CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 124 results for author: <span class="mathjax">Yang, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Yang%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12554">arXiv:2411.12554</a> <span> [<a href="https://arxiv.org/pdf/2411.12554">pdf</a>, <a href="https://arxiv.org/format/2411.12554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Light Cone Distribution Amplitude for the $螞$ Baryon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+H">Haoyang Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12554v1-abstract-short" style="display: inline;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12554v1-abstract-full" style="display: none;"> We calculate the leading-twist light-cone distribution amplitudes of the light $螞$ baryon using lattice methods within the framework of large momentum effective theory. Our numerical computations are conducted employing $N_f=2+1$ stout smeared clover fermions and a Symanzik gauge action on a lattice with spacing $a=0.077\;\rm{fm}$, and a pion mass of 303 MeV. To approach the large momentum regime, we simulate the equal-time correlations with the hadron momentum $P^z = \{2.52, 3.02, 3.52\}$ GeV. By investigating the potential analytic characteristics of the baryon quasi-distribution amplitude in coordinate space, we validate these findings through our lattice calculations. After renormalization and extrapolation, we present results for the three-dimensional distribution of momentum fractions for the two light quarks. Based on these findings the paper briefly discusses the phenomenological impact on weak decays of $螞_b$, and outlines potential systematic uncertainties that can be improved in the future. This work lays the theoretical foundation for accessing baryon LCDAs from lattice QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12554v1-abstract-full').style.display = 'none'; document.getElementById('2411.12554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08461">arXiv:2411.08461</a> <span> [<a href="https://arxiv.org/pdf/2411.08461">pdf</a>, <a href="https://arxiv.org/ps/2411.08461">ps</a>, <a href="https://arxiv.org/format/2411.08461">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Use QUDA for lattice QCD calculation with Python </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08461v1-abstract-short" style="display: inline;"> We developed PyQUDA, a Python wrapper for QUDA written in Cython, designed to facilitate lattice QCD calculations using the Python programming language. PyQUDA leverages the optimized linear algebra capabilities of NumPy/CuPy/PyTorch, along with the highly optimized lattice QCD operations provided by QUDA to accelerate research. This integration simplifies the process of writing calculation codes,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08461v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08461v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08461v1-abstract-full" style="display: none;"> We developed PyQUDA, a Python wrapper for QUDA written in Cython, designed to facilitate lattice QCD calculations using the Python programming language. PyQUDA leverages the optimized linear algebra capabilities of NumPy/CuPy/PyTorch, along with the highly optimized lattice QCD operations provided by QUDA to accelerate research. This integration simplifies the process of writing calculation codes, enabling researchers to build more complex Python packages like EasyDistillation for specific physics objectives. PyQUDA supports a range of lattice QCD operations, including hybrid Monte Carlo (HMC) with N-flavor clover/HISQ fermions and inversion for the Wilson/clover/HISQ fermion action with the multigrid solver. It also includes utility functions for reading lattice QCD data stored in Chroma, MILC, and $蠂$QCD formats. Type hints are supported by stub files and multi-GPU support is provided through mpi4py. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08461v1-abstract-full').style.display = 'none'; document.getElementById('2411.08461v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 listings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18654">arXiv:2410.18654</a> <span> [<a href="https://arxiv.org/pdf/2410.18654">pdf</a>, <a href="https://arxiv.org/format/2410.18654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Calculation of heavy meson light-cone distribution amplitudes from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Han%2C+X">Xue-Ying Han</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=L%C3%BC%2C+C">Cai-Dian L眉</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+S">Shuai Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18654v1-abstract-short" style="display: inline;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18654v1-abstract-full" style="display: none;"> We develop an approach for calculating heavy quark effective theory (HQET) light-cone distribution amplitudes (LCDAs) by employing a sequential effective theory methodology. The theoretical foundation of the framework is established, elucidating how the quasi distribution amplitudes (quasi DAs) with three scales can be utilized to compute HQET LCDAs. We provide theoretical support for this approach by demonstrating the rationale behind devising a hierarchical ordering for the three involved scales, discussing the factorization at each step, clarifying the underlying reason for obtaining HQET LCDAs in the final phase, and addressing potential theoretical challenges. The lattice QCD simulation aspect is explored in detail, and the computations of quasi DAs are presented. We employ three fitting strategies to handle contributions from excited states and extract the bare matrix elements. For renormalization purposes, we apply hybrid renormalization schemes at short and long distance separations. To mitigate long-distance perturbations, we perform an extrapolation in $位= z\cdot P^z$ and assess the stability against various parameters. After two-step matching, our results for HQET LCDAs are found in agreement with existing model parametrizations. The potential phenomenological implications of the results are discussed, shedding light on how these findings could impact our understanding of the strong interaction dynamics and physics beyond the standard model. It should be noted, however, that systematic uncertainties have not been accounted for yet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18654v1-abstract-full').style.display = 'none'; document.getElementById('2410.18654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span> [<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08046">arXiv:2410.08046</a> <span> [<a href="https://arxiv.org/pdf/2410.08046">pdf</a>, <a href="https://arxiv.org/format/2410.08046">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Origin of hadron spin based on Lattice QCD study on the charmed hadrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08046v1-abstract-short" style="display: inline;"> We perform the first Lattice calculation about the charmed hadron spin decomposition using overlap fermions on a 2+1 flavor RBC/UKQCD domain-wall gauge configurations at 0.083 fm with 300 MeV pion mass. It is found that the contributions of quark spin to the spin of 1S, 1P charmonia and also proton-like triple heavy quark state are comparable with the expectation of non-relativistic quark model. S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08046v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08046v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08046v1-abstract-full" style="display: none;"> We perform the first Lattice calculation about the charmed hadron spin decomposition using overlap fermions on a 2+1 flavor RBC/UKQCD domain-wall gauge configurations at 0.083 fm with 300 MeV pion mass. It is found that the contributions of quark spin to the spin of 1S, 1P charmonia and also proton-like triple heavy quark state are comparable with the expectation of non-relativistic quark model. Such an observation provides evidence that the non-triviality of proton spin decomposition mainly arises from the relativistic effects of the light quark. Conversely, the substantial gluon angular momentum contribution in the spin $(1/2)^+$ state with triple heavy quarks at the charm quark mass, remains significant, highlighting the ongoing importance of the gluon in the realm of charmed baryon physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08046v1-abstract-full').style.display = 'none'; document.getElementById('2410.08046v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-24-30910 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12819">arXiv:2408.12819</a> <span> [<a href="https://arxiv.org/pdf/2408.12819">pdf</a>, <a href="https://arxiv.org/format/2408.12819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Parton Distribution Function of a Deuteron-like Dibaryon System from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+C">Chen Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Geng%2C+Y">Yiqi Geng</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12819v1-abstract-short" style="display: inline;"> We report a lattice QCD calculation of the parton distribution function (PDF) of a deuteron-like dibaryon system using large-momentum effective theory. The calculation is done on three Wilson Clover ensembles with a fixed lattice spacing a=0.105 fm and two pion masses. The lattice matrix elements are computed at proton momenta up to 2.46 GeV with the signal of high momentum modes being improved by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12819v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12819v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12819v1-abstract-full" style="display: none;"> We report a lattice QCD calculation of the parton distribution function (PDF) of a deuteron-like dibaryon system using large-momentum effective theory. The calculation is done on three Wilson Clover ensembles with a fixed lattice spacing a=0.105 fm and two pion masses. The lattice matrix elements are computed at proton momenta up to 2.46 GeV with the signal of high momentum modes being improved by applying the momentum smearing technique. The state-of-the-art renormalization, matching and extrapolation are then applied to obtain the final result of the light-cone PDF. A comparison between the result of the dibaryon system and the sum of the proton and neutron PDFs is also given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12819v1-abstract-full').style.display = 'none'; document.getElementById('2408.12819v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03548">arXiv:2408.03548</a> <span> [<a href="https://arxiv.org/pdf/2408.03548">pdf</a>, <a href="https://arxiv.org/format/2408.03548">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Charmed meson masses and decay constants in the continuum from the tadpole improved clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Du%2C+H">Hai-Yang Du</a>, <a href="/search/hep-lat?searchtype=author&query=Hu%2C+B">Bolun Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03548v2-abstract-short" style="display: inline;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03548v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03548v2-abstract-full" style="display: none;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through the stout smeared clover fermion action and Symanzik gauge actions with the tadpole improvement. Using QED-subtracted $D_s$ meson mass and non-perturbative renormalization, we predict the charm quark mass in the continuum with physical light and strange quark masses to be {$m_c(m_c)=1.289(17)$} GeV in $\overline{\textrm{MS}}$ scheme, with the systematic uncertainties from lattice spacing determination, renormalization constant, {and fit ansatz} included. Predictions of the open and close charm mesons using this charm quark mass agree with the experimental value at 0.3\% level uncertainty. We obtained {$D_{(s)}$ decay constants and also by far the most precise $D_{(s)}^*$ decay constants $f_{D^*}=0.2321(43)$ GeV and $f_{D^*_s}=0.2743(34)$ GeV}, with the charm quark improved vector current normalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'none'; document.getElementById('2408.03548v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19695">arXiv:2407.19695</a> <span> [<a href="https://arxiv.org/pdf/2407.19695">pdf</a>, <a href="https://arxiv.org/ps/2407.19695">ps</a>, <a href="https://arxiv.org/format/2407.19695">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless double-beta decay in a finite volume from relativistic effective field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y+L">Y. L. Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+P+W">P. W. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19695v3-abstract-short" style="display: inline;"> The neutrinoless double-beta decay process $nn\rightarrow ppee$ within the light Majorana-exchange scenario is studied using the relativistic pionless effective field theory (EFT) in finite-volume cubic boxes with the periodic boundary conditions. Using the low-energy two-nucleon scattering observables from lattice QCD available at $m_蟺=300$, 450, 510, and 806 MeV, the leading-order… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19695v3-abstract-full').style.display = 'inline'; document.getElementById('2407.19695v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19695v3-abstract-full" style="display: none;"> The neutrinoless double-beta decay process $nn\rightarrow ppee$ within the light Majorana-exchange scenario is studied using the relativistic pionless effective field theory (EFT) in finite-volume cubic boxes with the periodic boundary conditions. Using the low-energy two-nucleon scattering observables from lattice QCD available at $m_蟺=300$, 450, 510, and 806 MeV, the leading-order $nn\rightarrow ppee$ transition matrix elements are predicted and their volume dependence is investigated. The predictions for the $nn\rightarrow ppee$ transition matrix elements can be directly compared to the lattice QCD calculations of the $nn\rightarrow ppee$ process at the same pion masses. In particular for the matrix element at $m_蟺=806$ MeV, the predictions with relativistic pionless EFT are confronted to the recent first lattice QCD evaluation. Therefore, the present results are expected to play a crucial role in the benchmark between the nuclear EFTs and the upcoming lattice QCD calculations of the $nn\rightarrow pp ee$ process, which would provide a nontrivial test on the predictive power of nuclear EFTs on neutrinoless double-beta decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19695v3-abstract-full').style.display = 'none'; document.getElementById('2407.19695v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13568">arXiv:2407.13568</a> <span> [<a href="https://arxiv.org/pdf/2407.13568">pdf</a>, <a href="https://arxiv.org/ps/2407.13568">ps</a>, <a href="https://arxiv.org/format/2407.13568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.074510">10.1103/PhysRevD.110.074510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First lattice QCD calculation of $J/蠄$ semileptonic decay containing $D$ and $D_s$ particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Dang%2C+J">Jin-Long Dang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Tuo%2C+X">Xin-Yu Tuo</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+H">Haobo Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13568v3-abstract-short" style="display: inline;"> We perform the first lattice calculation on the semileptonic decay of $J/蠄$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. Three gauge ensembles with different lattice spacings, from 0.0519 fm to 0.1053 fm, and pion masses, $m_蟺\sim$ 300 MeV, are utilized. After a naive continuum extrapolation using three lattice spacings, we obtain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13568v3-abstract-full').style.display = 'inline'; document.getElementById('2407.13568v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13568v3-abstract-full" style="display: none;"> We perform the first lattice calculation on the semileptonic decay of $J/蠄$ using the (2+1)-flavor Wilson-clover gauge ensembles generated by CLQCD collaboration. Three gauge ensembles with different lattice spacings, from 0.0519 fm to 0.1053 fm, and pion masses, $m_蟺\sim$ 300 MeV, are utilized. After a naive continuum extrapolation using three lattice spacings, we obtain $\operatorname{Br}(J/蠄\rightarrow D_s e谓_e)=1.90(6)(5)_{V_{cs}}\times 10^{-10}$ and $\operatorname{Br}(J/蠄\rightarrow D e谓_e)=1.21(6)(9)_{V_{cd}}\times 10^{-11}$, where the first errors are statistical, and the second come from the uncertainties of CKM matrix element $V_{cs(d)}$. The ratios of the branching fractions between lepton $渭$ and $e$ are also calculated as $R_{J/蠄}(D_s)=0.97002(8)$ and $R_{J/蠄}(D)=0.97423(15)$ after performing a continuum limit including only $a^2$ term. The ratios provide necessary theoretical support for the future experimental test of lepton flavor universality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13568v3-abstract-full').style.display = 'none'; document.getElementById('2407.13568v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures, published version with minor word editing</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRD110,074510(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17675">arXiv:2405.17675</a> <span> [<a href="https://arxiv.org/pdf/2405.17675">pdf</a>, <a href="https://arxiv.org/format/2405.17675">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> $J/蠄$ photoproduction: threshold to very high energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Tang%2C+L">Lin Tang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Xuan Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Cui%2C+Z">Zhu-Fang Cui</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+C+D">Craig D. Roberts</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17675v2-abstract-short" style="display: inline;"> A reaction model for $纬+ p \to J/蠄+ p$ photoproduction, which exposes the $c \bar c$ content of the photon in making the transition $纬\to c\bar c + \mathbb P \to J/蠄$ and couples the intermediate $c \bar c$ system to the proton's valence quarks via Pomeron ($\mathbb P $) exchange, is used to deliver a description of available data, viz. both differential and total cross sections from near threshol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17675v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17675v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17675v2-abstract-full" style="display: none;"> A reaction model for $纬+ p \to J/蠄+ p$ photoproduction, which exposes the $c \bar c$ content of the photon in making the transition $纬\to c\bar c + \mathbb P \to J/蠄$ and couples the intermediate $c \bar c$ system to the proton's valence quarks via Pomeron ($\mathbb P $) exchange, is used to deliver a description of available data, viz. both differential and total cross sections from near threshold, where data has newly been acquired, to invariant mass $W \approx 300\,$GeV. The study suggests that it is premature to link existing $纬+ p \to J/蠄+ p$ data with, for instance, in-proton gluon distributions, the quantum chromodynamics trace anomaly, or pentaquark production. Further developments in reaction theory and higher precision data are necessary before the validity of any such connections can be assessed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17675v2-abstract-full').style.display = 'none'; document.getElementById('2405.17675v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, 4 tables. To appear in Phys. Lett. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NJU-INP 089/24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14097">arXiv:2405.14097</a> <span> [<a href="https://arxiv.org/pdf/2405.14097">pdf</a>, <a href="https://arxiv.org/format/2405.14097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Impact of gauge fixing precision on the continuum limit of non-local quark-bilinear lattice operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schaefer%2C+A">Andreas Schaefer</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chun-Jiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14097v1-abstract-short" style="display: inline;"> We analyze the gauge fixing precision dependence of some non-local quark-blinear lattice operators interesting in computing parton physics for several measurements, using 5 lattice spacings ranging from 0.032 fm to 0.121 fm. Our results show that gauge dependent non-local measurements are significantly more sensitive to the precision of gauge fixing than anticipated. The impact of imprecise gauge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14097v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14097v1-abstract-full" style="display: none;"> We analyze the gauge fixing precision dependence of some non-local quark-blinear lattice operators interesting in computing parton physics for several measurements, using 5 lattice spacings ranging from 0.032 fm to 0.121 fm. Our results show that gauge dependent non-local measurements are significantly more sensitive to the precision of gauge fixing than anticipated. The impact of imprecise gauge fixing is significant for fine lattices and long distances. For instance, even with the typically defined precision of Landau gauge fixing of $10^{-8}$, the deviation caused by imprecise gauge fixing can reach 12 percent, when calculating the trace of Wilson lines at 1.2 fm with a lattice spacing of approximately 0.03 fm. Similar behavior has been observed in $尉$ gauge and Coulomb gauge as well. For both quasi PDFs and quasi TMD-PDFs operators renormalized using the RI/MOM scheme, convergence for different lattice spacings at long distance is only observed when the precision of Landau gauge fixing is sufficiently high. To describe these findings quantitatively, we propose an empirical formula to estimate the required precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14097v1-abstract-full').style.display = 'none'; document.getElementById('2405.14097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01564">arXiv:2404.01564</a> <span> [<a href="https://arxiv.org/pdf/2404.01564">pdf</a>, <a href="https://arxiv.org/format/2404.01564">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2451-5">10.1007/s11433-024-2451-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The radiative decay of scalar glueball from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zou%2C+J">Jintao Zou</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Qin%2C+W">Wen Qin</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01564v4-abstract-short" style="display: inline;"> We perform the first lattice QCD study on the radiative decay of the scalar glueball to the vector meson $蠁$ in the quenched approximation. The calculations are carried out on three gauge ensembles with different lattice spacings, which enable us to do the continuum extrapolation. We first revisit the radiative $J/蠄$ decay into the scalar glueball $G$ and obtain the partial decay width… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01564v4-abstract-full').style.display = 'inline'; document.getElementById('2404.01564v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01564v4-abstract-full" style="display: none;"> We perform the first lattice QCD study on the radiative decay of the scalar glueball to the vector meson $蠁$ in the quenched approximation. The calculations are carried out on three gauge ensembles with different lattice spacings, which enable us to do the continuum extrapolation. We first revisit the radiative $J/蠄$ decay into the scalar glueball $G$ and obtain the partial decay width $螕(J/蠄\to 纬G)=0.578(86)~\text{keV}$ and the branching fraction $\text{Br}(J/蠄\to 纬G) = 6.2(9)\times 10^{-3}$. We then extend the similar calculation to the process $G\to 纬蠁$ and get the partial decay width $螕(G \to 纬蠁)= 0.074(47)~\text{keV}$, which implies that the combined branching fraction of $J/蠄\to纬G\to 纬纬蠁$ is as small as $\mathcal{O}(10^{-9})$ such that this process is hardly detected by the BESIII experiment even with the large $J/蠄$ sample of $\mathcal{O}(10^{10})$. With the vector meson dominance model, the two-photon decay width of the scalar glueball is estimated to be $螕(G\to纬纬)=0.53(46)~\text{eV}$, which results in a large stickiness $S(G)\sim \mathcal{O}(10^4)$ of the scalar glueball by assuming the stickiness of $f_2(1270)$ to be one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01564v4-abstract-full').style.display = 'none'; document.getElementById('2404.01564v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,11 figures. This version is to be published in SCPMA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics & Astronomy , Volume 67, Issue 11: 111012 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01378">arXiv:2403.01378</a> <span> [<a href="https://arxiv.org/pdf/2403.01378">pdf</a>, <a href="https://arxiv.org/format/2403.01378">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous chiral symmetry breaking and mass gap of QCD in finite volume </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+X">Xiaolan Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Hu%2C+B">Bolun Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01378v1-abstract-short" style="display: inline;"> We present the lattice QCD simulation with the 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes $L$, at $a\sim$ 0.055 fm. The results suggest that spontaneous chiral symmetry breaking is effectively restored at $L\le 1.0$ fm, while the gap between the nucleon and pion masses remains. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01378v1-abstract-full" style="display: none;"> We present the lattice QCD simulation with the 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes $L$, at $a\sim$ 0.055 fm. The results suggest that spontaneous chiral symmetry breaking is effectively restored at $L\le 1.0$ fm, while the gap between the nucleon and pion masses remains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01378v1-abstract-full').style.display = 'none'; document.getElementById('2403.01378v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05496">arXiv:2401.05496</a> <span> [<a href="https://arxiv.org/pdf/2401.05496">pdf</a>, <a href="https://arxiv.org/format/2401.05496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.094504">10.1103/PhysRevD.109.094504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trace anomaly form factors from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+B">Bigeng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05496v3-abstract-short" style="display: inline;"> The hadron mass can be obtained through the calculation of the trace of the energy-momentum tensor in the hadron which includes the trace anomaly and sigma terms. The anomaly due to conformal symmetry breaking is believed to be an important ingredient for hadron mass generation and confinement. In this work, we will present the calculation of the glue part of the trace anomaly form factors of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05496v3-abstract-full').style.display = 'inline'; document.getElementById('2401.05496v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05496v3-abstract-full" style="display: none;"> The hadron mass can be obtained through the calculation of the trace of the energy-momentum tensor in the hadron which includes the trace anomaly and sigma terms. The anomaly due to conformal symmetry breaking is believed to be an important ingredient for hadron mass generation and confinement. In this work, we will present the calculation of the glue part of the trace anomaly form factors of the pion up to $Q^2\sim 4.3~\mathrm{GeV}^2$ and the nucleon up to $Q^2\sim 1~\mathrm{GeV}^2$. The calculations are performed on a domain wall fermion ensemble with overlap valence quarks at seven valence pion masses varying from $\sim 250$ to $\sim 540$ MeV, including the unitary point $\sim 340$ MeV. We calculate the radius of the glue trace anomaly for the pion and the nucleon from the $z$ expansion. By performing a two-dimensional Fourier transform on the glue trace anomaly form factors in the infinite momentum frame with no energy transfer, we also obtain their spatial distributions for several valence quark masses. The results are qualitatively extrapolated to the physical valence pion mass with systematic errors from the unphysical sea quark mass, discretization effects in the renormalization sum rule, and finite-volume effects to be addressed in the future. We find the pion's form factor changes sign, as does its spatial distribution, for light quark masses. This explains how the trace anomaly contribution to the pion mass approaches zero toward the chiral limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05496v3-abstract-full').style.display = 'none'; document.getElementById('2401.05496v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the version accepted for publication in Physical Review D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04206">arXiv:2311.04206</a> <span> [<a href="https://arxiv.org/pdf/2311.04206">pdf</a>, <a href="https://arxiv.org/format/2311.04206">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Elastic and resonance structures of the nucleon from hadronic tensor in lattice QCD: implications for neutrino-nucleon scattering and hadron physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Sufian%2C+R+S">Raza Sabbir Sufian</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+B">Bigeng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Khan%2C+T">Tanjib Khan</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04206v1-abstract-short" style="display: inline;"> Understanding the transitions of nucleons into various resonance structures through electromagnetic interactions plays a pivotal role in advancing our comprehension of the strong interactions within the domain of quark confinement. Furthermore, gaining precise insights into the elastic and resonance structures of nucleons is indispensable for deciphering the physics from neutrino-nucleus scatterin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04206v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04206v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04206v1-abstract-full" style="display: none;"> Understanding the transitions of nucleons into various resonance structures through electromagnetic interactions plays a pivotal role in advancing our comprehension of the strong interactions within the domain of quark confinement. Furthermore, gaining precise insights into the elastic and resonance structures of nucleons is indispensable for deciphering the physics from neutrino-nucleus scattering cross sections experimental data, which remain theoretically challenging, even in the context of neutrino-nucleon interactions whose profound understanding is imperative for the neutrino oscillation experiments. One promising avenue involves the direct evaluation of the lepton-nucleon scattering cross sections across quasi-elastic, resonance, shallow-inelastic, and deep inelastic regions, which can be achieved through the hadronic tensor formalism in lattice QCD. In this work, we present the determination of the nucleon's Sachs electric form factor using the hadronic tensor formalism and verify that it is consistent with that from the conventional three-point function calculation. We additionally obtain the transition form factor from the nucleon to its first radial excited state within a finite volume. Consequently, we identify the latter with the nucleon-to-Roper transition form factor $G_E^*(Q^2)$, determine the corresponding longitudinal helicity amplitude $S_{1/2}(Q^2)$ and compare our findings with experimental measurements, for the first time using the hadronic tensor formalism. The limitations and systematic improvements of the approach are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04206v1-abstract-full').style.display = 'none'; document.getElementById('2311.04206v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02179">arXiv:2310.02179</a> <span> [<a href="https://arxiv.org/pdf/2310.02179">pdf</a>, <a href="https://arxiv.org/format/2310.02179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Fast Fermion Smearing Scheme with Gaussian-like Profile </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+C">ChuanYang Li</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+J">Jun Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+N">Nan Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02179v3-abstract-short" style="display: inline;"> We propose a novel smearing scheme which gives a Gaussian-like profile and is more efficient than the traditional Gaussian smearing in terms of computer time consumption. We also carry out a detailed analysis of the profiles, smearing sizes, and the behaviors of hadron effective masses of different smearing schemes, and point out that having a sufficient number of gauge paths in a smearing scheme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02179v3-abstract-full').style.display = 'inline'; document.getElementById('2310.02179v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02179v3-abstract-full" style="display: none;"> We propose a novel smearing scheme which gives a Gaussian-like profile and is more efficient than the traditional Gaussian smearing in terms of computer time consumption. We also carry out a detailed analysis of the profiles, smearing sizes, and the behaviors of hadron effective masses of different smearing schemes, and point out that having a sufficient number of gauge paths in a smearing scheme is essential to produce strong smearing effects. For a moderate smearing size $\bar{r}\sim 10a$, the time cost for the novel smearing is less than $1/8$ of that for the traditional Gaussian smearing. In practical lattice calculations with larger smearing sizes or finer lattice spacings the improvement will be more substantial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02179v3-abstract-full').style.display = 'none'; document.getElementById('2310.02179v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.00814">arXiv:2310.00814</a> <span> [<a href="https://arxiv.org/pdf/2310.00814">pdf</a>, <a href="https://arxiv.org/format/2310.00814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark masses and low energy constants in the continuum from the tadpole improved clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hu%2C+Z">Zhi-Cheng Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Hu%2C+B">Bo-Lun Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.00814v2-abstract-short" style="display: inline;"> We present the light-flavor quark masses and low energy constants using the 2+1 flavor full-QCD ensembles with stout smeared clover fermion action and Symanzik gauge actions. Both the fermion and gauge actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at 3 lattice spacings $a\in[0.05,0.11]$ fm, 4 spatial sizes $L\in[2.5, 5.1]$ fm, 7 pion masses… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00814v2-abstract-full').style.display = 'inline'; document.getElementById('2310.00814v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.00814v2-abstract-full" style="display: none;"> We present the light-flavor quark masses and low energy constants using the 2+1 flavor full-QCD ensembles with stout smeared clover fermion action and Symanzik gauge actions. Both the fermion and gauge actions are tadpole improved self-consistently. The simulations are performed on 11 ensembles at 3 lattice spacings $a\in[0.05,0.11]$ fm, 4 spatial sizes $L\in[2.5, 5.1]$ fm, 7 pion masses $m_蟺\in[135,350]$ MeV, and several values of the strange quark mass. The quark mass is defined through the partially conserved axial current (PCAC) relation and renormalized to $\overline{\mathrm{MS}}$ 2 GeV through the intermediate regularization independent momentum subtraction (RI/MOM) scheme. The systematic uncertainty of using the symmetric momentum subtraction (SMOM) scheme is also included. Eventually, we predict $m_u=2.45(22)(20)$ MeV, $m_d=4.74(11)(09)$ MeV, and $m_s=98.8(2.9)(4.7)$ MeV with the systematic uncertainties from lattice spacing determination, continuum extrapolation and renormalization constant included. We also obtain the chiral condensate $危^{1/3}=268.6(3.6)(0.7)$ MeV and the pion decay constant $F=86.6(7)(1.4) $ MeV in the $N_f=2$ chiral limit, and the next-to-leading order low energy constants $\ell_3=2.43(54)(05)$ and $\ell_4=4.322(75)(96)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.00814v2-abstract-full').style.display = 'none'; document.getElementById('2310.00814v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version accepted by PRD. 7 pages, 4 figures, with more details in the appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03356">arXiv:2308.03356</a> <span> [<a href="https://arxiv.org/pdf/2308.03356">pdf</a>, <a href="https://arxiv.org/ps/2308.03356">ps</a>, <a href="https://arxiv.org/format/2308.03356">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138782">10.1016/j.physletb.2024.138782 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relativistic model-free prediction for neutrinoless double beta decay at leading order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y+L">Y. L. Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+P+W">P. W. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03356v2-abstract-short" style="display: inline;"> Starting from a manifestly Lorentz-invariant chiral Lagrangian, we present a model-free prediction for the transition amplitude of the process $nn\rightarrow pp e^-e^-$ induced by light Majorana neutrinos, which is a key process of the neutrinoless double beta decay ($0谓尾尾$) in heavy nuclei employed in large-scale searches. Contrary to the nonrelativistic case, we show that the transition amplitud… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03356v2-abstract-full').style.display = 'inline'; document.getElementById('2308.03356v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03356v2-abstract-full" style="display: none;"> Starting from a manifestly Lorentz-invariant chiral Lagrangian, we present a model-free prediction for the transition amplitude of the process $nn\rightarrow pp e^-e^-$ induced by light Majorana neutrinos, which is a key process of the neutrinoless double beta decay ($0谓尾尾$) in heavy nuclei employed in large-scale searches. Contrary to the nonrelativistic case, we show that the transition amplitude can be renormalized at leading order without any uncertain contact operators. The predicted amplitude defines a stringent benchmark for the previous estimation with model-dependent inputs, and greatly reduces the uncertainty of $0谓尾尾$ transition operator in the calculations of nuclear matrix elements. Generalizations of the present framework could also help to address the uncertainties in $0谓尾尾$ decay induced by other mechanisms. In addition, the present work motivates a relativistic {\it ab initio} calculation of $0谓尾尾$ decay in light and medium-mass nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03356v2-abstract-full').style.display = 'none'; document.getElementById('2308.03356v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 855 (2024) 138782 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06488">arXiv:2306.06488</a> <span> [<a href="https://arxiv.org/pdf/2306.06488">pdf</a>, <a href="https://arxiv.org/format/2306.06488">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2023)172">10.1007/JHEP08(2023)172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Calculation of the Intrinsic Soft Function and the Collins-Soper Kernel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06488v3-abstract-short" style="display: inline;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06488v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06488v3-abstract-full" style="display: none;"> We calculate the soft function using lattice QCD in the framework of large momentum effective theory incorporating the one-loop perturbative contributions. The soft function is a crucial ingredient in the lattice determination of light cone objects using transverse-momentum-dependent (TMD) factorization. It consists of a rapidity-independent part called intrinsic soft function and a rapidity-dependent part called Collins-Soper kernel. We have adopted appropriate normalization when constructing the pseudo-scalar meson form factor that is needed in the determination of the intrinsic part and applied Fierz rearrangement to suppress the higher-twist effects. In the calculation of CS kernel we consider a CLS ensemble other than the MILC ensemble used in a previous study. We have also compared the applicability of determining the CS kernel using quasi TMDWFs and quasi TMDPDFs. As an example, the determined soft function is used to obtain the physical TMD wave functions (WFs) of pion and unpolarized iso-vector TMD parton distribution functions (PDFs) of proton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06488v3-abstract-full').style.display = 'none'; document.getElementById('2306.06488v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP08(2023)172 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09459">arXiv:2305.09459</a> <span> [<a href="https://arxiv.org/pdf/2305.09459">pdf</a>, <a href="https://arxiv.org/format/2305.09459">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Separation of Infrared and Bulk in Thermal QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+X">Xiao-Lan Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&query=Horv%C3%A1th%2C+I">Ivan Horv谩th</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09459v3-abstract-short" style="display: inline;"> New thermal phase of QCD, featuring scale invariance in the infrared (IR), was proposed to exist both in the pure-glue (N$_f$=0) and the ``real-world" (N$_f$=2+1) settings. Among key aspects of the proposal is that the system in this {\it IR phase} separates into two independent components: the scale-invariant IR part and the non-invariant bulk. Such scenario requires non-analyticities in the theo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09459v3-abstract-full').style.display = 'inline'; document.getElementById('2305.09459v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09459v3-abstract-full" style="display: none;"> New thermal phase of QCD, featuring scale invariance in the infrared (IR), was proposed to exist both in the pure-glue (N$_f$=0) and the ``real-world" (N$_f$=2+1) settings. Among key aspects of the proposal is that the system in this {\it IR phase} separates into two independent components: the scale-invariant IR part and the non-invariant bulk. Such scenario requires non-analyticities in the theory and, in case of pure-glue QCD, they were found to arise via Anderson-like mobility edges in Dirac spectra ($位_\fir \!=\! 0$, $\pm 位_\text{A} \!\neq\! 0$) manifested in dimension function $d_\fir(位)$. Here we present first evidence that this mechanism is also at work in ``real-world QCD" (N$_f$=2+1 theory at physical quark masses and $a\!=\!0.105\,$fm), supporting the existence of the proposed IR regime. Indeed, at $T\!=\!234\,$MeV, we find the dimensional jump between zero modes and lowest near-zero modes very close to unity ($d_\fir\!=\!3$ to $d_\fir \!\simeq \!2$), exactly like in pure-glue QCD in IR phase. However, no jump is found at $T\!=\!187\,$ MeV which is in the intermediate region between chiral crossover at $T_c \approx 155\,$MeV and the onset $T_\fir$ of IR phase, originally estimated at $200 < T_\fir < 250\,$MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09459v3-abstract-full').style.display = 'none'; document.getElementById('2305.09459v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures, results at 187 MeV updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04862">arXiv:2305.04862</a> <span> [<a href="https://arxiv.org/pdf/2305.04862">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> AdS/CFT Correspondence in Hyperbolic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jingming Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+L">Linyun Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yuting Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Z">Zihan Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+Y">Ying Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yan Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+B">Bei Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Xi%2C+X">Xiang Xi</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+Z">Zhenxiao Zhu</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Minqi Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+G">Gui-Geng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shum%2C+P+P">Perry Ping Shum</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+R">Rong-Gen Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+R">Run-Qiu Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yihao Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Gao%2C+Z">Zhen Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04862v2-abstract-short" style="display: inline;"> The celebrated anti-de Sitter/conformal field theory (AdS/CFT) correspondence1-3, also known as the gravity/gauge duality, posits a dual relationship between the quantum gravity in an AdS spacetime and the CFT defined on its lower-dimensional boundary. This correspondence not only offers profound insights into the enigmatic nature of quantum gravity but also shows mighty power in addressing strong… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04862v2-abstract-full').style.display = 'inline'; document.getElementById('2305.04862v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04862v2-abstract-full" style="display: none;"> The celebrated anti-de Sitter/conformal field theory (AdS/CFT) correspondence1-3, also known as the gravity/gauge duality, posits a dual relationship between the quantum gravity in an AdS spacetime and the CFT defined on its lower-dimensional boundary. This correspondence not only offers profound insights into the enigmatic nature of quantum gravity but also shows mighty power in addressing strongly-correlated systems. However, despite its importance in contemporary physics, the AdS/CFT correspondence remains a conjecture, and further experimental investigation is highly sought after. Here, we present the first experimental exploration of this conjecture by testing its core corollary: the leading-order effects of a strongly-coupled CFT can be exactly described by a weakly-coupled classical field in a higher-dimensional AdS spacetime. Through measuring the bulk entanglement entropy (BEE) and boundary-boundary correlation function (BBCF) of scalar fields in both conventional type-I and previously overlooked type-II hyperbolic lattices, serving as the discretized regularizations of spatial geometries of pure AdS2+1 spacetime and AdS2+1 black hole, respectively, we experimentally confirm that BEE exhibits a logarithmic scaling with the subsystem size, following the Ryu-Takayanagi (RT) formula, while BBCF showcases an exponential law dependence on the boundary separation, the scaling dimension of which conforms to the Klebanov-Witten (KW) relation, both of which align remarkably well with the established CFT outcomes. This heuristic experimental effort opens a new avenue for in-depth investigations on the gravity/gauge duality and extensive exploration of quantum-gravity-inspired phenomena in classical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04862v2-abstract-full').style.display = 'none'; document.getElementById('2305.04862v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17865">arXiv:2303.17865</a> <span> [<a href="https://arxiv.org/pdf/2303.17865">pdf</a>, <a href="https://arxiv.org/format/2303.17865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137941">10.1016/j.physletb.2023.137941 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $螢_c-螢_c^{\prime}$ mixing From Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">Hang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Tan%2C+J">Jin-Xin Tan</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17865v2-abstract-short" style="display: inline;"> In heavy quark limit, the lowest-lying charmed baryons with two light quarks can form an SU(3) triplet and sextet. The $螢_c$ in the SU(3) triplet and $螢_c'$ in the sextet have the same $J^{PC}$ quantum number and can mix due to the finite charm quark mass and the fact the strange quark is heavier than the up/down quark. We explore the $螢_c$-$螢_c'$ mixing by calculating the two-point correlation fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17865v2-abstract-full').style.display = 'inline'; document.getElementById('2303.17865v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17865v2-abstract-full" style="display: none;"> In heavy quark limit, the lowest-lying charmed baryons with two light quarks can form an SU(3) triplet and sextet. The $螢_c$ in the SU(3) triplet and $螢_c'$ in the sextet have the same $J^{PC}$ quantum number and can mix due to the finite charm quark mass and the fact the strange quark is heavier than the up/down quark. We explore the $螢_c$-$螢_c'$ mixing by calculating the two-point correlation functions of the $螢_c$ and $螢_c'$ baryons from lattice QCD. Based on the lattice data, we adopt two independent methods to determine the mixing angle between $螢_c$ and $螢_c'$. After making the chiral and continuum extrapolation, it is found that the mixing angle $胃$ is $1.2^{\circ}\pm0.1^{\circ}$, which seems insufficient to account for the large SU(3) symmetry breaking effects found in weak decays of charmed baryons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17865v2-abstract-full').style.display = 'none'; document.getElementById('2303.17865v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09961">arXiv:2302.09961</a> <span> [<a href="https://arxiv.org/pdf/2302.09961">pdf</a>, <a href="https://arxiv.org/format/2302.09961">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Transverse-Momentum-Dependent Wave Functions of Pion from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Schafer%2C+A">Andreas Schafer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09961v1-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09961v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09961v1-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the transverse-momentum-dependent wave functions (TMDWFs) of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with 2+1+1 flavors of highly improved staggered quarks action with lattice spacing $a=0.121$~fm from the MILC Collaboration, and one with 2 +1 flavor clover fermions and tree-level Symanzik gauge action generated by the CLS Collaboration with $a=0.098$~fm. As a key ingredient, the soft function is first obtained by incorporating the one-loop perturbative contributions and a proper normalization. Based on this and the equal-time quasi-TMDWFs simulated on the lattice, we extract the light-cone TMDWFs. The results are comparable between the two lattice ensembles and a comparison with phenomenological parametrization is made. Our studies provide a first attempt of $ab$ $initio$ calculation of TMDWFs which will eventually lead to crucial theory inputs for making predictions for exclusive processes under QCD factorization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09961v1-abstract-full').style.display = 'none'; document.getElementById('2302.09961v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06502">arXiv:2302.06502</a> <span> [<a href="https://arxiv.org/pdf/2302.06502">pdf</a>, <a href="https://arxiv.org/format/2302.06502">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Universality of the Collins-Soper kernel in lattice calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sizmann%2C+T">Tobias Sizmann</a>, <a href="/search/hep-lat?searchtype=author&query=Vladimirov%2C+A">Alexey Vladimirov</a>, <a href="/search/hep-lat?searchtype=author&query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06502v2-abstract-short" style="display: inline;"> The Collins-Soper (CS) kernel is a nonperturbative function that characterizes the rapidity evolution of transverse-momentum-dependent parton distribution functions (TMDPDFs) and wave functions. In this Letter, we calculate the CS kernel for pion and proton targets and for quasi-TMDPDFs of leading and next-to-leading power. The calculations are carried out on the CLS ensemble H101 with dynamical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06502v2-abstract-full').style.display = 'inline'; document.getElementById('2302.06502v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06502v2-abstract-full" style="display: none;"> The Collins-Soper (CS) kernel is a nonperturbative function that characterizes the rapidity evolution of transverse-momentum-dependent parton distribution functions (TMDPDFs) and wave functions. In this Letter, we calculate the CS kernel for pion and proton targets and for quasi-TMDPDFs of leading and next-to-leading power. The calculations are carried out on the CLS ensemble H101 with dynamical $N_f=2+1$ clover-improved Wilson fermions. Our analyses demonstrate the consistency of different lattice extractions of the CS kernel for mesons and baryons, as well as for twist-two and twist-three operators, even though lattice artifacts could be significant. This consistency corroborates the universality of the lattice-determined CS kernel and suggests that a high-precision determination of it is in reach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06502v2-abstract-full').style.display = 'none'; document.getElementById('2302.06502v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 10.1103/PhysRevD.108.074519 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01659">arXiv:2302.01659</a> <span> [<a href="https://arxiv.org/pdf/2302.01659">pdf</a>, <a href="https://arxiv.org/format/2302.01659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054506">10.1103/PhysRevD.108.054506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RI/(S)MOM renormalizations of overlap quark bilinears with different levels of hypercubic smearing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yujiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01659v2-abstract-short" style="display: inline;"> On configurations with 2+1-flavor dynamical domain-wall fermions, we calculate the RI/(S)MOM renormalization constants (RC) of overlap quark bilinears. Hypercubic (HYP) smearing is used to construct the overlap Dirac operator. We investigate the possible effects of the smearing on discretization errors in the RCs by varying the level of smearing from 0 to 1 and 2. The lattice is of size… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01659v2-abstract-full').style.display = 'inline'; document.getElementById('2302.01659v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01659v2-abstract-full" style="display: none;"> On configurations with 2+1-flavor dynamical domain-wall fermions, we calculate the RI/(S)MOM renormalization constants (RC) of overlap quark bilinears. Hypercubic (HYP) smearing is used to construct the overlap Dirac operator. We investigate the possible effects of the smearing on discretization errors in the RCs by varying the level of smearing from 0 to 1 and 2. The lattice is of size $32^3\times64$ and with lattice spacing $1/a=2.383(9)$ GeV. The RCs in the $\overline{\rm MS}$ scheme at 2 GeV are given at the end, with the uncertainty of $Z_T$ reaching $\le1$% for the tensor current. Results of the renormalized quark masses and hadron matrix elements show that the renormalization procedure suppresses the $\sim$ 30% difference of the bare quantities with or without HYP smearing into the 3%-5% level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01659v2-abstract-full').style.display = 'none'; document.getElementById('2302.01659v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 14 figures. Statistics increased for computing $Z_A$. Two graphs added for illustration. Main results not changed. References and acknowledgements added. Match the version published on Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 5, 054506 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04331">arXiv:2301.04331</a> <span> [<a href="https://arxiv.org/pdf/2301.04331">pdf</a>, <a href="https://arxiv.org/format/2301.04331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Electric Dipole Moment from the $胃$ Term with Lattice Chiral Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+B">Bigeng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04331v1-abstract-short" style="display: inline;"> We calculate the nucleon electric dipole moment (EDM) from the $胃$ term with overlap fermions on three domain wall lattices with different sea pion masses at lattice spacing 0.11 fm. Due to the chiral symmetry conserved by the overlap fermions, we have well defined topological charge and chiral limit for the EDM. Thus, the chiral extrapolation can be carried out reliably at nonzero lattice spacing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04331v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04331v1-abstract-full" style="display: none;"> We calculate the nucleon electric dipole moment (EDM) from the $胃$ term with overlap fermions on three domain wall lattices with different sea pion masses at lattice spacing 0.11 fm. Due to the chiral symmetry conserved by the overlap fermions, we have well defined topological charge and chiral limit for the EDM. Thus, the chiral extrapolation can be carried out reliably at nonzero lattice spacings. We use three to four different partially quenched valence pion masses for each sea pion mass and find that the EDM dependence on the valence and sea pion masses behaves oppositely, which can be described by partially quenched chiral perturbation theory. With the help of the cluster decomposition error reduction (CDER) technique, we determine the neutron and proton EDM at the physical pion mass to be $d_{n}=-0.00148\left(14\right)\left(31\right)\bar胃$ e$\cdot$fm and $d_{p}=0.0038\left(11\right)\left(8\right)\bar胃$ e$\cdot$fm. This work is a clear demonstration of the advantages of using chiral fermions in the nucleon EDM calculation and paves the road to future precise studies of the strong $CP$ violation effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04331v1-abstract-full').style.display = 'none'; document.getElementById('2301.04331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, and supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02340">arXiv:2211.02340</a> <span> [<a href="https://arxiv.org/pdf/2211.02340">pdf</a>, <a href="https://arxiv.org/format/2211.02340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Unpolarized Transverse-Momentum-Dependent Parton Distributions of the Nucleon from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lattice+Parton+Collaboration"> Lattice Parton Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02340v3-abstract-short" style="display: inline;"> We present a first lattice QCD calculation of the unpolarized nucleon's isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'inline'; document.getElementById('2211.02340v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02340v3-abstract-full" style="display: none;"> We present a first lattice QCD calculation of the unpolarized nucleon's isovector transverse-momentum-dependent parton distribution functions (TMDPDFs), which are essential to predict observables of multi-scale, semi-inclusive processes in the standard model. We use a $N_f=2+1+1$ MILC ensemble with valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark momentum distributions in a large-momentum nucleon on the lattice. The state-of-the-art techniques in renormalization and extrapolation in the correlation distance on the lattice are adopted. {The perturbative kernel up to next-to-next-to-leading order is taken into account}, and the dependence on the pion mass and the hadron momentum is explored. Our results are qualitatively comparable with phenomenological TMDPDFs, which provide an opportunity to predict high energy scatterings from first principles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02340v3-abstract-full').style.display = 'none'; document.getElementById('2211.02340v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00813">arXiv:2211.00813</a> <span> [<a href="https://arxiv.org/pdf/2211.00813">pdf</a>, <a href="https://arxiv.org/format/2211.00813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/5/050502">10.1088/0256-307X/40/5/050502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of quantum criticality in the complex inverse temperature plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Lv%2C+S">Songtai Lv</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zou%2C+H">Haiyuan Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00813v2-abstract-short" style="display: inline;"> Concepts of the complex partition functions and the Fisher zeros provide intrinsic statistical mechanisms for finite temperature and real time dynamical phase transitions. We extend the utility of these complexifications to quantum phase transitions. We exactly identify different Fisher zeros on lines or closed curves and elucidate their correspondence with domain-wall excitations or confined meso… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00813v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00813v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00813v2-abstract-full" style="display: none;"> Concepts of the complex partition functions and the Fisher zeros provide intrinsic statistical mechanisms for finite temperature and real time dynamical phase transitions. We extend the utility of these complexifications to quantum phase transitions. We exactly identify different Fisher zeros on lines or closed curves and elucidate their correspondence with domain-wall excitations or confined mesons for the one-dimensional transverse field Ising model. The crossover behavior of the Fisher zeros provides a fascinating picture for criticality near the quantum phase transition, where the excitation energy scales are quantitatively determined. We further confirm our results by tensor network calculations and demonstrate a clear signal of deconfined meson excitations from the disruption of the closed zero curves. Our results unambiguously show significant features of Fisher zeros for a quantum phase transition and open up a new route to explore quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00813v2-abstract-full').style.display = 'none'; document.getElementById('2211.00813v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. Lett. 40 050502 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08555">arXiv:2210.08555</a> <span> [<a href="https://arxiv.org/pdf/2210.08555">pdf</a>, <a href="https://arxiv.org/format/2210.08555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> First observation of the hidden-charm pentaquarks on lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Xing%2C+H">Hanyang Xing</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08555v1-abstract-short" style="display: inline;"> The s-wave scattering of $危_c \bar{D}$ and $危_c \bar{D}^*$ in the $I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$ channel is calculated in lattice QCD using two ensembles with different volumes but the same lattice spacing $a\sim 0.08\mathrm{fm}$ and pion mass $M_蟺\sim 294\mathrm{MeV}$. The scattering amplitudes near threshold are obtained by L眉scher's finite volume method. We find bound state poles in both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08555v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08555v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08555v1-abstract-full" style="display: none;"> The s-wave scattering of $危_c \bar{D}$ and $危_c \bar{D}^*$ in the $I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$ channel is calculated in lattice QCD using two ensembles with different volumes but the same lattice spacing $a\sim 0.08\mathrm{fm}$ and pion mass $M_蟺\sim 294\mathrm{MeV}$. The scattering amplitudes near threshold are obtained by L眉scher's finite volume method. We find bound state poles in both $危_c \bar{D}$ and $危_c \bar{D}^*$ channels, which are possibly related to the $P_c(4312)$ and $P_c(4440) / P_c(4457)$ pentaquarks observed in experiments. The binding energy is $6(2)(2)$MeV for $危_c \bar{D}$ and $7(3)(1)$MeV for $危_c \bar{D}^*$, where the first error is the statistical error and the second is the systematic error due to the lattice artifacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08555v1-abstract-full').style.display = 'none'; document.getElementById('2210.08555v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11940">arXiv:2209.11940</a> <span> [<a href="https://arxiv.org/pdf/2209.11940">pdf</a>, <a href="https://arxiv.org/format/2209.11940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.107.024908">10.1103/PhysRevC.107.024908 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the RHIC STAR Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Abdallah%2C+M+S">M. S. Abdallah</a>, <a href="/search/hep-lat?searchtype=author&query=Aboona%2C+B+E">B. E. Aboona</a>, <a href="/search/hep-lat?searchtype=author&query=Adam%2C+J">J. Adam</a>, <a href="/search/hep-lat?searchtype=author&query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/hep-lat?searchtype=author&query=Adams%2C+J+R">J. R. Adams</a>, <a href="/search/hep-lat?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/hep-lat?searchtype=author&query=Aggarwal%2C+I">I. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-lat?searchtype=author&query=Anderson%2C+D+M">D. M. Anderson</a>, <a href="/search/hep-lat?searchtype=author&query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/hep-lat?searchtype=author&query=Atchison%2C+J">J. Atchison</a>, <a href="/search/hep-lat?searchtype=author&query=Bairathi%2C+V">V. Bairathi</a>, <a href="/search/hep-lat?searchtype=author&query=Baker%2C+W">W. Baker</a>, <a href="/search/hep-lat?searchtype=author&query=Cap%2C+J+G+B">J. G. Ball Cap</a>, <a href="/search/hep-lat?searchtype=author&query=Barish%2C+K">K. Barish</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Bhagat%2C+P">P. Bhagat</a>, <a href="/search/hep-lat?searchtype=author&query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-lat?searchtype=author&query=Bhatta%2C+S">S. Bhatta</a>, <a href="/search/hep-lat?searchtype=author&query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-lat?searchtype=author&query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-lat?searchtype=author&query=Brandenburg%2C+J+D">J. D. Brandenburg</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X+Z">X. Z. Cai</a> , et al. (349 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11940v2-abstract-short" style="display: inline;"> We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11940v2-abstract-full').style.display = 'inline'; document.getElementById('2209.11940v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11940v2-abstract-full" style="display: none;"> We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5\% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11940v2-abstract-full').style.display = 'none'; document.getElementById('2209.11940v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 107, 024908(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span> [<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08008">arXiv:2208.08008</a> <span> [<a href="https://arxiv.org/pdf/2208.08008">pdf</a>, <a href="https://arxiv.org/format/2208.08008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Transversity Distribution in the Continuum and Physical Mass Limit from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lahrtz%2C+S">Sebastian Lahrtz</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+L">Lingquan Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Mohanta%2C+P">Protick Mohanta</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+X">Xiaonu Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08008v2-abstract-short" style="display: inline;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-pert… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'inline'; document.getElementById('2208.08008v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08008v2-abstract-full" style="display: none;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-perturbatively renormalized in the hybrid scheme with self renormalization which treats the infrared physics at large correlation distance properly, and extrapolated to the continuum, physical mass and infinite momentum limit. We also compare with recent global analyses for the nucleon isovector quark transversity distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'none'; document.getElementById('2208.08008v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14132">arXiv:2207.14132</a> <span> [<a href="https://arxiv.org/pdf/2207.14132">pdf</a>, <a href="https://arxiv.org/format/2207.14132">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L091501">10.1103/PhysRevD.107.L091501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distance between various discretized fermion actions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14132v3-abstract-short" style="display: inline;"> We present the leading order mixed-action effect $螖_{\rm mix}\equiv m_{蟺,{\rm vs}}^2-\frac{m_{蟺,{\rm vv}}^2+m_{蟺,{\rm ss}}^2}{2}$ using HISQ, clover or overlap valence fermion actions on gauge ensembles using various sea fermion actions across a widely-used lattice spacing range $a\in [0.04,0.19]$~fm. The results suggest that $螖_{\rm mix}$ decreases as the fourth order of the lattice spacing on th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14132v3-abstract-full').style.display = 'inline'; document.getElementById('2207.14132v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14132v3-abstract-full" style="display: none;"> We present the leading order mixed-action effect $螖_{\rm mix}\equiv m_{蟺,{\rm vs}}^2-\frac{m_{蟺,{\rm vv}}^2+m_{蟺,{\rm ss}}^2}{2}$ using HISQ, clover or overlap valence fermion actions on gauge ensembles using various sea fermion actions across a widely-used lattice spacing range $a\in [0.04,0.19]$~fm. The results suggest that $螖_{\rm mix}$ decreases as the fourth order of the lattice spacing on the gauge ensembles with dynamical chiral sea fermions, such as Domain wall or HISQ fermions. When a clover sea fermion action which has explicit chiral symmetry breaking is used in the ensemble, $螖_{\rm mix}$ can be much larger regardless of the valence fermion action used. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14132v3-abstract-full').style.display = 'none'; document.getElementById('2207.14132v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures, add a new figure to illustrate the mix action effect</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09236">arXiv:2207.09236</a> <span> [<a href="https://arxiv.org/pdf/2207.09236">pdf</a>, <a href="https://arxiv.org/ps/2207.09236">ps</a>, <a href="https://arxiv.org/format/2207.09236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Stringy scaling of n-point hard string scattering amplitudes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lai%2C+S">Sheng-Hong Lai</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+J">Jen-Chi Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09236v3-abstract-short" style="display: inline;"> Motivated by the recent calculation of the SL(K+3,C) symmetry of n-point Lauricella string scattering amplitudes (SSA) of open bosonic string theory, we calculate ratios of the solvable infinite linear relations of arbitrary n-point hard SSA (HSSA). We discover a general stringy scaling behavior for all n-point HSSA to all string loop orders. For the special case of n=4, the stringy scaling behavi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09236v3-abstract-full').style.display = 'inline'; document.getElementById('2207.09236v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09236v3-abstract-full" style="display: none;"> Motivated by the recent calculation of the SL(K+3,C) symmetry of n-point Lauricella string scattering amplitudes (SSA) of open bosonic string theory, we calculate ratios of the solvable infinite linear relations of arbitrary n-point hard SSA (HSSA). We discover a general stringy scaling behavior for all n-point HSSA to all string loop orders. For the special case of n=4, the stringy scaling behavior reduces to the infinite linear relations and constant ratios among HSSA conjectured by Gross [8] and later corrected and calculated by the method of decoupling of zero-norm states [11]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09236v3-abstract-full').style.display = 'none'; document.getElementById('2207.09236v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, no figure. v2: 13 pages, improve calculation in section III without changing results. v3: 16 pages, typos corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00183">arXiv:2207.00183</a> <span> [<a href="https://arxiv.org/pdf/2207.00183">pdf</a>, <a href="https://arxiv.org/format/2207.00183">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2205-0">10.1007/s11433-023-2205-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden-charm Hexaquarks from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+H">Hang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jinchen He</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00183v2-abstract-short" style="display: inline;"> We present a lattice QCD study of hidden-charm hexaquarks with quark content $usc\bar{d}\bar{s}\bar{c}$ based on four ensembles of gauge configurations generated by CLQCD Collaboration with pion mass in the range of 220-300MeV. Four operators with quantum numbers $0^{++}, 0^{-+}, 1^{++}$ and $1^{--}$ respectively are constructed to interpolate the hexaquarks. After validating the spectrum and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00183v2-abstract-full').style.display = 'inline'; document.getElementById('2207.00183v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00183v2-abstract-full" style="display: none;"> We present a lattice QCD study of hidden-charm hexaquarks with quark content $usc\bar{d}\bar{s}\bar{c}$ based on four ensembles of gauge configurations generated by CLQCD Collaboration with pion mass in the range of 220-300MeV. Four operators with quantum numbers $0^{++}, 0^{-+}, 1^{++}$ and $1^{--}$ respectively are constructed to interpolate the hexaquarks. After validating the spectrum and the dispersion relation for ordinary hadrons, we calculate the masses of the hexaquarks and extrapolate the results to the physical pion mass and the continuum limit. We find that the masses of the four hexaquarks are all below the $螢_c \bar 螢_c$ threshold, while the $0^{-+}$ hexaquark lies around the $畏_c K^+K^-$ threshold. These results will be helpful for experimental searches in future and for a deep understanding of the nature of multiquark states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00183v2-abstract-full').style.display = 'none'; document.getElementById('2207.00183v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13402">arXiv:2205.13402</a> <span> [<a href="https://arxiv.org/pdf/2205.13402">pdf</a>, <a href="https://arxiv.org/format/2205.13402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.082002">10.1103/PhysRevLett.129.082002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Renormalization of transverse-momentum-dependent parton distribution on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13402v2-abstract-short" style="display: inline;"> To calculate the transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice QCD, an important goal yet to be realized, it is crucial to establish a viable non-perturbative renormalization approach for linear divergences in the corresponding Euclidean quasi-TMDPDF correlators in large-momentum effective theory. We perform a first systematic study of the renormalization prope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13402v2-abstract-full').style.display = 'inline'; document.getElementById('2205.13402v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13402v2-abstract-full" style="display: none;"> To calculate the transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice QCD, an important goal yet to be realized, it is crucial to establish a viable non-perturbative renormalization approach for linear divergences in the corresponding Euclidean quasi-TMDPDF correlators in large-momentum effective theory. We perform a first systematic study of the renormalization property of the quasi-TMDPDFs by calculating the relevant matrix elements in a pion state at 5 lattice spacings ranging from 0.03 fm to 0.12 fm. We demonstrate that the square root of the Wilson loop combined with the short distance hadron matrix element provides a successful method to remove all ultraviolet divergences of the quasi-TMD operator, and thus provide the necessary justification to perform a continuum limit calculation of TMDPDFs. In contrast, the popular RI/MOM renormalization scheme fails to eliminate all linear divergences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13402v2-abstract-full').style.display = 'none'; document.getElementById('2205.13402v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 17 figures. accepted version with the TMD wave function case in the supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09246">arXiv:2204.09246</a> <span> [<a href="https://arxiv.org/pdf/2204.09246">pdf</a>, <a href="https://arxiv.org/format/2204.09246">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.114506">10.1103/PhysRevD.106.114506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RI/MOM and RI/SMOM renormalization of quark bilinear operators using overlap fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yu-Jiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09246v3-abstract-short" style="display: inline;"> We present the vector, scalar and tensor renormalization constants (RCs) using overlap fermions with either regularization independent momentum subtraction (RI/MOM) or symmetric momentum subtraction (RI/SMOM) as the intermediate scheme on the lattice with lattice spacings $a$ from 0.04 fm to 0.12 fm. Our gauge field configurations from the MILC and RBC/UKQCD collaborations include sea quarks using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09246v3-abstract-full').style.display = 'inline'; document.getElementById('2204.09246v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09246v3-abstract-full" style="display: none;"> We present the vector, scalar and tensor renormalization constants (RCs) using overlap fermions with either regularization independent momentum subtraction (RI/MOM) or symmetric momentum subtraction (RI/SMOM) as the intermediate scheme on the lattice with lattice spacings $a$ from 0.04 fm to 0.12 fm. Our gauge field configurations from the MILC and RBC/UKQCD collaborations include sea quarks using either the domain wall or the HISQ action, respectively. The results show that RI/MOM and RI/SMOM can provide consistent renormalization constants to the $\overline{\textrm{MS}}$ scheme, after proper $a^2p^2$ extrapolations. But at $p\sim 2$\,GeV, both RI/MOM and RI/SMOM suffer from nonperturbative effects which cannot be removed by the perturbative matching. The comparison between the results with different sea actions also suggests that the renormalization constant is discernibly sensitive to the lattice spacing but not to the bare gauge coupling in the gauge action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09246v3-abstract-full').style.display = 'none'; document.getElementById('2204.09246v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures; Version accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01280">arXiv:2204.01280</a> <span> [<a href="https://arxiv.org/pdf/2204.01280">pdf</a>, <a href="https://arxiv.org/format/2204.01280">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.034513">10.1103/PhysRevD.107.034513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Muon g-2 with overlap valence fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01280v3-abstract-short" style="display: inline;"> We present a lattice calculation of the leading order (LO) hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment for the connected light and strange quarks, $a^{\rm W}_{{\rm con}, l/s}$ in the widely used window $t_0=0.4~\mathrm{fm}$, $t_1=1.0~\mathrm{fm}$, $螖=0.15~\mathrm{fm}$, and also of $a^{\rm S}_{{\rm con}, l/s}$ in the short distance region. We use overlap fe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01280v3-abstract-full').style.display = 'inline'; document.getElementById('2204.01280v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01280v3-abstract-full" style="display: none;"> We present a lattice calculation of the leading order (LO) hadronic vacuum polarization (HVP) contribution to the muon anomalous magnetic moment for the connected light and strange quarks, $a^{\rm W}_{{\rm con}, l/s}$ in the widely used window $t_0=0.4~\mathrm{fm}$, $t_1=1.0~\mathrm{fm}$, $螖=0.15~\mathrm{fm}$, and also of $a^{\rm S}_{{\rm con}, l/s}$ in the short distance region. We use overlap fermions on 4 physical-point ensembles. Two 2+1 flavor RBC/UKQCD ensembles use domain wall fermions (DWF) and Iwasaki gauge actions at $a = 0.084$ and 0.114 fm, and two 2+1+1 flavor MILC ensembles use the highly improved staggered quark (HISQ) and Symanzik gauge actions at $a = 0.088$ and 0.121 fm. We have incorporated infinite volume corrections from 3 additional DWF ensembles at ${\rm L}$ = 4.8, 6.4 and 9.6 fm and physical pion mass. For $a^{\rm W}_{{\rm con}, l}$, we find that our results on the two smaller lattice spacings are consistent with those using the unitary setup, but those at the two coarser lattice spacings are slightly different. Eventually, we predict $a^{\rm W}_{{\rm con}, l}=206.7(1.5)(1.0)$ and $a^{\rm W}_{{\rm con}, s}=26.8(0.1)(0.3)$, using linear extrapolation in $a^2$, with systematic uncertainties estimated from the difference of the central values from the RBC/UKQCD and MILC ensembles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01280v3-abstract-full').style.display = 'none'; document.getElementById('2204.01280v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">matched to the version accepted by PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00200">arXiv:2204.00200</a> <span> [<a href="https://arxiv.org/pdf/2204.00200">pdf</a>, <a href="https://arxiv.org/ps/2204.00200">ps</a>, <a href="https://arxiv.org/format/2204.00200">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.034509">10.1103/PhysRevD.106.034509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Determination of Collins-Soper Kernel from Quasi Transverse-Momentum Dependent Wave Functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=Deng%2C+Z">Zhi-Fu Deng</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jialu Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00200v1-abstract-short" style="display: inline;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00200v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00200v1-abstract-full" style="display: none;"> In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing $a=0.12$~fm from MILC, and renormalize the pertinent linear divergences using Wilson loops. Through one-loop matching to the light-cone wave functions, we determine the Collins-Soper kernel with transverse separation up to 0.6~fm. We study the systematic uncertainties from operator mixing and scale dependence, as well as the impact from higher power corrections. Our results potentially allow for a determination of the soft function and other transverse-momentum dependent quantities at one-loop accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00200v1-abstract-full').style.display = 'none'; document.getElementById('2204.00200v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09173">arXiv:2201.09173</a> <span> [<a href="https://arxiv.org/pdf/2201.09173">pdf</a>, <a href="https://arxiv.org/format/2201.09173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.132001">10.1103/PhysRevLett.129.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion and Kaon Distribution Amplitudes from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Chu%2C+M">Min-Huan Chu</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+J">Jin-Chen He</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Xu%2C+J">Ji Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09173v1-abstract-short" style="display: inline;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09173v1-abstract-full" style="display: none;"> We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hybrid scheme with self renormalization, and extrapolated to the continuum as well as the infinite momentum limit. We find a significant deviation of the pion and kaon DAs from the asymptotic form, and a large $SU(3)$ flavor breaking effect in the kaon DA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09173v1-abstract-full').style.display = 'none'; document.getElementById('2201.09173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09004">arXiv:2201.09004</a> <span> [<a href="https://arxiv.org/pdf/2201.09004">pdf</a>, <a href="https://arxiv.org/format/2201.09004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Performance of the GPU inverters with Chroma+QUDA for various fermion actions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Ren-Qiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09004v2-abstract-short" style="display: inline;"> We present our progress on the Chroma interfaces of the twisted-mass, HISQ (highly improved staggered quark) and overlap fermion inverters using QUDA. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09004v2-abstract-full" style="display: none;"> We present our progress on the Chroma interfaces of the twisted-mass, HISQ (highly improved staggered quark) and overlap fermion inverters using QUDA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09004v2-abstract-full').style.display = 'none'; document.getElementById('2201.09004v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04910">arXiv:2201.04910</a> <span> [<a href="https://arxiv.org/pdf/2201.04910">pdf</a>, <a href="https://arxiv.org/format/2201.04910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Low energy constant and mixed-action effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04910v1-abstract-short" style="display: inline;"> We present the pion mass and decay constant using the overlap fermion valence on domain wall (DW) fermion sea at several lattice spacings. The mixed action effect in the lattice calculation is also studied, and the result suggests that the mixed action effect with the overlap valence on DW sea would be proportional to the fourth power of the lattice spacing. We obtain the pion decay constant at th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04910v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04910v1-abstract-full" style="display: none;"> We present the pion mass and decay constant using the overlap fermion valence on domain wall (DW) fermion sea at several lattice spacings. The mixed action effect in the lattice calculation is also studied, and the result suggests that the mixed action effect with the overlap valence on DW sea would be proportional to the fourth power of the lattice spacing. We obtain the pion decay constant at the physical pion mass and $N_f=2$ chiral limit to be $92.4(3)(2)~{\rm MeV}$ and $87.0(5)(7)~{\rm MeV}$ respectively; and the physical u/d averaged quark mass at $\overline{\textrm{MS}}$ 2 GeV is $3.74(4)(5)(5)(3)~{\rm MeV}$ with the linear ${\cal O}(a^2)$ continuum extrapolation. Using the FLAG value of the NLO low energy constant, we obtain the $N_f=2$ chiral condensate to be $危^{\overline{\textrm{MS}}(2~{\rm GeV})}=\big(266(2)(1)~{\rm MeV}\big)^3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04910v1-abstract-full').style.display = 'none'; document.getElementById('2201.04910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03532">arXiv:2112.03532</a> <span> [<a href="https://arxiv.org/pdf/2112.03532">pdf</a>, <a href="https://arxiv.org/ps/2112.03532">ps</a>, <a href="https://arxiv.org/format/2112.03532">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Renormalization constants of overlap quark bilinear operators from RI/MOM and RI/SMOM scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03532v1-abstract-short" style="display: inline;"> We calculate the renormalization constants (RCs) of vector, axial, vector scalar, pseudoscalar and tensor quark operators of the overlap valence fermion, on the 11 gauge ensembles with dynamical fermion using either Domain wall fermion~(DWF) action orHighly improved stagger quark~(HISQ) action at lattice spacings from 0.04 fm to 0.20 fm. We find the results under the $\overline{\text{MS}}$ scheme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03532v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03532v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03532v1-abstract-full" style="display: none;"> We calculate the renormalization constants (RCs) of vector, axial, vector scalar, pseudoscalar and tensor quark operators of the overlap valence fermion, on the 11 gauge ensembles with dynamical fermion using either Domain wall fermion~(DWF) action orHighly improved stagger quark~(HISQ) action at lattice spacings from 0.04 fm to 0.20 fm. We find the results under the $\overline{\text{MS}}$ scheme using either the RI/MOM or RI/SMOM scheme are consistent with each other, once the proper $a^2p^2$ extrapolation is applied and the systematic uncertainties are estimated cautiously. Our results with different gauge and fermion actions also indicate that the RCs are majorly dependent on the lattice spacing (as the inverse of UV cut-off) rather than the bare gauge coupling used by the gauge action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03532v1-abstract-full').style.display = 'none'; document.getElementById('2112.03532v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, proceeding for The 38th International Symposium on Lattice Field Theory, LATTICE2021, 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11929">arXiv:2111.11929</a> <span> [<a href="https://arxiv.org/pdf/2111.11929">pdf</a>, <a href="https://arxiv.org/format/2111.11929">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/accc1c">10.1088/1674-1137/accc1c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueballs at Physical Pion Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11929v1-abstract-short" style="display: inline;"> We study glueballs on two $N_f=2+1$ RBC/UKQCD gauge ensembles with physical quark masses at two lattice spacings. The statistical uncertainties of the glueball correlation functions are considerably reduced through the cluster decomposition error reduction (CDER) method. The Bethe-Salpeter wave functions are obtained for the scalar, tensor and pseudoscalar glueballs by using spatially extended glu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11929v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11929v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11929v1-abstract-full" style="display: none;"> We study glueballs on two $N_f=2+1$ RBC/UKQCD gauge ensembles with physical quark masses at two lattice spacings. The statistical uncertainties of the glueball correlation functions are considerably reduced through the cluster decomposition error reduction (CDER) method. The Bethe-Salpeter wave functions are obtained for the scalar, tensor and pseudoscalar glueballs by using spatially extended glueball operators defined through the gauge potential $A_渭(x)$ in the Coulomb gauge. These wave functions show similar features of non-relativistic two-gluon systems, and they are used to optimize the signals of the related correlation functions at the early time regions. Consequently, the ground state masses can be extracted precisely. To the extent that the excited state contamination is not important, our calculation gives glueball masses at the physical pion mass for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11929v1-abstract-full').style.display = 'none'; document.getElementById('2111.11929v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09329">arXiv:2111.09329</a> <span> [<a href="https://arxiv.org/pdf/2111.09329">pdf</a>, <a href="https://arxiv.org/format/2111.09329">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.014512">10.1103/PhysRevD.106.014512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton momentum and angular momentum decompositions with overlap fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09329v2-abstract-short" style="display: inline;"> We present a calculation of the proton momentum and angular momentum decompositions using overlap fermions on a $2+1$-flavor RBC/UKQCD domain-wall lattice at 0.143 fm with a pion mass of 171 MeV which is close to the physical one. A complete determination of the momentum and angular momentum fractions carried by up, down, strange and glue inside the proton has been done with valence pion masses va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09329v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09329v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09329v2-abstract-full" style="display: none;"> We present a calculation of the proton momentum and angular momentum decompositions using overlap fermions on a $2+1$-flavor RBC/UKQCD domain-wall lattice at 0.143 fm with a pion mass of 171 MeV which is close to the physical one. A complete determination of the momentum and angular momentum fractions carried by up, down, strange and glue inside the proton has been done with valence pion masses varying from 171 to 391 MeV. We have utilized fast Fourier transform on the stochastic-sandwich method for connected-insertion parts and the cluster-decomposition error reduction technique for disconnected-insertion parts has been used to reduce statistical errors. The full nonperturbative renormalization and mixing between the quark and glue operators are carried out. The final results are normalized with the momentum and angular momentum sum rules and reported at the physical valence pion mass at ${\overline{\rm {MS}}}\, (渭= 2\ {\rm{GeV}})$. The renormalized momentum fractions for the quarks and glue are $\langle x \rangle^q = 0.491(20)(23)$ and $\langle x \rangle^g = 0.509(20)(23)$, respectively, and the renormalized total angular momentum fractions for quarks and glue are $2 J^q = 0.539(22)(44)$ and $2 J^g = 0.461(22)(44)$, respectively. The quark spin fraction is $危= 0.405(25)(37)$ from our previous work and the quark orbital angular momentum fraction is deduced from $2 L^q = 2 J^q - 危$ to be $0.134(22)(44)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09329v2-abstract-full').style.display = 'none'; document.getElementById('2111.09329v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">matched to the version accepted by PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06596">arXiv:2105.06596</a> <span> [<a href="https://arxiv.org/pdf/2105.06596">pdf</a>, <a href="https://arxiv.org/format/2105.06596">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094509">10.1103/PhysRevD.104.094509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking continuum and lattice quark mass functions via an effective charge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chang%2C+L">Lei Chang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Raya%2C+K">Kh茅pani Raya</a>, <a href="/search/hep-lat?searchtype=author&query=Rodr%C3%ADguez-Quintero%2C+J">J. Rodr铆guez-Quintero</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06596v1-abstract-short" style="display: inline;"> The quark mass function is computed both by solving the quark propagator Dyson-Schwinger equation and from lattice simulations implementing overlap and Domain-Wall fermion actions for valence and sea quarks, respectively. The results are confronted and seen to produce a very congruent picture, showing a remarkable agreement for the explored range of current-quark masses. The effective running-inte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06596v1-abstract-full').style.display = 'inline'; document.getElementById('2105.06596v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06596v1-abstract-full" style="display: none;"> The quark mass function is computed both by solving the quark propagator Dyson-Schwinger equation and from lattice simulations implementing overlap and Domain-Wall fermion actions for valence and sea quarks, respectively. The results are confronted and seen to produce a very congruent picture, showing a remarkable agreement for the explored range of current-quark masses. The effective running-interaction is based on a process-independent charge rooted on a particular truncation of the Dyson-Schwinger equations in the gauge sector, establishing thus a link from there to the quark sector and inspiring a correlation between the emergence of gluon and hadron masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06596v1-abstract-full').style.display = 'none'; document.getElementById('2105.06596v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span> [<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12933">arXiv:2103.12933</a> <span> [<a href="https://arxiv.org/pdf/2103.12933">pdf</a>, <a href="https://arxiv.org/format/2103.12933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.094503">10.1103/PhysRevD.104.094503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon isovector scalar charge from overlap fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+T">Ting Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12933v3-abstract-short" style="display: inline;"> We calculate the nucleon isovector scalar charge in lattice QCD using overlap fermions on five ensembles of gauge configurations generated by the RBC/UKQCD collaboration using the domain-wall quark action with $2+1$ dynamical flavors. The five ensembles cover five pion masses, $m_蟺\approx$ 139, 171, 302, 337 and 371 MeV, and four lattice spacings, $a \approx $ 0.06, 0.08, 0.11 and 0.14 fm. Three t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12933v3-abstract-full').style.display = 'inline'; document.getElementById('2103.12933v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12933v3-abstract-full" style="display: none;"> We calculate the nucleon isovector scalar charge in lattice QCD using overlap fermions on five ensembles of gauge configurations generated by the RBC/UKQCD collaboration using the domain-wall quark action with $2+1$ dynamical flavors. The five ensembles cover five pion masses, $m_蟺\approx$ 139, 171, 302, 337 and 371 MeV, and four lattice spacings, $a \approx $ 0.06, 0.08, 0.11 and 0.14 fm. Three to six valence quark masses are computed on each ensemble to investigate the pion mass dependence. The extrapolation to the physical pion mass, continuum and infinite volume limits is obtained by a global fit of all data to a formula originated from partially quenched chiral perturbation theory. The excited-states contamination is carefully analyzed with 3--5 sink-source separations and multi-state fits. Our final result, in the $\overline{\text{MS}}$ scheme at 2 GeV, is $g_{S}^{u-d}= 0.94 (10)_{stat}(8)_{sys}$, where the first error is the statistical error and the second is the systematic error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12933v3-abstract-full').style.display = 'none'; document.getElementById('2103.12933v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 094503(2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07064">arXiv:2103.07064</a> <span> [<a href="https://arxiv.org/pdf/2103.07064">pdf</a>, <a href="https://arxiv.org/ps/2103.07064">ps</a>, <a href="https://arxiv.org/format/2103.07064">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac2b12">10.1088/1674-1137/ac2b12 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Lattice QCD determination of semileptonic decays of charmed-strange baryons $螢_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Huang%2C+F">Fei Huang</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+R">Renbo Li</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lu%2C+C">Cai-Dian Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07064v2-abstract-short" style="display: inline;"> While the standard model is the most successfully theory to describe all interactions and constituents in elementary particle physics, it has been constantly examined for over four decades. Weak decays of charm quarks can measure the coupling strength of quarks in different families and serve as an ideal probe for CP violation. As the lowest charm-strange baryons with three different flavors,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07064v2-abstract-full').style.display = 'inline'; document.getElementById('2103.07064v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07064v2-abstract-full" style="display: none;"> While the standard model is the most successfully theory to describe all interactions and constituents in elementary particle physics, it has been constantly examined for over four decades. Weak decays of charm quarks can measure the coupling strength of quarks in different families and serve as an ideal probe for CP violation. As the lowest charm-strange baryons with three different flavors, $螢_c$ baryons (made of $csu$ or $csd$) have been extensively studied in experiments at the large hadron collider and in electron-positron collision. However the lack of reliable knowledge in theory becomes the unavoidable obstacle in the way. In this work, we use the state-of-the-art Lattice QCD techniques, and generate 2+1 clover fermion ensembles with two lattice spacings, $a=(0.108{\rm fm},0.080{\rm fm})$. We then present the first {\it ab-initio} lattice QCD determination of form factors governing $螢_{c}\to 螢\ell^+谓_{\ell}$, analogous with the notable $尾$-decay of nuclei. Our theoretical results for decay widths are consistent with and about two times more precise than the latest measurements by ALICE and Belle collaborations. Together with experimental measurements, we independently determine the quark-mixing matrix element $|V_{cs}|$, which is found in good agreement with other determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07064v2-abstract-full').style.display = 'none'; document.getElementById('2103.07064v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+1 pages, 4 figures; v2: 7 pages, corrected typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 46, 011002(2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02965">arXiv:2103.02965</a> <span> [<a href="https://arxiv.org/pdf/2103.02965">pdf</a>, <a href="https://arxiv.org/format/2103.02965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2021.115443">10.1016/j.nuclphysb.2021.115443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-Renormalization of Quasi-Light-Front Correlators on the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+Y">Yuan-Yuan Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yizhuang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02965v1-abstract-short" style="display: inline;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'inline'; document.getElementById('2103.02965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02965v1-abstract-full" style="display: none;"> In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice regularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD matrix elements of the quasi-PDF operator at lattice spacing $a$= 0.03 fm $\sim$ 0.12 fm with clover and overlap valence quarks on staggered and domain-wall sea, we design a strategy to disentangle the divergent renormalization factors from finite physics matrix elements, which can be matched to a continuum scheme at short distance such as dimensional regularization and minimal subtraction. Our results indicate that the renormalization factors are universal in the hadron state matrix elements. Moreover, the physical matrix elements appear independent of the valence fermion formulations. These conclusions remain valid even with HYP smearing which reduces the statistical errors albeit reducing control of the renormalization procedure. Moreover, we find a large non-perturbative effect in the popular RI/MOM and ratio renormalization scheme, suggesting favor of the hybrid renormalization procedure proposed recently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02965v1-abstract-full').style.display = 'none'; document.getElementById('2103.02965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 30 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>