CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 76 results for author: <span class="mathjax">Shao, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Shao%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shao, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shao%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shao, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shao%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shao%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shao%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.04616">arXiv:2503.04616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.04616">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sign reversal of Berry curvature triple driven by magnetic phase transition in a ferromagnetic polar metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+X">Xuyang Sha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xuejin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Jin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruohan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+J">Jinfeng Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dingfu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Cong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+P">Pan He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hangwen Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.04616v1-abstract-short" style="display: inline;"> Nonlinear Hall effects have been observed in quantum materials where Berry curvature and its momentum-space derivatives, such as the Berry curvature dipole (BCD) and Berry curvature triple (BCT), play a central role. While inversion symmetry breaking is widely recognized as a key criterion, the impact of time-reversal symmetry breaking remains less explored. Here, we report an abrupt enhancement o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04616v1-abstract-full').style.display = 'inline'; document.getElementById('2503.04616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.04616v1-abstract-full" style="display: none;"> Nonlinear Hall effects have been observed in quantum materials where Berry curvature and its momentum-space derivatives, such as the Berry curvature dipole (BCD) and Berry curvature triple (BCT), play a central role. While inversion symmetry breaking is widely recognized as a key criterion, the impact of time-reversal symmetry breaking remains less explored. Here, we report an abrupt enhancement of nonlinear Hall conductivity in non-centrosymmetric SrRuO3 (111) thin films during the paramagnetic-to-ferromagnetic transition. Scaling analysis reveals a sign reversal of the skew scattering contribution upon time-reversal symmetry breaking, which we attribute to the sign reversal of BCT at the Fermi surface. Density functional theory (DFT) calculations support this interpretation, showing the spin-polarized band splitting shifts the Fermi level asymmetrically for different spin channels. Our findings establish SrRuO3 (111) thin films as a promising platform for exploring magnetically tunable nonlinear transport effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.04616v1-abstract-full').style.display = 'none'; document.getElementById('2503.04616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13511">arXiv:2502.13511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13511">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Giant Uncompensated Magnon Spin Currents in X-type Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zi-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shui-Sen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wen-Jian Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yu-Ping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Haifeng Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13511v1-abstract-short" style="display: inline;"> Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic (AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, these currents are largely counteracted by opposite magnetic sublattices, thus suppressing their net effect. Contrary to this common observation, here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13511v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13511v1-abstract-full" style="display: none;"> Magnon spin currents in insulating magnets are useful for low-power spintronics. However, in magnets stacked by antiferromagnetic (AFM) exchange coupling, which have recently aroused significant interest for potential applications in spintronics, these currents are largely counteracted by opposite magnetic sublattices, thus suppressing their net effect. Contrary to this common observation, here, we show that magnets with X-type AFM stacking, where opposite magnetic sublattices form orthogonal intersecting chains, support giant magnon spin currents with minimal compensation. Our model Hamiltonian calculations predict magnetic chain locking of magnon spin currents in these X-type magnets, significantly reducing their compensation ratio. In addition, the one-dimensional nature of the chain-like magnetic sublattices enhances magnon spin conductivities surpassing those of two-dimensional ferromagnets and canonical altermagnets. Notably, uncompensated X-type magnets, such as odd-layer antiferromagnets and ferrimagnets, can exhibit magnon spin currents polarized opposite to those expected by their net magnetization. These unprecedented properties of X-type magnets, combined with their inherent advantages resulting from AFM coupling, offer a promising new path for low-power high-performance spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13511v1-abstract-full').style.display = 'none'; document.getElementById('2502.13511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13588">arXiv:2501.13588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13588">pdf</a>, <a href="https://arxiv.org/format/2501.13588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin-polarized STM measurement scheme for quantum geometric tensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jia-Ji Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+W">Wen-Long You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13588v1-abstract-short" style="display: inline;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system&#39;s Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13588v1-abstract-full" style="display: none;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system&#39;s Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted from geometric amplitudes of Friedel oscillations induced by the intentionally introduced magnetic impurity and then the QGT is derived from the momentum differential of spin texture. The surface states of topological insulator (TISS), as a model spin system, is promising to demonstrate the scheme. In a TI slab, the gapped TISS host finite quantum metric and Berry curvature as the symmetric real part and the antisymmetric imaginary part of QGT, respectively. Thus, a detailed calculations guide the use of the developed scheme to measure the QGT of gapped TISS with or without an external in-plane magnetic field. This study provides a feasible scheme for measuring QGT of two-dimensional solid-state systems, and hints at the great potential of the information extraction from the geometric amplitudes of STM and other measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'none'; document.getElementById('2501.13588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18220">arXiv:2412.18220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18220">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Altermagnetic Spin-Splitting Magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+P">Peixin Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z">Ziang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaorong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Li Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+G">Guojian Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+Z">Zhiyuan Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tianli Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinghua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dingfu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhiqi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18220v1-abstract-short" style="display: inline;"> The recently discovered altermagnets, featured by the exotic correlation of magnetic exchange interaction and alternating crystal environments, have offered exciting cutting-edge opportunities for spintronics. Here, we report the experimental observation of an altermagnetic spin-splitting magnetoresistance effect, which is driven by a spin current associated with the giant nonrelativistic spin spl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18220v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18220v1-abstract-full" style="display: none;"> The recently discovered altermagnets, featured by the exotic correlation of magnetic exchange interaction and alternating crystal environments, have offered exciting cutting-edge opportunities for spintronics. Here, we report the experimental observation of an altermagnetic spin-splitting magnetoresistance effect, which is driven by a spin current associated with the giant nonrelativistic spin splitting of an altermagnet. The spin current polarization and the corresponding magnetic field direction associated with the magnetoresistance extrema are largely determined by the Neel vector of the altermagnet, leading to a remarkable phase shift compared to that driven by a conventional relativistic spin current. Our work opens a door to unearthing luxuriant nonrelativistic quantum states of matter in emergent materials with unconventional spin degeneracy lifting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18220v1-abstract-full').style.display = 'none'; document.getElementById('2412.18220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11674">arXiv:2411.11674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11674">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Novel Superconducting Ternary Hydrides under High Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bangshuai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11674v1-abstract-short" style="display: inline;"> The abundant chemical compositions in ternary hydrides bring much more possibility to explore high temperature superconductors under lower pressure. Here we constructed 115 ternary hydrides on the basis of the elements substitution using 16 metal elements within 5 reported prototype structures. We conducted a three-step approach to screen and study these candidate structures in the aspects of dyna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11674v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11674v1-abstract-full" style="display: none;"> The abundant chemical compositions in ternary hydrides bring much more possibility to explore high temperature superconductors under lower pressure. Here we constructed 115 ternary hydrides on the basis of the elements substitution using 16 metal elements within 5 reported prototype structures. We conducted a three-step approach to screen and study these candidate structures in the aspects of dynamical stability, formation energy and relative enthalpy, respectively. Based on this approach, we found three meta-stable compounds with hydrogen clathrate cages in the space group of P-3m1, including Y2CdH18, Y2InH18 and Ca2SnH18. All of the structures are superconductive under high pressure with Tc above 110 K, which is larger than the superconductive temperature of liquid nitrogen. Our study enriches the database of novel ternary hydrides under high pressure, and provides insight for future theoretical and experimental researches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11674v1-abstract-full').style.display = 'none'; document.getElementById('2411.11674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10147">arXiv:2411.10147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10147">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous-Hall Neel textures in altermagnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H">Hui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+W">Wei Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Mengmeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianhui Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10147v2-abstract-short" style="display: inline;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v2-abstract-full').style.display = 'inline'; document.getElementById('2411.10147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10147v2-abstract-full" style="display: none;"> Recently, the altermagnets, a new kind of colinear antiferromagnet with zero net magnetization and momentum-dependent spin-splitting of bands, have sparked great interest. Despite simple magnetic structures, these altermagnets exhibit intriguing and intricate dependence of AHE on the N茅el vector, in contrast to the conventional perpendicular configuration of Hall current with magnetization in ferromagnets. In spite of being a crucial aspect in AHE research, the relationship between the AHE and the N茅el vector remains largely elusive. Here, we propose a powerful &#34;extrinsic parameter&#34; method and further reveal diverse unconventional anomalous Hall textures in the N茅el vector space, dubbed anomalous-Hall N茅el textures (AHNTs) for altermagnets. Notably, we find that AHNTs resemble the spin textures in momentum space, and further reveal their symmetry origin. We identify 10 types across four categories of AHNTs in altermagnets. Meanwhile, we examine our key discoveries in prototypical altermagnets. Our work offers a complete classification of AHNTs and a thorough understanding of AHE in altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10147v2-abstract-full').style.display = 'none'; document.getElementById('2411.10147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04407">arXiv:2411.04407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pressure-Induced Superconductivity at 18.2 K in CuIr2S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bijuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yuhao Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+W">Wen Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+M">Meiling Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yu Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishii%2C+H">Hirofumi Ishii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Y">Yen-Fa Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Dongzhou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+Y">Youwen Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jinlong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liuxiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">Hong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nei%2C+J">Jia-cai Nei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+H">Ho-kwang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yang Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04407v2-abstract-short" style="display: inline;"> Attaining superconducting critical temperatures (Tc) beyond the limit around 14 K observed thus far in spinel compounds AB2X4 (A, B = transition metals, X = O/chalcogen) could elucidate interaction intricacies and inform materials design. This work spotlights CuIr2S4, which exhibits a distinct metal-insulator transition below 230 K, as an unconventional candidate for activation under high pressure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04407v2-abstract-full').style.display = 'inline'; document.getElementById('2411.04407v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04407v2-abstract-full" style="display: none;"> Attaining superconducting critical temperatures (Tc) beyond the limit around 14 K observed thus far in spinel compounds AB2X4 (A, B = transition metals, X = O/chalcogen) could elucidate interaction intricacies and inform materials design. This work spotlights CuIr2S4, which exhibits a distinct metal-insulator transition below 230 K, as an unconventional candidate for activation under high pressure. Through transport, diffraction, and spectroscopy experiments conducted at pressures up to 224 GPa, we unveil pressure-tuning that suppressed CuIr2S4&#39;s transition, yielding two superconducting phases with an un-precedented Tc for spinels. Initially, 3.8 K onset rose monotonically, reaching 18.2 K at 133 GPa. Unexpectedly, a distinct phase with Tc = 2.2 K distinctly emerged at higher pressures, intimating unconventional couplings. Our findings suggest that both geometric frustration and electron-electron interactions play crucial roles in the superconductivity observed in CuIr2S4. The findings stretch perceived temperature limits in spinels and provide structure-property insights to guide the optimiza-tion of quantum materials interactions for tailored targeted functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04407v2-abstract-full').style.display = 'none'; document.getElementById('2411.04407v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 gifures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18554">arXiv:2409.18554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18554">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-Orbit Torque Driven Chiral Domain Wall Motion in Mn3Sn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhengde Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yixiao Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Z+X+D">Zhuo Xuand Dingfu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18554v1-abstract-short" style="display: inline;"> Noncollinear chiral antiferromagnets, such as Mn3X (X = Sn, Ge), have garnered significant interest in spintronics due to their topologically protected Weyl nodes and large momentum-space Berry curvatures. In this study, we report rapid chirality domain-wall (CDW) motion in Mn3Sn, driven by spin-orbit torque at over 545.3 m.s^-1 a remarkably low current density of 9 10^10 A.m^-2. The results demon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18554v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18554v1-abstract-full" style="display: none;"> Noncollinear chiral antiferromagnets, such as Mn3X (X = Sn, Ge), have garnered significant interest in spintronics due to their topologically protected Weyl nodes and large momentum-space Berry curvatures. In this study, we report rapid chirality domain-wall (CDW) motion in Mn3Sn, driven by spin-orbit torque at over 545.3 m.s^-1 a remarkably low current density of 9 10^10 A.m^-2. The results demonstrate that the chirality of the domain wall and the direction of the current collectively determine the displacement direction of the CDW. Theoretically, we provide ananalysis of the effective field experienced by the octupole moment, uncovering the underlying motion mechanism based on the unique profile of the chiral spin structure. Notably, CDWs with opposite chirality can form within the same Dzyaloshinskii-Moriya interaction sample, and the Neel-like CDW type is dictated by the orientation of the kagome plane rather than the negligible magnetostatic energy associated with the small magnetization (approximately 3.957 10^-3). Additionally, the CDW, with a considerable width of 770 nm, is segmented into three 60 portions due to the six-fold anisotropy in Mn3Sn. These emphasize that CDW motion in Mn3Sn cannot be quantitatively studied using ferromagnetic frameworks. We also demonstrate that a small external field can effectively regulate CDW velocity. Our comprehensive results and theoretical analysis provide crucial guidelines for integrating antiferromagnet CDWs into functional spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18554v1-abstract-full').style.display = 'none'; document.getElementById('2409.18554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00195">arXiv:2409.00195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00195">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin filtering with insulating altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+K">Kartik Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00195v1-abstract-short" style="display: inline;"> Altermagnetic (AM) materials have recently attracted significant interest due to the non-relativistic momentum-dependent spin splitting of their electronic band structure which may be useful for antiferromagnetic (AFM) spintronics. So far, however, most research studies have been focused on AM metals which can be utilized in spintronic devices, such as AFM tunnel junctions (AFMTJs). At the same ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00195v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00195v1-abstract-full" style="display: none;"> Altermagnetic (AM) materials have recently attracted significant interest due to the non-relativistic momentum-dependent spin splitting of their electronic band structure which may be useful for antiferromagnetic (AFM) spintronics. So far, however, most research studies have been focused on AM metals which can be utilized in spintronic devices, such as AFM tunnel junctions (AFMTJs). At the same time, AM insulators have remained largely unexplored in the realm of AFM spintronics. Here, we propose to employ AM insulators (AMIs) as efficient spin-filter materials. By analyzing the complex band structure of rutile-type altermagnets $MF_2$ ($M$ = $Fe, Co, Ni$), we demonstrate that the evanescent states in these AMIs exhibit spin- and momentum-dependent decay rates resulting in a substantial momentum-dependent spin polarization of the tunneling current. Using a model of spin-filter tunneling across a spin-dependent potential barrier, we estimate the TMR effect in spin-filter magnetic tunnel junctions (SF-MTJs) that include two magnetically decoupled $MF_2$ (001) barrier layers. We predict a sizable spin-filter TMR ratio of about 150-170% in SF-MTJs based on AMIs $CoF_2$ and $NiF_2$ if the Fermi energy is tuned to be close to the valence band maximum. Our results demonstrate that AMIs provide a viable alternative to conventional ferromagnetic or ferrimagnetic spin-filter materials, potentially advancing the development of next-generation AFM spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00195v1-abstract-full').style.display = 'none'; document.getElementById('2409.00195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12028">arXiv:2408.12028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12028">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional non-volatile valley spin valve </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+K">Kartik Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12028v1-abstract-short" style="display: inline;"> A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission being controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV) - a device that utilizes the valley degree of freedom and spin-valley l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12028v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12028v1-abstract-full" style="display: none;"> A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission being controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV) - a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a non-volatile VSV (n-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where the resistance of the n-VSV is controlled by the ferroelectric domain wall between the two uniformly polarized domains. Focusing on the 1T&#39;&#39; phase of MoS2, which is known to be ferroelectric down to a monolayer and using density functional theory (DFT) combined with the quantum-transport calculations, we demonstrate that switching between the uniformly polarized state and the state with oppositely polarized domains separated by a domain wall results in resistance change of as high as 10^7. This giant VSV effect occurs due to transmission being strongly dependent on matching (mismatching) the valley-dependent spin polarizations in the two domains with the same (opposite) ferroelectric polarization orientations, when the chemical potential of 1T&#39;&#39;-MoS2 lies within the spin-split valleys. Our work paves a new route for realizing high-performance nonvolatile valleytronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12028v1-abstract-full').style.display = 'none'; document.getElementById('2408.12028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08420">arXiv:2407.08420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08420">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.236903">10.1103/PhysRevLett.133.236903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Skin Effect of Nonlinear Optical Responses in Antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+W">Wei Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H">Hui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hong-Miao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenjian Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Changjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08420v2-abstract-short" style="display: inline;"> Nonlinear optics plays important roles in the research of fundamental physics and the applications of high-performance optoelectronic devices. The bulk nonlinear optical responses arise from the uniform light absorption in noncentrosymmetric crystals, and hence are usually considered to be the collective phenomena of all atoms. Here we show, in contrast to this common expectation, the nonlinear op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08420v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08420v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08420v2-abstract-full" style="display: none;"> Nonlinear optics plays important roles in the research of fundamental physics and the applications of high-performance optoelectronic devices. The bulk nonlinear optical responses arise from the uniform light absorption in noncentrosymmetric crystals, and hence are usually considered to be the collective phenomena of all atoms. Here we show, in contrast to this common expectation, the nonlinear optical responses in antiferromagnets can be selectively accumulated near the surfaces, representing a skin effect. This is because the inversion symmetry, despite being broken globally by magnetism, is barely violated locally deeply inside these antiferromagnets. Using A-type layered antiferromagnets as the representatives, we predict that the spatial-dependent nonlinear optical responses, such as bulk photovoltaic effect (BPVE) and second harmonic generation (SHG), are notable in the top- and bottom-most layers and decay rapidly when moving away from the surfaces. Such a phenomenon is strongly associated with the antiferromagnetism and exists in a broad range of antiferromagnets composed of centrosymmetric sublattices, offering promising device applications using these antiferromagnets. Our work uncovers a previously overlooked property of nonlinear optical responses and opens new opportunities for high-performance antiferromagnetic optospintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08420v2-abstract-full').style.display = 'none'; document.getElementById('2407.08420v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 236903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13405">arXiv:2404.13405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13405">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Field-free switching of perpendicular magnetization by cooperation of planar Hall and orbital Hall effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bekele%2C+Z+A">Zelalem Abebe Bekele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+K">Kun Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+X">Xiukai Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">Hui Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13405v1-abstract-short" style="display: inline;"> Spin-orbit torques (SOTs) generated through the conventional spin Hall effect and/or Rashba-Edelstein effect are promising for manipulating magnetization. However, this approach typically exhibits non-deterministic and inefficient behaviour when it comes to switching perpendicular ferromagnets. This limitation posed a challenge for write-in operations in high-density magnetic memory devices. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13405v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13405v1-abstract-full" style="display: none;"> Spin-orbit torques (SOTs) generated through the conventional spin Hall effect and/or Rashba-Edelstein effect are promising for manipulating magnetization. However, this approach typically exhibits non-deterministic and inefficient behaviour when it comes to switching perpendicular ferromagnets. This limitation posed a challenge for write-in operations in high-density magnetic memory devices. Here, we determine an effective solution to overcome this challenge by simultaneously leveraging both a planar Hall effect (PHE) and an orbital Hall effect (OHE). Using a representative Co/PtGd/Mo trilayer SOT device, we demonstrate that the PHE of Co is enhanced by the interfacial coupling of Co/PtGd, giving rise to a finite out-of-plane damping-like torque within the Co layer. Simultaneously, the OHE in Mo layer induces a strong out-of-plane orbital current, significantly amplifying the in-plane damping-like torque through orbital-to-spin conversion. While either the PHE or OHE alone proves insufficient for reversing the perpendicular magnetization of Co, their collaborative action enables high-efficiency field-free deterministic switching. Our work provides a straightforward strategy to realize high-speed and low-power spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13405v1-abstract-full').style.display = 'none'; document.getElementById('2404.13405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, submitted to Nat. Commun</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12603">arXiv:2402.12603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12603">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Interlayer ferroelectric polarization modulated anomalous Hall effects in four-layer MnBi2Te4 antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Z">Ziyu Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiang-Long Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dingfu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+X">Xixiang Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+D">Defeng Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xuhong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jing Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Junqin Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xiaoli Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Tengfei Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12603v1-abstract-short" style="display: inline;"> Van der Waals (vdW) assembly could efficiently modulate the symmetry of two-dimensional (2D) materials that ultimately governs their physical properties. Of particular interest is the ferroelectric polarization being introduced by proper vdW assembly that enables the realization of novel electronic, magnetic and transport properties of 2D materials. Four-layer antiferromagnetic MnBi2Te4 (F-MBT) of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12603v1-abstract-full').style.display = 'inline'; document.getElementById('2402.12603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12603v1-abstract-full" style="display: none;"> Van der Waals (vdW) assembly could efficiently modulate the symmetry of two-dimensional (2D) materials that ultimately governs their physical properties. Of particular interest is the ferroelectric polarization being introduced by proper vdW assembly that enables the realization of novel electronic, magnetic and transport properties of 2D materials. Four-layer antiferromagnetic MnBi2Te4 (F-MBT) offers an excellent platform to explore ferroelectric polarization effects on magnetic order and topological transport properties of nanomaterials. Here, by applying symmetry analyses and density-functional-theory calculations, the ferroelectric interface effects on magnetic order, anomalous Hall effect (AHE) or even quantum AHE (QAHE) on the F-MBT are analyzed. Interlayer ferroelectric polarization in F-MBT efficiently violates the PT symmetry (the combination symmetry of central inversion (P) and time reverse (T) of the F-MBT by conferring magnetoelectric couplings, and stabilizes a specific antiferromagnetic order encompassing a ferromagnetic interface in the F-MBT. We predict that engineering an interlayer polarization in the top or bottom interface of F-MBT allows converting F-MBT from a trivial insulator to a Chern insulator. The switching of ferroelectric polarization at the middle interfaces results in a direction reversal of the quantum anomalous Hall current. Additionally, the interlayer polarization of the top and bottom interfaces can be aligned in the same direction, and the switching of polarization direction also reverses the direction of anomalous Hall currents. Overall, our work highlights the occurrence of quantum-transport phenomena in 2D vdW four-layer antiferromagnets through vdW assembly. These phenomena are absent in the bulk or thin-film in bulk-like stacking forms of MnBi2Te4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12603v1-abstract-full').style.display = 'none'; document.getElementById('2402.12603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14780">arXiv:2312.14780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14780">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of superconducting transition temperature and exotic stoichiometries in Lu-S system under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+B">Bangshuai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+C">Chi Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jian Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14780v1-abstract-short" style="display: inline;"> Binary metal sulfides are potential material family for exploring high Tc superconductors under high pressure. In this work, we study the crystal structures, electronic structures and superconducting properties of the Lu-S system in the pressure range from 0 GPa to 200 GPa, combining crystal structure predictions with ab-initio calculations. We predict 14 new structures, encompassing 7 unidentifie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14780v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14780v1-abstract-full" style="display: none;"> Binary metal sulfides are potential material family for exploring high Tc superconductors under high pressure. In this work, we study the crystal structures, electronic structures and superconducting properties of the Lu-S system in the pressure range from 0 GPa to 200 GPa, combining crystal structure predictions with ab-initio calculations. We predict 14 new structures, encompassing 7 unidentified stoichiometries. Within the S-rich structures, the formation of S atom cages is beneficial for superconductivity, with the superconducting transition temperature 25.86 K and 25.30 K for LuS6-C2/m at 70 GPa and LuS6-R-3m at 90 GPa, respectively. With the Lu/(Lu+S) ratio increases, the Lu-d electrons participate more in the electronic properties at the Fermi energy, resulting in the coexistence of superconductivity and topological non-triviality of LuS2-Cmca, as well as the superconductivity of predicted Lu-rich compounds. Our calculation is helpful for understanding the exotic properties in transition metal sulfides system under high pressure, providing possibility in designing novel superconductors for future experimental and theoretical works. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14780v1-abstract-full').style.display = 'none'; document.getElementById('2312.14780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13507">arXiv:2312.13507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13507">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s44306-024-00014-7">10.1038/s44306-024-00014-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic Tunnel Junctions for Spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13507v2-abstract-short" style="display: inline;"> Antiferromagnetic (AFM) spintronics has emerged as a subfield of spintronics, where an AFM N茅el vector is used as a state variable. Efficient electric control and detection of the N茅el vector are critical for spintronic applications. This review article features fundamental properties of AFM tunnel junctions (AFMTJs) as spintronic devices where such electric control and detection can be realized.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13507v2-abstract-full').style.display = 'inline'; document.getElementById('2312.13507v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13507v2-abstract-full" style="display: none;"> Antiferromagnetic (AFM) spintronics has emerged as a subfield of spintronics, where an AFM N茅el vector is used as a state variable. Efficient electric control and detection of the N茅el vector are critical for spintronic applications. This review article features fundamental properties of AFM tunnel junctions (AFMTJs) as spintronic devices where such electric control and detection can be realized. We emphasize critical requirements for observing a large tunneling magnetoresistance (TMR) effect in AFMTJs with collinear and noncollinear AFM electrodes, such as a momentum-dependent spin polarization and N茅el spin currents. We further discuss spin torques in AFMTJs that are capable of N茅el vector switching. Overall, AFMTJs have potential to become a new standard for spintronics providing larger magnetoresistive effects, few orders of magnitude faster switching speed, and much higher packing density than conventional magnetic tunnel junctions (MTJs). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13507v2-abstract-full').style.display = 'none'; document.getElementById('2312.13507v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">An invited review for recent progress of antiferromagnetic tunnel junctions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Spintronics 2, 13 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13271">arXiv:2310.13271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13271">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> X-type antiferromagnetic stacking for spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shui-Sen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zi-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Lan-Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">X. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W+J">W. J. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y+P">Y. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Haifeng Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13271v3-abstract-short" style="display: inline;"> Physical phenomena in condensed matter normally arise from the collective effect of all atoms, while selectively addressing a lone atomic sublattice by external stimulus is elusive. The later functionality may, however, be useful for different applications due to a possible response being different from that occurring when the external stimulus affects the whole solid. Here, we introduce cross-cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13271v3-abstract-full').style.display = 'inline'; document.getElementById('2310.13271v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13271v3-abstract-full" style="display: none;"> Physical phenomena in condensed matter normally arise from the collective effect of all atoms, while selectively addressing a lone atomic sublattice by external stimulus is elusive. The later functionality may, however, be useful for different applications due to a possible response being different from that occurring when the external stimulus affects the whole solid. Here, we introduce cross-chain antiferromagnets, where the stacking of two magnetic sublattices form a pattern of intersecting atomic chains, supportive to the sublattice selectivity. We dub this antiferromagnetic (AFM) stacking X-type and demonstrate that it reveals unique spin-dependent transport properties not present in conventional magnets. Based on high-throughput analyses and computations, we unveil three prototypes of X-type AFM stacking and identify 15 X-type AFM candidates. Using $尾$-Fe$_{2}$PO$_{5}$ as a representative example, we predict the sublattice-selective spin-polarized transport driven by the X-type AFM stacking, where one magnetic sublattice is conducting, while the other is not. As a result, a spin torque can be exerted solely on a single sublattice, leading to unconventional ultrafast dynamics of the N猫el vector capable of deterministic switching of the AFM domains. Our work uncovers a previously overlooked type of magnetic moment stacking and reveals sublattice-selective physical properties promising for high-performance spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13271v3-abstract-full').style.display = 'none'; document.getElementById('2310.13271v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version. Table 1 updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02139">arXiv:2310.02139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02139">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.174407">10.1103/PhysRevB.109.174407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunneling magnetoresistance in magnetic tunnel junctions with a single ferromagnetic electrode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+K">Kartik Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paudel%2C+T+R">Tula R. Paudel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02139v1-abstract-short" style="display: inline;"> Magnetic tunnel junctions (MTJs) are key components of spintronic devices, such as magnetic random-access memories. Normally, MTJs consist of two ferromagnetic (FM) electrodes separated by an insulating barrier layer. Their key functional property is tunneling magnetoresistance (TMR) that is a change in MTJ&#39;s resistance when magnetization of the two electrodes alters from parallel to antiparallel.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02139v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02139v1-abstract-full" style="display: none;"> Magnetic tunnel junctions (MTJs) are key components of spintronic devices, such as magnetic random-access memories. Normally, MTJs consist of two ferromagnetic (FM) electrodes separated by an insulating barrier layer. Their key functional property is tunneling magnetoresistance (TMR) that is a change in MTJ&#39;s resistance when magnetization of the two electrodes alters from parallel to antiparallel. Here, we demonstrate that TMR can occur in MTJs with a single FM electrode, provided that the counter electrode is an antiferromagnetic (AFM) metal that supports a spin-split band structure and/or a N茅el spin current. Using RuO$_{2}$ as a representative example of such antiferromagnet and CrO$_{2}$ as a FM metal, we design all-rutile RuO$_{2}$/TiO$_{2}$/CrO$_{2}$ MTJs to reveal a non-vanishing TMR. Our first-principles calculations predict that magnetization reversal in CrO$_{2}$ significantly changes conductance of the MTJs stacked in the (110) or (001) planes. The predicted giant TMR effect of about 1000% in the (110) oriented MTJs stems from spin-dependent conduction channels in CrO$_{2}$ (110) and RuO$_{2}$ (110), whose matching alters with CrO$_{2}$ magnetization orientation, while TMR in the (001) oriented MTJs originates from the N茅el spin currents and different effective TiO$_{2}$ barrier thickness for the two magnetic sublattices that can be engineered by the alternating deposition of TiO$_{2}$ and CrO$_{2}$ monolayers. Our results demonstrate a possibility of a sizable TMR in MTJs with a single FM electrode and offer a practical test for using the altermagnet RuO$_{2}$ in functional spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02139v1-abstract-full').style.display = 'none'; document.getElementById('2310.02139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 174407 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13901">arXiv:2309.13901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.13901">pdf</a>, <a href="https://arxiv.org/format/2309.13901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Geometric density of states of electronic structures for local responses: Phase information from the amplitudes of STM measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jia-Ji Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13901v1-abstract-short" style="display: inline;"> Electronic band structures underlie the physical properties of crystalline materials, their geometrical exploration renovates the conventional cognition and brings about novel applications. Inspired by geometry phases, we introduce a geometric amplitude named as the geometric density of states (GDOS) dictated by the differential curvature of the constant-energy contour. The GDOS determines the amp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13901v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13901v1-abstract-full" style="display: none;"> Electronic band structures underlie the physical properties of crystalline materials, their geometrical exploration renovates the conventional cognition and brings about novel applications. Inspired by geometry phases, we introduce a geometric amplitude named as the geometric density of states (GDOS) dictated by the differential curvature of the constant-energy contour. The GDOS determines the amplitude of the real-space Green&#39;s function making it attain the ultimate expression with transparent physics. The local responses of crystalline materials are usually formulated by the real-space Green&#39;s function, so the relevant physics should be refreshed by GDOS. As an example of local responses, we suggest using scanning tunneling microscopy (STM) to characterize the surface states of three-dimensional topological insulator under an in-plane magnetic field. The GDOS favors the straightforward simulation of STM measurement without resorting to Fourier transform of the real-space measurement, and also excavates the unexplored potential of STM measurement to extract the phase information of wavefunction through its amplitude, i.e., the spin and curvature textures. Therefore, the proposed GDOS deepens the understanding of electronic band structures and is indispensable in local responses, and it should be universal for any periodic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13901v1-abstract-full').style.display = 'none'; document.getElementById('2309.13901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.02634">arXiv:2309.02634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.02634">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Prediction of Giant Tunneling Magnetoresistance in RuO$_{2}$/TiO$_{2}$/RuO$_{2}$ (110) Antiferromagnetic Tunnel Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zi-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+K">Kartik Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W+J">W. J. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y+P">Y. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.02634v2-abstract-short" style="display: inline;"> Using first-principles quantum-transport calculations, we investigate spin-dependent electronic and transport properties of antiferromagnetic tunnel junctions (AFMTJs) that consist of (110)-oriented antiferromagnetic (AFM) metal RuO$_{2}$ electrodes and an insulating TiO$_{2}$ tunneling barrier. We predict the emergence of a giant tunneling magnetoresistance (TMR) effect in a wide energy window, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02634v2-abstract-full').style.display = 'inline'; document.getElementById('2309.02634v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.02634v2-abstract-full" style="display: none;"> Using first-principles quantum-transport calculations, we investigate spin-dependent electronic and transport properties of antiferromagnetic tunnel junctions (AFMTJs) that consist of (110)-oriented antiferromagnetic (AFM) metal RuO$_{2}$ electrodes and an insulating TiO$_{2}$ tunneling barrier. We predict the emergence of a giant tunneling magnetoresistance (TMR) effect in a wide energy window, a series of barrier layer thicknesses, and different interface terminations, indicating the robustness of this effect. We show that the predicted TMR cannot be explained in terms of the global transport spin-polarization of RuO$_{2}$ (110) but is well understood based on matching the momentum-dependent spin-polarized conduction channels of the two RuO$_{2}$ (110) electrodes. We predict oscillations of TMR with increasing barrier thickness, indicating a non-negligible contribution from the perfectly epitaxial interfaces. Our work helps the understanding of the physics of TMR in AFMTJs and aids in realizing efficient AFM spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02634v2-abstract-full').style.display = 'none'; document.getElementById('2309.02634v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The colorbar of originl Fig. 2a was not set properly, which is corrected in this version. To be published in PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15769">arXiv:2307.15769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15769">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.024426">10.1103/PhysRevB.109.024426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Antiskyrmions in Two-Dimensional van der Waals Magnets Engineered by Layer Stacking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwartz%2C+E">Edward Schwartz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalev%2C+A+A">Alexey A. Kovalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15769v1-abstract-short" style="display: inline;"> Magnetic skyrmions and antiskyrmions are topologically protected quasiparticles exhibiting a whirling spin texture in real space. Antiskyrmions offer some advantages over skyrmions as they are expected to have higher stability and can be electrically driven with no transverse motion. However, unlike the widely investigated skyrmions, antiskyrmions are rarely observed due to the required anisotropi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15769v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15769v1-abstract-full" style="display: none;"> Magnetic skyrmions and antiskyrmions are topologically protected quasiparticles exhibiting a whirling spin texture in real space. Antiskyrmions offer some advantages over skyrmions as they are expected to have higher stability and can be electrically driven with no transverse motion. However, unlike the widely investigated skyrmions, antiskyrmions are rarely observed due to the required anisotropic Dzyaloshinskii-Moriya interaction (DMI). Here we propose to exploit the recently demonstrated van der Waals (vdW) assembly of two-dimensional (2D) materials that breaks inversion symmetry and creates conditions for anisotropic DMI. Using a 2D vdW magnet CrI${}_3$ as an example, we demonstrate, based on density functional theory (DFT) calculations, that this strategy is a promising platform to realize antiskyrmions. Polar layer stacking of two centrosymmetric magnetic monolayers of CrI${}_3$ efficiently lowers the symmetry, resulting in anisotropic DMI that supports antiskyrmions. The DMI is reversible by switching the ferroelectric polarization inherited from the polar layer stacking, offering the control of antiskyrmions by an electric field. Furthermore, we find that the magnetocrystalline anisotropy and DMI of CrI${}_3$ can be efficiently modulated by Mn doping, creating a possibility to control the size of antiskyrmions. Using atomistic spin dynamics simulations with the parameters obtained from our DFT calculations, we predict the formation of antiskyrmions in a Cr${}_{0.88}$Mn${}_{0.12}$I${}_3$ bilayer and switching their spin texture with polarization reversal. Our results open a new direction to generate and control magnetic antiskyrmions in 2D vdW magnetic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15769v1-abstract-full').style.display = 'none'; document.getElementById('2307.15769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05024">arXiv:2307.05024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05024">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Physical origin of color changes in lutetium hydride under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+R">Run Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+W">Wenqian Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dingfu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuping Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wenjian Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05024v1-abstract-short" style="display: inline;"> Recently, near-ambient superconductivity was claimed in nitrogen-doped lutetium hydride (LuH$_{3-未}$N$_蔚$) . Unfortunately, all follow-up research still cannot find superconductivity signs in successfully synthesized lutetium dihydride (LuH$_2$) and N-doped LuH$_{2\pm x}$N$_y$. However, a similar intriguing observation was the pressure-induced color changes (from blue to pink and subsequent red).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05024v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05024v1-abstract-full" style="display: none;"> Recently, near-ambient superconductivity was claimed in nitrogen-doped lutetium hydride (LuH$_{3-未}$N$_蔚$) . Unfortunately, all follow-up research still cannot find superconductivity signs in successfully synthesized lutetium dihydride (LuH$_2$) and N-doped LuH$_{2\pm x}$N$_y$. However, a similar intriguing observation was the pressure-induced color changes (from blue to pink and subsequent red). The physical understanding of its origin and the correlation between the color, crystal structure, and chemical composition of Lu-H-N is still lacking. In this work, we theoretically study the optical properties of LuH$_2$, LuH$_3$, and some potential N-doped compounds using the first-principles calculations by considering both interband and intraband contributions. Our results show that LuH$_2$ has an optical reflectivity peak around blue light up to 10 GPa. Under higher pressure, the reflectivity of red light gradually becomes dominant. This evolution is driven by changes in the direct band gap and the Fermi velocity of free electrons under pressure. In contrast, LuH$_3$ exhibits gray and no color change up to 50 GPa. Furthermore, we considered different types of N-doped LuH$_2$ and LuH$_3$. We find that N-doped LuH$_2$ with the substitution of a hydrogen atom at the tetrahedral position maintains the color change when the N-doping concentration is low. As the doping level increases, this trend becomes less obvious. While other N-doped structures do not show significant color change. Our results can clarify the origin of the experimental observed blue-to-red color change in lutetium hydride and also provide a further understanding of the potential N-doped lutetium dihydride. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05024v1-abstract-full').style.display = 'none'; document.getElementById('2307.05024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10697">arXiv:2306.10697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10697">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunneling valley Hall effect driven by tilted Dirac fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zi-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10697v1-abstract-short" style="display: inline;"> Valleytronics is a research field utilizing a valley degree of freedom of electrons for information processing and storage. A strong valley polarization is critical for realistic valleytronic applications. Here, we predict a tunneling valley Hall effect (TVHE) driven by tilted Dirac fermions in all-in-one tunnel junctions based on a two-dimensional (2D) valley material. Different doping of the ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10697v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10697v1-abstract-full" style="display: none;"> Valleytronics is a research field utilizing a valley degree of freedom of electrons for information processing and storage. A strong valley polarization is critical for realistic valleytronic applications. Here, we predict a tunneling valley Hall effect (TVHE) driven by tilted Dirac fermions in all-in-one tunnel junctions based on a two-dimensional (2D) valley material. Different doping of the electrode and spacer regions in these tunnel junctions results in momentum filtering of the tunneling Dirac fermions, generating a strong transverse valley Hall current dependent on the Dirac-cone tilting. Using the parameters of an existing 2D valley material, we demonstrate that such a TVHE is much stronger than that induced by the intrinsic Berry curvature mechanism reported previously. Finally, we predict that resonant tunneling can occur in a tunnel junction with properly engineered device parameters such as the spacer width and transport direction, providing significant enhancement of the valley Hall angle. Our work opens a new approach to generate valley polarization in realistic valleytronic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10697v1-abstract-full').style.display = 'none'; document.getElementById('2306.10697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03026">arXiv:2306.03026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.03026">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54526-1">10.1038/s41467-024-54526-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nearly perfect spin polarization of noncollinear antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+G">Gautam Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elekhtiar%2C+M">Mohamed Elekhtiar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q+L+D">Qing-Qing Luo Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03026v2-abstract-short" style="display: inline;"> Ferromagnets with high spin polarization are known to be valuable for spintronics--a research field that exploits the spin degree of freedom in information technologies. Recently, antiferromagnets have emerged as promising alternative materials for spintronics due to their stability against magnetic perturbations, absence of stray fields, and ultrafast dynamics. For antiferromagnets,however, the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03026v2-abstract-full').style.display = 'inline'; document.getElementById('2306.03026v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03026v2-abstract-full" style="display: none;"> Ferromagnets with high spin polarization are known to be valuable for spintronics--a research field that exploits the spin degree of freedom in information technologies. Recently, antiferromagnets have emerged as promising alternative materials for spintronics due to their stability against magnetic perturbations, absence of stray fields, and ultrafast dynamics. For antiferromagnets,however, the concept of spin polarization and its relevance to the measured electrical response are elusive due to nominally zero net magnetization.Here, we define an effective momentum-dependent spin polarization and reveal an unexpected property of many noncollinear antiferromagnets to exhibit nearly 100% spin polarization in a broad area of the Fermi surface. This property leads to the emergence of an extraordinary tunneling magnetoresistance (ETMR) effect in antiferromagnetic tunnel junctions (AFMTJs). As a representative example, we predict that a noncollinear antiferromagnet Mn$_{3}$GaN exhibits nearly 100% spin-polarized states that can efficiently tunnel through low-decay-rate evanescent states of perovskite oxide SrTiO$_{3}$ resulting in ETMR as large as $10^{4}$%. Our results uncover hidden functionality of material systems with noncollinear spin textures and open new perspectives for spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03026v2-abstract-full').style.display = 'none'; document.getElementById('2306.03026v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10242 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11451">arXiv:2301.11451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11451">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00047">10.1021/acs.nanolett.3c00047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Tengfei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+G">Gautam Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11451v1-abstract-short" style="display: inline;"> Van der Waals (vdW) assembly allows controlling symmetry of two-dimensional (2D) materials that determines their physical properties. Especially interesting is the recently demonstrated breaking inversion symmetry by polar layer stacking to realize novel electronic, magnetic, and transport properties of 2D vdW materials switchable by induced electric polarization. Here, based on symmetry analyses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11451v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11451v1-abstract-full" style="display: none;"> Van der Waals (vdW) assembly allows controlling symmetry of two-dimensional (2D) materials that determines their physical properties. Especially interesting is the recently demonstrated breaking inversion symmetry by polar layer stacking to realize novel electronic, magnetic, and transport properties of 2D vdW materials switchable by induced electric polarization. Here, based on symmetry analyses and density-functional calculations, we explore the emergence of the anomalous Hall effect (AHE) in antiferromagnetic MnBi2Te4 films assembled by polar layer stacking. We demonstrate that breaking PT symmetry in an MnBi2Te4 bilayer makes this 2D material magnetoelectric and produces a spontaneous AHE switchable by electric polarization. We find that reversable polarization at one of the interfaces in a three-layer MnBi2Te4 film drives a metal-insulator transition, as well as switching between an AHE and quantum AHE (QAHE). Finally, we predict that engineering an interlayer polarization in a three-layer MnBi2Te4 film allows converting MnBi2Te4 from a trivial insulator to a Chern insulator. Overall, our work emphasizes the emergence of quantum-transport phenomena in 2D vdW antiferromagnets by polar layer stacking, which do not exist in this material in the bulk or bulk-like thin-film forms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11451v1-abstract-full').style.display = 'none'; document.getElementById('2301.11451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02367">arXiv:2212.02367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.216702">10.1103/PhysRevLett.130.216702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> N茅el Spin Currents in Antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zi-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+G">Gautam Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W+J">W. J. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y+P">Y. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02367v1-abstract-short" style="display: inline;"> Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the N茅el spin currents, i.e. staggered spin currents flowing through dif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02367v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02367v1-abstract-full" style="display: none;"> Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the N茅el spin currents, i.e. staggered spin currents flowing through different magnetic sublattices. The N茅el spin currents emerge in antiferromagnets with strong intra-sublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO$_{2}$ and Fe$_{4}$GeTe$_{2}$ as representative antiferromagnets, we predict that the N茅el spin currents with a strong staggered spin-polarization produce a sizable field-like STT capable of the deterministic switching of the N茅el vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02367v1-abstract-full').style.display = 'none'; document.getElementById('2212.02367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 216702 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04970">arXiv:2211.04970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04970">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous anisotropy of spin current in a cubic spin source with noncollinear antiferromagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Cuimei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengtai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yangping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">Tieyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+Q">Qingfeng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04970v1-abstract-short" style="display: inline;"> Cubic materials host high crystal symmetry and hence are not expected to support anisotropy in transport phenomena. In contrast to this common expectation, here we report an anomalous anisotropy of spin current can emerge in the (001) film of Mn${_3}$Pt, a noncollinear antiferromagnetic spin source with face-centered cubic structure. Such spin current anisotropy originates from the intertwined tim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04970v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04970v1-abstract-full" style="display: none;"> Cubic materials host high crystal symmetry and hence are not expected to support anisotropy in transport phenomena. In contrast to this common expectation, here we report an anomalous anisotropy of spin current can emerge in the (001) film of Mn${_3}$Pt, a noncollinear antiferromagnetic spin source with face-centered cubic structure. Such spin current anisotropy originates from the intertwined time reversal-odd ($T$-odd) and time reversal-even ($T$-even) spin Hall effects. Based on symmetry analyses and experimental characterizations of the current-induced spin torques in Mn${_3}$Pt-based heterostructures, we find that the spin current generated by Mn${_3}$Pt (001) exhibits exotic dependences on the current direction for all the spin components, deviating from that in conventional cubic systems. We also demonstrate that such an anisotropic spin current can be used to realize low-power spintronic applications such as the efficient field-free switching of the perpendicular magnetizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04970v1-abstract-full').style.display = 'none'; document.getElementById('2211.04970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04354">arXiv:2211.04354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04354">pdf</a>, <a href="https://arxiv.org/format/2211.04354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00594-3">10.1038/s41535-023-00594-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classification of second harmonic generation effect in magnetically ordered materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+W">Wei Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huan-Wen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H">Hui Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z+G">Z. G. Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Changjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hua Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04354v3-abstract-short" style="display: inline;"> The relationship between magnetic order and the second harmonic generation (SHG) effect is a fundamental area of study in condensed matter physics with significant practical implications. In order to gain a clearer understanding of this intricate relation, this study presents a comprehensive classification scheme for the SHG effect in magnetically ordered materials. This framework offers a straigh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04354v3-abstract-full').style.display = 'inline'; document.getElementById('2211.04354v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04354v3-abstract-full" style="display: none;"> The relationship between magnetic order and the second harmonic generation (SHG) effect is a fundamental area of study in condensed matter physics with significant practical implications. In order to gain a clearer understanding of this intricate relation, this study presents a comprehensive classification scheme for the SHG effect in magnetically ordered materials. This framework offers a straightforward approach to connect magnetic order and SHG effect. The characteristics of the SHG tensors in all magnetic point groups are studied using the isomorphic group method, followed by a comprehensive SHG effect classification scheme that includes seven types based on the symmetries of the magnetic phases and their corresponding parent phases. In addition, a tensor dictionary containing the SHG and linear magneto-optic (LMO) effect is established. Furthermore, an extensive SHG database of magnetically ordered materials is also built up. This classification strategy exposes an anomalous SHG effect with even characteristic under time-reversal symmetry, which is solely contributed by magnetic structure. Moreover, the proposed classification scheme facilitates the determination of magnetic structures through SHG effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04354v3-abstract-full').style.display = 'none'; document.getElementById('2211.04354v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 8, 62 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09436">arXiv:2209.09436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09436">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Stabilizing polar phases in binary metal oxides by hole doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Tengfei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+G">Guodong Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+R">Rohan Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09436v3-abstract-short" style="display: inline;"> The recent observation of ferroelectricity in the metastable phases of binary metal oxides, such as HfO2, ZrO2, Hf0.5Zr0.5O2, and Ga2O3, has garnered a lot of attention. These metastable ferroelectric phases are typically stabilized through epitaxial growth, alloying, or defect engineering. Here, we propose hole doping plays a key role in stabilizing the polar phases in binary metal oxides. Using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09436v3-abstract-full').style.display = 'inline'; document.getElementById('2209.09436v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09436v3-abstract-full" style="display: none;"> The recent observation of ferroelectricity in the metastable phases of binary metal oxides, such as HfO2, ZrO2, Hf0.5Zr0.5O2, and Ga2O3, has garnered a lot of attention. These metastable ferroelectric phases are typically stabilized through epitaxial growth, alloying, or defect engineering. Here, we propose hole doping plays a key role in stabilizing the polar phases in binary metal oxides. Using first-principles density-functional-theory calculations, we show that holes in these oxides mainly occupy one of the two oxygen sublattices. This hole localization, which is more pronounced in the polar phase than in the nonpolar phase, lowers the electrostatic energy of the system, and makes the polar phase more stable at sufficiently large concentrations. We demonstrate that this electrostatic mechanism is responsible for stabilization of the ferroelectric phase of HfO2 aliovalently doped with elements that introduce holes to the system, such as La and N. Finally, we show that the spontaneous polarization in HfO2 is robust to hole doping, and a large polarization persists even under a high concentration of holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09436v3-abstract-full').style.display = 'none'; document.getElementById('2209.09436v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07212">arXiv:2208.07212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07212">pdf</a>, <a href="https://arxiv.org/format/2208.07212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.34133/research.0042">10.34133/research.0042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Junze Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruihan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xing-Qiu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07212v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2$\times$2) patterned PtTe$_2$ monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe$_{1.75}$) hosts large spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07212v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07212v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2$\times$2) patterned PtTe$_2$ monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe$_{1.75}$) hosts large spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the $A1@1b$ band representation (BR) of the highest valence band without SOC. The large SHC comes from the Rashba spin-orbit coupling (SOC) in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the $\mathbb Z_2$ invariant is well defined due to the existence of the direct band gap and is computed to be nontrivial. The calculated SHC is as large as 1.25$\times 10^3 \frac{\hbar}{e} (惟~cm)^{-1}$ at the Fermi level ($E_F$). By tuning the chemical potential from $E_F-0.3$ to $E_F+0.3$ eV, it varies rapidly and monotonically from $-1.2\times 10^3$ to 3.1$\times 10^3 \frac{\hbar}{e} (惟~cm)^{-1}$. In addition, we also find the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07212v1-abstract-full').style.display = 'none'; document.getElementById('2208.07212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Research 6, 0042 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13376">arXiv:2207.13376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.13376">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L180404">10.1103/PhysRevB.106.L180404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Neutral Tunneling Anomalous Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zi-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W+J">W. J. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y+P">Y. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13376v1-abstract-short" style="display: inline;"> Anomalous Hall effect (AHE) is a fundamental spin-dependent transport property that is widely used in spintronics. It is generally expected that currents carrying net spin polarization are required to drive the AHE. Here we demonstrate that, in contrast to this common expectation, a spin-neutral tunneling AHE (TAHE), i.e. a TAHE driven by spin-neutral currents, can be realized in an antiferromagne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13376v1-abstract-full').style.display = 'inline'; document.getElementById('2207.13376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13376v1-abstract-full" style="display: none;"> Anomalous Hall effect (AHE) is a fundamental spin-dependent transport property that is widely used in spintronics. It is generally expected that currents carrying net spin polarization are required to drive the AHE. Here we demonstrate that, in contrast to this common expectation, a spin-neutral tunneling AHE (TAHE), i.e. a TAHE driven by spin-neutral currents, can be realized in an antiferromagnetic (AFM) tunnel junction where an AFM electrode with a non-spin-degenerate Fermi surface and a normal metal electrode are separated by a non-magnetic barrier with strong spin-orbit coupling (SOC). The symmetry mismatch between the AFM electrode and the SOC barrier results in an asymmetric spin-dependent momentum filtering of the spin-neutral longitudinal current generating the transverse Hall current in each electrode. We predict a sizable spin-neutral TAHE in an AFM tunnel junction with a RuO$_{2}$-type AFM electrode and a SnTe-type SOC barrier and show that the Hall currents are reversible by the N茅el vector switching. With the Hall angle being comparable to that in conventional AHE bulk materials, the predicted spin-neutral TAHE can be used for the N茅el vector detection in antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13376v1-abstract-full').style.display = 'none'; document.getElementById('2207.13376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11348">arXiv:2202.11348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.11348">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c00564">10.1021/acs.nanolett.2c00564 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferroelectric control of magnetic skyrmions in two-dimensional van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kai Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11348v2-abstract-short" style="display: inline;"> Magnetic skyrmions are chiral nanoscale spin textures which are usually induced by Dzyaloshinskii-Moriya interaction (DMI). Recently, magnetic skyrmions have been observed in two-dimensional (2D) van der Waals (vdW) ferromagnetic materials, such as Fe$_{3}$GeTe$_{2}$. The electric control of skyrmions is important for their potential application in low-power memory technologies. Here, we predict t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11348v2-abstract-full').style.display = 'inline'; document.getElementById('2202.11348v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11348v2-abstract-full" style="display: none;"> Magnetic skyrmions are chiral nanoscale spin textures which are usually induced by Dzyaloshinskii-Moriya interaction (DMI). Recently, magnetic skyrmions have been observed in two-dimensional (2D) van der Waals (vdW) ferromagnetic materials, such as Fe$_{3}$GeTe$_{2}$. The electric control of skyrmions is important for their potential application in low-power memory technologies. Here, we predict that DMI and magnetic skyrmions in a Fe$_{3}$GeTe$_{2}$ monolayer can be controlled by ferroelectric polarization of an adjacent 2D vdW ferroelectric In$_{2}$Se$_{3}$. Based on density functional theory and atomistic spin-dynamics modeling, we find that the interfacial symmetry breaking produces a sizable DMI in a Fe$_{3}$GeTe$_{2}$/In$_{2}$Se$_{3}$ vdW heterostructure. We show that the magnitude of DMI can be controlled by ferroe-lectric polarization reversal, leading to creation and annihilation of skyrmions. Furthermore, we find that the sign of DMI in a In$_{2}$Se$_{3}$/Fe$_{3}$GeTe$_{2}$/In$_{2}$Se$_{3}$ heterostructure changes with ferroelectric switching reversing the skyrmion chirality. The predicted electrically controlled skyrmion formation may be interesting for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11348v2-abstract-full').style.display = 'none'; document.getElementById('2202.11348v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14467">arXiv:2112.14467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.14467">pdf</a>, <a href="https://arxiv.org/format/2112.14467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.224103">10.1103/PhysRevB.105.224103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twisted nodal wires and three-dimensional quantum spin Hall effect in distorted square-net compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Junze Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jiacheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+C">Changming Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14467v3-abstract-short" style="display: inline;"> Recently, square-net materials have attracted lots of attention for the Dirac semimetal phase with negligible spin-orbit coupling (SOC) gap, e.g. ZrSiS/LaSbTe and CaMnSb$_2$. In this paper, we demonstrate that the Jahn-Teller effect enlarges the nontrivial SOC gap in the distorted structure, e.g. LaAsS and SrZnSb$_2$. Its distorted $X$ square-net layer ($X=$ P, As, Sb, Bi) resembles a quantum spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14467v3-abstract-full').style.display = 'inline'; document.getElementById('2112.14467v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14467v3-abstract-full" style="display: none;"> Recently, square-net materials have attracted lots of attention for the Dirac semimetal phase with negligible spin-orbit coupling (SOC) gap, e.g. ZrSiS/LaSbTe and CaMnSb$_2$. In this paper, we demonstrate that the Jahn-Teller effect enlarges the nontrivial SOC gap in the distorted structure, e.g. LaAsS and SrZnSb$_2$. Its distorted $X$ square-net layer ($X=$ P, As, Sb, Bi) resembles a quantum spin Hall (QSH) insulator. Since these QSH layers are simply stacked in the $\hat{x}$ direction and weakly coupled, three-dimensional QSH effect can be expected in these distorted materials, such as insulating compounds CeAs$_{1+x}$Se$_{1-y}$ and EuCdSb$_2$. Our detailed calculations show that it hosts two twisted nodal wires without SOC [each consists of two noncontractible time-reversal symmetry- and inversion symmetry-protected nodal lines touching at a fourfold degenerate point], while with SOC it becomes a topological crystalline insulator with symmetry indicators $(000; 2)$ and mirror Chern numbers $(0, 0)$. The nontrivial band topology is characterized by a generalized spin Chern number $C_{s+}=2$ when there is a gap between two sets of $\hat{s}_{x}$ eigenvalues. The nontrivial topology of these materials can be well reproduced by our tight-binding model and the calculated spin Hall conductivity is quantized to $蟽^{x}_{yz} = (\frac{\hbar}{e})\frac{G_xe^2}{蟺h}$ with $G_x$ a reciprocal lattice vector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14467v3-abstract-full').style.display = 'none'; document.getElementById('2112.14467v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 224103 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09540">arXiv:2108.09540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09540">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.124411">10.1103/PhysRevMaterials.5.124411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport Spin Polarization of Noncollinear Antiferromagnetic Antiperovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+G">Gautam Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09540v2-abstract-short" style="display: inline;"> Spin-polarized currents play a key role in spintronics. Recently, it has been found that antiferromagnets with a non-spin-degenerate band structure can efficiently spin-polarize electric currents, even though their net magnetization is zero. Among the antiferromagnetic metals with magnetic space group symmetry supporting this functionality, the noncollinear antiferromagnetic antiperovskites ANMn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09540v2-abstract-full').style.display = 'inline'; document.getElementById('2108.09540v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09540v2-abstract-full" style="display: none;"> Spin-polarized currents play a key role in spintronics. Recently, it has been found that antiferromagnets with a non-spin-degenerate band structure can efficiently spin-polarize electric currents, even though their net magnetization is zero. Among the antiferromagnetic metals with magnetic space group symmetry supporting this functionality, the noncollinear antiferromagnetic antiperovskites ANMn$_3$ (A = Ga, Ni, Sn, and Pt) are especially promising. This is due to their high N茅el temperatures and a good lattice match to perovskite oxide substrates, offering possibilities of high structural quality heterostructures based on these materials. Here, we investigate the spin polarization of antiferromagnetic ANMn$_3$ metals using first-principles density functional theory calculations. We find that the spin polarization of the longitudinal currents in these materials is comparable to that in widely used ferromagnetic metals, and thus can be exploited in magnetic tunnel junctions and spin transfer torque devices. Moreover, for certain film growth directions, the out-of-plane transverse spin currents with a giant charge-to-spin conversion efficiency can be achieved, implying that the ANMn$_3$ antiperovskites can be used as efficient spin sources. These properties make ANMn$_3$ compounds promising for application in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09540v2-abstract-full').style.display = 'none'; document.getElementById('2108.09540v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 124411 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09150">arXiv:2108.09150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09150">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-022-00744-8">10.1038/s41928-022-00744-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tilted spin current generated by the collinear antiferromagnet RuO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bose%2C+A">Arnab Bose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+N+J">Nathaniel J. Schreiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jain%2C+R">Rakshit Jain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+H+P">Hari P. Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jiaxin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X+S">Xiyue S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">David A. Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ralph%2C+D+C">Daniel C. Ralph</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09150v1-abstract-short" style="display: inline;"> We report measurements demonstrating that when the Neel vector of the collinear antiferromagnet RuO2 is appropriately canted relative to the sample plane, the antiferromagnet generates a substantial out of plane damping-like torque. The measurements are in good accord with predictions that when an electric field, E is applied to the spin split band structure of RuO2 it can cause a strong transvers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09150v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09150v1-abstract-full" style="display: none;"> We report measurements demonstrating that when the Neel vector of the collinear antiferromagnet RuO2 is appropriately canted relative to the sample plane, the antiferromagnet generates a substantial out of plane damping-like torque. The measurements are in good accord with predictions that when an electric field, E is applied to the spin split band structure of RuO2 it can cause a strong transverse spin current even in the absence of spin-orbit coupling. This produces characteristic changes in all three components of the E induced torque vector as a function of the angle of E relative to the crystal axes, corresponding to a spin current with a well defined tilted spin orientation s approximately (but not exactly) parallel to the Neel vector, flowing perpendicular to both E and S. This angular dependence is the signature of an antiferromagnetic spin Hall effect with symmetries that are distinct from other mechanisms of spin-current generation reported in antiferromagnetic or ferromagnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09150v1-abstract-full').style.display = 'none'; document.getElementById('2108.09150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 5, 267 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05780">arXiv:2108.05780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05780">pdf</a>, <a href="https://arxiv.org/format/2108.05780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.134517">10.1103/PhysRevB.105.134517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of Topological Superconductivity in Doped IV-VI Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+S">Shengshan Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jie Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zhida Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+C">Chen Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05780v2-abstract-short" style="display: inline;"> We theoretically study potential unconventional superconductivity in doped AB-type IV-VI semi-conductors, based on a minimal effective model with interaction up to the next-nearest neighbors. According to the experimental implications, we focus on the spin-triplet channels and obtain the superconducting phase diagram with respect to the anisotropy of the Fermi surfaces and the interaction strength&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05780v2-abstract-full').style.display = 'inline'; document.getElementById('2108.05780v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05780v2-abstract-full" style="display: none;"> We theoretically study potential unconventional superconductivity in doped AB-type IV-VI semi-conductors, based on a minimal effective model with interaction up to the next-nearest neighbors. According to the experimental implications, we focus on the spin-triplet channels and obtain the superconducting phase diagram with respect to the anisotropy of the Fermi surfaces and the interaction strength. Abundant nodal and nodeless states with different symmetry breaking appear in the phase diagram, and all the states are time reversal invariant and topologically nontrivial. Specifically, the various nodal superconducting ground states, dubbed as the topological Dirac superconductors, are featured by Dirac nodes in the bulk and Majorana arcs on the surface; among the full-gap states, there exist a mirror-symmetry-protected second-order topological superconductor state favoring helical Majorana hinge cones, and different first-order topological superconductor states supporting 4 surface Majorana cones. The experimental verification of the different kinds of superconducting ground states is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05780v2-abstract-full').style.display = 'none'; document.getElementById('2108.05780v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures, Accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 134517 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09219">arXiv:2103.09219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09219">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26915-3">10.1038/s41467-021-26915-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-neutral currents for spintronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09219v2-abstract-short" style="display: inline;"> Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09219v2-abstract-full').style.display = 'inline'; document.getElementById('2103.09219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09219v2-abstract-full" style="display: none;"> Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO$_{2}$ as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO$_{2}$/TiO$_{2}$/RuO$_{2}$ (001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the N茅el vectors of the two RuO$_{2}$ electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09219v2-abstract-full').style.display = 'none'; document.getElementById('2103.09219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 7061 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09011">arXiv:2103.09011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09011">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient field-free perpendicular magnetization switching by a magnetic spin Hall effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huanglin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+M">Meng Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+W">Weijia Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09011v1-abstract-short" style="display: inline;"> Current induced spin-orbit torques driven by the conventional spin Hall effect are widely used to manipulate the magnetization. This approach, however, is nondeterministic and inefficient for the switching of magnets with perpendicular magnetic anisotropy that are demanded by the high-density magnetic storage and memory devices. Here, we demonstrate that this limitation can be overcome by exploiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09011v1-abstract-full').style.display = 'inline'; document.getElementById('2103.09011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09011v1-abstract-full" style="display: none;"> Current induced spin-orbit torques driven by the conventional spin Hall effect are widely used to manipulate the magnetization. This approach, however, is nondeterministic and inefficient for the switching of magnets with perpendicular magnetic anisotropy that are demanded by the high-density magnetic storage and memory devices. Here, we demonstrate that this limitation can be overcome by exploiting a magnetic spin Hall effect in noncollinear antiferromagnets, such as Mn3Sn. The magnetic group symmetry of Mn3Sn allows generation of the out-of-plane spin current carrying spin polarization induced by an in-plane charge current. This spin current drives an out-of-plane anti-damping torque providing deterministic switching of perpendicular magnetization of an adjacent Ni/Co multilayer. Compared to the conventional spin-orbit torque devices, the observed switching does not need any external magnetic field and requires much lower current density. Our results demonstrate great prospects of exploiting the magnetic spin Hall effect in noncollinear antiferromagnets for low-power spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09011v1-abstract-full').style.display = 'none'; document.getElementById('2103.09011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06480">arXiv:2103.06480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.06480">pdf</a>, <a href="https://arxiv.org/ps/2103.06480">ps</a>, <a href="https://arxiv.org/format/2103.06480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L161407">10.1103/PhysRevB.103.L161407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust wavefront dislocations of Friedel oscillations in gapped graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhenhua Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06480v1-abstract-short" style="display: inline;"> Friedel oscillation is a well-known wave phenomenon, which represents the oscillatory response of electron waves to imperfection. By utilizing the pseudospin-momentum locking in gapless graphene, two recent experiments demonstrate the measurement of the topological Berry phase by corresponding to the unique number of wavefront dislocations in Friedel oscillations. Here, we study the Friedel oscill&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06480v1-abstract-full').style.display = 'inline'; document.getElementById('2103.06480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06480v1-abstract-full" style="display: none;"> Friedel oscillation is a well-known wave phenomenon, which represents the oscillatory response of electron waves to imperfection. By utilizing the pseudospin-momentum locking in gapless graphene, two recent experiments demonstrate the measurement of the topological Berry phase by corresponding to the unique number of wavefront dislocations in Friedel oscillations. Here, we study the Friedel oscillations in gapped graphene, in which the pseudospin-momentum locking is broken. Unusually, the wavefront dislocations do occur as that in gapless graphene, which expects the immediate verification in the current experimental condition. The number of wavefront dislocations is ascribed to the invariant pseudospin winding number in gaped and gapless graphene. This study deepens the understanding of correspondence between topological quantity and wavefront dislocations in Friedel oscillations, and implies the possibility to observe the wavefront dislocations of Friedel oscillations in intrinsic gapped two-dimensional materials, e.g., transition metal dichalcogenides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06480v1-abstract-full').style.display = 'none'; document.getElementById('2103.06480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 161407 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03883">arXiv:2103.03883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.03883">pdf</a>, <a href="https://arxiv.org/format/2103.03883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.013278">10.1103/PhysRevResearch.3.013278 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological insulators in the NaCaBi family with large SOC gaps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhaopeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+S">Simin Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jian Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03883v1-abstract-short" style="display: inline;"> By means of first-principles calculations and crystal structure searching techniques, we predict that a new NaCaBi family crystallized into the ZrBeSi-type structure (\ie $P6_{3}/mmc$) are strong topological insulators (STIs). Taking $P6_{3}/mmc$ NaCaBi as an example, the calculated band structure indicates that there is a band inversion between two opposite-parity bands at the $螕$ point. In contr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03883v1-abstract-full').style.display = 'inline'; document.getElementById('2103.03883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03883v1-abstract-full" style="display: none;"> By means of first-principles calculations and crystal structure searching techniques, we predict that a new NaCaBi family crystallized into the ZrBeSi-type structure (\ie $P6_{3}/mmc$) are strong topological insulators (STIs). Taking $P6_{3}/mmc$ NaCaBi as an example, the calculated band structure indicates that there is a band inversion between two opposite-parity bands at the $螕$ point. In contrast to the well-known Bi$_2$Se$_3$ family, the band inversion in the NaCaBi family has already occured even without spin-orbit coupling (SOC), giving rise to a nodal ring surrounding $螕$ in the $k_z=0$ plane (protected by $M_z$ symmetry). With time reversal symmetry $(\cal T)$ and inversion symmetry $(\cal I)$, the spinless nodal-line metallic phase protected by $[{\cal TI}]^2=1$ is the weak-SOC limit of the spinful topological insulating phase. Upon including SOC, the nodal ring is gapped, driving the system into a STI. Besides inversion symmetry, the nontrivial topology of NaCaBi can also be indicated by $\bar{6}$ symmetry. More surprisingly, the SOC-induced band gap in NaCaBi is about 0.34 eV, which is larger than the energy scale of room temperature. Four other compounds (KBaBi, KSrBi, RbBaBi and RbSrBi) in the family are stable at ambient pressure, both in thermodynamics and lattice dynamics, even though the gaps of them are smaller than that of NaCaBi. Thus, they provide good platforms to study topological states both in theory and experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03883v1-abstract-full').style.display = 'none'; document.getElementById('2103.03883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 013278 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07379">arXiv:2101.07379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.07379">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.136803">10.1103/PhysRevLett.127.136803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant Transport Anisotropy in ReS$_2$ Revealed via Nanoscale Conducting Path Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dawei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Shuo Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhiyong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jingfeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ducharme%2C+S">Stephen Ducharme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">Xia Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07379v2-abstract-short" style="display: inline;"> The low in-plane symmetry in layered 1T&#39;-ReS$_2$ results in strong band anisotropy, while its manifestation in the electronic properties is challenging to resolve due to the lack of effective approaches for controlling the local current path. In this work, we reveal the giant transport anisotropy in monolayer to four-layer ReS$_2$ by creating directional conducting paths via nanoscale ferroelectri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07379v2-abstract-full').style.display = 'inline'; document.getElementById('2101.07379v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07379v2-abstract-full" style="display: none;"> The low in-plane symmetry in layered 1T&#39;-ReS$_2$ results in strong band anisotropy, while its manifestation in the electronic properties is challenging to resolve due to the lack of effective approaches for controlling the local current path. In this work, we reveal the giant transport anisotropy in monolayer to four-layer ReS$_2$ by creating directional conducting paths via nanoscale ferroelectric control. By reversing the polarization of a ferroelectric polymer top layer, we induce conductivity switching ratio of &gt;1.5x10$^8$ in the ReS$_2$ channel at 300 K. Characterizing the domain-defined conducting nanowires in an insulating background shows that the conductivity ratio between the directions along and perpendicular to the Re-chain can exceed 5.5x10$^4$. Theoretical modeling points to the band origin of the transport anomaly, and further reveals the emergence of a flat band in few-layer ReS$_2$. Our work paves the path for implementing the highly anisotropic 2D materials for designing novel collective phenomena and electron lensing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07379v2-abstract-full').style.display = 'none'; document.getElementById('2101.07379v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures, w. Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 136803 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09315">arXiv:2012.09315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09315">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of anti-damping spin-orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=DC%2C+M">Mahendra DC</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+V+D+-">Vincent D. -H. Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quarterman%2C+P">P. Quarterman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Habiboglu%2C+A">Ali Habiboglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venuti%2C+B">Brooks Venuti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miura%2C+M">Masashi Miura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirby%2C+B">Brian Kirby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vailionis%2C+A">Arturas Vailionis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+C">Chong Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F">Fen Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yen-Lin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Yong Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+S">Shy-Jay Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+W">Wilman Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eley%2C+S">Serena Eley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weigang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchers%2C+J+A">Julie A. Borchers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S+X">Shan X. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09315v1-abstract-short" style="display: inline;"> High spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with a ferromagnetic layer show promise for next generation magnetic memory and logic devices. SOTs generated from the in-plane spin polarization along y-axis originated by the spin Hall and Edelstein effects can switch magnetization collinear with the spin polarization in the absence of external magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09315v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09315v1-abstract-full" style="display: none;"> High spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with a ferromagnetic layer show promise for next generation magnetic memory and logic devices. SOTs generated from the in-plane spin polarization along y-axis originated by the spin Hall and Edelstein effects can switch magnetization collinear with the spin polarization in the absence of external magnetic fields. However, an external magnetic field is required to switch the magnetization along x and z-axes via SOT generated by y-spin polarization. Here, we present that the above limitation can be circumvented by unconventional SOT in magnetron-sputtered thin film MnPd3. In addition to the conventional in-plane anti-damping-like torque due to the y-spin polarization, out-of-plane and in-plane anti-damping-like torques originating from z-spin and x-spin polarizations, respectively have been observed at room temperature. The spin torque efficiency corresponding to the y-spin polarization from MnPd3 thin films grown on thermally oxidized silicon substrate and post annealed at 400 Deg C is 0.34 - 0.44. Remarkably, we have demonstrated complete external magnetic field-free switching of perpendicular Co layer via unconventional out-of-plane anti-damping-like torque from z-spin polarization. Based on the density functional theory calculations, we determine that the observed x- and z- spin polarizations with the in-plane charge current are due to the low symmetry of the (114) oriented MnPd3 thin films. Taken together, the new material reported here provides a path to realize a practical spin channel in ultrafast magnetic memory and logic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09315v1-abstract-full').style.display = 'none'; document.getElementById('2012.09315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.02748">arXiv:2009.02748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.02748">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00334-5">10.1038/s41535-021-00334-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin photogalvanic effect in two-dimensional collinear antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yu-Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hua Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.02748v1-abstract-short" style="display: inline;"> Spin photogalvanic effect (SPGE) is an efficient method to generate a spin current by photoexcitation in a contactless and ultra-fast way. In two-dimensional (2D) collinear antiferromagnetic (AFM) materials that preserve the combined time-reversal (T) and inversion (I) symmetry (i.e., TI symmetry), we find that the photogalvanic currents in two magnetic sublattices carry different kinds of spins a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02748v1-abstract-full').style.display = 'inline'; document.getElementById('2009.02748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.02748v1-abstract-full" style="display: none;"> Spin photogalvanic effect (SPGE) is an efficient method to generate a spin current by photoexcitation in a contactless and ultra-fast way. In two-dimensional (2D) collinear antiferromagnetic (AFM) materials that preserve the combined time-reversal (T) and inversion (I) symmetry (i.e., TI symmetry), we find that the photogalvanic currents in two magnetic sublattices carry different kinds of spins and propagate in opposite direction if the spin-orbit coupling is negligible, resulting in a pure spin current without net charge current. Based on the first-principles calculations, we show that two experimentally synthesized 2D collinear AFM materials, monolayer MnPS$_3$ and bilayer CrCl$_3$, host the required symmetry and support sizable SPGE. The predicted SPGE in 2D collinear AFM materials makes them promising platforms for nano spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02748v1-abstract-full').style.display = 'none'; document.getElementById('2009.02748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 6, 35 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09624">arXiv:2006.09624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09624">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.024057">10.1103/PhysRevApplied.15.024057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial crystal Hall effect reversible by ferroelectric polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+G">Gautam Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09624v2-abstract-short" style="display: inline;"> The control of spin-dependent properties by voltage, not involving magnetization switching, has significant advantages for low-power spintronics. Here, we predict that the interfacial crystal Hall effect (ICHE) can serve for this purpose. We show that the ICHE can occur in heterostructures composed of compensated antiferromagnetic metals and non-magnetic insulators due to reduced symmetry at the i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09624v2-abstract-full').style.display = 'inline'; document.getElementById('2006.09624v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09624v2-abstract-full" style="display: none;"> The control of spin-dependent properties by voltage, not involving magnetization switching, has significant advantages for low-power spintronics. Here, we predict that the interfacial crystal Hall effect (ICHE) can serve for this purpose. We show that the ICHE can occur in heterostructures composed of compensated antiferromagnetic metals and non-magnetic insulators due to reduced symmetry at the interface, and it can be made reversible if the antiferromagnet is layered symmetrically between two identical ferroelectric layers. We explicitly demonstrate this phenomenon using density functional theory calculations for three material systems: MnBi$_{2}$Te$_{4}$/GeI$_{2}$ and topological In$_{2}$Te$_{3}$/MnBi$_{2}$Te$_{4}$/In$_{2}$Te$_{3}$ van der Waals heterostructures, and GeTe/Ru$_{2}$MnGe/GeTe heterostructure composed of three-dimensional materials. We show that all three systems reveal a sizable ICHE, while the latter two exhibit a quantum ICHE and ICHE, respectively, reversible with ferroelectric polarization. Our proposal opens an alternative direction for voltage controlled spintronics and offers not yet explored possibilities for functional devices by heterostructure design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09624v2-abstract-full').style.display = 'none'; document.getElementById('2006.09624v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 024057 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.06913">arXiv:2004.06913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.06913">pdf</a>, <a href="https://arxiv.org/format/2004.06913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.024109">10.1103/PhysRevB.102.024109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical Detection of Ferroelectric-like Metals through Nonlinear Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+W">Wenjuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hua Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.06913v1-abstract-short" style="display: inline;"> Ferroelectric-like metals are a relatively rare class of materials that have ferroelectric-like distortion and metallic conductivity. LiOsO$_3$ is the first demonstrated and the most investigated ferroelectric-like metal. The presence of free carriers makes them difficult to be studied by traditional ferroelectric techniques. In this paper, using the symmetry analysis and first-principles calculat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06913v1-abstract-full').style.display = 'inline'; document.getElementById('2004.06913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.06913v1-abstract-full" style="display: none;"> Ferroelectric-like metals are a relatively rare class of materials that have ferroelectric-like distortion and metallic conductivity. LiOsO$_3$ is the first demonstrated and the most investigated ferroelectric-like metal. The presence of free carriers makes them difficult to be studied by traditional ferroelectric techniques. In this paper, using the symmetry analysis and first-principles calculations, we demonstrate that the ferroelectric-like transition of LiOsO$_3$ can be probed by a kind of electrical transport method based on nonlinear Hall effect. The Berry curvature dipole exists in the ferroelectric-like phase, and it can lead to a measurable nonlinear Hall conductance with a conventional experimental setup. However, the symmetry of the paraelectric-like phase LiOsO$_3$ vanishes the Berry curvature dipole. The Berry curvature dipole shows a strong dependence on the polar displacement, which might be helpful for the detection of polar order. The nonlinear Hall effect provides an effective method for the detection of phase transition in the study of the ferroelectric-like metals and promotes them to be applied in the ferroelectric-like electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06913v1-abstract-full').style.display = 'none'; document.getElementById('2004.06913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 024109 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07107">arXiv:2001.07107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07107">pdf</a>, <a href="https://arxiv.org/format/2001.07107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.165135">10.1103/PhysRevB.102.165135 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Filling-enforced Dirac loops and their evolutions under various perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Dexi Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+C">Chen Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07107v1-abstract-short" style="display: inline;"> Based on symmetry analysis, we propose that filling-enforced Dirac loops (FEDLs) in non-magnetic systems exist and only exist in only five space groups (SGs), namely, SG.57, SG.60, SG.61, SG.62 and SG.205. %, respectively. We explore all possible configurations of the FEDLs in these space groups, and classify them accordingly. Furthermore, we study the evolutions of the FEDLs under various types&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07107v1-abstract-full').style.display = 'inline'; document.getElementById('2001.07107v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07107v1-abstract-full" style="display: none;"> Based on symmetry analysis, we propose that filling-enforced Dirac loops (FEDLs) in non-magnetic systems exist and only exist in only five space groups (SGs), namely, SG.57, SG.60, SG.61, SG.62 and SG.205. %, respectively. We explore all possible configurations of the FEDLs in these space groups, and classify them accordingly. Furthermore, we study the evolutions of the FEDLs under various types of symmetry-breaking perturbations, such as an applied strain or an external field. The results show that FEDL materials can serve as parent materials of both topological semimetals hosting nodal points/loops, and topological insulators/topological crystalline insulators. By means of first-principles calculations, many materials possessing FEDLs are predicted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07107v1-abstract-full').style.display = 'none'; document.getElementById('2001.07107v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 165135 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01639">arXiv:2001.01639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.01639">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.057601">10.1103/PhysRevLett.126.057601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional antiferroelectric tunnel junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+L">Li-Wei Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01639v3-abstract-short" style="display: inline;"> Ferroelectric tunnel junctions (FTJs), which consist of two metal electrodes separated by a thin ferroelectric barrier, have recently aroused significant interest for technological applications as nanoscale resistive switching devices. So far, most of existing FTJs have been based on perovskite-oxide barrier layers. The recent discovery of the two-dimensional (2D) van der Waals ferroelectric mater&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01639v3-abstract-full').style.display = 'inline'; document.getElementById('2001.01639v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01639v3-abstract-full" style="display: none;"> Ferroelectric tunnel junctions (FTJs), which consist of two metal electrodes separated by a thin ferroelectric barrier, have recently aroused significant interest for technological applications as nanoscale resistive switching devices. So far, most of existing FTJs have been based on perovskite-oxide barrier layers. The recent discovery of the two-dimensional (2D) van der Waals ferroelectric materials opens a new route to realize tunnel junctions with new functionalities and nm-scale dimensions. Due to the weak coupling between the atomic layers in these materials, the relative dipole alignment between them can be controlled by applied voltage. This allows transitions between ferroelectric and antiferroelectric orderings, resulting in significant changes of the electronic structure. Here, we propose to realize 2D antiferroelectric tunnel junctions (AFTJs), which exploit this new functionality, based on bilayer In$_2$X$_3$ (X = S, Se, Te) barriers and different 2D electrodes. Using first-principles density functional theory calculations, we demonstrate that the In$_2$X$_3$ bilayers exhibit stable ferroelectric and antiferroelectric states separated by sizable energy barriers, thus supporting a non-volatile switching between these states. Using quantum-mechanical modeling of the electronic transport, we explore in-plane and out-of-plane tunneling across the In$_2$S$_3$ van der Waals bilayers, and predict giant tunneling electroresistance (TER) effects and multiple non-volatile resistance states driven by ferroelectric-antiferroelectric order transitions. Our proposal opens a new route to realize nanoscale memory devices with ultrahigh storage density using 2D AFTJs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01639v3-abstract-full').style.display = 'none'; document.getElementById('2001.01639v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 057601 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12586">arXiv:1912.12586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.12586">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-17999-4">10.1038/s41467-020-17999-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling spin current polarization through non-collinear antiferromagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+T">T. Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quintela%2C+C+X">C. X. Quintela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Irwin%2C+J">J. Irwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+G">G. Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D+F">D. F. Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibbons%2C+J">J. Gibbons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campbell%2C+N">N. Campbell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+K">K. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S+Y">S. Y. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+L">L. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chopdekar%2C+R+V">R. V. Chopdekar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallsteinsen%2C+I">I. Hallsteinsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tybell%2C+T">T. Tybell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+P+J">P. J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+W">J. W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y+S">Y. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radaelli%2C+P+G">P. G. Radaelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ralph%2C+D+C">D. C. Ralph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymba%2C+E+Y">E. Y. Tsymba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rzchowski%2C+M+S">M. S. Rzchowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C+B">C. B. Eom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12586v1-abstract-short" style="display: inline;"> The spin-Hall effect describes the interconversion of charge currents and spin currents, enabling highly efficient manipulation of magnetization for spintronics. Symmetry conditions generally restrict polarizations of these spin currents to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12586v1-abstract-full').style.display = 'inline'; document.getElementById('1912.12586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12586v1-abstract-full" style="display: none;"> The spin-Hall effect describes the interconversion of charge currents and spin currents, enabling highly efficient manipulation of magnetization for spintronics. Symmetry conditions generally restrict polarizations of these spin currents to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced11. Here we experimentally show control of the spin polarization direction by using a non-collinear antiferromagnet Mn$_{3}$GaN, in which the triangular spin structure creates a low magnetic symmetry state while maintaining a high crystalline symmetry. We demonstrate that epitaxial Mn3GaN/Permalloy heterostructures can generate unique types of spinHall torques at room temperature corresponding to unconventional spin polarizations collinear to spin currents or charge currents which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spinorbit torque, paving the way for further progress in the emergent field of antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12586v1-abstract-full').style.display = 'none'; document.getElementById('1912.12586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12583">arXiv:1912.12583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.12583">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Epitaxial antiperovskite/perovskite heterostructures for materials design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Quintela%2C+C+X">Camilo X. Quintela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+K">Kyung Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+L">Lin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+T">Tianxiang Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paudel%2C+T+R">Tula R. Paudel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campbell%2C+N">Neil Campbell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+X">Xiaoqing Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rzchowski%2C+M+S">Mark S. Rzchowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Si-Young Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12583v1-abstract-short" style="display: inline;"> We demonstrate fabrication of atomically sharp interfaces between nitride antiperovskite Mn$_{3}$GaN and oxide perovskites (La$_{0.3}$Sr$_{0.7}$)(Al$_{0.65}$Ta$_{0.35}$)O$_{3}$ (LSAT) and SrTiO$_{3}$ as paradigms of nitride-antiperovskite/oxide-perovskite heterostructures. Using a combination of scanning transmission electron microscopy (STEM), atomic-resolution spectroscopic techniques, and first&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12583v1-abstract-full').style.display = 'inline'; document.getElementById('1912.12583v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12583v1-abstract-full" style="display: none;"> We demonstrate fabrication of atomically sharp interfaces between nitride antiperovskite Mn$_{3}$GaN and oxide perovskites (La$_{0.3}$Sr$_{0.7}$)(Al$_{0.65}$Ta$_{0.35}$)O$_{3}$ (LSAT) and SrTiO$_{3}$ as paradigms of nitride-antiperovskite/oxide-perovskite heterostructures. Using a combination of scanning transmission electron microscopy (STEM), atomic-resolution spectroscopic techniques, and first-principle calculations, we investigated the atomic-scale structure, composition, and boding at the interface. We show that the epitaxial growth between the antiperovskite and perovskite compounds is mediated by a coherent interfacial monolayer that connects the two anti-structures. We anticipate our results to be a major step for the development of functional antiperovskite/perovskite heterostructures opening to harness a combination of their functional properties including topological properties for ultra low power applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12583v1-abstract-full').style.display = 'none'; document.getElementById('1912.12583v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10696">arXiv:1907.10696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.10696">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.067203">10.1103/PhysRevLett.124.067203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear anomalous Hall effect for N茅el vector detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+G">Gautam Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10696v3-abstract-short" style="display: inline;"> Antiferromagnetic (AFM) spintronics exploits the N茅el vector as a state variable for novel spintronic devices. Recent studies have shown that the field-like and antidamping spin-orbit torques (SOT) can be used to switch the N茅el vector in antiferromagnets with proper symmetries. However, the precise detection of the N茅el vector remains a challenging problem. In this letter, we predict that the non&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10696v3-abstract-full').style.display = 'inline'; document.getElementById('1907.10696v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10696v3-abstract-full" style="display: none;"> Antiferromagnetic (AFM) spintronics exploits the N茅el vector as a state variable for novel spintronic devices. Recent studies have shown that the field-like and antidamping spin-orbit torques (SOT) can be used to switch the N茅el vector in antiferromagnets with proper symmetries. However, the precise detection of the N茅el vector remains a challenging problem. In this letter, we predict that the nonlinear anomalous Hall effect (AHE) can be used to detect the N茅el vector in most compensated antiferromagnets supporting the antidamping SOT. We show that the magnetic crystal group symmetry of these antiferromagnets combined with spin-orbit coupling produce a sizable Berry curvature dipole and hence the nonlinear AHE. As a specific example, we consider half-Heusler alloy CuMnSb, which N茅el vector can be switched by the antidamping SOT. Based on density functional theory calculations, we show that the nonlinear AHE in CuMnSb results in a measurable Hall voltage under conventional experimental conditions. The strong dependence of the Berry curvature dipole on the N茅el vector orientation provides a new detection scheme of the N茅el vector based on the nonlinear AHE. Our predictions enrich the material platform for studying non-trivial phenomena associated with the Berry curvature and broaden the range of materials useful for AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10696v3-abstract-full').style.display = 'none'; document.getElementById('1907.10696v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 067203 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.01664">arXiv:1903.01664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.01664">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-15191-2">10.1038/s41467-020-15191-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polar Coupling Enabled Nonlinear Optical Filtering at MoS$_2$/Ferroelectric Heterointerfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dawei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhiyong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hanying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Le Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yifei Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jingfeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yongfeng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">Xia Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.01664v2-abstract-short" style="display: inline;"> Complex oxide heterointerfaces and van der Waals heterostructures present two versatile but intrinsically different platforms for exploring emergent quantum phenomena and designing new functionalities. The rich opportunity offered by the synergy between these two classes of materials, however, is yet to be charted. Here, we report an unconventional nonlinear optical filtering effect resulting from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01664v2-abstract-full').style.display = 'inline'; document.getElementById('1903.01664v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.01664v2-abstract-full" style="display: none;"> Complex oxide heterointerfaces and van der Waals heterostructures present two versatile but intrinsically different platforms for exploring emergent quantum phenomena and designing new functionalities. The rich opportunity offered by the synergy between these two classes of materials, however, is yet to be charted. Here, we report an unconventional nonlinear optical filtering effect resulting from the interfacial polar alignment between monolayer MoS$_2$ and a neighboring ferroelectric oxide thin film. The second harmonic generation response at the heterointerface is either substantially enhanced or almost entirely quenched by an underlying ferroelectric domain wall depending on its chirality, and can be further tailored by the polar domains. Unlike the extensively studied coupling mechanisms driven by charge, spin, and lattice, the interfacial tailoring effect is solely mediated by the polar symmetry, as well explained via our density functional theory calculations, pointing to a new material strategy for the functional design of nanoscale reconfigurable optical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01664v2-abstract-full').style.display = 'none'; document.getElementById('1903.01664v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 1422 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shao%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shao%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shao%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10