CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;19 of 19 results for author: <span class="mathjax">Che, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Che%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Che, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Che%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Che, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15181">arXiv:2409.15181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15181">pdf</a>, <a href="https://arxiv.org/format/2409.15181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Fast Virtual Gate Extraction For Silicon Quantum Dot Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shize Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+S+W">Seong W Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+H">Haoyun Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sigillito%2C+A">Anthony Sigillito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gushu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15181v1-abstract-short" style="display: inline;"> Silicon quantum dot devices stand as promising candidates for large-scale quantum computing due to their extended coherence times, compact size, and recent experimental demonstrations of sizable qubit arrays. Despite the great potential, controlling these arrays remains a significant challenge. This paper introduces a new virtual gate extraction method to quickly establish orthogonal control on th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15181v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15181v1-abstract-full" style="display: none;"> Silicon quantum dot devices stand as promising candidates for large-scale quantum computing due to their extended coherence times, compact size, and recent experimental demonstrations of sizable qubit arrays. Despite the great potential, controlling these arrays remains a significant challenge. This paper introduces a new virtual gate extraction method to quickly establish orthogonal control on the potentials for individual quantum dots. Leveraging insights from the device physics, the proposed approach significantly reduces the experimental overhead by focusing on crucial regions around charge state transition. Furthermore, by employing an efficient voltage sweeping method, we can efficiently pinpoint these charge state transition lines and filter out erroneous points. Experimental evaluation using real quantum dot chip datasets demonstrates a substantial 5.84x to 19.34x speedup over conventional methods, thereby showcasing promising prospects for accelerating the scaling of silicon spin qubit devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15181v1-abstract-full').style.display = 'none'; document.getElementById('2409.15181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61st Design Automation Conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14774">arXiv:2402.14774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14774">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Dominant 1/3-filling Correlated Insulator States and Orbital Geometric Frustration in Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Codecido%2C+E">Emilio Codecido</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+D">Dan Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+K">Kevin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+E">Eun-Ah Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14774v1-abstract-short" style="display: inline;"> Geometric frustration is a phenomenon in a lattice system where not all interactions can be satisfied, the simplest example being antiferromagnetically coupled spins on a triangular lattice. Frustrated systems are characterized by their many nearly degenerate ground states, leading to non-trivial phases such as spin ice and spin liquids. To date most studies are on geometric frustration of spins;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14774v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14774v1-abstract-full" style="display: none;"> Geometric frustration is a phenomenon in a lattice system where not all interactions can be satisfied, the simplest example being antiferromagnetically coupled spins on a triangular lattice. Frustrated systems are characterized by their many nearly degenerate ground states, leading to non-trivial phases such as spin ice and spin liquids. To date most studies are on geometric frustration of spins; much less explored is orbital geometric frustration. For electrons in twisted bilayer graphene (tBLG) at denominator 3 fractional filling, Coulomb interactions and the Wannier orbital shapes are predicted to strongly constrain spatial charge ordering, leading to geometrically frustrated ground states that produce a new class of correlated insulators (CIs). Here we report the observation of dominant denominator 3 fractional filling insulating states in large angle tBLG; these states persist in magnetic fields and display magnetic ordering signatures and tripled unit cell reconstruction. These results are in agreement with a strong-coupling theory of symmetry-breaking of geometrically frustrated fractional states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14774v1-abstract-full').style.display = 'none'; document.getElementById('2402.14774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12766">arXiv:2205.12766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12766">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.014031">10.1103/PhysRevApplied.18.014031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning Spin Transport in a Graphene Antiferromagnetic Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shcherbakov%2C+D+L">Dmitry L. Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12766v1-abstract-short" style="display: inline;"> Long-distance spin transport through anti-ferromagnetic insulators (AFMIs) is a long-standing goal of spintronics research. Unlike conventional spintronics systems, monolayer graphene in quantum Hall regime (QH) offers an unprecedented tuneability of spin-polarization and charge carrier density in QH edge states. Here, using gate-controlled QH edges as spin-dependent injectors and detectors in an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12766v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12766v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12766v1-abstract-full" style="display: none;"> Long-distance spin transport through anti-ferromagnetic insulators (AFMIs) is a long-standing goal of spintronics research. Unlike conventional spintronics systems, monolayer graphene in quantum Hall regime (QH) offers an unprecedented tuneability of spin-polarization and charge carrier density in QH edge states. Here, using gate-controlled QH edges as spin-dependent injectors and detectors in an all-graphene electrical circuit, for the first time we demonstrate a selective tuning of ambipolar spin transport through graphene $谓$=0 AFMIs. By modulating polarities of the excitation bias, magnetic fields, and charge carriers that host opposite chiralities, we show that the difference between spin chemical potentials of adjacent edge channels in the spin-injector region is crucial in tuning spin-transport observed across graphene AFMI. We demonstrate that non-local response vanishes upon reversing directions of the co-propagating edge channels when the spin-filters in our devices are no longer selective for a particular spin-polarization. Our results establish a versatile set of methods to tune pure spin transport via an anti-ferromagnetic media and open a pathway to explore their applications for a broad field of antiferromagnetic spintronics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12766v1-abstract-full').style.display = 'none'; document.getElementById('2205.12766v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 014031, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13401">arXiv:2112.13401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.13401">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Flat Band Dirac Superconductor Originating from Quantum Geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tianyi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheung%2C+P">Patrick Cheung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Randeria%2C+M">Mohit Randeria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M+W">Marc W. Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13401v1-abstract-short" style="display: inline;"> In a flat band superconductor, the charge carriers&#39; group velocity vF is extremely slow, quenching their kinetic energy. The emergence of superconductivity thus appears paradoxical, as conventional BCS theory implies a vanishing coherence length, superfluid stiffness, and critical current. Here, using twisted bilayer graphene (tBLG), we explore the profound effect of vanishingly small vF in a Dira&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13401v1-abstract-full').style.display = 'inline'; document.getElementById('2112.13401v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13401v1-abstract-full" style="display: none;"> In a flat band superconductor, the charge carriers&#39; group velocity vF is extremely slow, quenching their kinetic energy. The emergence of superconductivity thus appears paradoxical, as conventional BCS theory implies a vanishing coherence length, superfluid stiffness, and critical current. Here, using twisted bilayer graphene (tBLG), we explore the profound effect of vanishingly small vF in a Dirac superconducting flat band system Using Schwinger-limited non-linear transport studies, we demonstrate an extremely slow vF ~ 1000 m/s for filling fraction nu between -1/2 and -3/4 of the moire superlattice. In the superconducting state, the same velocity limit constitutes a new limiting mechanism for the critical current, analogous to a relativistic superfluid. Importantly, our measurement of superfluid stiffness, which controls the superconductor&#39;s electrodynamic response, shows that it is not dominated by the kinetic energy, but instead by the interaction-driven superconducting gap, consistent with recent theories on a quantum geometric contribution. We find evidence for small pairs, characteristic of the BCS to Bose-Einstein condensation (BEC) crossover, with an unprecedented ratio of the superconducting transition temperature to the Fermi temperature exceeding unity, and discuss how this arises for very strong coupling superconductivity in ultra-flat Dirac bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13401v1-abstract-full').style.display = 'none'; document.getElementById('2112.13401v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00935">arXiv:2012.00935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.00935">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Equilibration and Filtering of Quantum Hall Edge States in Few-Layer Black Phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">K. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">S. Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tuchfeld%2C+Z+J">Z. J. Tuchfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">K. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shcherbakov%2C+D">D. Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+S">S. Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">D. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M">M. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">C. N. Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00935v1-abstract-short" style="display: inline;"> We realize p-p&#39;-p junctions in few-layer black phosphorus (BP) devices, and use magneto-transport measurements to study the equilibration and transmission of edge states at the interfaces of regions with different charge densities. We observe both full equilibration, where all edge channels equilibrate and are equally partitioned at the interfaces, and partial equilibration, where only equilibrati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00935v1-abstract-full').style.display = 'inline'; document.getElementById('2012.00935v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00935v1-abstract-full" style="display: none;"> We realize p-p&#39;-p junctions in few-layer black phosphorus (BP) devices, and use magneto-transport measurements to study the equilibration and transmission of edge states at the interfaces of regions with different charge densities. We observe both full equilibration, where all edge channels equilibrate and are equally partitioned at the interfaces, and partial equilibration, where only equilibration only takes place among modes of the same spin polarization. Furthermore, the inner p&#39;-region with low-doping level in the junction can function as a filter for highly doped p-regions which demonstrates gate-tunable transmission of edge channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00935v1-abstract-full').style.display = 'none'; document.getElementById('2012.00935v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09351">arXiv:2006.09351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09351">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.036803">10.1103/PhysRevLett.125.036803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Helical Edge States and Quantum Phase Transitions in Tetralayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimshoni%2C+E">Efrat Shimshoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murthy%2C+G">Ganpathy Murthy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fertig%2C+H+A">Herbert A. Fertig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09351v1-abstract-short" style="display: inline;"> Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. Here we report observation of two topologically distinct phases supporting helical edge states in charge neutral Bernal-stacked tetralayer graphene in Hall bar and Corbino geometries. As the magnetic field B and out-of-plane displacement field D are varied, we observe a phase diagram consisting of an insul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09351v1-abstract-full').style.display = 'inline'; document.getElementById('2006.09351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09351v1-abstract-full" style="display: none;"> Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. Here we report observation of two topologically distinct phases supporting helical edge states in charge neutral Bernal-stacked tetralayer graphene in Hall bar and Corbino geometries. As the magnetic field B and out-of-plane displacement field D are varied, we observe a phase diagram consisting of an insulating phase and two metallic phases, with 0, 1 and 2 helical edge states, respectively. These phases are accounted for by a theoretical model that relates their conductance to spin-polarization plateaus. Transitions between them arise from a competition among inter-layer hopping, electrostatic and exchange interaction energies. Our work highlights the complex competing symmetries and the rich quantum phases in few-layer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09351v1-abstract-full').style.display = 'none'; document.getElementById('2006.09351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 036803 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04450">arXiv:1911.04450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.04450">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gate Tunable Magnetism and Giant Magnetoresistance in ABC-stacked Few-Layer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yongjin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Velasco%2C+J">Jairo Velasco Jr.</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+D">David Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baima%2C+J">Jacopo Baima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04450v1-abstract-short" style="display: inline;"> Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchange interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04450v1-abstract-full').style.display = 'inline'; document.getElementById('1911.04450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04450v1-abstract-full" style="display: none;"> Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchange interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elements. For instance, flat band systems with high density of states (DOS) may develop spontaneous magnetic ordering, as exemplified by the Stoner criterion. Here we report tunable magnetism in rhombohedral-stacked few-layer graphene (r-FLG). At small but finite doping (n~10^11 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature, and disappears for n&gt;10^12 cm-2 or T&gt;5K. These results are confirmed by first principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms. The electric field tunability of magnetism provides promise for spintronics and low energy device engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04450v1-abstract-full').style.display = 'none'; document.getElementById('1911.04450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.10931">arXiv:1909.10931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.10931">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b02445">10.1021/acs.nanolett.9b02445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Hall Effect Measurement of Spin-Orbit Coupling Strengths in Ultraclean Bilayer Graphene/WSe2 Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Dongying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guixin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+R">Rui Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M">Marc Bockrath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.10931v1-abstract-short" style="display: inline;"> We study proximity-induced spin-orbit coupling (SOC) in bilayer graphene/few-layer WSe2 heterostructure devices. Contact mode atomic force microscopy (AFM) cleaning yields ultra-clean interfaces and high-mobility devices. In a perpendicular magnetic field, we measure the quantum Hall effect to determine the Landau level structure in the presence of out-of-plane Ising and in-plane Rashba SOC. A dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10931v1-abstract-full').style.display = 'inline'; document.getElementById('1909.10931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.10931v1-abstract-full" style="display: none;"> We study proximity-induced spin-orbit coupling (SOC) in bilayer graphene/few-layer WSe2 heterostructure devices. Contact mode atomic force microscopy (AFM) cleaning yields ultra-clean interfaces and high-mobility devices. In a perpendicular magnetic field, we measure the quantum Hall effect to determine the Landau level structure in the presence of out-of-plane Ising and in-plane Rashba SOC. A distinct Landau level crossing pattern emerges when tuning the charge density and displacement field independently with dual gates, originating from a layer-selective SOC proximity effect. Analyzing the Landau level crossings and measured inter-Landau level energy gaps yields the proximity induced SOC energy scale. The Ising SOC is ~ 2.2 meV, 100 times higher than the intrinsic SOC in graphene, while its sign is consistent with theories predicting a dependence of SOC on interlayer twist angle. The Rashba SOC is ~15 meV. Finally, we infer the magnetic field dependence of the inter-Landau level Coulomb interactions. These ultraclean bilayer graphene/WSe2 heterostructures provide a high mobility system with the potential to realize novel topological electronic states and manipulate spins in nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.10931v1-abstract-full').style.display = 'none'; document.getElementById('1909.10931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nano Letters, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05151">arXiv:1902.05151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05151">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Correlated Insulating and Superconducting States in Twisted Bilayer Graphene Below the Magic Angle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Codecido%2C+E">Emilio Codecido</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiyue Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koester%2C+R">Ryan Koester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Rui Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05151v1-abstract-short" style="display: inline;"> The emergence of flat bands and correlated behaviors in &#39;magic angle&#39; twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05151v1-abstract-full" style="display: none;"> The emergence of flat bands and correlated behaviors in &#39;magic angle&#39; twisted bilayer graphene (tBLG) has sparked tremendous interest, though many aspects of the system are under intense debate. Here we report observation of both superconductivity and the Mott-like insulating state in a tBLG device with a twist angle of approximately 0.93, which is smaller than the magic angle by 15%. At an electron concentration of +/-5 electrons per moire unit cell, we observe a narrow resistance peak with an activation energy gap of approximately 0.1 meV, indicating the existence of an additional correlated insulating state. This is consistent with theory predicting the presence of a high-energy band with an energetically flat dispersion. At a doping of +/-12 electrons per moire unit cell we observe a resistance peak due to the presence of Dirac points in the spectrum. Our results reveal that the magic range of tBLG is in fact larger than what is previously expected, and provide a wealth of new information to help decipher the strongly correlated phenomena observed in tBLG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05151v1-abstract-full').style.display = 'none'; document.getElementById('1902.05151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02030">arXiv:1901.02030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.02030">pdf</a>, <a href="https://arxiv.org/format/1901.02030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum Parity Hall effect in ABA Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Myhro%2C+K">Kevin Myhro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voigt%2C+G">Greyson Voigt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+Z">Ziqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+R">R. Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDonald%2C+A">Allan MacDonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02030v1-abstract-short" style="display: inline;"> The celebrated phenomenon of quantum Hall effect has recently been generalized from transport of conserved charges to that of other approximately conserved state variables, including spin and valley, which are characterized by spin- or valley-polarized boundary states with different chiralities. Here, we report a new class of quantum Hall effect in ABA-stacked graphene trilayers (TLG), the quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02030v1-abstract-full').style.display = 'inline'; document.getElementById('1901.02030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02030v1-abstract-full" style="display: none;"> The celebrated phenomenon of quantum Hall effect has recently been generalized from transport of conserved charges to that of other approximately conserved state variables, including spin and valley, which are characterized by spin- or valley-polarized boundary states with different chiralities. Here, we report a new class of quantum Hall effect in ABA-stacked graphene trilayers (TLG), the quantum parity Hall (QPH) effect, in which boundary channels are distinguished by even or odd parity under the systems mirror reflection symmetry. At the charge neutrality point and a small perpendicular magnetic field $B_{\perp}$, the longitudinal conductance $蟽_{xx}$ is first quantized to $4e^2/h$, establishing the presence of four edge channels. As $B_{\perp}$ increases, $蟽_{xx}$ first decreases to $2e^2/h$, indicating spin-polarized counter-propagating edge states, and then to approximately $0$. These behaviors arise from level crossings between even and odd parity bulk Landau levels, driven by exchange interactions with the underlying Fermi sea, which favor an ordinary insulator ground state in the strong $B_{\perp}$ limit, and a spin-polarized state at intermediate fields. The transitions between spin-polarized and unpolarized states can be tuned by varying Zeeman energy. Our findings demonstrate a topological phase that is protected by a gate-controllable symmetry and sensitive to Coulomb interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02030v1-abstract-full').style.display = 'none'; document.getElementById('1901.02030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.02427">arXiv:1804.02427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.02427">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b03954">10.1021/acs.nanolett.7b03954 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integer and Fractional Quantum Hall effect in Ultra-high Quality Few-layer Black Phosphorus Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+S">Son Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jason Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baek%2C+H">Hongwoo Baek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.02427v1-abstract-short" style="display: inline;"> As a high mobility two-dimensional semiconductor with strong structural and electronic anisotropy, atomically thin black phosphorus (BP) provides a new playground for investigating the quantum Hall (QH) effect, including outstanding questions such as the functional dependence of Landau level (LL) gaps on magnetic field B, and possible anisotropic fractional QH states. Using encapsulating few-layer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02427v1-abstract-full').style.display = 'inline'; document.getElementById('1804.02427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.02427v1-abstract-full" style="display: none;"> As a high mobility two-dimensional semiconductor with strong structural and electronic anisotropy, atomically thin black phosphorus (BP) provides a new playground for investigating the quantum Hall (QH) effect, including outstanding questions such as the functional dependence of Landau level (LL) gaps on magnetic field B, and possible anisotropic fractional QH states. Using encapsulating few-layer BP transistors with mobility up to 55,000 cm2/Vs, we extract LL gaps over an exceptionally wide range of B for QH states at filling factors 谓=-1 to -4, which are determined to be linear in B, thus resolving a controversy raised by its anisotropy. Furthermore, a fractional QH state at 谓~ -4/3 and an additional feature at -0.56+/- 0.1 are observed, underscoring BP as a tunable 2D platform for exploring electron interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02427v1-abstract-full').style.display = 'none'; document.getElementById('1804.02427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 18, 1, 229-234 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.03679">arXiv:1803.03679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.03679">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.246401">10.1103/PhysRevLett.125.246401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twist Angle-Dependent Bands and Valley Inversion in 2D Materials/hBN Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+S">Supeng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yongjin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Myhro%2C+K">Kevin Myhro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+Z">Ziqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Cheng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+B">Bin Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M">Marc Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+R">Roger Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.03679v1-abstract-short" style="display: inline;"> The use of relative twist angle between adjacent atomic layers in a van der Waals heterostructure, has emerged as a new degree of freedom to tune electronic and optoelectronic properties of devices based on 2D materials. Using ABA-stacked trilayer (TLG) graphene as the model system, we show that, contrary to conventional wisdom, the band structures of 2D materials are systematically tunable depend&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03679v1-abstract-full').style.display = 'inline'; document.getElementById('1803.03679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.03679v1-abstract-full" style="display: none;"> The use of relative twist angle between adjacent atomic layers in a van der Waals heterostructure, has emerged as a new degree of freedom to tune electronic and optoelectronic properties of devices based on 2D materials. Using ABA-stacked trilayer (TLG) graphene as the model system, we show that, contrary to conventional wisdom, the band structures of 2D materials are systematically tunable depending on their relative alignment angle between hexagonal BN (hBN), even at very large twist angles. Moreover, addition or removal of the hBN substrate results in an inversion of the K and K&#39; valley in TLG&#39;s lowest Landau level (LL). Our work illustrates the critical role played by substrates in van der Waals heterostructures and opens the door towards band structure modification and valley control via substrate and twist angle engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03679v1-abstract-full').style.display = 'none'; document.getElementById('1803.03679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 246401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.03222">arXiv:1803.03222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.03222">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Myhro%2C+K">K. Myhro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">S. Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thilahar%2C+K">K. Thilahar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bleich%2C+K">K. Bleich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">C. N. Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.03222v1-abstract-short" style="display: inline;"> In rhombohedral-stacked few-layer graphene, the very flat energy bands near the charge neutrality point are unstable to electronic interactions, giving rise to states with spontaneous broken symmetries. Using transport measurements on suspended rhombohedral-stacked tetralayer graphene, we observe an insulating ground state with a large interaction-induced gap up to 80 meV. This gapped state can be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03222v1-abstract-full').style.display = 'inline'; document.getElementById('1803.03222v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.03222v1-abstract-full" style="display: none;"> In rhombohedral-stacked few-layer graphene, the very flat energy bands near the charge neutrality point are unstable to electronic interactions, giving rise to states with spontaneous broken symmetries. Using transport measurements on suspended rhombohedral-stacked tetralayer graphene, we observe an insulating ground state with a large interaction-induced gap up to 80 meV. This gapped state can be enhanced by a perpendicular magnetic field, and suppressed by an interlayer potential, carrier density, or a critical temperature of ~ 40 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.03222v1-abstract-full').style.display = 'none'; document.getElementById('1803.03222v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07414">arXiv:1802.07414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.07414">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.096802">10.1103/PhysRevLett.120.096802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Lifshitz Transitions and Multiband Transport in Tetralayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+S">Supeng Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+Z">Ziqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Espiritu%2C+T">Timothy Espiritu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+R">Roger Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07414v1-abstract-short" style="display: inline;"> As the Fermi level and band structure of two-dimensional materials are readily tunable, they constitute an ideal platform for exploring Lifshitz transition, a change in the topology of a material&#39;s Fermi surface. Using tetralayer graphene that host two intersecting massive Dirac bands, we demonstrate multiple Lifshitz transitions and multiband transport, which manifest as non-monotonic dependence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07414v1-abstract-full').style.display = 'inline'; document.getElementById('1802.07414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07414v1-abstract-full" style="display: none;"> As the Fermi level and band structure of two-dimensional materials are readily tunable, they constitute an ideal platform for exploring Lifshitz transition, a change in the topology of a material&#39;s Fermi surface. Using tetralayer graphene that host two intersecting massive Dirac bands, we demonstrate multiple Lifshitz transitions and multiband transport, which manifest as non-monotonic dependence of conductivity on charge density n and out-of-plane electric fieldD, anomalous quantum Hall sequences and Landau level crossings that evolve with n, D and B. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07414v1-abstract-full').style.display = 'none'; document.getElementById('1802.07414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07290">arXiv:1801.07290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.07290">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0161-5">10.1038/s41567-018-0161-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-Distance Spin Transport Through a Graphene Quantum Hall Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shcherbakov%2C+D">Dmitry Shcherbakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiawei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thilahar%2C+K">Kevin Thilahar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voigt%2C+G">Greyson Voigt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bockrath%2C+M+W">Marc W. Bockrath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDonald%2C+A+H">Allan H. MacDonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07290v1-abstract-short" style="display: inline;"> Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical manipulation of antiferromagnetic order are much sought-after goals of spintronics research. Here, we report the first experimental evidence of robust lon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07290v1-abstract-full').style.display = 'inline'; document.getElementById('1801.07290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07290v1-abstract-full" style="display: none;"> Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical manipulation of antiferromagnetic order are much sought-after goals of spintronics research. Here, we report the first experimental evidence of robust long-distance spin transport through an AFMI, in our case the gate-controlled, canted antiferromagnetic (CAF) state that appears at the charge neutrality point of graphene in the presence of an external magnetic field. Utilizing gate-controlled quantum Hall (QH) edge states as spin-dependent injectors and detectors, we observe large, non-local electrical signals across a 5 micron-long, insulating channel only when it is biased into the nu=0 CAF state. Among possible transport mechanisms, spin superfluidity in an antiferromagnetic state gives the most consistent interpretation of the non-local signal&#39;s dependence on magnetic field, temperature and filling factors. This work also demonstrates that graphene in the QH regime is a powerful model system for fundamental studies of antiferromagnetic, and in the case of a large in-plane field, ferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07290v1-abstract-full').style.display = 'none'; document.getElementById('1801.07290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05956">arXiv:1608.05956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.05956">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-00673-7">10.1038/s41467-017-00673-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">J. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">D. Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+T">T. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+M">M. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Y. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">S. Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radmanesh%2C+S+M+A">S. M. A. Radmanesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">C. N. Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spinu%2C+L">L. Spinu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H+B">H. B. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">X. Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z+Q">Z. Q. Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05956v1-abstract-short" style="display: inline;"> Relativistic fermions in topological quantum materials are characterized by linear energy-momentum dispersion near band crossing points. Under magnetic field, relativistic fermions acquire Berry phase of 蟺 in cyclotron motion, leading to a zeroth Landau level (LL) at the crossing point. Such field-independent zeroth LL, which distinguishes relativistic fermions from conventional electron systems,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05956v1-abstract-full').style.display = 'inline'; document.getElementById('1608.05956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05956v1-abstract-full" style="display: none;"> Relativistic fermions in topological quantum materials are characterized by linear energy-momentum dispersion near band crossing points. Under magnetic field, relativistic fermions acquire Berry phase of 蟺 in cyclotron motion, leading to a zeroth Landau level (LL) at the crossing point. Such field-independent zeroth LL, which distinguishes relativistic fermions from conventional electron systems, is hardly probed in transport measurements since the Fermi energy (EF) is usually not right at the band crossing points in most topological materials. Here we report the observation of exotic quantum transport behavior resulting from the zeroth LL in a multiband topological semimetal YbMnBi2 which possesses linear band crossings both at and away from the Fermi level (FL). We show that the Dirac bands with the crossing points being above or below the FL leads to Shubnikov de-Haas oscillations in the in-plane magnetoresistance, whereas the Dirac bands with the crossing points being at the FL results in unusual angular dependences of the out-of-plane magnetoresistance and in-plane Hall resistivity due to the dependence of the zeroth LL&#39;s degeneracy on field orientation. Our results shed light on the transport mechanism of the zeroth LL&#39;s relativistic fermions in layered materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05956v1-abstract-full').style.display = 'none'; document.getElementById('1608.05956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 8, 646 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.03635">arXiv:1607.03635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.03635">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.076807">10.1103/PhysRevLett.117.076807 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable symmetries of integer and fractional quantum Hall phases in heterostructures with multiple Dirac bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Espiritu%2C+T">Tim Espiritu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.03635v2-abstract-short" style="display: inline;"> The co-presence of multiple Dirac bands in few-layer graphene leads to a rich phase diagram in the quantum Hall regime. Using transport measurements, we map the phase diagram of BN-encapsulated ABA-stacked trilayer graphene as a function charge density n, magnetic field B and interlayer displacement field D, and observe transitions among states with different spin, valley, orbital and parity polar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03635v2-abstract-full').style.display = 'inline'; document.getElementById('1607.03635v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.03635v2-abstract-full" style="display: none;"> The co-presence of multiple Dirac bands in few-layer graphene leads to a rich phase diagram in the quantum Hall regime. Using transport measurements, we map the phase diagram of BN-encapsulated ABA-stacked trilayer graphene as a function charge density n, magnetic field B and interlayer displacement field D, and observe transitions among states with different spin, valley, orbital and parity polarizations. Such rich pattern arises from crossings between Landau levels from different subbands, which reflect the evolving symmetries that are tunable in situ. At D=0, we observe fractional quantum Hall (FQH) states at filling factors 2/3 and -11/3. Unlike those in bilayer graphene, these FQH states are destabilized by a small interlayer potential that hybridizes the different Dirac bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03635v2-abstract-full').style.display = 'none'; document.getElementById('1607.03635v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by PRL; corrected author list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.06860">arXiv:1604.06860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.06860">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.016602">10.1103/PhysRevLett.117.016602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological nodal-line fermions in ZrSiSe and ZrSiTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zhijie Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yanglin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+J">Jiang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.06860v1-abstract-short" style="display: inline;"> The discovery of topological semimetal phase in three-dimensional (3D) systems is a new breakthrough in topological material research. Dirac nodal-line semimetal is one of the three topological semimetal phases discovered so far; it is characterized by linear band crossing along a line/loop, contrasted with the linear band crossing at discrete momentum points in 3D Dirac and Weyl semimetals. The s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06860v1-abstract-full').style.display = 'inline'; document.getElementById('1604.06860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.06860v1-abstract-full" style="display: none;"> The discovery of topological semimetal phase in three-dimensional (3D) systems is a new breakthrough in topological material research. Dirac nodal-line semimetal is one of the three topological semimetal phases discovered so far; it is characterized by linear band crossing along a line/loop, contrasted with the linear band crossing at discrete momentum points in 3D Dirac and Weyl semimetals. The study of nodal-line semimetal is still at initial stage; only three material systems have been verified to host nodal line fermions until now, including PbTaSe2, PtSn 4and ZrSiS. In this letter, we report evidence of nodal line fermions in ZrSiSe and ZrSiTe probed in de Haas - van Alphen (dHvA) quantum oscillations. Although ZrSiSe and ZrSiTe share similar layered structure with ZrSiS, our measurements of angular dependences of dHvA oscillations indicate the Fermi surface (FS) enclosing Dirac nodal line is of 2D character in ZiSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal line fermion density in ZrSi(S/Se) (~ 10^20-10^21 cm^-3) is much higher than the Dirac/Weyl fermion density of any known topological materials. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers a promising platform to verify the predicted 2D topological insulator in the monolayer materials with ZrSiS-type structure <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06860v1-abstract-full').style.display = 'none'; document.getElementById('1604.06860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 016602 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04116">arXiv:1601.04116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.04116">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.056601">10.1103/PhysRevLett.116.056601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy gaps and layer polarization of integer and fractional quantum Hall states in bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yanmeng Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yongjin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+S">Shi Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+Z">Ziqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Espiritu%2C+T">Timothy Espiritu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stepanov%2C+P">Petr Stepanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04116v1-abstract-short" style="display: inline;"> Owing to the spin, valley, and orbital symmetries, the lowest Landau level (LL) in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall states in bilayer graphene with controlled layer polarization. The state at filling factor 谓=1 has two distinct phases: a layer polarized state tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04116v1-abstract-full').style.display = 'inline'; document.getElementById('1601.04116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04116v1-abstract-full" style="display: none;"> Owing to the spin, valley, and orbital symmetries, the lowest Landau level (LL) in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall states in bilayer graphene with controlled layer polarization. The state at filling factor 谓=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the 谓=2/3 quantum Hall state and a feature at 谓=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04116v1-abstract-full').style.display = 'none'; document.getElementById('1601.04116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10