2005.08745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.08745">pdf</a>, <a href="https://arxiv.org/format/2005.08745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+N">Nawab Ali</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Babic%2C+A">Andrej Babic</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">Enrico Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">David Biare</a> , et al. (568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08745v1-abstract-short" style="display: inline;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'inline'; document.getElementById('2005.08745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08745v1-abstract-full" style="display: none;"> The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A ton-level liquid scintillator detector will be placed at about 30 m from a core of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be measured with sub-percent energy resolution, to provide a reference spectrum for future reactor neutrino experiments, and to provide a benchmark measurement to test nuclear databases. A spherical acrylic vessel containing 2.8 ton gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon Photomultipliers (SiPMs) of &gt;50% photon detection efficiency with almost full coverage. The photoelectron yield is about 4500 per MeV, an order higher than any existing large-scale liquid scintillator detectors. The detector operates at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The detector will measure about 2000 reactor antineutrinos per day, and is designed to be well shielded from cosmogenic backgrounds and ambient radioactivities to have about 10% background-to-signal ratio. The experiment is expected to start operation in 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08745v1-abstract-full').style.display = 'none'; document.getElementById('2005.08745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">134 pages, 114 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01864">arXiv:1912.01864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01864">pdf</a>, <a href="https://arxiv.org/format/1912.01864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/03/P03020">10.1088/1748-0221/15/03/P03020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capability of detecting low energy events in JUNO Central Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fang%2C+X">X. Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+G+H">G. H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+T">T. Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+W">C. W. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W+D">W. D. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01864v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO) is an experimental project designed to determine the neutrino mass ordering and probe the fundamental properties of the neutrino oscillations. The JUNO central detector is a spherical liquid scintillator detector with a diameter of 35.4 m and equipped with approximately 18,000 20-inch PMTs. A trigger threshold of 0.5 MeV can be easily achieved b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01864v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01864v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO) is an experimental project designed to determine the neutrino mass ordering and probe the fundamental properties of the neutrino oscillations. The JUNO central detector is a spherical liquid scintillator detector with a diameter of 35.4 m and equipped with approximately 18,000 20-inch PMTs. A trigger threshold of 0.5 MeV can be easily achieved by using a common multiplicity trigger and can meet the requirements for measuring neutrino mass ordering. However, it is essential to further reduce the trigger threshold for detecting solar neutrinos and supernova neutrinos. A sophisticated trigger scheme is proposed to achieve a low energy threshold by reducing the level of low energy radioactivity and dark noise coincidence. With the new trigger scheme, the events rate of the central detector from different types of sources have been carefully studied by using a detailed detector simulation. It shows that the trigger threshold can be reduced to 0.2 MeV, or even 0.1 MeV, if the concentration of $^{14}$C in liquid scintillator can be well controlled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01864v1-abstract-full').style.display = 'none'; document.getElementById('1912.01864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.03085">arXiv:1911.03085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.03085">pdf</a>, <a href="https://arxiv.org/format/1911.03085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.052003">10.1103/PhysRevD.101.052003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved limits on solar axions and bosonic dark matter from the CDEX-1B experiment using the profile likelihood ratio method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S+K">S. K. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+P">P. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H+T">H. T. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+L+P">L. P. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.03085v2-abstract-short" style="display: inline;"> We present the improved constraints on couplings of solar axions and more generic bosonic dark matter particles using 737.1 kg-days of data from the CDEX-1B experiment. The CDEX-1B experiment, located at the China Jinping Underground Laboratory, primarily aims at the direct detection of weakly interacting massive particles using a p-type point-contact germanium detector. We adopt the profile likel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03085v2-abstract-full').style.display = 'inline'; document.getElementById('1911.03085v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.03085v2-abstract-full" style="display: none;"> We present the improved constraints on couplings of solar axions and more generic bosonic dark matter particles using 737.1 kg-days of data from the CDEX-1B experiment. The CDEX-1B experiment, located at the China Jinping Underground Laboratory, primarily aims at the direct detection of weakly interacting massive particles using a p-type point-contact germanium detector. We adopt the profile likelihood ratio method for analysis of data in the presence of backgrounds. An energy threshold of 160 eV was achieved, much better than the 475 eV of CDEX-1A with an exposure of 335.6 kg-days. This significantly improves the sensitivity for the bosonic dark matter below 0.8 keV among germanium detectors. Limits are also placed on the coupling $g_{Ae} &lt; 2.48 \times 10^{-11}$ from Compton, bremsstrahlung, atomic-recombination and de-excitation channels and $g^{eff}_{AN} \times g_{Ae} &lt; 4.14 \times 10^{-17}$ from a $^{57}$Fe M1 transition at 90\% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03085v2-abstract-full').style.display = 'none'; document.getElementById('1911.03085v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted by PRD, 9 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 052003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13234">arXiv:1910.13234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13234">pdf</a>, <a href="https://arxiv.org/format/1910.13234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.111301">10.1103/PhysRevLett.124.111301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Detection Constraints on Dark Photons with CDEX-10 Experiment at the China Jinping Underground Laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=She%2C+Z">Z. She</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+L+P">L. P. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">H. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+P">P. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H+T">H. T. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13234v2-abstract-short" style="display: inline;"> We report constraints on the dark photon effective kinetic mixing parameter ($魏$) with data taken from two ${p}$-type point-contact germanium detectors of the CDEX-10 experiment at the China Jinping Underground Laboratory. The 90\% confidence level upper limits on $魏$ of solar dark photon from 205.4 kg-day exposure are derived, probing new parameter space with masses (${m_V}$) from 10 to 300 eV/&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13234v2-abstract-full').style.display = 'inline'; document.getElementById('1910.13234v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13234v2-abstract-full" style="display: none;"> We report constraints on the dark photon effective kinetic mixing parameter ($魏$) with data taken from two ${p}$-type point-contact germanium detectors of the CDEX-10 experiment at the China Jinping Underground Laboratory. The 90\% confidence level upper limits on $魏$ of solar dark photon from 205.4 kg-day exposure are derived, probing new parameter space with masses (${m_V}$) from 10 to 300 eV/${c^2}$ in direct detection experiments. Considering dark photon as the cosmological dark matter, limits at 90\% confidence level with ${m_V}$ from 0.1 to 4.0 keV/${c^2}$ are set from 449.6 kg-day data, with a minimum of ${\rm{魏=1.3 \times 10^{-15}}}$ at ${\rm{m_V=200\ eV/c^2}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13234v2-abstract-full').style.display = 'none'; document.getElementById('1910.13234v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 111301 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05785">arXiv:1906.05785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.05785">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved fragment-based movement with LRFragLib for all-atom Ab initio protein folding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Tong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">Haipeng Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Shakhnovich%2C+E+I">Eugene I. Shakhnovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05785v1-abstract-short" style="display: inline;"> Fragment-based assembly has been widely used in Ab initio protein folding simulation which can effectively reduce the conformational space and thus accelerate sampling. The efficiency of fragment-based movement as well as the quality of fragment library determine whether the folding process can lead the free energy landscape to the global minimum and help the protein to reach near-native folded st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05785v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05785v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05785v1-abstract-full" style="display: none;"> Fragment-based assembly has been widely used in Ab initio protein folding simulation which can effectively reduce the conformational space and thus accelerate sampling. The efficiency of fragment-based movement as well as the quality of fragment library determine whether the folding process can lead the free energy landscape to the global minimum and help the protein to reach near-native folded state. We designed an improved fragment-based movement, &#34;fragmove&#34;, which substituted multiple backbone dihedral angles in every simulation step. This movement strategy was derived from the fragment library generated by LRFragLib, an effective fragment detection algorithm using logistic regression model. We show in replica exchange Monte Carlo (REMC) simulation that &#34;fragmove&#34;, when compared with a set of existing movements in REMC, shows significant improved ability at increasing secondary and tertiary predicted model accuracy by 11.24% and 17.98%, respectively and reaching energy minima decreased by 5.72%. Our results demonstrate that this improved movement is more powerful to guide proteins faster to low energy regions of conformational space and promote folding efficiency and predicted model accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05785v1-abstract-full').style.display = 'none'; document.getElementById('1906.05785v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00354">arXiv:1905.00354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00354">pdf</a>, <a href="https://arxiv.org/format/1905.00354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.161301">10.1103/PhysRevLett.123.161301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jin-Ping Laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z+Z">Z. Z. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+H+T">H. T. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Q">Q. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q+D">Q. D. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+L+P">L. P. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">H. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00354v3-abstract-short" style="display: inline;"> We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses ($m_蠂$) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg$\cdot$day exposure and 160 eVee threshold for TI analysis, and 1107.5 kg$\cdot$day exposure and 250&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00354v3-abstract-full').style.display = 'inline'; document.getElementById('1905.00354v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00354v3-abstract-full" style="display: none;"> We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses ($m_蠂$) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg$\cdot$day exposure and 160 eVee threshold for TI analysis, and 1107.5 kg$\cdot$day exposure and 250 eVee threshold for AM analysis. The sensitive windows in $m_蠂$ are expanded by an order of magnitude to lower DM masses with Migdal effect incorporated. New limits on $蟽_{蠂N}^{\rm SI}$ at 90\% confidence level are derived as $2\times$10$^{-32}\sim7\times$10$^{-35}$ $\rm cm^2$ for TI analysis at $m_蠂\sim$ 50$-$180 MeV/$c^2$, and $3\times$10$^{-32}\sim9\times$10$^{-38}$ $\rm cm^2$ for AM analysis at $m_蠂\sim$75 MeV/$c^2-$3.0 GeV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00354v3-abstract-full').style.display = 'none'; document.getElementById('1905.00354v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 161301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12889">arXiv:1904.12889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12889">pdf</a>, <a href="https://arxiv.org/format/1904.12889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.221301">10.1103/PhysRevLett.123.221301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Light Weakly-Interacting-Massive-Particle Dark Matter by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">H. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+H+T">H. T. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Q">Q. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q+D">Q. D. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+L+P">L. P. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">H. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J+M">J. M. Li</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12889v2-abstract-short" style="display: inline;"> We present results on light weakly interacting massive particle (WIMP) searches with annual modulation (AM) analysis on data from a 1-kg mass $p$-type point-contact germanium detector of the CDEX-1B experiment at the China Jinping Underground Laboratory. Datasets with a total live time of 3.2 yr within a 4.2 yr span are analyzed with analysis threshold of 250 eVee. Limits on WIMP-nucleus ($蠂$-$N$)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12889v2-abstract-full').style.display = 'inline'; document.getElementById('1904.12889v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12889v2-abstract-full" style="display: none;"> We present results on light weakly interacting massive particle (WIMP) searches with annual modulation (AM) analysis on data from a 1-kg mass $p$-type point-contact germanium detector of the CDEX-1B experiment at the China Jinping Underground Laboratory. Datasets with a total live time of 3.2 yr within a 4.2 yr span are analyzed with analysis threshold of 250 eVee. Limits on WIMP-nucleus ($蠂$-$N$) spin-independent cross sections as function of WIMP mass ($m_蠂$) at 90\% confidence level (C.L.) are derived using the dark matter halo model. Within the context of the standard halo model, the 90\% C.L. allowed regions implied by the DAMA/LIBRA and CoGeNT AM-based analysis are excluded at $&gt;$99.99\% and 98\% C.L., respectively. These results correspond to the best sensitivity at $m_蠂$$&lt;$6$~{\rm GeV}/c^2$ among WIMP AM measurements to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12889v2-abstract-full').style.display = 'none'; document.getElementById('1904.12889v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 221301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07812">arXiv:1904.07812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07812">pdf</a>, <a href="https://arxiv.org/format/1904.07812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.111801">10.1103/PhysRevLett.123.111801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraction of the $^{235}$U and $^{239}$Pu Antineutrino Spectra at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+collaboration"> Daya Bay collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dash%2C+N">N. Dash</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07812v3-abstract-short" style="display: inline;"> This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5\times 10^6$ inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07812v3-abstract-full').style.display = 'inline'; document.getElementById('1904.07812v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07812v3-abstract-full" style="display: none;"> This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5\times 10^6$ inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U and $^{239}$Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4--6~MeV, a 7\% (9\%) excess of events is observed for the $^{235}$U ($^{239}$Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is $4.0蟽$ for $^{235}$U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at $5.3蟽$. In the energy range of 4--6~MeV, a maximal local discrepancy of $6.3蟽$ is observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07812v3-abstract-full').style.display = 'none'; document.getElementById('1904.07812v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated title</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 111801 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.08241">arXiv:1902.08241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.08241">pdf</a>, <a href="https://arxiv.org/format/1902.08241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A high precision calibration of the nonlinear energy response at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+collaboration"> Daya Bay collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Dash%2C+N">N. Dash</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (173 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.08241v2-abstract-short" style="display: inline;"> A high precision calibration of the nonlinearity in the energy response of the Daya Bay Reactor Neutrino Experiment&#39;s antineutrino detectors is presented in detail. The energy nonlinearity originates from the particle-dependent light yield of the scintillator and charge-dependent electronics response. The nonlinearity model is constrained by $纬$ calibration points from deployed and naturally occur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08241v2-abstract-full').style.display = 'inline'; document.getElementById('1902.08241v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.08241v2-abstract-full" style="display: none;"> A high precision calibration of the nonlinearity in the energy response of the Daya Bay Reactor Neutrino Experiment&#39;s antineutrino detectors is presented in detail. The energy nonlinearity originates from the particle-dependent light yield of the scintillator and charge-dependent electronics response. The nonlinearity model is constrained by $纬$ calibration points from deployed and naturally occurring radioactive sources, the $尾$ spectrum from $^{12}$B decays, and a direct measurement of the electronics nonlinearity with a new flash analog-to-digital converter readout system. Less than 0.5% uncertainty in the energy nonlinearity calibration is achieved for positrons of kinetic energies greater than 1 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.08241v2-abstract-full').style.display = 'none'; document.getElementById('1902.08241v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 22 figures, 4 tables. Final version to be published in NIM-A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08808">arXiv:1810.08808</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08808">pdf</a>, <a href="https://arxiv.org/format/1810.08808">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-018-8001-3">10.1007/s11433-018-8001-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performances of a prototype point-contact germanium detector immersed in liquid nitrogen for light dark matter search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">H. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+H+T">H. T. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Q">Q. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q+D">Q. D. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+L+P">L. P. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J+M">J. M. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a> , et al. (48 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08808v1-abstract-short" style="display: inline;"> The CDEX-10 experiment searches for light weakly-interacting massive particles, a form of dark matter, at the China JinPing underground laboratory, where approximately 10 kg of germanium detectors are arranged in an array and immersed in liquid nitrogen. Herein, we report on the experimental apparatus, detector characterization, and spectrum analysis of one prototype detector. Owing to the higher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08808v1-abstract-full').style.display = 'inline'; document.getElementById('1810.08808v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08808v1-abstract-full" style="display: none;"> The CDEX-10 experiment searches for light weakly-interacting massive particles, a form of dark matter, at the China JinPing underground laboratory, where approximately 10 kg of germanium detectors are arranged in an array and immersed in liquid nitrogen. Herein, we report on the experimental apparatus, detector characterization, and spectrum analysis of one prototype detector. Owing to the higher rise-time resolution of the CDEX-10 prototype detector as compared with CDEX-1B, we identified the origin of an observed category of extremely fast events. For data analysis of the CDEX-10 prototype, we introduced and applied an improved bulk/surface event discrimination method. The results of the new method were compared to those of the CDEX-1B spectrum. Both sets of results showed good consistency in the 0--12 keVee energy range, except for the 8.0 keV K-shell X-ray peak from the external copper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08808v1-abstract-full').style.display = 'none'; document.getElementById('1810.08808v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted by SCPMA, 8 pages, 11 figures and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 62, 031012 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02261">arXiv:1809.02261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02261">pdf</a>, <a href="https://arxiv.org/format/1809.02261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.241805">10.1103/PhysRevLett.121.241805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of electron antineutrino oscillation with 1958 days of operation at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02261v5-abstract-short" style="display: inline;"> We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $\overline谓_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02261v5-abstract-full').style.display = 'inline'; document.getElementById('1809.02261v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02261v5-abstract-full" style="display: none;"> We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $\overline谓_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic $^9$Li and $^8$He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative $\overline谓_{e}$ rates and energy spectra among detectors yields $\sin^{2}2胃_{13} = 0.0856\pm 0.0029$ and $螖m^2_{32}=(2.471^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the normal hierarchy, and $螖m^2_{32}=-(2.575^{+0.068}_{-0.070})\times 10^{-3}~\mathrm{eV}^2$ assuming the inverted hierarchy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02261v5-abstract-full').style.display = 'none'; document.getElementById('1809.02261v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, and 1 table. v4: the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 241805 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10836">arXiv:1808.10836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10836">pdf</a>, <a href="https://arxiv.org/format/1808.10836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.052004">10.1103/PhysRevD.100.052004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Measurement of the Reactor Antineutrino Flux at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+F+S">F. S. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10836v1-abstract-short" style="display: inline;"> This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new avera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10836v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10836v1-abstract-full" style="display: none;"> This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be $(5.91\pm0.09)\times10^{-43}~\rm{cm}^2/\rm{fission}$ with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes $^{235}$U, $^{238}$U, $^{239}$Pu, and $^{241}$Pu are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be $0.952\pm0.014\pm0.023$ ($1.001\pm0.015\pm0.027$) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10836v1-abstract-full').style.display = 'none'; document.getElementById('1808.10836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 052004 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10340">arXiv:1807.10340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10340">pdf</a>, <a href="https://arxiv.org/format/1807.10340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adamson%2C+P">P. Adamson</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albright%2C+C+H">C. H. Albright</a>, <a href="/search/physics?searchtype=author&amp;query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+K">K. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+R+A">R. A. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+M">M. Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a> , et al. (1076 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10340v1-abstract-short" style="display: inline;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10340v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10340v1-abstract-full" style="display: none;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module&#39;s subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10340v1-abstract-full').style.display = 'none'; document.getElementById('1807.10340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">280 pages, 109 figures. arXiv admin note: text overlap with arXiv:1807.10327</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Design-2018-04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10334">arXiv:1807.10334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10334">pdf</a>, <a href="https://arxiv.org/format/1807.10334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adamson%2C+P">P. Adamson</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albright%2C+C+H">C. H. Albright</a>, <a href="/search/physics?searchtype=author&amp;query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+K">K. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+R+A">R. A. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+M">M. Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a> , et al. (1076 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10334v1-abstract-short" style="display: inline;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10334v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10334v1-abstract-full" style="display: none;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module&#39;s subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10334v1-abstract-full').style.display = 'none'; document.getElementById('1807.10334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">83 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Design-2018-02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10327">arXiv:1807.10327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10327">pdf</a>, <a href="https://arxiv.org/format/1807.10327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adamson%2C+P">P. Adamson</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albright%2C+C+H">C. H. Albright</a>, <a href="/search/physics?searchtype=author&amp;query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+K">K. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+R+A">R. A. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+M">M. Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a> , et al. (1076 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10327v1-abstract-short" style="display: inline;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10327v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10327v1-abstract-full" style="display: none;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module&#39;s subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10327v1-abstract-full').style.display = 'none'; document.getElementById('1807.10327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">324 pages, 130 figures. arXiv admin note: text overlap with arXiv:1807.10340</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Design-2018-03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.09016">arXiv:1802.09016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.09016">pdf</a>, <a href="https://arxiv.org/format/1802.09016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.241301">10.1103/PhysRevLett.120.241301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg ${\times}$ day Data of the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">H. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+L+P">L. P. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+H+T">H. T. Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Agartioglu%2C+M">M. Agartioglu</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+H">J. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Q">Q. Du</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q+D">Q. D. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+B">H. B. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J+M">J. M. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X+Q">X. Q. Li</a> , et al. (48 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.09016v2-abstract-short" style="display: inline;"> We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 $\times 10^{-42}$ and 3 $\times 10^{-36}$ cm$^{2}$ at a 90\% confidenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09016v2-abstract-full').style.display = 'inline'; document.getElementById('1802.09016v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.09016v2-abstract-full" style="display: none;"> We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 $\times 10^{-42}$ and 3 $\times 10^{-36}$ cm$^{2}$ at a 90\% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass ($m_蠂$) of 5 GeV/${c}^2$ are achieved. The lower reach of $m_蠂$ is extended to 2 GeV/${c}^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09016v2-abstract-full').style.display = 'none'; document.getElementById('1802.09016v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 241301 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.00588">arXiv:1711.00588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.00588">pdf</a>, <a href="https://arxiv.org/format/1711.00588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.052009">10.1103/PhysRevD.97.052009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmogenic neutron production at Daya Bay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daya+Bay+Collaboration"> Daya Bay Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F+P">F. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">S. Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">D. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chan%2C+Y+L">Y. L. Chan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Y. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+S">H. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+M">S. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+X">Y. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">J. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+K">Z. K. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+M+C">M. C. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chukanov%2C+A">A. Chukanov</a>, <a href="/search/physics?searchtype=author&amp;query=Cummings%2C+J+P">J. P. Cummings</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+Y">Y. Y. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dolgareva%2C+M">M. Dolgareva</a> , et al. (177 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.00588v2-abstract-short" style="display: inline;"> Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay&#39;s liquid scintilla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00588v2-abstract-full').style.display = 'inline'; document.getElementById('1711.00588v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.00588v2-abstract-full" style="display: none;"> Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay&#39;s liquid scintillator is measured to be $Y_n=(10.26\pm 0.86)\times 10^{-5}$, $(10.22\pm 0.87)\times 10^{-5}$, and $(17.03\pm 1.22)\times 10^{-5}~渭^{-1}~$g$^{-1}~$cm$^2$ at depths of 250, 265, and 860 meters-water-equivalent. These results are compared to other measurements and the simulated neutron yield in Fluka and Geant4. A global fit including the Daya Bay measurements yields a power law coefficient of $0.77 \pm 0.03$ for the dependence of the neutron yield on muon energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.00588v2-abstract-full').style.display = 'none'; document.getElementById('1711.00588v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 052009 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Gong%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Gong%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Gong%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10