CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–31 of 31 results for author: <span class="mathjax">Meng, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Meng%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Meng, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Meng%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Meng, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11533">arXiv:2411.11533</a> <span> [<a href="https://arxiv.org/pdf/2411.11533">pdf</a>, <a href="https://arxiv.org/ps/2411.11533">ps</a>, <a href="https://arxiv.org/format/2411.11533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of the $畏_c畏_c$ and $J/蠄J/蠄$ s-wave scattering length </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Tuo%2C+X">Xin-Yu Tuo</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Z">Zhaolong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11533v1-abstract-short" style="display: inline;"> We calculate the s-wave scattering length in the $0^+$ sector of $畏_c畏_c$ and the $2^+$ sector of $J/蠄J/蠄$ using three $N_f=2$ twisted mass gauge ensembles with the lattice spacing $a=0.0667,0.085,0.098$ fm, respectively. The scattering lengths are extracted using the conventional L{眉}scher finite size method. We observe sizable discretization effects and the results after a continuum extrapolatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11533v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11533v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11533v1-abstract-full" style="display: none;"> We calculate the s-wave scattering length in the $0^+$ sector of $畏_c畏_c$ and the $2^+$ sector of $J/蠄J/蠄$ using three $N_f=2$ twisted mass gauge ensembles with the lattice spacing $a=0.0667,0.085,0.098$ fm, respectively. The scattering lengths are extracted using the conventional L{眉}scher finite size method. We observe sizable discretization effects and the results after a continuum extrapolation are $a^{0^+}_{畏_c畏_c}=-0.104(09)$ fm and $a^{2^+}_{J/蠄J/蠄}=-0.165(16)$ fm. Our results indicate that the interaction between the two respective charmonia are repulsive in nature in both cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11533v1-abstract-full').style.display = 'none'; document.getElementById('2411.11533v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04415">arXiv:2411.04415</a> <span> [<a href="https://arxiv.org/pdf/2411.04415">pdf</a>, <a href="https://arxiv.org/format/2411.04415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Lattice study on $J/蠄\rightarrow 纬畏_c$ using a method without momentum extrapolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Teng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04415v1-abstract-short" style="display: inline;"> We present a model-independent method to calculate the radiative transition without the momentum extrapolation for the off-shell transition factors. The on-shell transition factor is directly obtained from the lattice hadronic function. We apply the method to calculate the charmonium radiative transition $J/蠄\rightarrow 纬畏_c$. After a continuous extrapolation under three lattice spacings, we obtai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04415v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04415v1-abstract-full" style="display: none;"> We present a model-independent method to calculate the radiative transition without the momentum extrapolation for the off-shell transition factors. The on-shell transition factor is directly obtained from the lattice hadronic function. We apply the method to calculate the charmonium radiative transition $J/蠄\rightarrow 纬畏_c$. After a continuous extrapolation under three lattice spacings, we obtain the on-shell transition factor as $V(0)=1.90(4)$, where the error is the statistical error that already takes into account the $a^2$-error in the continuous extrapolation. Finally, we determine the branching fraction of $J/蠄\rightarrow 纬畏_c$ as $\operatorname{Br}(J/蠄\rightarrow 纬畏_c)=2.49(11)_{\textrm{lat}}(5)_{\textrm{exp}}$, where the second error comes from the uncertainty of $J/蠄$ total decay width $92.6(1.7)$ keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04415v1-abstract-full').style.display = 'none'; document.getElementById('2411.04415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03548">arXiv:2408.03548</a> <span> [<a href="https://arxiv.org/pdf/2408.03548">pdf</a>, <a href="https://arxiv.org/format/2408.03548">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Charmed meson masses and decay constants in the continuum from the tadpole improved clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Du%2C+H">Hai-Yang Du</a>, <a href="/search/hep-lat?searchtype=author&query=Hu%2C+B">Bolun Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03548v2-abstract-short" style="display: inline;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03548v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03548v2-abstract-full" style="display: none;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through the stout smeared clover fermion action and Symanzik gauge actions with the tadpole improvement. Using QED-subtracted $D_s$ meson mass and non-perturbative renormalization, we predict the charm quark mass in the continuum with physical light and strange quark masses to be {$m_c(m_c)=1.289(17)$} GeV in $\overline{\textrm{MS}}$ scheme, with the systematic uncertainties from lattice spacing determination, renormalization constant, {and fit ansatz} included. Predictions of the open and close charm mesons using this charm quark mass agree with the experimental value at 0.3\% level uncertainty. We obtained {$D_{(s)}$ decay constants and also by far the most precise $D_{(s)}^*$ decay constants $f_{D^*}=0.2321(43)$ GeV and $f_{D^*_s}=0.2743(34)$ GeV}, with the charm quark improved vector current normalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'none'; document.getElementById('2408.03548v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13568">arXiv:2407.13568</a> <span> [<a href="https://arxiv.org/pdf/2407.13568">pdf</a>, <a href="https://arxiv.org/ps/2407.13568">ps</a>, <a href="https://arxiv.org/format/2407.13568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.074510">10.1103/PhysRevD.110.074510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First lattice QCD calculation of $J/蠄$ semileptonic decay containing $D$ and $D_s$ particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Dang%2C+J">Jin-Long Dang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Tuo%2C+X">Xin-Yu Tuo</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13568v3-abstract-short" style="display: inline;"> We perform the first lattice calculation on the semileptonic decay of $J/蠄$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. Three gauge ensembles with different lattice spacings, from 0.0519 fm to 0.1053 fm, and pion masses, $m_蟺\sim$ 300 MeV, are utilized. After a naive continuum extrapolation using three lattice spacings, we obtain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13568v3-abstract-full').style.display = 'inline'; document.getElementById('2407.13568v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13568v3-abstract-full" style="display: none;"> We perform the first lattice calculation on the semileptonic decay of $J/蠄$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. Three gauge ensembles with different lattice spacings, from 0.0519 fm to 0.1053 fm, and pion masses, $m_蟺\sim$ 300 MeV, are utilized. After a naive continuum extrapolation using three lattice spacings, we obtain $\operatorname{Br}(J/蠄\rightarrow D_s e谓_e)=1.90(6)(5)_{V_{cs}}\times 10^{-10}$ and $\operatorname{Br}(J/蠄\rightarrow D e谓_e)=1.21(6)(9)_{V_{cd}}\times 10^{-11}$, where the first errors are statistical, and the second come from the uncertainties of CKM matrix element $V_{cs(d)}$. The ratios of the branching fractions between lepton $渭$ and $e$ are also calculated as $R_{J/蠄}(D_s)=0.97002(8)$ and $R_{J/蠄}(D)=0.97423(15)$ after performing a continuum limit including only $a^2$ term. The ratios provide necessary theoretical support for the future experimental test of lepton flavor universality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13568v3-abstract-full').style.display = 'none'; document.getElementById('2407.13568v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures, published version with minor word editing</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRD110,074510(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18981">arXiv:2406.18981</a> <span> [<a href="https://arxiv.org/pdf/2406.18981">pdf</a>, <a href="https://arxiv.org/format/2406.18981">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Exact Fisher zeros and thermofield dynamics across a quantum critical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Lv%2C+S">Songtai Lv</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yuchen Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Tan%2C+Z">Zefan Tan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+E">Erhai Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Zou%2C+H">Haiyuan Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18981v3-abstract-short" style="display: inline;"> By setting the inverse temperature $尾$ loose to occupy the complex plane, Michael E. Fisher showed that the zeros of the complex partition function $Z$, if approaching the real $尾$ axis, reveal a thermodynamic phase transition. More recently, Fisher zeros were used to mark the dynamical phase transition in quench dynamics. It remains unclear, however, how Fisher zeros can be employed to better und… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18981v3-abstract-full').style.display = 'inline'; document.getElementById('2406.18981v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18981v3-abstract-full" style="display: none;"> By setting the inverse temperature $尾$ loose to occupy the complex plane, Michael E. Fisher showed that the zeros of the complex partition function $Z$, if approaching the real $尾$ axis, reveal a thermodynamic phase transition. More recently, Fisher zeros were used to mark the dynamical phase transition in quench dynamics. It remains unclear, however, how Fisher zeros can be employed to better understand quantum phase transitions or the non-unitary dynamics of open quantum systems. Here we answer this question by a comprehensive analysis of the analytically continued one-dimensional transverse field Ising model. We exhaust all the Fisher zeros to show that in the thermodynamic limit they congregate into a remarkably simple pattern in the form of continuous open or closed lines. These Fisher lines evolve smoothly as the coupling constant is tuned, and a qualitative change identifies the quantum critical point. By exploiting the connection between $Z$ and the thermofield double states, we obtain analytical expressions for the short- and long-time dynamics of the survival amplitude including its scaling behavior at the quantum critical point. We point out $Z$ can be realized and probed in monitored quantum circuits. The exact analytical results are corroborated by numerical tensor renormalization group. We further show similar patterns of Fisher zeros also emerge in other spin models. Therefore the approach outlined may serve as a powerful tool for interacting quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18981v3-abstract-full').style.display = 'none'; document.getElementById('2406.18981v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages; 3+6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13479">arXiv:2404.13479</a> <span> [<a href="https://arxiv.org/pdf/2404.13479">pdf</a>, <a href="https://arxiv.org/format/2404.13479">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion mass dependence in $D蟺$ scattering and the $D_0^*(2300)$ resonance from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xing%2C+H">Hanyang Xing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13479v2-abstract-short" style="display: inline;"> Lattice QCD results for isospin $I=\frac{1}{2}$ $D蟺$ scattering are presented. Utilizing a series of $N_{\text{f}}=2+1$ Wilson-Clover ensembles with pion masses of $m_蟺\approx 132, 208, 305$ and $317$ MeV, various two-particle operators are constructed and the corresponding finite-volume spectra are determined. The $S$ and $P$-wave scattering phase shifts are then extracted using the L眉scher appro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13479v2-abstract-full').style.display = 'inline'; document.getElementById('2404.13479v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13479v2-abstract-full" style="display: none;"> Lattice QCD results for isospin $I=\frac{1}{2}$ $D蟺$ scattering are presented. Utilizing a series of $N_{\text{f}}=2+1$ Wilson-Clover ensembles with pion masses of $m_蟺\approx 132, 208, 305$ and $317$ MeV, various two-particle operators are constructed and the corresponding finite-volume spectra are determined. The $S$ and $P$-wave scattering phase shifts are then extracted using the L眉scher approach. A clear trend for the motion of the $D_0^*(2300)$ pole is identified. With the physical pion mass configurations also included, this calculation constitutes the first lattice calculation in which the pion mass dependence of the $D_0^*(2300)$ pole is investigated and the scattering lengths are extrapolated/interpolated to the physical pion mass in $D蟺$ scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13479v2-abstract-full').style.display = 'none'; document.getElementById('2404.13479v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures, 9 tables. v2: add a new calculation using a Fermilab charm action; correct a typo in Tab. 2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06415">arXiv:2402.06415</a> <span> [<a href="https://arxiv.org/pdf/2402.06415">pdf</a>, <a href="https://arxiv.org/format/2402.06415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Many-body computing on Field Programmable Gate Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lv%2C+S">Songtai Lv</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+Y">Yang Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yuchen Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+X">Xiaochen Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Jincheng Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zheng%2C+Q">Qibin Zheng</a>, <a href="/search/hep-lat?searchtype=author&query=Zou%2C+H">Haiyuan Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06415v1-abstract-short" style="display: inline;"> A new implementation of many-body calculations is of paramount importance in the field of computational physics. In this study, we leverage the capabilities of Field Programmable Gate Arrays (FPGAs) for conducting quantum many-body calculations. Through the design of appropriate schemes for Monte Carlo and tensor network methods, we effectively utilize the parallel processing capabilities provided… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06415v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06415v1-abstract-full" style="display: none;"> A new implementation of many-body calculations is of paramount importance in the field of computational physics. In this study, we leverage the capabilities of Field Programmable Gate Arrays (FPGAs) for conducting quantum many-body calculations. Through the design of appropriate schemes for Monte Carlo and tensor network methods, we effectively utilize the parallel processing capabilities provided by FPGAs. This has resulted in a remarkable tenfold speedup compared to CPU-based computation for a Monte Carlo algorithm. We also demonstrate, for the first time, the utilization of FPGA to accelerate a typical tensor network algorithm. Our findings unambiguously highlight the significant advantages of hardware implementation and pave the way for novel approaches to many-body calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06415v1-abstract-full').style.display = 'none'; document.getElementById('2402.06415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13475">arXiv:2401.13475</a> <span> [<a href="https://arxiv.org/pdf/2401.13475">pdf</a>, <a href="https://arxiv.org/format/2401.13475">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the $D_s^{*}$ radiative decay with (2+1)-flavor Wilson-clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Dang%2C+J">Jin-Long Dang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shen%2C+T">Tinghong Shen</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13475v2-abstract-short" style="display: inline;"> We perform a lattice calculation on the radiative decay of $D_s^*$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. A method allowing us to calculate the form factor with zero transfer momentum is proposed and applied to the radiative transition $D_s^*\rightarrow D_s纬$ and the Dalitz decay $D_s^*\rightarrow D_s e^+e^-$. After a continuum extrapolation using th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13475v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13475v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13475v2-abstract-full" style="display: none;"> We perform a lattice calculation on the radiative decay of $D_s^*$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. A method allowing us to calculate the form factor with zero transfer momentum is proposed and applied to the radiative transition $D_s^*\rightarrow D_s纬$ and the Dalitz decay $D_s^*\rightarrow D_s e^+e^-$. After a continuum extrapolation using three lattice spacings, we obtain $螕(D_s^*\rightarrow D_s 纬)=0.0549(54)$ keV, where the error is purely statistical. The result is consistent with previous lattice calculations but with a error reduced to only a fifth of the before. The Dalitz decay rate is also calculated for the first time and the ratio with the radiative transition is found to be $R_{ee}=0.624(3)\%$. A total decay width of $D_s^*$ can then be determined as 0.0587(54) keV taking into account the experimental branching fraction. Combining with the most recent experimental measurement on the branching fraction of the purely leptonic decay $D_s^{+,*}\rightarrow e^+谓_e$, we obtain the quantity $f_{D_s^*}|V_{cs}|=(190.5^{+55.1}_{-41.7_{\textrm{stat.}}}\pm 12.6_{\textrm{syst.}})$ MeV, where the stat. is only the statistical error from the experiment, and syst. results from the experimental systematic uncertainty and the lattice statistical error. Our result leads to an improved systematic uncertainty compared to $42.7_{\textrm{syst.}}$ obtained using previous lattice prediction of total decay width $0.070(28)$ keV as the input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13475v2-abstract-full').style.display = 'none'; document.getElementById('2401.13475v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 109,074511(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01078">arXiv:2312.01078</a> <span> [<a href="https://arxiv.org/pdf/2312.01078">pdf</a>, <a href="https://arxiv.org/format/2312.01078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Isospin-$\frac{1}{2}$ $D蟺$ scattering and the $D_0^*$ resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xing%2C+H">Hanyang Xing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01078v1-abstract-short" style="display: inline;"> Preliminary lattice QCD results for $D蟺$ scattering in isospin $I=\frac{1}{2}$ channel are presented. Utilizing the $N_f=2+1$ Wilson-Clover configuration at two volumes ($L^3 \times T=32^3 \times 96$ and $48^3 \times 96$) with the same lattice spacing ($a=0.07746(18)$ fm) and pion mass ($m_蟺\approx 303$ MeV), various two-particle operators in both the COM and the moving frames are constructed and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01078v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01078v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01078v1-abstract-full" style="display: none;"> Preliminary lattice QCD results for $D蟺$ scattering in isospin $I=\frac{1}{2}$ channel are presented. Utilizing the $N_f=2+1$ Wilson-Clover configuration at two volumes ($L^3 \times T=32^3 \times 96$ and $48^3 \times 96$) with the same lattice spacing ($a=0.07746(18)$ fm) and pion mass ($m_蟺\approx 303$ MeV), various two-particle operators in both the COM and the moving frames are constructed and the corresponding finite-volume spectra are determined from their correlation functions. The $S$ and $P$-wave scattering phase shifts are then extracted using the L眉scher approach, assuming negligible contributions from higher partial waves. A virtual state associated with the $D_0^*$ is also identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01078v1-abstract-full').style.display = 'none'; document.getElementById('2312.01078v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, 1 table. Talk presented at the 40th International Symposium on Lattice Field Theory (Lattice2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15436">arXiv:2309.15436</a> <span> [<a href="https://arxiv.org/pdf/2309.15436">pdf</a>, <a href="https://arxiv.org/ps/2309.15436">ps</a>, <a href="https://arxiv.org/format/2309.15436">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the invisible decay $J/蠄\rightarrow 纬谓\bar谓$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15436v1-abstract-short" style="display: inline;"> In this work, we present the first lattice QCD study on the invisible decay $J/蠄\rightarrow 纬谓\bar谓$. The calculation is accomplished using $N_f=2$ twisted mass fermion ensembles. The excited-state effects are observed and eliminated using a multi-state fit. The impact of finite-volume effects is also examined and confirmed to be well-controlled. After a continuous extrapolation under three lattic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15436v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15436v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15436v1-abstract-full" style="display: none;"> In this work, we present the first lattice QCD study on the invisible decay $J/蠄\rightarrow 纬谓\bar谓$. The calculation is accomplished using $N_f=2$ twisted mass fermion ensembles. The excited-state effects are observed and eliminated using a multi-state fit. The impact of finite-volume effects is also examined and confirmed to be well-controlled. After a continuous extrapolation under three lattice spacings, we obtain the branching fraction as $\operatorname{Br}[J/蠄\rightarrow 纬谓\bar谓]=1.00(9)(7)\times 10^{-10}$, where the first error is the statistical error and the second is an estimate of the systematics. The exact theoretical prediction can be used to remove the only invisible contamination from the standard model background in searching for the possible dark matter by the channel $J/蠄\rightarrow 纬+\textrm{invisible}$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15436v1-abstract-full').style.display = 'none'; document.getElementById('2309.15436v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures. Proceedings of the 40th International Symposium on Lattice Field Theory (Lattice 2023), Fermilab</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2023 (2024) 129 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02547">arXiv:2307.02547</a> <span> [<a href="https://arxiv.org/pdf/2307.02547">pdf</a>, <a href="https://arxiv.org/format/2307.02547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Deconfined quantum criticality lost </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Song%2C+M">Menghan Song</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+J">Jiarui Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Meng Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+C">Cenke Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Scherer%2C+M+M">Michael M. Scherer</a>, <a href="/search/hep-lat?searchtype=author&query=Janssen%2C+L">Lukas Janssen</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02547v4-abstract-short" style="display: inline;"> Over the past two decades, the enigma of the deconfined quantum critical point (DQCP) has attracted broad attention across the condensed matter, quantum field theory, and high-energy physics communities, as it is expected to offer a new paradigm in theory, experiment, and numerical simulations that goes beyond the Landau-Ginzburg-Wilson framework of symmetry breaking and phase transitions. However… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02547v4-abstract-full').style.display = 'inline'; document.getElementById('2307.02547v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02547v4-abstract-full" style="display: none;"> Over the past two decades, the enigma of the deconfined quantum critical point (DQCP) has attracted broad attention across the condensed matter, quantum field theory, and high-energy physics communities, as it is expected to offer a new paradigm in theory, experiment, and numerical simulations that goes beyond the Landau-Ginzburg-Wilson framework of symmetry breaking and phase transitions. However, the nature of DQCP has been controversial. For instance, in the square-lattice spin-1/2 $J$-$Q$ model, believed to realize the DQCP between N茅el and valence bond solid states, conflicting results, such as first-order versus continuous transition, and critical exponents incompatible with conformal bootstrap bounds, have been reported. The enigma of DQCP is exemplified in its anomalous logarithmic subleading contribution in its entanglement entropy (EE), which was discussed in recent studies. In the current work, we demonstrate that similar anomalous logarithmic behavior persists in a class of models analogous to the DQCP. We systematically study the quantum EE of square-lattice SU($N$) DQCP spin models. Based on large-scale quantum Monte Carlo computation of the EE, we show that for a series of $N$ smaller than a critical value, the anomalous logarithmic behavior always exists in the EE, which implies that the previously determined DQCPs in these models do not belong to conformal fixed points. In contrast, when $N\ge N_c$ with a finite $N_c$ that we evaluate to lie between $7$ and $8$, the DQCPs are consistent with conformal fixed points that can be understood within the Abelian Higgs field theory with $N$ complex components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02547v4-abstract-full').style.display = 'none'; document.getElementById('2307.02547v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The revised version focuses on the anomalous logarithmic correction to the EE arising from the smooth boundary, rather than corners. And the critical $N_c$ is determined based on the anomalous EE signal from smooth boundary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04862">arXiv:2305.04862</a> <span> [<a href="https://arxiv.org/pdf/2305.04862">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> AdS/CFT Correspondence in Hyperbolic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jingming Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+L">Linyun Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yuting Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Z">Zihan Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+Y">Ying Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yan Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+B">Bei Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Xi%2C+X">Xiang Xi</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+Z">Zhenxiao Zhu</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Minqi Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+G">Gui-Geng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shum%2C+P+P">Perry Ping Shum</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+R">Rong-Gen Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+R">Run-Qiu Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yihao Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Gao%2C+Z">Zhen Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04862v2-abstract-short" style="display: inline;"> The celebrated anti-de Sitter/conformal field theory (AdS/CFT) correspondence1-3, also known as the gravity/gauge duality, posits a dual relationship between the quantum gravity in an AdS spacetime and the CFT defined on its lower-dimensional boundary. This correspondence not only offers profound insights into the enigmatic nature of quantum gravity but also shows mighty power in addressing strong… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04862v2-abstract-full').style.display = 'inline'; document.getElementById('2305.04862v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04862v2-abstract-full" style="display: none;"> The celebrated anti-de Sitter/conformal field theory (AdS/CFT) correspondence1-3, also known as the gravity/gauge duality, posits a dual relationship between the quantum gravity in an AdS spacetime and the CFT defined on its lower-dimensional boundary. This correspondence not only offers profound insights into the enigmatic nature of quantum gravity but also shows mighty power in addressing strongly-correlated systems. However, despite its importance in contemporary physics, the AdS/CFT correspondence remains a conjecture, and further experimental investigation is highly sought after. Here, we present the first experimental exploration of this conjecture by testing its core corollary: the leading-order effects of a strongly-coupled CFT can be exactly described by a weakly-coupled classical field in a higher-dimensional AdS spacetime. Through measuring the bulk entanglement entropy (BEE) and boundary-boundary correlation function (BBCF) of scalar fields in both conventional type-I and previously overlooked type-II hyperbolic lattices, serving as the discretized regularizations of spatial geometries of pure AdS2+1 spacetime and AdS2+1 black hole, respectively, we experimentally confirm that BEE exhibits a logarithmic scaling with the subsystem size, following the Ryu-Takayanagi (RT) formula, while BBCF showcases an exponential law dependence on the boundary separation, the scaling dimension of which conforms to the Klebanov-Witten (KW) relation, both of which align remarkably well with the established CFT outcomes. This heuristic experimental effort opens a new avenue for in-depth investigations on the gravity/gauge duality and extensive exploration of quantum-gravity-inspired phenomena in classical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04862v2-abstract-full').style.display = 'none'; document.getElementById('2305.04862v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08777">arXiv:2204.08777</a> <span> [<a href="https://arxiv.org/pdf/2204.08777">pdf</a>, <a href="https://arxiv.org/format/2204.08777">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/B978-0-323-90800-9.00095-0">10.1016/B978-0-323-90800-9.00095-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sign Problem in Quantum Monte Carlo Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08777v2-abstract-short" style="display: inline;"> Sign problem in quantum Monte Carlo (QMC) simulation appears to be an extremely hard yet interesting problem. In this article, we present a pedagogical overview on the origin of the sign problem in various quantum Monte Carlo simulation techniques, ranging from the world-line and stochastic series expansion Monte Carlo for boson and spin systems to the determinant and momentum-space quantum Monte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08777v2-abstract-full').style.display = 'inline'; document.getElementById('2204.08777v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08777v2-abstract-full" style="display: none;"> Sign problem in quantum Monte Carlo (QMC) simulation appears to be an extremely hard yet interesting problem. In this article, we present a pedagogical overview on the origin of the sign problem in various quantum Monte Carlo simulation techniques, ranging from the world-line and stochastic series expansion Monte Carlo for boson and spin systems to the determinant and momentum-space quantum Monte Carlo for interacting fermions. We point out the basis dependency of the sign problem and summarize the progresses to cure, ease and even make use of the sign problem over the years, such as symmetry analysis of the underlying Hamiltonian, basis optimization in writting down the partition functions and many others. Moreover, we state that although traditional lore saying that in case of sign problem, the average sign in QMC simulation approaches zero exponentially fast with the space-time volume of the configurational space, there are recent breakthroughs showing this is not always the case and based on the properties of the partition function for finite size systems, one could distinguish when the average sign has the usual exponential scaling and when it is bestowed with an algebraic scaling at the low temperature limit. Fermionic QMC simulations with such algebraic sign problems have been successfully carried out for extended Hubbard-type and quantum Moir茅 lattice models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08777v2-abstract-full').style.display = 'none'; document.getElementById('2204.08777v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Book chapter for Elsevier Encyclopedia of Condensed Matter Physics. Comments and missing references are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Encyclopedia of Condensed Matter Physics, 2nd edition, Volume 1, Pages 879-893 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06139">arXiv:2112.06139</a> <span> [<a href="https://arxiv.org/pdf/2112.06139">pdf</a>, <a href="https://arxiv.org/format/2112.06139">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.035121">10.1103/PhysRevB.106.035121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermion sign bounds theory in quantum Monte Carlo simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06139v2-abstract-short" style="display: inline;"> Sign problem in fermion quantum Monte Carlo (QMC) simulation appears to be an extremely hard problem. Traditional lore passing around for years tells people that when there is a sign problem, the average sign in QMC simulation approaches zero exponentially fast with the space-time volume of the configurational space. We, however, analytically show this is not always the case and manage to find phy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06139v2-abstract-full').style.display = 'inline'; document.getElementById('2112.06139v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06139v2-abstract-full" style="display: none;"> Sign problem in fermion quantum Monte Carlo (QMC) simulation appears to be an extremely hard problem. Traditional lore passing around for years tells people that when there is a sign problem, the average sign in QMC simulation approaches zero exponentially fast with the space-time volume of the configurational space. We, however, analytically show this is not always the case and manage to find physical bounds for the average sign. Our understanding is based on a direct connection between the sign bounds and a well-defined partition function of reference system and could distinguish when the bounds have the usual exponential scaling, and when they are bestowed on an algebraic scaling at low temperature limit. We analytically explain such algebraic sign problems found in flat band moir茅 lattice models at low temperature limit. At finite temperature, a domain size argument based on sign bounds also explains the connection between sign behavior and finite temperature phase transition. Sign bounds, as a well-defined observable, may have ability to ease or even make use of the sign problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06139v2-abstract-full').style.display = 'none'; document.getElementById('2112.06139v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00768">arXiv:2111.00768</a> <span> [<a href="https://arxiv.org/pdf/2111.00768">pdf</a>, <a href="https://arxiv.org/format/2111.00768">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac4bcc">10.1088/1674-1137/ac4bcc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of $蠂_{c0} \rightarrow 2纬$ decay width </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zou%2C+Z">Zuoheng Zou</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00768v3-abstract-short" style="display: inline;"> We perform a lattice QCD calculation of the $蠂_{c0} \rightarrow 2纬$ decay width using a model-independent method which does not require a momentum extrapolation of the corresponding off-shell form factors. The simulation is performed on ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations with three different lattice spacings. After a continuum extrapolation, the decay width is obtai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00768v3-abstract-full').style.display = 'inline'; document.getElementById('2111.00768v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00768v3-abstract-full" style="display: none;"> We perform a lattice QCD calculation of the $蠂_{c0} \rightarrow 2纬$ decay width using a model-independent method which does not require a momentum extrapolation of the corresponding off-shell form factors. The simulation is performed on ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations with three different lattice spacings. After a continuum extrapolation, the decay width is obtained to be $螕_{纬纬}(蠂_{c0})=3.65(83)_{\mathrm{stat}}(21)_{\mathrm{lat.syst}}(66)_{\mathrm{syst}}\, \textrm{keV}$. Albeit this large statistical error, our result is compatible with the experimental results within 1.3$蟽$. Potential improvements of the lattice calculation in the future are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00768v3-abstract-full').style.display = 'none'; document.getElementById('2111.00768v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.05219">arXiv:2110.05219</a> <span> [<a href="https://arxiv.org/pdf/2110.05219">pdf</a>, <a href="https://arxiv.org/format/2110.05219">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0618">10.22323/1.396.0618 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new method for a lattice calculation of $畏_c \rightarrow 2纬$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.05219v2-abstract-short" style="display: inline;"> We propose a direct method to calculate the decay width of a hadron decaying to two photons, which is conventionally obtained by an extrapolation for various off-shell form factors. The new method provides an simple way to examine the finite-volune effects. As an example, we apply the method to $畏_c\rightarrow 2纬$. Using three $N_f=2$ twisted-mass gauge ensembles with different lattice spacings, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05219v2-abstract-full').style.display = 'inline'; document.getElementById('2110.05219v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.05219v2-abstract-full" style="display: none;"> We propose a direct method to calculate the decay width of a hadron decaying to two photons, which is conventionally obtained by an extrapolation for various off-shell form factors. The new method provides an simple way to examine the finite-volune effects. As an example, we apply the method to $畏_c\rightarrow 2纬$. Using three $N_f=2$ twisted-mass gauge ensembles with different lattice spacings, we obtain the final decay width $螕_{畏_c纬纬}=6.57(15)_{\textrm{stat}}(8)_{\textrm{syst}}$ keV, where the systematic error accounts for the fine-tuning of the charm quark mass. This method can also be applied for other processes which involve the leptonic or radiative particles in the final states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05219v2-abstract-full').style.display = 'none'; document.getElementById('2110.05219v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology. New submission with references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09381">arXiv:2109.09381</a> <span> [<a href="https://arxiv.org/pdf/2109.09381">pdf</a>, <a href="https://arxiv.org/format/2109.09381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2023.07.041">10.1016/j.scib.2023.07.041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principle calculation of $畏_c\rightarrow 2纬$ decay width from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Teng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Zou%2C+Z">Zuoheng Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09381v3-abstract-short" style="display: inline;"> We perform a lattice QCD calculation of the $畏_c\to2纬$ decay width using a model-independent method that requires no momentum extrapolation of the off-shell form factors. This method also provides a straightforward and simple way to examine the finite-volume effects. The calculation is accomplished using $N_f=2$ twisted mass fermion ensembles. The statistically significant excited-state effects ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09381v3-abstract-full').style.display = 'inline'; document.getElementById('2109.09381v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09381v3-abstract-full" style="display: none;"> We perform a lattice QCD calculation of the $畏_c\to2纬$ decay width using a model-independent method that requires no momentum extrapolation of the off-shell form factors. This method also provides a straightforward and simple way to examine the finite-volume effects. The calculation is accomplished using $N_f=2$ twisted mass fermion ensembles. The statistically significant excited-state effects are observed and eliminated using a multi-state fit.The impact of fine-tuning the charm quark mass is also examined and confirmed to be well-controlled. Finally, using three lattice spacings for the continuum extrapolation, we obtain the decay width $螕_{畏_c纬纬}=6.67(16)_{\mathrm{stat}}(6)_{\mathrm{syst}}$ keV, which differs significantly from the Particle Data Group's reported value of $螕_{畏_c纬纬}=5.4(4)$ keV (2.9~$蟽$ tension). We provide insight into the comparison between our findings, previous theoretical predictions, and experimental measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09381v3-abstract-full').style.display = 'none'; document.getElementById('2109.09381v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages + 2 page supplemental material, 5 figures,4 tables. Published version by Science Bulletin</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Bulletin 68 (2023) 1880-1885 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12601">arXiv:2106.12601</a> <span> [<a href="https://arxiv.org/pdf/2106.12601">pdf</a>, <a href="https://arxiv.org/format/2106.12601">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L041111">10.1103/PhysRevB.105.L041111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The dynamical exponent of a quantum critical itinerant ferromagnet: a Monte Carlo study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Klein%2C+A">Avraham Klein</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Y">Yuxuan Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chubukov%2C+A+V">Andrey V. Chubukov</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12601v3-abstract-short" style="display: inline;"> We consider the effect of the coupling between 2D quantum rotors near an XY ferromagnetic quantum critical point and spins of itinerant fermions. We analyze how this coupling affects the dynamics of rotors and the self-energy of fermions.A common belief is that near a $q=0$ ferromagnetic transition, fermions induce an $惟/q$ Landau damping of rotors (i.e., the dynamical critical exponent is $z=3$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12601v3-abstract-full').style.display = 'inline'; document.getElementById('2106.12601v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12601v3-abstract-full" style="display: none;"> We consider the effect of the coupling between 2D quantum rotors near an XY ferromagnetic quantum critical point and spins of itinerant fermions. We analyze how this coupling affects the dynamics of rotors and the self-energy of fermions.A common belief is that near a $q=0$ ferromagnetic transition, fermions induce an $惟/q$ Landau damping of rotors (i.e., the dynamical critical exponent is $z=3$) and Landau overdamped rotors give rise to non-Fermi liquid fermionic self-energy $危\propto 蠅^{2/3}$. This behavior has been confirmed in previous quantum Monte Carlo (QMC) studies.Here we show that for the XY case the behavior is different.We report the results of large scale quantum Monte Carlo simulations,which show that at small frequencies $z=2$ and $危\propto 蠅^{1/2}$. We argue that the new behavior is associated with the fact that a fermionic spin is by itself not a conserved quantity due to spin-spin coupling to rotors, and a combination of self-energy and vertex corrections replaces $1/q$ in the Landau damping by a constant. We discuss the implication of these results to experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12601v3-abstract-full').style.display = 'none'; document.getElementById('2106.12601v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.B.105.L041111(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.07337">arXiv:2005.07337</a> <span> [<a href="https://arxiv.org/pdf/2005.07337">pdf</a>, <a href="https://arxiv.org/format/2005.07337">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-25707-z">10.1038/s41467-021-25707-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fractionalized conductivity and emergent self-duality near topological phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Y">Yan-Cheng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Meng Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Witczak-Krempa%2C+W">William Witczak-Krempa</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.07337v3-abstract-short" style="display: inline;"> The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07337v3-abstract-full').style.display = 'inline'; document.getElementById('2005.07337v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.07337v3-abstract-full" style="display: none;"> The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a $\mathbb{Z}_2$ quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07337v3-abstract-full').style.display = 'none'; document.getElementById('2005.07337v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9+4 pages, 4+3 figures. v3: New results regarding emergent dynamical self-duality due to visons. New figure of vison-pair spectra. Extended discussion and appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 5347 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03907">arXiv:2004.03907</a> <span> [<a href="https://arxiv.org/pdf/2004.03907">pdf</a>, <a href="https://arxiv.org/format/2004.03907">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.034502">10.1103/PhysRevD.102.034502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ward Identity of the Vector Current and the Decay Rate of $畏_c\rightarrow纬纬$ in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03907v3-abstract-short" style="display: inline;"> Using a recently proposed method arXiv:1910.11597 (Yu Meng et al.), we study the two-photon decay rate of $畏_c$ using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $0.067$fm and $0.085$fm. The results obtained from these two ensembles can be extrapolated in a naive fashion to the continuum limit, yielding a result that is consistent with the experimental one within two standard de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03907v3-abstract-full').style.display = 'inline'; document.getElementById('2004.03907v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03907v3-abstract-full" style="display: none;"> Using a recently proposed method arXiv:1910.11597 (Yu Meng et al.), we study the two-photon decay rate of $畏_c$ using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $0.067$fm and $0.085$fm. The results obtained from these two ensembles can be extrapolated in a naive fashion to the continuum limit, yielding a result that is consistent with the experimental one within two standard deviations. To be specific, we obtain the results for two-photon decay of $畏_c$ as $\mathcal{B}(畏_c\rightarrow 2纬)= 1.29(3)(18)\times 10^{-4}$ where the first error is statistical and the second is our estimate for the systematic error caused by the finite lattice spacing. It turns out that Ward identity for the vector current is of vital importance within this new method. We find that the Ward identity is violated for local current with a finite lattice spacing, however it will be restored after the continuum limit is taken. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03907v3-abstract-full').style.display = 'none'; document.getElementById('2004.03907v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 034502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09817">arXiv:2003.09817</a> <span> [<a href="https://arxiv.org/pdf/2003.09817">pdf</a>, <a href="https://arxiv.org/format/2003.09817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/44/8/083108">10.1088/1674-1137/44/8/083108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lattice Study of the Two-photon Decay Widths for Scalar and Pseudo-scalar Charmonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+C">Chao Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09817v2-abstract-short" style="display: inline;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay wid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'inline'; document.getElementById('2003.09817v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09817v2-abstract-full" style="display: none;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay widths for the two charmonia are obtained which are in the right ballpark however smaller than the experimental ones. Possible reasons for these discrepancies are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'none'; document.getElementById('2003.09817v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted by Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01722">arXiv:2003.01722</a> <span> [<a href="https://arxiv.org/pdf/2003.01722">pdf</a>, <a href="https://arxiv.org/format/2003.01722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.235118">10.1103/PhysRevB.101.235118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement transition in the QED$_3$-Gross-Neveu-XY universality class </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Janssen%2C+L">Lukas Janssen</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Scherer%2C+M+M">Michael M. Scherer</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01722v2-abstract-short" style="display: inline;"> The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by combining different complementary approaches. Here, we study a confinement transition in a system of $N_f$ flavors of interacting Dirac fermions charge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01722v2-abstract-full').style.display = 'inline'; document.getElementById('2003.01722v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01722v2-abstract-full" style="display: none;"> The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by combining different complementary approaches. Here, we study a confinement transition in a system of $N_f$ flavors of interacting Dirac fermions charged under a U(1) gauge field in 2+1 dimensions. Using Quantum Monte Carlo simulations, we investigate a lattice model that exhibits a continuous transition at zero temperature between a gapless deconfined phase, described by three-dimensional quantum electrodynamics, and a gapped confined phase, in which the system develops valence-bond-solid order. We argue that the quantum critical point is in the universality class of the QED$_3$-Gross-Neveu-XY model. We study this field theory within a $1/N_f$ expansion in fixed dimension as well as a renormalization group analysis in $4-蔚$ space-time dimensions. The consistency between numerical and analytical results is revealed from large to intermediate flavor number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01722v2-abstract-full').style.display = 'none'; document.getElementById('2003.01722v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures; v2: additional data and explanations, corrected erroneous interpretation of dimer scaling dimension</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 235118 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08229">arXiv:1912.08229</a> <span> [<a href="https://arxiv.org/pdf/1912.08229">pdf</a>, <a href="https://arxiv.org/format/1912.08229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac4f52">10.1088/1674-1056/ac4f52 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solving quantum rotor model with different Monte Carlo techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08229v4-abstract-short" style="display: inline;"> We systematically test the performance of several Monte Carlo update schemes for the $(2+1)$d XY phase transition of quantum rotor model. By comparing the local Metropolis (LM), LM plus over-relaxation (OR), Wolff-cluster (WC), hybrid Monte Carlo (HM), hybrid Monte Carlo with Fourier acceleration (FA) scheme, it is clear that among the five different update schemes, at the quantum critical point,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08229v4-abstract-full').style.display = 'inline'; document.getElementById('1912.08229v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08229v4-abstract-full" style="display: none;"> We systematically test the performance of several Monte Carlo update schemes for the $(2+1)$d XY phase transition of quantum rotor model. By comparing the local Metropolis (LM), LM plus over-relaxation (OR), Wolff-cluster (WC), hybrid Monte Carlo (HM), hybrid Monte Carlo with Fourier acceleration (FA) scheme, it is clear that among the five different update schemes, at the quantum critical point, the WC and FA schemes acquire the smallest autocorrelation time and cost the least amount of CPU hours in achieving the same level of relative error, and FA enjoys a further advantage of easily implementable for more complicated interactions such as the long-range ones. These results bestow one with the necessary knowledge of extending the quantum rotor model, which plays the role of ferromagnetic/antiferromagnetic critical bosons or Z$_2$ topological order, to more realistic and yet challenging models such as Fermi surface Yukawa-coupled to quantum rotor models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08229v4-abstract-full').style.display = 'none'; document.getElementById('1912.08229v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 31, 040504 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11597">arXiv:1910.11597</a> <span> [<a href="https://arxiv.org/pdf/1910.11597">pdf</a>, <a href="https://arxiv.org/format/1910.11597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054506">10.1103/PhysRevD.102.054506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three Photon Decay of $J/蠄$ from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11597v3-abstract-short" style="display: inline;"> Three photon decay rate of $J/蠄$ is studied using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $a\simeq 0.085$ fm (I) and $0.067$ fm(II). Using a new method, only the correlation functions directly related to the physical decay width are computed with all polarizations of the initial and final states summed over. Our results for such rare decay on the two ensembles are:… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11597v3-abstract-full').style.display = 'inline'; document.getElementById('1910.11597v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11597v3-abstract-full" style="display: none;"> Three photon decay rate of $J/蠄$ is studied using two $N_f=2$ twisted mass gauge ensembles with lattice spacings $a\simeq 0.085$ fm (I) and $0.067$ fm(II). Using a new method, only the correlation functions directly related to the physical decay width are computed with all polarizations of the initial and final states summed over. Our results for such rare decay on the two ensembles are: $\mathcal{B}_{I,II}(J/蠄\rightarrow 3纬)=(1.614 \pm 0.016 \pm 0.261)\times 10^{-5},(1.809 \pm 0.051 \pm 0.295)\times 10^{-5}$ where the first errors are statistical and the second are estimates from systematics. We also propose a method to analyze the Dalitz plot of the corresponding process based on the lattice data which can provide direct information for the experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11597v3-abstract-full').style.display = 'none'; document.getElementById('1910.11597v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages 5 figures. Updated version compared with older version that has been withdrawn. Two ensembles are studied so that the size of finite lattice spacing errors can be estimated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054506 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07430">arXiv:1910.07430</a> <span> [<a href="https://arxiv.org/pdf/1910.07430">pdf</a>, <a href="https://arxiv.org/format/1910.07430">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.064308">10.1103/PhysRevB.101.064308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Designer Monte Carlo Simulation for Gross-Neveu Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07430v5-abstract-short" style="display: inline;"> In this manuscript, we study quantum criticality of Dirac fermions via large-scale numerical simulations, focusing on the Gross-Neveu-Yukawa(GNY) chiral-Ising quantum critical point with critical bosonic modes coupled with Dirac fermions. We show that finite-size effects at this quantum critical point can be efficiently minimized via model design, which maximizes the ultraviolet cutoff and at the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07430v5-abstract-full').style.display = 'inline'; document.getElementById('1910.07430v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07430v5-abstract-full" style="display: none;"> In this manuscript, we study quantum criticality of Dirac fermions via large-scale numerical simulations, focusing on the Gross-Neveu-Yukawa(GNY) chiral-Ising quantum critical point with critical bosonic modes coupled with Dirac fermions. We show that finite-size effects at this quantum critical point can be efficiently minimized via model design, which maximizes the ultraviolet cutoff and at the same time places the bare control parameters closer to the nontrivial fixed point to better expose the critical region. Combined with the efficient self-learning quantum Monte Carlo algorithm, which enables non-local update of the bosonic field, we find that moderately-large system size (up to $16\times 16$) is already sufficient to produce robust scaling behavior and critical exponents.The conductance of the Dirac fermions is also calculated and its frequency dependence is found to be consistent with the scaling behavior predicted by the conformal field theory. The methods and model-design principles developed for this study can be generalized to other fermionic QCPs, and thus provide a promising direction for controlled studies of strongly-correlated itinerant systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07430v5-abstract-full').style.display = 'none'; document.getElementById('1910.07430v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 064308 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06929">arXiv:1906.06929</a> <span> [<a href="https://arxiv.org/pdf/1906.06929">pdf</a>, <a href="https://arxiv.org/format/1906.06929">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.085123">10.1103/PhysRevB.100.085123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of Compact Quantum Electrodynamics at Large Fermion Flavor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Lu%2C+D">Da-Chuan Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a>, <a href="/search/hep-lat?searchtype=author&query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06929v4-abstract-short" style="display: inline;"> Thanks to the development in quantum Monte Carlo technique, the compact U(1) lattice gauge theory coupled to fermionic matter at (2+1)D is now accessible with large-scale numerical simulations, and the ground state phase diagram as a function of fermion flavor ($N_f$) and the strength of gauge fluctuations is mapped out~\cite{Xiao2018Monte}. Here we focus on the large fermion flavor case ($N_f=8$)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06929v4-abstract-full').style.display = 'inline'; document.getElementById('1906.06929v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06929v4-abstract-full" style="display: none;"> Thanks to the development in quantum Monte Carlo technique, the compact U(1) lattice gauge theory coupled to fermionic matter at (2+1)D is now accessible with large-scale numerical simulations, and the ground state phase diagram as a function of fermion flavor ($N_f$) and the strength of gauge fluctuations is mapped out~\cite{Xiao2018Monte}. Here we focus on the large fermion flavor case ($N_f=8$) to investigate the dynamic properties across the deconfinement-to-confinement phase transition. In the deconfined phase, fermions coupled to the fluctuating gauge field to form U(1) spin liquid with continua in both spin and dimer spectral functions, and in the confined phase fermions are gapped out into valence bond solid phase with translational symmetry breaking and gapped spectra. The dynamical behaviors provide supporting evidence for the existence of the U(1) deconfined phase and could shine light on the nature of the U(1)-to-VBS phase transition which is of the QED$_3$-Gross-Neveu chiral O(2) universality whose properties still largely unknown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06929v4-abstract-full').style.display = 'none'; document.getElementById('1906.06929v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 085123 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08823">arXiv:1811.08823</a> <span> [<a href="https://arxiv.org/pdf/1811.08823">pdf</a>, <a href="https://arxiv.org/format/1811.08823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.175701">10.1103/PhysRevLett.122.175701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emmy Noether looks at the deconfined quantum critical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+N">Nvsen Ma</a>, <a href="/search/hep-lat?searchtype=author&query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08823v2-abstract-short" style="display: inline;"> Noether's theorem is one of the fundamental laws of physics, relating continuous symmetries and conserved currents. Here we explore the role of Noether's theorem at the deconfined quantum critical point (DQCP), which is the quantum phase transition beyond the Landau-Ginzburg-Wilson paradigm. It was expected that a larger continuous symmetry could emerge at the DQCP, which, if true, should lead to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08823v2-abstract-full').style.display = 'inline'; document.getElementById('1811.08823v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08823v2-abstract-full" style="display: none;"> Noether's theorem is one of the fundamental laws of physics, relating continuous symmetries and conserved currents. Here we explore the role of Noether's theorem at the deconfined quantum critical point (DQCP), which is the quantum phase transition beyond the Landau-Ginzburg-Wilson paradigm. It was expected that a larger continuous symmetry could emerge at the DQCP, which, if true, should lead to emerged conserved current at low energy. By identifying the emergent current fluctuation in the spin excitation spectra, we can quantitatively study the current-current correlation in large-scale quantum Monte Carlo simulations. Our results reveal the conservation of the emergent current, as signified by the vanishing anomalous dimension of the current operator, and hence provide supporting evidence for the emergent symmetry at the DQCP. Our study demonstrates an elegant yet practical approach to detect emergent symmetry by probing the spin excitations, which could potentially guide the ongoing experimental search for DQCP in quantum magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08823v2-abstract-full').style.display = 'none'; document.getElementById('1811.08823v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures with 5 pages supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 175701 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07574">arXiv:1807.07574</a> <span> [<a href="https://arxiv.org/pdf/1807.07574">pdf</a>, <a href="https://arxiv.org/format/1807.07574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.9.021022">10.1103/PhysRevX.9.021022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: the Parent State of Quantum Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Qi%2C+Y">Yang Qi</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+L">Long Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+C">Cenke Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07574v3-abstract-short" style="display: inline;"> The interplay between lattice gauge theories and fermionic matter accounts for fundamental physical phenomena ranging from the deconfinement of quarks in particle physics to quantum spin liquid with fractionalized anyons and emergent gauge structures in condensed matter physics. However, except for certain limits (for instance large number of flavors of matter fields), analytical methods can provi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07574v3-abstract-full').style.display = 'inline'; document.getElementById('1807.07574v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07574v3-abstract-full" style="display: none;"> The interplay between lattice gauge theories and fermionic matter accounts for fundamental physical phenomena ranging from the deconfinement of quarks in particle physics to quantum spin liquid with fractionalized anyons and emergent gauge structures in condensed matter physics. However, except for certain limits (for instance large number of flavors of matter fields), analytical methods can provide few concrete results. Here we show that the problem of compact $U(1)$ lattice gauge theory coupled to fermionic matter in $(2+1)$D is possible to access via sign-problem-free quantum Monte Carlo simulations. One can hence map out the phase diagram as a function of fermion flavors and the strength of gauge fluctuations. By increasing the coupling constant of the gauge field, gauge confinement in the form of various spontaneous symmetry breaking phases such as valence bond solid (VBS) and N茅el antiferromagnet emerge. Deconfined phases with algebraic spin and VBS correlation functions are also observed. Such deconfined phases are an incarnation of exotic states of matter, $i.e.$ the algebraic spin liquid, which is generally viewed as the parent state of various quantum phases. The phase transitions between deconfined and confined phases, as well as that between the different confined phases provide various manifestations of deconfined quantum criticality. In particular, for four flavors, $N_f = 4$, our data suggests a continuous quantum phase transition between the VBS and N茅el order. We also provide preliminary theoretical analysis for these quantum phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07574v3-abstract-full').style.display = 'none'; document.getElementById('1807.07574v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 9, 021022 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.00127">arXiv:1801.00127</a> <span> [<a href="https://arxiv.org/pdf/1801.00127">pdf</a>, <a href="https://arxiv.org/format/1801.00127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.085114">10.1103/PhysRevB.99.085114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EMUS-QMC: Elective Momentum Ultra-Size Quantum Monte Carlo Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z+H">Zi Hong Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+X+Y">Xiao Yan Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Qi%2C+Y">Yang Qi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.00127v2-abstract-short" style="display: inline;"> One bottleneck of quantum Monte Carlo (QMC) simulation of strongly correlated electron systems lies at the scaling relation of computational complexity with respect to the system sizes. For generic lattice models of interacting fermions, the best methodology at hand still scales with $尾N^3$ where $尾$ is the inverse temperature and $N$ is the system size. Such scaling behavior has greatly hampered… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00127v2-abstract-full').style.display = 'inline'; document.getElementById('1801.00127v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.00127v2-abstract-full" style="display: none;"> One bottleneck of quantum Monte Carlo (QMC) simulation of strongly correlated electron systems lies at the scaling relation of computational complexity with respect to the system sizes. For generic lattice models of interacting fermions, the best methodology at hand still scales with $尾N^3$ where $尾$ is the inverse temperature and $N$ is the system size. Such scaling behavior has greatly hampered the accessibility of the universal infrared (IR) physics of many interesting correlated electron models at (2+1)D, let alone (3+1)D. To reduce the computational complexity, we develop a new QMC method with inhomogeneous momentum-space mesh, dubbed elective momentum ultra-size quantum Monte Carlo (EQMC) method. Instead of treating all fermionic excitations on an equal footing as in conventional QMC methods, by converting the fermion determinant into the momentum space, our method focuses on fermion modes that are directly associated with low-energy (IR) physics in the vicinity of the so-called hot-spots, while other fermion modes irrelevant for universal properties are ignored. As shown in the manuscript, for any cutoff-independent quantities, e.g. scaling exponents, this method can achieve the same level of accuracy with orders of magnitude increase in computational efficiency. We demonstrate this method with a model of antiferromagnetic itinerant quantum critical point, realized via coupling itinerant fermions with a frustrated transverse-field Ising model on a triangle lattice. The system size of $48 \times 48 \times 32$ ($L\times L\times尾$, almost 3 times of previous investigations) are comfortably accessed with EQMC. With much larger system sizes, the scaling exponents are unveiled with unprecedentedly high accuracy, and this result sheds new light on the open debate about the nature and the universality class of itinerant quantum critical points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.00127v2-abstract-full').style.display = 'none'; document.getElementById('1801.00127v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 085114 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08464">arXiv:1712.08464</a> <span> [<a href="https://arxiv.org/pdf/1712.08464">pdf</a>, <a href="https://arxiv.org/ps/1712.08464">ps</a>, <a href="https://arxiv.org/format/1712.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.014508">10.1103/PhysRevD.98.014508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-particle bound states in a finite volume: unequal masses and higher partial waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Mei%C3%9Fner%2C+U">Ulf-G. Mei脽ner</a>, <a href="/search/hep-lat?searchtype=author&query=Rusetsky%2C+A">A. Rusetsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08464v2-abstract-short" style="display: inline;"> An explicit expression for the finite-volume energy shift of shallow three-body bound states for non-identical particles is obtained in the unitary limit. The inclusion of the higher partial waves is considered. To this end, the method of arXiv:1412.4969 (Mei脽ner et al.) is generalized for the case of unequal masses and arbitrary angular momenta. It is shown that in the S-wave and in the equal mas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08464v2-abstract-full').style.display = 'inline'; document.getElementById('1712.08464v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08464v2-abstract-full" style="display: none;"> An explicit expression for the finite-volume energy shift of shallow three-body bound states for non-identical particles is obtained in the unitary limit. The inclusion of the higher partial waves is considered. To this end, the method of arXiv:1412.4969 (Mei脽ner et al.) is generalized for the case of unequal masses and arbitrary angular momenta. It is shown that in the S-wave and in the equal mass limit, the result from arXiv:1412.4969 is reproduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08464v2-abstract-full').style.display = 'none'; document.getElementById('1712.08464v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 014508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10670">arXiv:1705.10670</a> <span> [<a href="https://arxiv.org/pdf/1705.10670">pdf</a>, <a href="https://arxiv.org/format/1705.10670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.031052">10.1103/PhysRevX.7.031052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Duality between the deconfined quantum-critical point and the bosonic topological transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Qin%2C+Y+Q">Yan Qi Qin</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+Y">Yuan-Yao He</a>, <a href="/search/hep-lat?searchtype=author&query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/hep-lat?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Sen%2C+A">Arnab Sen</a>, <a href="/search/hep-lat?searchtype=author&query=Sandvik%2C+A+W">Anders W. Sandvik</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+C">Cenke Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10670v1-abstract-short" style="display: inline;"> Recently significant progress has been made in $(2+1)$-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities, i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly-corr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10670v1-abstract-full').style.display = 'inline'; document.getElementById('1705.10670v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10670v1-abstract-full" style="display: none;"> Recently significant progress has been made in $(2+1)$-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities, i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly-correlated quantum-matter systems: the one relating the easy-plane noncompact CP$^1$ model (NCCP$^1$) and noncompact quantum electrodynamics (QED) with two flavors ($N = 2$) of massless two-component Dirac fermions. The easy-plane NCCP$^1$ model is the field theory of the putative deconfined quantum-critical point separating a planar (XY) antiferromagnet and a dimerized (valence-bond solid) ground state, while $N=2$ noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work we present strong numerical support for the proposed duality. We realize the $N=2$ noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC) simulations. Using stochastic series expansion QMC, we study a planar version of the $S=1/2$ $J$-$Q$ spin Hamiltonian (a quantum XY-model with additional multi-spin couplings) and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10670v1-abstract-full').style.display = 'none'; document.getElementById('1705.10670v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 031052 (2017) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>