CINXE.COM
Махсус сағыштырмалыҡ теорияһы — Википедия
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="ba" dir="ltr"> <head> <meta charset="UTF-8"> <title>Махсус сағыштырмалыҡ теорияһы — Википедия</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )bawikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","ғинуар","февраль","март","апрель","май","июнь","июль","август","сентябрь","октябрь","ноябрь","декабрь"],"wgRequestId":"6de891fe-9576-4d20-bddb-e46315920d91","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Махсус_сағыштырмалыҡ_теорияһы","wgTitle":"Махсус сағыштырмалыҡ теорияһы","wgCurRevisionId":1268022,"wgRevisionId":1268022,"wgArticleId":106819,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Википедия:Статьи с источниками из Викиданных","Википедия:Статьи со ссылками на элементы Викиданных без русской подписи","ISBN серле һылтанмаһын ҡулланған биттәр", "Альберт Эйнштейн","Махсус сағыштырмалыҡ теорияһы"],"wgPageViewLanguage":"ba","wgPageContentLanguage":"ba","wgPageContentModel":"wikitext","wgRelevantPageName":"Махсус_сағыштырмалыҡ_теорияһы","wgRelevantArticleId":106819,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ba","pageLanguageDir":"ltr","pageVariantFallbacks":"ba"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false, "wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11455","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.0"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready", "ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.tmh.player","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.editZeroSection","ext.gadget.directLinkToCommons","ext.gadget.sidebarRelated","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ba&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=ba&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ba&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Gedankenexperiment_Zeitdilitation.svg/1200px-Gedankenexperiment_Zeitdilitation.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1080"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Gedankenexperiment_Zeitdilitation.svg/800px-Gedankenexperiment_Zeitdilitation.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="720"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Gedankenexperiment_Zeitdilitation.svg/640px-Gedankenexperiment_Zeitdilitation.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="576"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Махсус сағыштырмалыҡ теорияһы — Википедия"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ba.m.wikipedia.org/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B"> <link rel="alternate" type="application/x-wiki" title="Үҙгәртергә" href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедия (ba)"> <link rel="EditURI" type="application/rsd+xml" href="//ba.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ba.wikipedia.org/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ba"> <link rel="alternate" type="application/atom+xml" title="Википедия — Atom каналы" href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D2%BA%D1%83%D2%A3%D2%93%D1%8B_%D2%AF%D2%99%D0%B3%D3%99%D1%80%D1%82%D0%B5%D2%AF%D2%99%D3%99%D1%80&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Махсус_сағыштырмалыҡ_теорияһы rootpage-Махсус_сағыштырмалыҡ_теорияһы skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Эстәлеккә күсергә</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Сайт"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Төп меню" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Төп меню</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Төп меню</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">ҡабырға панеленә күсерергә</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">йәшерергә</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Навигация </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/%D0%91%D0%B0%D1%88_%D0%B1%D0%B8%D1%82" title="Баш биткә күсергә [z]" accesskey="z"><span>Баш бит</span></a></li><li id="n-index" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%90%D0%BB%D1%84%D0%B0%D0%B2%D0%B8%D1%82%D0%BB%D1%8B_%D0%BA%D2%AF%D1%80%D2%BB%D3%99%D1%82%D0%BA%D0%B5%D1%81"><span>Алфавитлы күрһәткес</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%90%D2%93%D1%8B%D0%BC%D0%B4%D0%B0%D2%93%D1%8B_%D0%B2%D0%B0%D2%A1%D0%B8%D2%93%D0%B0%D0%BB%D0%B0%D1%80" title="Ағымдағы ваҡиғалар тураһында белешмә мәғлүмәт"><span>Ағымдағы ваҡиғалар</span></a></li> </ul> </div> </div> <div id="p-articles" class="vector-menu mw-portlet mw-portlet-articles" > <div class="vector-menu-heading"> Мәҡәләләр </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-featured" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D2%BA%D0%B0%D0%B9%D0%BB%D0%B0%D0%BD%D2%93%D0%B0%D0%BD_%D0%BC%D3%99%D2%A1%D3%99%D0%BB%D3%99%D0%BB%D3%99%D1%80"><span>Һайланған</span></a></li><li id="n-good" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%AF%D2%A1%D1%88%D1%8B_%D0%BC%D3%99%D2%A1%D3%99%D0%BB%D3%99%D0%BB%D3%99%D1%80"><span>Яҡшы</span></a></li><li id="n-quality" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%B8%D1%84%D0%B0%D1%82%D0%BB%D1%8B_%D0%BC%D3%99%D2%A1%D3%99%D0%BB%D3%99%D0%BB%D3%99%D1%80"><span>Сифатлы</span></a></li><li id="n-1000" class="mw-list-item"><a href="/wiki/%D0%9F%D1%80%D0%BE%D0%B5%D0%BA%D1%82:1000_%D3%99%D2%BB%D3%99%D0%BC%D0%B8%D3%99%D1%82%D0%BB%D0%B5_%D0%BC%D3%99%D2%A1%D3%99%D0%BB%D3%99"><span>1 000 мотлаҡ</span></a></li><li id="n-10000" class="mw-list-item"><a href="/wiki/%D0%9F%D1%80%D0%BE%D0%B5%D0%BA%D1%82:%D0%9C%D0%B8%D1%80%D0%B8%D0%B0%D0%B4%D0%B0"><span>10 000 әһәмиәтле</span></a></li><li id="n-Башҡортнамә" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%91%D0%B0%D1%88%D2%A1%D0%BE%D1%80%D1%82_%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F%D2%BB%D1%8B%D0%BD%D0%B4%D0%B0_%D0%B1%D1%83%D0%BB%D1%8B%D1%80%D2%93%D0%B0_%D1%82%D0%B5%D0%B9%D0%B5%D1%88_%D0%BC%D3%99%D2%A1%D3%99%D0%BB%D3%99%D0%BB%D3%99%D1%80"><span>Башҡортнамә</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%AF%D2%A3%D1%8B_%D0%B1%D0%B8%D1%82%D1%82%D3%99%D1%80"><span>Яңы биттәр</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%9E%D1%81%D1%80%D0%B0%D2%A1%D0%BB%D1%8B_%D0%BC%D3%99%D2%A1%D3%99%D0%BB%D3%99" title="Осраҡлы һайланған битте ҡарарға [x]" accesskey="x"><span>Осраҡлы мәҡәлә</span></a></li><li id="n-URL-ҡыҫҡартыу" class="mw-list-item"><a href="https://meta.wikimedia.org/wiki/Special:UrlShortener"><span>URL ҡыҫҡартыу</span></a></li> </ul> </div> </div> <div id="p-participation" class="vector-menu mw-portlet mw-portlet-participation" > <div class="vector-menu-heading"> Ҡатнашыу </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%91%D0%B5%D1%80%D0%BB%D3%99%D1%88%D0%BC%D3%99" title="Проект буйынса нимә эшләй алыуығыҙ һәм ҡайҙа нимә барлығы тураһында белешмә"><span>Берләшмә</span></a></li><li id="n-forum" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D2%A0%D0%BE%D1%80%D0%BE%D0%BB%D1%82%D0%B0%D0%B9"><span>Ҡоролтай</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D2%BA%D1%83%D2%A3%D2%93%D1%8B_%D2%AF%D2%99%D0%B3%D3%99%D1%80%D1%82%D0%B5%D2%AF%D2%99%D3%99%D1%80" title="Һуңғы үҙгәртеүҙәр исемлеге [r]" accesskey="r"><span>Һуңғы үҙгәртеүҙәр</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%91%D0%B5%D0%BB%D0%B5%D1%88%D0%BC%D3%99" title="«Википедия» буйынса белешмә"><span>Белешмә</span></a></li><li id="n-sitesupportregional" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%90%D2%93%D1%8B%D0%BC%D0%B4%D0%B0%D2%93%D1%8B_%D0%B2%D0%B0%D2%A1%D0%B8%D2%93%D0%B0%D0%BB%D0%B0%D1%80/%D0%91%D0%B0%D1%88%D2%A1%D0%BE%D1%80%D1%82_%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F%D2%BB%D1%8B%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B4%D0%B8_%D1%8F%D1%80%D2%99%D0%B0%D0%BC"><span>Матди ярҙам</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%D0%91%D0%B0%D1%88_%D0%B1%D0%B8%D1%82" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Википедия" src="/static/images/mobile/copyright/wikipedia-wordmark-ru.svg" style="width: 7.5em; height: 1.25em;"> <img class="mw-logo-tagline" alt="ирекле энциклопедия" src="/static/images/mobile/copyright/wikipedia-tagline-ba.svg" width="118" height="11" style="width: 7.375em; height: 0.6875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%AD%D2%99%D0%BB%D3%99%D2%AF" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Википедия эсендә эҙләү [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Эҙләү</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Википедия эсендә эҙләү" aria-label="Википедия эсендә эҙләү" autocapitalize="sentences" title="Википедия эсендә эҙләү [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Махсус:Эҙләү"> </div> <button class="cdx-button cdx-search-input__end-button">Эҙләргә</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Шәхси ҡоралдар"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Уҡыу көйләүҙәре"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Измените внешний вид страницы, размер, ширину и цвет шрифта." > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Уҡыу көйләүҙәре" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Уҡыу көйләүҙәре</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?utm_source=donate&utm_medium=sidebar&utm_campaign=spontaneous&uselang=ba" class=""><span>Иғәнә</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%98%D2%AB%D3%99%D0%BF_%D1%8F%D2%99%D1%8B%D1%83%D1%8B_%D1%8F%D2%BB%D0%B0%D1%83&returnto=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81+%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Мотлаҡ булмаһа ла, иҫәп яҙмаһы төҙөргә һәм системала танылырға тәҡдим итәбеҙ" class=""><span>Теркәлеү</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%A2%D0%B0%D0%BD%D1%8B%D0%BB%D1%8B%D1%83&returnto=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81+%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Бында теркәлеү үтергә була, әммә мотлаҡ түгел [o]" accesskey="o" class=""><span>Танылыу</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Күберәк мөмкинлектәр" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Шәхси ҡоралдар" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Шәхси ҡоралдар</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Ҡатнашыусы менюһы" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?utm_source=donate&utm_medium=sidebar&utm_campaign=spontaneous&uselang=ba"><span>Иғәнә</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%98%D2%AB%D3%99%D0%BF_%D1%8F%D2%99%D1%8B%D1%83%D1%8B_%D1%8F%D2%BB%D0%B0%D1%83&returnto=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81+%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Мотлаҡ булмаһа ла, иҫәп яҙмаһы төҙөргә һәм системала танылырға тәҡдим итәбеҙ"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Теркәлеү</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%A2%D0%B0%D0%BD%D1%8B%D0%BB%D1%8B%D1%83&returnto=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81+%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Бында теркәлеү үтергә була, әммә мотлаҡ түгел [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Танылыу</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Танылмаған мөхәррирҙәр өсөн бит <a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A0%D3%99%D1%85%D0%B8%D0%BC_%D0%B8%D1%82%D0%B5%D0%B3%D0%B5%D2%99" aria-label="Мөхәррирләү тураһында ентеклерәк"><span>Күберәк белергә</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D3%A8%D0%BB%D3%A9%D1%88%D3%A9%D0%BC" title="Был IP-адрестан яһалған төҙәтеүҙәр [y]" accesskey="y"><span>Өлөш</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D3%98%D2%A3%D0%B3%D3%99%D0%BC%D3%99_%D0%B1%D0%B8%D1%82%D0%B5%D0%BC" title="IP-адресығыҙ өсөн фекер алышыу бите [n]" accesskey="n"><span>Фекер алышыу</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Eйәшерергә\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"sitenotice\" lang=\"ba\" dir=\"ltr\"\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Сайт"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Йөкмәткеһе" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Йөкмәткеһе</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">ҡабырға панеленә күсерергә</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">йәшерергә</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Башы</div> </a> </li> <li id="toc-МСТ-ны_ижад_итеү" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#МСТ-ны_ижад_итеү"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>МСТ-ны ижад итеү</span> </div> </a> <ul id="toc-МСТ-ны_ижад_итеү-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-МСТ-ның_төп_төшөнсәләре_һәм_постулаттары" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#МСТ-ның_төп_төшөнсәләре_һәм_постулаттары"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>МСТ-ның төп төшөнсәләре һәм постулаттары</span> </div> </a> <button aria-controls="toc-МСТ-ның_төп_төшөнсәләре_һәм_постулаттары-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>МСТ-ның төп төшөнсәләре һәм постулаттары бүлеген күрһәтергә/йәшерергә</span> </button> <ul id="toc-МСТ-ның_төп_төшөнсәләре_һәм_постулаттары-sublist" class="vector-toc-list"> <li id="toc-Төп_төшөнсәләр" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Төп_төшөнсәләр"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Төп төшөнсәләр</span> </div> </a> <ul id="toc-Төп_төшөнсәләр-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ваҡытты_синхронлаштырыу" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ваҡытты_синхронлаштырыу"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Ваҡытты синхронлаштырыу</span> </div> </a> <ul id="toc-Ваҡытты_синхронлаштырыу-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Үлсәү_берәмектәрен_яраштырыу" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Үлсәү_берәмектәрен_яраштырыу"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Үлсәү берәмектәрен яраштырыу</span> </div> </a> <ul id="toc-Үлсәү_берәмектәрен_яраштырыу-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-МСТ_постулаттары" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#МСТ_постулаттары"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>МСТ постулаттары</span> </div> </a> <ul id="toc-МСТ_постулаттары-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Лоренц_әүерелештәре" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Лоренц_әүерелештәре"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Лоренц әүерелештәре</span> </div> </a> <button aria-controls="toc-Лоренц_әүерелештәре-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Лоренц әүерелештәре бүлеген күрһәтергә/йәшерергә</span> </button> <ul id="toc-Лоренц_әүерелештәре-sublist" class="vector-toc-list"> <li id="toc-Лоренц_әүерелештәрен_сығарыу" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Лоренц_әүерелештәрен_сығарыу"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Лоренц әүерелештәрен сығарыу</span> </div> </a> <ul id="toc-Лоренц_әүерелештәрен_сығарыу-sublist" class="vector-toc-list"> <li id="toc-Әүерелештәрҙең_һыҙыҡлы_булыуы" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Әүерелештәрҙең_һыҙыҡлы_булыуы"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>Әүерелештәрҙең һыҙыҡлы булыуы</span> </div> </a> <ul id="toc-Әүерелештәрҙең_һыҙыҡлы_булыуы-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Интервал" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Интервал"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Интервал</span> </div> </a> <ul id="toc-Интервал-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Геометрик_алым" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Геометрик_алым"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Геометрик алым</span> </div> </a> <ul id="toc-Геометрик_алым-sublist" class="vector-toc-list"> <li id="toc-Дүрт_үлсәмле_арауыҡ-ваҡыт" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Дүрт_үлсәмле_арауыҡ-ваҡыт"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Дүрт үлсәмле арауыҡ-ваҡыт</span> </div> </a> <ul id="toc-Дүрт_үлсәмле_арауыҡ-ваҡыт-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Сығанаҡтар" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Сығанаҡтар"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Сығанаҡтар</span> </div> </a> <ul id="toc-Сығанаҡтар-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Әҙәбиәт" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Әҙәбиәт"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Әҙәбиәт</span> </div> </a> <button aria-controls="toc-Әҙәбиәт-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Әҙәбиәт бүлеген күрһәтергә/йәшерергә</span> </button> <ul id="toc-Әҙәбиәт-sublist" class="vector-toc-list"> <li id="toc-Өҫтәлмә_әҙәбиәт" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Өҫтәлмә_әҙәбиәт"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Өҫтәлмә әҙәбиәт</span> </div> </a> <ul id="toc-Өҫтәлмә_әҙәбиәт-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Һылтанмалар" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Һылтанмалар"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Һылтанмалар</span> </div> </a> <ul id="toc-Һылтанмалар-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Йөкмәткеһе" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Йөкмәткене күрһәтергә/йәшерергә" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Йөкмәткене күрһәтергә/йәшерергә</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Махсус сағыштырмалыҡ теорияһы</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Икенсе телдәге мәҡәләгә күсегеҙ. 109 телдә уҡырға була" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-109" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">109 тел</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Spesiale_relatiwiteit" title="Spesiale relatiwiteit — африкаанс" lang="af" hreflang="af" data-title="Spesiale relatiwiteit" data-language-autonym="Afrikaans" data-language-local-name="африкаанс" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Spezielle_Relativit%C3%A4tstheorie" title="Spezielle Relativitätstheorie — швейцарский немецкий" lang="gsw" hreflang="gsw" data-title="Spezielle Relativitätstheorie" data-language-autonym="Alemannisch" data-language-local-name="швейцарский немецкий" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%8D%E1%8B%A9_%E1%8A%A0%E1%8A%95%E1%8C%BB%E1%88%AB%E1%8B%8A%E1%8A%90%E1%89%B5" title="ልዩ አንጻራዊነት — амхарский" lang="am" hreflang="am" data-title="ልዩ አንጻራዊነት" data-language-autonym="አማርኛ" data-language-local-name="амхарский" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Relatividat_especial" title="Relatividat especial — арагонский" lang="an" hreflang="an" data-title="Relatividat especial" data-language-autonym="Aragonés" data-language-local-name="арагонский" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D9%86%D8%B3%D8%A8%D9%8A%D8%A9_%D8%A7%D9%84%D8%AE%D8%A7%D8%B5%D8%A9" title="النسبية الخاصة — арабский" lang="ar" hreflang="ar" data-title="النسبية الخاصة" data-language-autonym="العربية" data-language-local-name="арабский" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%D9%8A%D9%87_%D8%AE%D8%A7%D8%B5%D9%87" title="نسبيه خاصه — Egyptian Arabic" lang="arz" hreflang="arz" data-title="نسبيه خاصه" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BF%E0%A6%B6%E0%A7%87%E0%A6%B7_%E0%A6%86%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BF%E0%A6%95%E0%A6%A4%E0%A6%BE%E0%A6%AC%E0%A6%BE%E0%A6%A6_%E0%A6%A4%E0%A6%A4%E0%A7%8D%E0%A6%A4%E0%A7%8D%E0%A6%AC" title="বিশেষ আপেক্ষিকতাবাদ তত্ত্ব — ассамский" lang="as" hreflang="as" data-title="বিশেষ আপেক্ষিকতাবাদ তত্ত্ব" data-language-autonym="অসমীয়া" data-language-local-name="ассамский" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Teor%C3%ADa_de_la_relativid%C3%A1_especial" title="Teoría de la relatividá especial — астурийский" lang="ast" hreflang="ast" data-title="Teoría de la relatividá especial" data-language-autonym="Asturianu" data-language-local-name="астурийский" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/X%C3%BCsusi_nisbilik_n%C9%99z%C9%99riyy%C9%99si" title="Xüsusi nisbilik nəzəriyyəsi — азербайджанский" lang="az" hreflang="az" data-title="Xüsusi nisbilik nəzəriyyəsi" data-language-autonym="Azərbaycanca" data-language-local-name="азербайджанский" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%A7%D8%A4%D8%B2%D9%84_%D9%86%DB%8C%D8%B3%D8%A8%DB%8C%D8%AA" title="اؤزل نیسبیت — South Azerbaijani" lang="azb" hreflang="azb" data-title="اؤزل نیسبیت" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ban mw-list-item"><a href="https://ban.wikipedia.org/wiki/R%C3%A9lativitas_khusus" title="Rélativitas khusus — балийский" lang="ban" hreflang="ban" data-title="Rélativitas khusus" data-language-autonym="Basa Bali" data-language-local-name="балийский" class="interlanguage-link-target"><span>Basa Bali</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Spezieje_Relativitetstheorie" title="Spezieje Relativitetstheorie — Bavarian" lang="bar" hreflang="bar" data-title="Spezieje Relativitetstheorie" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Spec%C4%93liuoj%C4%97_rel%C4%93t%C4%ABvoma_teuor%C4%97j%C4%97" title="Specēliuojė relētīvoma teuorėjė — Samogitian" lang="sgs" hreflang="sgs" data-title="Specēliuojė relētīvoma teuorėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D1%8D%D0%BE%D1%80%D1%8B%D1%8F_%D0%B0%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%B0%D1%81%D1%86%D1%96" title="Спецыяльная тэорыя адноснасці — белорусский" lang="be" hreflang="be" data-title="Спецыяльная тэорыя адноснасці" data-language-autonym="Беларуская" data-language-local-name="белорусский" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A1%D0%BF%D1%8D%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D1%8D%D0%BE%D1%80%D1%8B%D1%8F_%D0%B0%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%B0%D1%81%D1%8C%D1%86%D1%96" title="Спэцыяльная тэорыя адноснасьці — белорусский (тарашкевица)" lang="be-tarask" hreflang="be-tarask" data-title="Спэцыяльная тэорыя адноснасьці" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="белорусский (тарашкевица)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Специална теория на относителността — болгарский" lang="bg" hreflang="bg" data-title="Специална теория на относителността" data-language-autonym="Български" data-language-local-name="болгарский" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%AC%E0%A4%BF%E0%A4%B6%E0%A5%87%E0%A4%B8_%E0%A4%B8%E0%A4%BE%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%A4%E0%A4%BE" title="बिशेस सापेक्षता — Bhojpuri" lang="bh" hreflang="bh" data-title="बिशेस सापेक्षता" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BF%E0%A6%B6%E0%A7%87%E0%A6%B7_%E0%A6%86%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BF%E0%A6%95%E0%A6%A4%E0%A6%BE" title="বিশেষ আপেক্ষিকতা — бенгальский" lang="bn" hreflang="bn" data-title="বিশেষ আপেক্ষিকতা" data-language-autonym="বাংলা" data-language-local-name="бенгальский" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti — боснийский" lang="bs" hreflang="bs" data-title="Posebna teorija relativnosti" data-language-autonym="Bosanski" data-language-local-name="боснийский" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%A5%D0%B0%D1%80%D0%B8%D1%81%D0%B0%D0%BD%D0%B3%D1%8B_%D0%B1%D0%B0%D0%B9%D0%B4%D0%B0%D0%BB%D0%B0%D0%B9_%D1%82%D1%83%D1%81%D1%85%D0%B0%D0%B9_%D0%BE%D0%BD%D0%BE%D0%BB" title="Харисангы байдалай тусхай онол — бурятский" lang="bxr" hreflang="bxr" data-title="Харисангы байдалай тусхай онол" data-language-autonym="Буряад" data-language-local-name="бурятский" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Relativitat_especial" title="Relativitat especial — каталанский" lang="ca" hreflang="ca" data-title="Relativitat especial" data-language-autonym="Català" data-language-local-name="каталанский" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%DB%8E%DA%98%DB%95%DB%8C%DB%8C%DB%8C_%D8%AA%D8%A7%DB%8C%D8%A8%DB%95%D8%AA" title="ڕێژەییی تایبەت — центральнокурдский" lang="ckb" hreflang="ckb" data-title="ڕێژەییی تایبەت" data-language-autonym="کوردی" data-language-local-name="центральнокурдский" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Speci%C3%A1ln%C3%AD_teorie_relativity" title="Speciální teorie relativity — чешский" lang="cs" hreflang="cs" data-title="Speciální teorie relativity" data-language-autonym="Čeština" data-language-local-name="чешский" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D0%B0%D0%BD%D0%BB%D0%B0%D1%88%D1%82%D0%B0%D1%80%D1%83%D0%BB%C4%83%D1%85%C4%83%D0%BD_%D1%8F%D1%82%D0%B0%D1%80%D0%BB%C4%83_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B9%C4%95" title="Танлаштарулăхăн ятарлă теорийĕ — чувашский" lang="cv" hreflang="cv" data-title="Танлаштарулăхăн ятарлă теорийĕ" data-language-autonym="Чӑвашла" data-language-local-name="чувашский" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Perthnasedd_arbennig" title="Perthnasedd arbennig — валлийский" lang="cy" hreflang="cy" data-title="Perthnasedd arbennig" data-language-autonym="Cymraeg" data-language-local-name="валлийский" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Speciel_relativitetsteori" title="Speciel relativitetsteori — датский" lang="da" hreflang="da" data-title="Speciel relativitetsteori" data-language-autonym="Dansk" data-language-local-name="датский" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="яҡшы мәҡәлә"><a href="https://de.wikipedia.org/wiki/Spezielle_Relativit%C3%A4tstheorie" title="Spezielle Relativitätstheorie — немецкий" lang="de" hreflang="de" data-title="Spezielle Relativitätstheorie" data-language-autonym="Deutsch" data-language-local-name="немецкий" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Teoriya_Relatifiya_X%C4%B1susiye" title="Teoriya Relatifiya Xısusiye — Zazaki" lang="diq" hreflang="diq" data-title="Teoriya Relatifiya Xısusiye" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CE%AE_%CF%83%CF%87%CE%B5%CF%84%CE%B9%CE%BA%CF%8C%CF%84%CE%B7%CF%84%CE%B1" title="Ειδική σχετικότητα — греческий" lang="el" hreflang="el" data-title="Ειδική σχετικότητα" data-language-autonym="Ελληνικά" data-language-local-name="греческий" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Special_relativity" title="Special relativity — английский" lang="en" hreflang="en" data-title="Special relativity" data-language-autonym="English" data-language-local-name="английский" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Speciala_teorio_de_relativeco" title="Speciala teorio de relativeco — эсперанто" lang="eo" hreflang="eo" data-title="Speciala teorio de relativeco" data-language-autonym="Esperanto" data-language-local-name="эсперанто" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teor%C3%ADa_de_la_relatividad_especial" title="Teoría de la relatividad especial — испанский" lang="es" hreflang="es" data-title="Teoría de la relatividad especial" data-language-autonym="Español" data-language-local-name="испанский" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Erirelatiivsusteooria" title="Erirelatiivsusteooria — эстонский" lang="et" hreflang="et" data-title="Erirelatiivsusteooria" data-language-autonym="Eesti" data-language-local-name="эстонский" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Erlatibitate_berezia" title="Erlatibitate berezia — баскский" lang="eu" hreflang="eu" data-title="Erlatibitate berezia" data-language-autonym="Euskara" data-language-local-name="баскский" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%DB%8C%D8%AA_%D8%AE%D8%A7%D8%B5" title="نسبیت خاص — персидский" lang="fa" hreflang="fa" data-title="نسبیت خاص" data-language-autonym="فارسی" data-language-local-name="персидский" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Erityinen_suhteellisuusteoria" title="Erityinen suhteellisuusteoria — финский" lang="fi" hreflang="fi" data-title="Erityinen suhteellisuusteoria" data-language-autonym="Suomi" data-language-local-name="финский" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Relativit%C3%A9_restreinte" title="Relativité restreinte — французский" lang="fr" hreflang="fr" data-title="Relativité restreinte" data-language-autonym="Français" data-language-local-name="французский" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Te%C3%B2irig_sh%C3%B2nraichte_na_d%C3%A0imheachd" title="Teòirig shònraichte na dàimheachd — гэльский" lang="gd" hreflang="gd" data-title="Teòirig shònraichte na dàimheachd" data-language-autonym="Gàidhlig" data-language-local-name="гэльский" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Relatividade_especial" title="Relatividade especial — галисийский" lang="gl" hreflang="gl" data-title="Relatividade especial" data-language-autonym="Galego" data-language-local-name="галисийский" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Mba%27ekuaar%C3%A3_joguerahavi%C3%A1rava_ijap%C3%BDva" title="Mba'ekuaarã joguerahaviárava ijapýva — гуарани" lang="gn" hreflang="gn" data-title="Mba'ekuaarã joguerahaviárava ijapýva" data-language-autonym="Avañe'ẽ" data-language-local-name="гуарани" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%95%D7%A8%D7%AA_%D7%94%D7%99%D7%97%D7%A1%D7%95%D7%AA_%D7%94%D7%A4%D7%A8%D7%98%D7%99%D7%AA" title="תורת היחסות הפרטית — иврит" lang="he" hreflang="he" data-title="תורת היחסות הפרטית" data-language-autonym="עברית" data-language-local-name="иврит" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi badge-Q17437796 badge-featuredarticle mw-list-item" title="һайланған мәҡәлә"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A4%BF%E0%A4%B7%E0%A5%8D%E0%A4%9F_%E0%A4%86%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BF%E0%A4%95%E0%A4%A4%E0%A4%BE" title="विशिष्ट आपेक्षिकता — хинди" lang="hi" hreflang="hi" data-title="विशिष्ट आपेक्षिकता" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Special_relativity" title="Special relativity — Fiji Hindi" lang="hif" hreflang="hif" data-title="Special relativity" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr badge-Q17437796 badge-featuredarticle mw-list-item" title="һайланған мәҡәлә"><a href="https://hr.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti — хорватский" lang="hr" hreflang="hr" data-title="Posebna teorija relativnosti" data-language-autonym="Hrvatski" data-language-local-name="хорватский" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Speci%C3%A1lis_relativit%C3%A1selm%C3%A9let" title="Speciális relativitáselmélet — венгерский" lang="hu" hreflang="hu" data-title="Speciális relativitáselmélet" data-language-autonym="Magyar" data-language-local-name="венгерский" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%A1%D6%80%D5%A1%D5%A2%D5%A5%D6%80%D5%A1%D5%AF%D5%A1%D5%B6%D5%B8%D6%82%D5%A9%D5%B5%D5%A1%D5%B6_%D5%B0%D5%A1%D5%BF%D5%B8%D6%82%D5%AF_%D5%BF%D5%A5%D5%BD%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Հարաբերականության հատուկ տեսություն — армянский" lang="hy" hreflang="hy" data-title="Հարաբերականության հատուկ տեսություն" data-language-autonym="Հայերեն" data-language-local-name="армянский" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Relativitate_special" title="Relativitate special — интерлингва" lang="ia" hreflang="ia" data-title="Relativitate special" data-language-autonym="Interlingua" data-language-local-name="интерлингва" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Relativitas_khusus" title="Relativitas khusus — индонезийский" lang="id" hreflang="id" data-title="Relativitas khusus" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезийский" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Specala_relativeso" title="Specala relativeso — идо" lang="io" hreflang="io" data-title="Specala relativeso" data-language-autonym="Ido" data-language-local-name="идо" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Takmarka%C3%B0a_afst%C3%A6%C3%B0iskenningin" title="Takmarkaða afstæðiskenningin — исландский" lang="is" hreflang="is" data-title="Takmarkaða afstæðiskenningin" data-language-autonym="Íslenska" data-language-local-name="исландский" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Relativit%C3%A0_ristretta" title="Relatività ristretta — итальянский" lang="it" hreflang="it" data-title="Relatività ristretta" data-language-autonym="Italiano" data-language-local-name="итальянский" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E6%80%A7%E7%90%86%E8%AB%96" title="特殊相対性理論 — японский" lang="ja" hreflang="ja" data-title="特殊相対性理論" data-language-autonym="日本語" data-language-local-name="японский" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%90%E1%83%A0%E1%83%93%E1%83%9D%E1%83%91%E1%83%98%E1%83%97%E1%83%9D%E1%83%91%E1%83%98%E1%83%A1_%E1%83%A1%E1%83%9E%E1%83%94%E1%83%AA%E1%83%98%E1%83%90%E1%83%9A%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%97%E1%83%94%E1%83%9D%E1%83%A0%E1%83%98%E1%83%90" title="ფარდობითობის სპეციალური თეორია — грузинский" lang="ka" hreflang="ka" data-title="ფარდობითობის სპეციალური თეორია" data-language-autonym="ქართული" data-language-local-name="грузинский" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%90%D1%80%D0%BD%D0%B0%D0%B9%D1%8B_%D1%81%D0%B0%D0%BB%D1%8B%D1%81%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D0%BB%D1%8B%D2%9B_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D1%81%D1%8B" title="Арнайы салыстырмалылық теориясы — казахский" lang="kk" hreflang="kk" data-title="Арнайы салыстырмалылық теориясы" data-language-autonym="Қазақша" data-language-local-name="казахский" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8A%B9%EC%88%98_%EC%83%81%EB%8C%80%EC%84%B1%EC%9D%B4%EB%A1%A0" title="특수 상대성이론 — корейский" lang="ko" hreflang="ko" data-title="특수 상대성이론" data-language-autonym="한국어" data-language-local-name="корейский" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D1%82%D0%B0%D0%B9%D1%8B%D0%BD_%D1%81%D0%B0%D0%BB%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%83%D1%83%D0%BB%D1%83%D0%BA_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D1%81%D1%8B" title="Атайын салыштырмалуулук теориясы — киргизский" lang="ky" hreflang="ky" data-title="Атайын салыштырмалуулук теориясы" data-language-autonym="Кыргызча" data-language-local-name="киргизский" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la badge-Q17437796 badge-featuredarticle mw-list-item" title="һайланған мәҡәлә"><a href="https://la.wikipedia.org/wiki/Relativitas_specialis" title="Relativitas specialis — латинский" lang="la" hreflang="la" data-title="Relativitas specialis" data-language-autonym="Latina" data-language-local-name="латинский" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Specialioji_reliatyvumo_teorija" title="Specialioji reliatyvumo teorija — литовский" lang="lt" hreflang="lt" data-title="Specialioji reliatyvumo teorija" data-language-autonym="Lietuvių" data-language-local-name="литовский" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Speci%C4%81l%C4%81_relativit%C4%81tes_teorija" title="Speciālā relativitātes teorija — латышский" lang="lv" hreflang="lv" data-title="Speciālā relativitātes teorija" data-language-autonym="Latviešu" data-language-local-name="латышский" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="һайланған мәҡәлә"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D0%B7%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B0" title="Специјална теорија за релативноста — македонский" lang="mk" hreflang="mk" data-title="Специјална теорија за релативноста" data-language-autonym="Македонски" data-language-local-name="македонский" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B4%BF%E0%B4%B6%E0%B4%BF%E0%B4%B7%E0%B5%8D%E0%B4%9F_%E0%B4%86%E0%B4%AA%E0%B5%87%E0%B4%95%E0%B5%8D%E0%B4%B7%E0%B4%BF%E0%B4%95%E0%B4%A4%E0%B4%BE_%E0%B4%B8%E0%B4%BF%E0%B4%A6%E0%B5%8D%E0%B4%A7%E0%B4%BE%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B4%82" title="വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം — малаялам" lang="ml" hreflang="ml" data-title="വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം" data-language-autonym="മലയാളം" data-language-local-name="малаялам" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn badge-Q17437796 badge-featuredarticle mw-list-item" title="һайланған мәҡәлә"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D0%B0%D1%80%D1%8C%D1%86%D0%B0%D0%BD%D0%B3%D1%83%D0%B9%D0%BD_%D1%82%D1%83%D1%81%D0%B3%D0%B0%D0%B9_%D0%BE%D0%BD%D0%BE%D0%BB" title="Харьцангуйн тусгай онол — монгольский" lang="mn" hreflang="mn" data-title="Харьцангуйн тусгай онол" data-language-autonym="Монгол" data-language-local-name="монгольский" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A5%87%E0%A4%B7_%E0%A4%B8%E0%A4%BE%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%A4%E0%A4%BE" title="विशेष सापेक्षता — маратхи" lang="mr" hreflang="mr" data-title="विशेष सापेक्षता" data-language-autonym="मराठी" data-language-local-name="маратхи" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kerelatifan_khas" title="Kerelatifan khas — малайский" lang="ms" hreflang="ms" data-title="Kerelatifan khas" data-language-autonym="Bahasa Melayu" data-language-local-name="малайский" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Relattivit%C3%A0_ristretta" title="Relattività ristretta — мальтийский" lang="mt" hreflang="mt" data-title="Relattività ristretta" data-language-autonym="Malti" data-language-local-name="мальтийский" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%91%E1%80%B0%E1%80%B8%E1%80%94%E1%80%BE%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%B8%E1%80%9B%E1%80%9E%E1%80%AE%E1%80%A1%E1%80%AD%E1%80%AF%E1%80%9B%E1%80%AE" title="အထူးနှိုင်းရသီအိုရီ — бирманский" lang="my" hreflang="my" data-title="အထူးနှိုင်းရသီအိုရီ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="бирманский" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Spetschale_Relativit%C3%A4tstheorie" title="Spetschale Relativitätstheorie — нижненемецкий" lang="nds" hreflang="nds" data-title="Spetschale Relativitätstheorie" data-language-autonym="Plattdüütsch" data-language-local-name="нижненемецкий" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Speciale_relativiteitstheorie" title="Speciale relativiteitstheorie — нидерландский" lang="nl" hreflang="nl" data-title="Speciale relativiteitstheorie" data-language-autonym="Nederlands" data-language-local-name="нидерландский" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Den_spesielle_relativitetsteorien" title="Den spesielle relativitetsteorien — нюнорск" lang="nn" hreflang="nn" data-title="Den spesielle relativitetsteorien" data-language-autonym="Norsk nynorsk" data-language-local-name="нюнорск" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Den_spesielle_relativitetsteorien" title="Den spesielle relativitetsteorien — норвежский букмол" lang="nb" hreflang="nb" data-title="Den spesielle relativitetsteorien" data-language-autonym="Norsk bokmål" data-language-local-name="норвежский букмол" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Relativitat_especiala" title="Relativitat especiala — окситанский" lang="oc" hreflang="oc" data-title="Relativitat especiala" data-language-autonym="Occitan" data-language-local-name="окситанский" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AC%E0%AC%BF%E0%AC%B6%E0%AD%87%E0%AC%B7_%E0%AC%86%E0%AC%AA%E0%AD%87%E0%AC%95%E0%AD%8D%E0%AC%B7%E0%AC%BF%E0%AC%95_%E0%AC%A4%E0%AC%A4%E0%AD%8D%E0%AC%A4%E0%AD%8D%E0%AD%B1" title="ବିଶେଷ ଆପେକ୍ଷିକ ତତ୍ତ୍ୱ — ория" lang="or" hreflang="or" data-title="ବିଶେଷ ଆପେକ୍ଷିକ ତତ୍ତ୍ୱ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="ория" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B5%E0%A8%BF%E0%A8%B8%E0%A8%BC%E0%A9%87%E0%A8%B8%E0%A8%BC_%E0%A8%B8%E0%A8%BE%E0%A8%AA%E0%A9%87%E0%A8%96%E0%A8%A4%E0%A8%BE" title="ਵਿਸ਼ੇਸ਼ ਸਾਪੇਖਤਾ — панджаби" lang="pa" hreflang="pa" data-title="ਵਿਸ਼ੇਸ਼ ਸਾਪੇਖਤਾ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="панджаби" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Szczeg%C3%B3lna_teoria_wzgl%C4%99dno%C5%9Bci" title="Szczególna teoria względności — польский" lang="pl" hreflang="pl" data-title="Szczególna teoria względności" data-language-autonym="Polski" data-language-local-name="польский" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Teor%C3%ACa_dla_relativit%C3%A0_limit%C3%A0" title="Teorìa dla relatività limità — Piedmontese" lang="pms" hreflang="pms" data-title="Teorìa dla relatività limità" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B3%D9%BE%DB%8C%D8%B4%D9%84_%D8%B1%DB%8C%D9%84%DB%8C%D9%B9%DB%8C%D9%88%D9%B9%DB%8C" title="سپیشل ریلیٹیوٹی — Western Punjabi" lang="pnb" hreflang="pnb" data-title="سپیشل ریلیٹیوٹی" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%DA%81%D8%A7%D9%86%DA%AB%DA%93%DB%8C_%D9%86%D8%B3%D8%A8%D9%8A%D8%AA" title="ځانګړی نسبيت — пушту" lang="ps" hreflang="ps" data-title="ځانګړی نسبيت" data-language-autonym="پښتو" data-language-local-name="пушту" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Relatividade_restrita" title="Relatividade restrita — португальский" lang="pt" hreflang="pt" data-title="Relatividade restrita" data-language-autonym="Português" data-language-local-name="португальский" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teoria_relativit%C4%83%C8%9Bii_restr%C3%A2nse" title="Teoria relativității restrânse — румынский" lang="ro" hreflang="ro" data-title="Teoria relativității restrânse" data-language-autonym="Română" data-language-local-name="румынский" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Специальная теория относительности — русский" lang="ru" hreflang="ru" data-title="Специальная теория относительности" data-language-autonym="Русский" data-language-local-name="русский" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Tiur%C3%ACa_di_la_rilativitati_spiciali" title="Tiurìa di la rilativitati spiciali — сицилийский" lang="scn" hreflang="scn" data-title="Tiurìa di la rilativitati spiciali" data-language-autonym="Sicilianu" data-language-local-name="сицилийский" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Special_relativity" title="Special relativity — шотландский" lang="sco" hreflang="sco" data-title="Special relativity" data-language-autonym="Scots" data-language-local-name="шотландский" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D8%AE%D8%A7%D8%B5_%D9%86%D8%B3%D8%A8%D8%AA_%D8%AC%D9%88_%D9%86%D8%B8%D8%B1%D9%8A%D9%88" title="خاص نسبت جو نظريو — синдхи" lang="sd" hreflang="sd" data-title="خاص نسبت جو نظريو" data-language-autonym="سنڌي" data-language-local-name="синдхи" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Specijalna_teorija_relativnosti" title="Specijalna teorija relativnosti — сербскохорватский" lang="sh" hreflang="sh" data-title="Specijalna teorija relativnosti" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="сербскохорватский" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%80%E0%B7%92%E0%B7%81%E0%B7%9A%E0%B7%82_%E0%B7%83%E0%B7%8F%E0%B6%B4%E0%B7%9A%E0%B6%9A%E0%B7%8A%E0%B7%82%E0%B6%AD%E0%B7%8F%E0%B7%80%E0%B7%8F%E0%B6%AF%E0%B6%BA" title="විශේෂ සාපේක්ෂතාවාදය — сингальский" lang="si" hreflang="si" data-title="විශේෂ සාපේක්ෂතාවාදය" data-language-autonym="සිංහල" data-language-local-name="сингальский" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Special_relativity" title="Special relativity — Simple English" lang="en-simple" hreflang="en-simple" data-title="Special relativity" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk badge-Q17437796 badge-featuredarticle mw-list-item" title="һайланған мәҡәлә"><a href="https://sk.wikipedia.org/wiki/%C5%A0peci%C3%A1lna_te%C3%B3ria_relativity" title="Špeciálna teória relativity — словацкий" lang="sk" hreflang="sk" data-title="Špeciálna teória relativity" data-language-autonym="Slovenčina" data-language-local-name="словацкий" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti — словенский" lang="sl" hreflang="sl" data-title="Posebna teorija relativnosti" data-language-autonym="Slovenščina" data-language-local-name="словенский" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Teoria_speciale_e_relativitetit" title="Teoria speciale e relativitetit — албанский" lang="sq" hreflang="sq" data-title="Teoria speciale e relativitetit" data-language-autonym="Shqip" data-language-local-name="албанский" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Specijalna_teorija_relativnosti" title="Specijalna teorija relativnosti — сербский" lang="sr" hreflang="sr" data-title="Specijalna teorija relativnosti" data-language-autonym="Српски / srpski" data-language-local-name="сербский" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Teori_Relativitas_Khusus" title="Teori Relativitas Khusus — сунданский" lang="su" hreflang="su" data-title="Teori Relativitas Khusus" data-language-autonym="Sunda" data-language-local-name="сунданский" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Speciella_relativitetsteorin" title="Speciella relativitetsteorin — шведский" lang="sv" hreflang="sv" data-title="Speciella relativitetsteorin" data-language-autonym="Svenska" data-language-local-name="шведский" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Uhusianifu_maalumu" title="Uhusianifu maalumu — суахили" lang="sw" hreflang="sw" data-title="Uhusianifu maalumu" data-language-autonym="Kiswahili" data-language-local-name="суахили" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BF%E0%AE%B1%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%9A%E0%AF%8D_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AF%8B%E0%AE%9F%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="சிறப்புச் சார்புக் கோட்பாடு — тамильский" lang="ta" hreflang="ta" data-title="சிறப்புச் சார்புக் கோட்பாடு" data-language-autonym="தமிழ்" data-language-local-name="тамильский" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%97%E0%B8%A4%E0%B8%A9%E0%B8%8E%E0%B8%B5%E0%B8%AA%E0%B8%B1%E0%B8%A1%E0%B8%9E%E0%B8%B1%E0%B8%97%E0%B8%98%E0%B8%A0%E0%B8%B2%E0%B8%9E%E0%B8%9E%E0%B8%B4%E0%B9%80%E0%B8%A8%E0%B8%A9" title="ทฤษฎีสัมพัทธภาพพิเศษ — тайский" lang="th" hreflang="th" data-title="ทฤษฎีสัมพัทธภาพพิเศษ" data-language-autonym="ไทย" data-language-local-name="тайский" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Teorya_ng_natatanging_relatibidad" title="Teorya ng natatanging relatibidad — тагалог" lang="tl" hreflang="tl" data-title="Teorya ng natatanging relatibidad" data-language-autonym="Tagalog" data-language-local-name="тагалог" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%96zel_g%C3%B6relilik" title="Özel görelilik — турецкий" lang="tr" hreflang="tr" data-title="Özel görelilik" data-language-autonym="Türkçe" data-language-local-name="турецкий" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt badge-Q17437796 badge-featuredarticle mw-list-item" title="һайланған мәҡәлә"><a href="https://tt.wikipedia.org/wiki/Maxsus_%C3%A7a%C4%9F%C4%B1%C5%9Ft%C4%B1rmal%C4%B1l%C4%B1q_teori%C3%A4se" title="Maxsus çağıştırmalılıq teoriäse — татарский" lang="tt" hreflang="tt" data-title="Maxsus çağıştırmalılıq teoriäse" data-language-autonym="Татарча / tatarça" data-language-local-name="татарский" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D0%B2%D1%96%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%BE%D1%81%D1%82%D1%96" title="Спеціальна теорія відносності — украинский" lang="uk" hreflang="uk" data-title="Спеціальна теорія відносності" data-language-autonym="Українська" data-language-local-name="украинский" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B6%D8%A7%D9%81%DB%8C%D8%AA_%D9%85%D8%AE%D8%B5%D9%88%D8%B5%DB%81" title="اضافیت مخصوصہ — урду" lang="ur" hreflang="ur" data-title="اضافیت مخصوصہ" data-language-autonym="اردو" data-language-local-name="урду" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Maxsus_nisbiylik_nazariyasi" title="Maxsus nisbiylik nazariyasi — узбекский" lang="uz" hreflang="uz" data-title="Maxsus nisbiylik nazariyasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбекский" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Specialine_rel%C3%A4tivi%C5%BEusen_teorii" title="Specialine relätivižusen teorii — вепсский" lang="vep" hreflang="vep" data-title="Specialine relätivižusen teorii" data-language-autonym="Vepsän kel’" data-language-local-name="вепсский" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Thuy%E1%BA%BFt_t%C6%B0%C6%A1ng_%C4%91%E1%BB%91i_h%E1%BA%B9p" title="Thuyết tương đối hẹp — вьетнамский" lang="vi" hreflang="vi" data-title="Thuyết tương đối hẹp" data-language-autonym="Tiếng Việt" data-language-local-name="вьетнамский" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Pinaurog_nga_relatibidad" title="Pinaurog nga relatibidad — варай" lang="war" hreflang="war" data-title="Pinaurog nga relatibidad" data-language-autonym="Winaray" data-language-local-name="варай" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论 — у" lang="wuu" hreflang="wuu" data-title="狭义相对论" data-language-autonym="吴语" data-language-local-name="у" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A1%D7%A4%D7%A2%D7%A6%D7%99%D7%A2%D7%9C%D7%A2_%D7%98%D7%A2%D7%90%D7%A8%D7%99%D7%A2_%D7%A4%D7%95%D7%9F_%D7%A8%D7%A2%D7%9C%D7%90%D7%98%D7%99%D7%95%D7%95%D7%99%D7%98%D7%A2%D7%98" title="ספעציעלע טעאריע פון רעלאטיוויטעט — идиш" lang="yi" hreflang="yi" data-title="ספעציעלע טעאריע פון רעלאטיוויטעט" data-language-autonym="ייִדיש" data-language-local-name="идиш" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论 — китайский" lang="zh" hreflang="zh" data-title="狭义相对论" data-language-autonym="中文" data-language-local-name="китайский" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論 — Literary Chinese" lang="lzh" hreflang="lzh" data-title="狹義相對論" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論 — кантонский" lang="yue" hreflang="yue" data-title="狹義相對論" data-language-autonym="粵語" data-language-local-name="кантонский" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11455#sitelinks-wikipedia" title="Башҡа телдәргә һылтанмаларҙы төҙәтеү" class="wbc-editpage">Һылтанмаларҙы төҙәтергә</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Исем арауыҡтары"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Эстәлек битен ҡарау [c]" accesskey="c"><span>Бит</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%D0%A4%D0%B5%D0%BA%D0%B5%D1%80%D0%BB%D3%99%D1%88%D0%B5%D2%AF:%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" rel="discussion" title="Биттең эстәлеге тураһында фекерләшеү [t]" accesskey="t"><span>Фекер алышыу</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Телде үҙгәртергә" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">башҡортса</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Ҡарауҙар"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B"><span>Уҡыу</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit" title="Был битте үҙгәртеү [v]" accesskey="v"><span>Үҙгәртеү</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit" title="Биттең сығанаҡ кодын үҙгәртеү [e]" accesskey="e"><span>Кодты үҙгәртеү</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=history" title="Биттең төҙәтеүҙәр журналы [h]" accesskey="h"><span>Тарих</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Ҡоралдар"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Ҡоралдар" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Ҡоралдар</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Ҡоралдар</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">ҡабырға панеленә күсерергә</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">йәшерергә</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Күберәк мөмкинлектәр" > <div class="vector-menu-heading"> Ғәмәлдәр </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B"><span>Уҡыу</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit" title="Был битте үҙгәртеү [v]" accesskey="v"><span>Үҙгәртеү</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit" title="Биттең сығанаҡ кодын үҙгәртеү [e]" accesskey="e"><span>Кодты үҙгәртеү</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=history"><span>Тарих</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Дөйөм </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%91%D1%8B%D0%BD%D0%B4%D0%B0_%D2%BB%D1%8B%D0%BB%D1%82%D0%B0%D0%BD%D0%BC%D0%B0%D0%BB%D0%B0%D1%80/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Был биткә һылтанған барлыҡ биттәрҙең исемлеге [j]" accesskey="j"><span>Был биткә һылтанмалар</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%91%D3%99%D0%B9%D0%BB%D0%B5_%D2%AF%D2%99%D0%B3%D3%99%D1%80%D1%82%D0%B5%D2%AF%D2%99%D3%99%D1%80/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" rel="nofollow" title="Был бит һылтанған биттәрҙәге һуңғы үҙгәртеүҙәр [k]" accesskey="k"><span>Бәйле үҙгәртеүҙәр</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D0%B1%D0%B8%D1%82%D1%82%D3%99%D1%80" title="Барлыҡ махсус биттәр исемлеге [q]" accesskey="q"><span>Махсус биттәр</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&oldid=1268022" title="Биттең был өлгөһөнә даими һылтанма"><span>Даими һылтанма</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=info" title="Был бит тураһында ентекләберәк"><span>Бит мәғлүмәттәре</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%A6%D0%B8%D1%82%D0%B0%D1%82%D0%B0&page=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&id=1268022&wpFormIdentifier=titleform" title="Был биттән нисек өҙөмтә яһау тураһында мәғлүмәт"><span>Биттән өҙөмтә яһарға</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:UrlShortener&url=https%3A%2F%2Fba.wikipedia.org%2Fwiki%2F%25D0%259C%25D0%25B0%25D1%2585%25D1%2581%25D1%2583%25D1%2581_%25D1%2581%25D0%25B0%25D2%2593%25D1%258B%25D1%2588%25D1%2582%25D1%258B%25D1%2580%25D0%25BC%25D0%25B0%25D0%25BB%25D1%258B%25D2%25A1_%25D1%2582%25D0%25B5%25D0%25BE%25D1%2580%25D0%25B8%25D1%258F%25D2%25BB%25D1%258B"><span>Ҡыҫҡа URL алыу</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:QrCode&url=https%3A%2F%2Fba.wikipedia.org%2Fwiki%2F%25D0%259C%25D0%25B0%25D1%2585%25D1%2581%25D1%2583%25D1%2581_%25D1%2581%25D0%25B0%25D2%2593%25D1%258B%25D1%2588%25D1%2582%25D1%258B%25D1%2580%25D0%25BC%25D0%25B0%25D0%25BB%25D1%258B%25D2%25A1_%25D1%2582%25D0%25B5%25D0%25BE%25D1%2580%25D0%25B8%25D1%258F%25D2%25BB%25D1%258B"><span>QR код алыу</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Баҫтырыу/сығарыу </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:Collection&bookcmd=book_creator&referer=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81+%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B"><span>Китап төҙөү</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:DownloadAsPdf&page=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=show-download-screen"><span>PDF форматында йөкләү</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&printable=yes" title="Биттең ҡағыҙға баҫтырыу өсөн өлгөһө [p]" accesskey="p"><span>Баҫтырыу өлгөһө</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Башҡа проекттарҙа </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Special_relativity" hreflang="en"><span>Викимилек</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11455" title="Мәғлүмәт һаҡлағысына бәйле элементҡа һылтанма [g]" accesskey="g"><span>Викимәғлүмәт элементы</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Ҡоралдар"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Уҡыу көйләүҙәре"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Уҡыу көйләүҙәре</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">ҡабырға панеленә күсерергә</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">йәшерергә</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Википедия — ирекле энциклопедия мәғлүмәте</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ba" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1278674">.mw-parser-output .ts-Универсальная_карточка{width:23em}.mw-parser-output .ts-Универсальная_карточка-above{background:var(--background-color-neutral,#eaecf0);font-weight:bold;font-size:120%;text-align:center}.mw-parser-output .ts-Универсальная_карточка-original,.mw-parser-output .ts-Универсальная_карточка-image{text-align:center}.mw-parser-output .ts-Универсальная_карточка-label{width:9em;background:var(--background-color-neutral,#eaecf0);text-align:left;padding-left:.4em;padding-right:.4em}.mw-parser-output .ts-Универсальная_карточка-split{vertical-align:middle;text-align:center}.mw-parser-output .ts-Универсальная_карточка-below{background:var(--background-color-neutral,#eaecf0);text-align:center}.mw-parser-output .ts-Универсальная_карточка-error{background:var(--background-color-destructive-subtle,#ffe9e5);border:1px solid var(--border-color-error,#9f3526);text-align:center}</style> <table cellspacing="2" class="infobox ts-Универсальная_карточка"> <tbody><tr><td colspan="2" class="infobox-above ts-Универсальная_карточка-above">Махсус сағыштырмалыҡ теорияһы</td></tr> <tr><th class="infobox-label ts-Универсальная_карточка-label">Нигеҙләү датаһы</th><td class="infobox-text"> <span data-wikidata-claim-id="Q11455$f53f12dd-41aa-f58b-c8a6-81e7309a6ade" class="wikidata-claim" data-wikidata-property-id="P571"><span class="wikidata-snak wikidata-main-snak"><span style="white-space:nowrap;"><a href="/wiki/1905_%D0%B9%D1%8B%D0%BB" title="1905 йыл">1905</a></span></span></span></td></tr> <tr><td colspan="2" class="infobox-image ts-Универсальная_карточка-image"><span data-wikidata-claim-id="Q11455$4d5bb733-49ea-9bc7-7837-b2a4efc719e6" class="wikidata-claim" data-wikidata-property-id="P18"><span class="wikidata-snak wikidata-main-snak"><span typeof="mw:File/Frameless"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Gedankenexperiment_Zeitdilitation.svg" class="mw-file-description"><img alt="Рәсем" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Gedankenexperiment_Zeitdilitation.svg/274px-Gedankenexperiment_Zeitdilitation.svg.png" decoding="async" width="274" height="247" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Gedankenexperiment_Zeitdilitation.svg/411px-Gedankenexperiment_Zeitdilitation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Gedankenexperiment_Zeitdilitation.svg/548px-Gedankenexperiment_Zeitdilitation.svg.png 2x" data-file-width="600" data-file-height="540" /></a></span></span></span></td></tr> <tr><td colspan="2" class="infobox-image ts-Универсальная_карточка-image"><span data-wikidata-claim-id="Q11455$DFB23F40-539F-4399-BBF8-9798931DC324" class="wikidata-claim" data-wikidata-property-id="P10"><span class="wikidata-snak wikidata-main-snak"><span typeof="mw:File/Frameless"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/274px--Experiment_zur_Relativit%C3%A4tstheorie.webm.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="274" height="154" data-durationhint="85" data-mwtitle="Experiment_zur_Relativitätstheorie.webm" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/Experiment_zur_Relativit%C3%A4tstheorie.webm.480p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="480p.vp9.webm" data-width="854" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/Experiment_zur_Relativit%C3%A4tstheorie.webm.720p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/Experiment_zur_Relativit%C3%A4tstheorie.webm.1080p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="1080p.vp9.webm" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm" type="video/webm; codecs="vp9, opus"" data-width="1920" data-height="1080" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/Experiment_zur_Relativit%C3%A4tstheorie.webm.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/Experiment_zur_Relativit%C3%A4tstheorie.webm.240p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="240p.vp9.webm" data-width="426" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/Experiment_zur_Relativit%C3%A4tstheorie.webm.360p.vp9.webm" type="video/webm; codecs="vp9, opus"" data-transcodekey="360p.vp9.webm" data-width="640" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Experiment_zur_Relativit%C3%A4tstheorie.webm/Experiment_zur_Relativit%C3%A4tstheorie.webm.360p.webm" type="video/webm; codecs="vp8, vorbis"" data-transcodekey="360p.webm" data-width="640" data-height="360" /><track src="https://commons.wikimedia.org/w/api.php?action=timedtext&title=File%3AExperiment_zur_Relativit%C3%A4tstheorie.webm&lang=de&trackformat=vtt&origin=%2A" kind="subtitles" type="text/vtt" srclang="de" label="Deutsch (de)" data-dir="ltr" /></video></span></span></span></span></td></tr> <tr><th class="infobox-label ts-Универсальная_карточка-label">Асыусы йәки уйлап табыусы</th><td class="infobox-text"> <span data-wikidata-claim-id="Q11455$21e1c4e3-4c15-c707-6c52-ded368704702" class="wikidata-claim" data-wikidata-property-id="P61"><span class="wikidata-snak wikidata-main-snak"><a href="/wiki/%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD" title="Альберт Эйнштейн">Альберт Эйнштейн</a></span><sup id="cite_ref-_7e6cd6ec521ca3f5_1-0" class="reference"><a href="#cite_note-_7e6cd6ec521ca3f5-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></span></td></tr> <tr><th class="infobox-label ts-Универсальная_карточка-label">Асыу датаһы</th><td class="infobox-text"> <span data-wikidata-claim-id="Q11455$9e8616ae-4929-69e0-ed6d-ca3dfb359f0d" class="wikidata-claim" data-wikidata-property-id="P575"><span class="wikidata-snak wikidata-main-snak"><span style="white-space:nowrap;"><a href="/wiki/1905_%D0%B9%D1%8B%D0%BB" title="1905 йыл">1905</a></span></span></span></td></tr> <tr><th class="infobox-label ts-Универсальная_карточка-label"><a href="https://www.wikidata.org/wiki/Property:P12457" class="extiw" title="d:Property:P12457">Инвариант относительно</a></th><td class="infobox-text"> <span data-wikidata-claim-id="Q11455$60b46a8b-46e8-e894-0bf4-1e30ad23445d" class="wikidata-claim" data-wikidata-property-id="P12457"><span class="wikidata-snak wikidata-main-snak"><span class="plainlinks"><a class="external text" href="https://ru.wikipedia.org/w/index.php?title=%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5+%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%B0&action=edit&editintro=T:Нет_статьи/editintro&preload=T:Нет_статьи/preload&preloadparams%5B%5D=Q217255&preloadparams%5B%5D=%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5+%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%B0&preloadparams%5B%5D=Универсальная+карточка"><span style="color:var(--color-link-red, #d73333); text-decoration:inherit; text-decoration-color:var(--color-link-red, #d73333);">преобразование Лоренца</span></a></span><sup><a href="https://www.wikidata.org/wiki/Q217255" class="extiw" title="d:Q217255">[d]</a></sup></span></span></td></tr> <tr><td colspan="2" class="infobox-below ts-Универсальная_карточка-below"><span data-wikidata-claim-id="q11455$b3befd1e-489e-6e34-70d9-62c0f0e2b498" class="wikidata-claim" data-wikidata-property-id="P373"><span class="wikidata-snak wikidata-main-snak"><span typeof="mw:File"><a href="https://commons.wikimedia.org/wiki/Category:Special_relativity" title="commons:Category:Special relativity"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> <a href="https://commons.wikimedia.org/wiki/Category:Special_relativity" class="extiw" title="commons:Category:Special relativity">Махсус сағыштырмалыҡ теорияһы Викимилектә</a></span></span></td></tr> </tbody></table> <figure typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Albert_Einstein_1979_USSR_Stamp.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Albert_Einstein_1979_USSR_Stamp.jpg/250px-Albert_Einstein_1979_USSR_Stamp.jpg" decoding="async" width="250" height="175" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Albert_Einstein_1979_USSR_Stamp.jpg/375px-Albert_Einstein_1979_USSR_Stamp.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/Albert_Einstein_1979_USSR_Stamp.jpg/500px-Albert_Einstein_1979_USSR_Stamp.jpg 2x" data-file-width="1917" data-file-height="1344" /></a><figcaption>МСТ-ны ижад итеүселәрҙең береһе Альберт Эйнштейнға бағышлап, E = mc2  формулаһы менән сығарылған почта маркаһы</figcaption></figure> <p><b>Махсус сағыштырмалыҡ теорияһы</b> (<b>МСТ</b>; шулай уҡ <b>айырым сағыштырмалыҡ теорияһы</b>) — вакуумдағы яҡтылыҡ тиҙлегенән кәмерәк, шул  иҫәптән яҡтылыҡ тиҙлегенә яҡын булған хәрәкәт тиҙлеге шарттарында хәрәкәтте, механика закондарын һәм арауыҡ-ваҡыт мөнәсәбәттәрен тасуирлаусы теория. МСТ-ны гравитацион ҡырҙар өсөн дөйөмләштереү дөйөм сағыштырмалыҡ теорияһы тип атала. </p><p>Физик процестар барышында классик механикала фараз ителгәндәрҙән махсус сағыштырмалыҡ теорияһы тарафынан һүрәтләнгән тайпылыштар <i>релятивистик эффекттар</i> тип атала, ә был эффекттар <i>релятивистик тиҙлек</i> ваҡытында һиҙелерлек дәрәжәгә етә. МСТ-ның классик механиканан төп айырмаһы (күҙәтелеүсе) арауыҡ һәм ваҡыт тасуирламаларының тиҙлеккә бойондороҡлолоғонан ғибәрәт.   </p><p>Лоренц әүерелештәре махсус сағыштырмалыҡ теорияһында үҙәк урынды биләй. Улар ваҡиғалар бер инерциаль хисаплама системаһынан икенсеһенә күскәндә арауыҡ-ваҡыт координаталарын үҙгәртеү мөмкинлеген бирә.  </p><p>Махсус сағыштырмалыҡ теорияһы <a href="/wiki/%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD" title="Альберт Эйнштейн">Альберт Эйнштейн</a> тарафынан 1905 йылда  «Хәрәкәт итеүсе есемдәрҙең электродинамикаһына» тигән хеҙмәттә һүрәтләнә. Төрлө хисаплама системалары араһында координаталар һәм ваҡыт әүерелештәренең математик аппараты  (электромагнит ҡыры тигеҙләмәләрен һаҡлау маҡсатында) әүәле француз математигы А. Пуанкаре тарафынан төҙөлә (ул «Лоренц әүерелештәре» тигән терминды ла тәҡдим итә — Лоренц үҙе быға тиклем тик яҡынса формулаларҙы ғына сығарған була<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>). А. Пуанкаре был әүерелештәрҙе уйҙырма ваҡытлы дүрт үлсәмле арауыҡ-ваҡыттағы боролоштар тип аңларға мөмкин булыуын күрһәтә (Г. Минковскийҙан алда) һәм Лоренц әүерелештәренең төркөм хасил итеүен күрһәтә.   </p><p> «Сағыштырмалыҡ теорияһы» тигән терминды М. Планк тәҡдим итә. Артабан, А. Эйнштейн гравитация теорияһын — <a href="/wiki/%D0%94%D3%A9%D0%B9%D3%A9%D0%BC_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Дөйөм сағыштырмалыҡ теорияһы">дөйөм сағыштырмалыҡ теорияһын</a> — эшләгәндән һуң сағыштырмалыҡ теорияһына «махсус» йәки «айырым» тигән һүҙ өҫтәлә.  </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="МСТ-ны_ижад_итеү"><span id=".D0.9C.D0.A1.D0.A2-.D0.BD.D1.8B_.D0.B8.D0.B6.D0.B0.D0.B4_.D0.B8.D1.82.D0.B5.D2.AF"></span>МСТ-ны ижад итеү</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=1" title="МСТ-ны ижад итеү бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=1" title="МСТ-ны ижад итеү бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p> XIX быуатта электродинамика үҫеше сағыштырмалыҡ теорияһы барлыҡҡа килеүгә этәргес бирә <sup id="cite_ref-Ginzburg_3-0" class="reference"><a href="#cite_note-Ginzburg-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>. Электр һәм магнетизм өлкәләрендәге тәжрибәүи факттарҙы һәм законлылыҡтарҙы дөйөмләштереү һәм  теоретик күҙлектән үткәреү һөҙөмтәһе булараҡ Максвелл тигеҙләмәләре барлыҡҡа килә. Был тигеҙләмәләр электромагнит ҡырының үҫешен һәм уның зарядтар һәм токтар менән үҙ-ара тәьҫир итешеүен һүрәтләй. Максвелл электродинамикаһында электромагнит тулҡындарының вакуумда таралыу тиҙлеге был тулҡындар таралыу сығанағының да, күҙәтеүсенең дә хәрәкәт итеү тиҙлегенә бәйле түгел, һәм ул яҡтылыҡ тиҙлегенә тиң. Шулай итеп,  Максвелл тигеҙләмәләре Галилей әүерелештәренә ҡарата инвариантһыҙ булып сыға, ә был классик механикаға тап килмәй. </p><p>Махсус сағыштырмалыҡ теорияһы <a href="/wiki/XX_%D0%B1%D1%8B%D1%83%D0%B0%D1%82" title="XX быуат">XX</a> быуат башында Г. А. Лоренц, А. Пуанкаре, <a href="/wiki/%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD" title="Альберт Эйнштейн">А.</a> <a href="/wiki/%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD" title="Альберт Эйнштейн">Эйнштейн</a> һәм башҡа ғалимдар  тарафынан эшләнә <sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> . МСТ-ны барлыҡҡа килтереү өсөн тәжрибәүи нигеҙ булып Майкельсон тәжрибәһе хеҙмәт итә.  Һөҙөмтәләр ул осорҙағы классик физика өсөн көтөлмәгән булып сыға: яҡтылыҡ тиҙлеге Ерҙең Ҡояш тирәләй әйләнеү йүнәлешенә һәм орбита буйынса хәрәкәтенә бәйле түгел икән.  Алынған мәғлүмәттәрҙе аңлатырға тырышыу классик белемдәрҙе ҡайтанан ҡарауға һәм махсус сағыштырмалыҡ теорияһын хасил итеүгә килтерә. </p><p>Яҡтылыҡ тиҙлегенә яҡыная барған тиҙлектәр менән хәрәкәт итеү сәбәпле классик динамика закондарынан тайпылыу арта бара. Көс менән <a href="/wiki/%D0%A2%D0%B8%D2%99%D0%BB%D3%99%D0%BD%D0%B5%D1%88" title="Тиҙләнеш">тиҙләнеште</a> бергә бәйләүсе Икенсе Ньютон законы МСТ-ға яраҡлаштырылырға тейеш. Шулай уҡ есем импульсы менән кинетик энергияһының да  релятивистик булмаған осраҡ менән сағыштырғанда тиҙлеккә бәйләнгәнлеге ҡатмарлыраҡ.  </p><p>Махсус сағыштырмалыҡ теорияһы тәжрибәләр аша күп тапҡырҙар раҫланған һәм ҡулланыусанлыҡ йәһәтенән дөрөҫ теория булып тора<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Л. Пэйдж әйтмешләй, «беҙҙең электр быуатында һәр генераторҙың һәм һәр электр моторының әйләнеп торған якоры сағыштырмалыҡ теорияһының ғәҙеллеген иғлан итеүҙән туҡтамай  — тыңлай белергә генә кәрәк»<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="МСТ-ның_төп_төшөнсәләре_һәм_постулаттары"><span id=".D0.9C.D0.A1.D0.A2-.D0.BD.D1.8B.D2.A3_.D1.82.D3.A9.D0.BF_.D1.82.D3.A9.D1.88.D3.A9.D0.BD.D1.81.D3.99.D0.BB.D3.99.D1.80.D0.B5_.D2.BB.D3.99.D0.BC_.D0.BF.D0.BE.D1.81.D1.82.D1.83.D0.BB.D0.B0.D1.82.D1.82.D0.B0.D1.80.D1.8B"></span>МСТ-ның төп төшөнсәләре һәм  постулаттары</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=2" title="МСТ-ның төп төшөнсәләре һәм постулаттары бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=2" title="МСТ-ның төп төшөнсәләре һәм постулаттары бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Махсус сағыштырмалыҡ теорияһы, башҡа физик теориялар кеүек үк, төп төшөнсәләр һәм постулаттар менән уның физик объекттарға яраҡлылығы нигеҙендә белдерелә ала.  </p> <div class="mw-heading mw-heading3"><h3 id="Төп_төшөнсәләр"><span id=".D0.A2.D3.A9.D0.BF_.D1.82.D3.A9.D1.88.D3.A9.D0.BD.D1.81.D3.99.D0.BB.D3.99.D1.80"></span>Төп төшөнсәләр</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=3" title="Төп төшөнсәләр бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=3" title="Төп төшөнсәләр бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Хисаплама системаһы был системаның башланғысы итеп һайланған ниндәй ҙә булһа бер матди есемдән, хисаплама системаһына ҡарата объекттарҙың торошон асыҡлау ысулынан һәм ваҡытты иҫәпләү ысулынан  тора. Ғәҙәттә хисаплама системаһын һәм <a href="/wiki/%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B0%D0%BB%D0%B0%D1%80_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%D2%BB%D1%8B" title="Координаталар системаһы">координаталар системаһын</a> айыралар. Ваҡытты иҫәпләү ғәмәлиәтен координаталар системаһына өҫтәү уны хисаплама системаһына «әүерелдерә». </p><p>Инерциялы хисаплама системаһы (ИХС) түбәндәгесә аңлатыла: тышҡы тәьҫирҙәргә бирелмәгән объект был системаға ҡарата  тигеҙ һәм тура һыҙыҡлы хәрәкәт итә. ИХС бар һәм был инерциялы системаға ҡарата тигеҙ һәм тура һыҙыҡлы хәрәкәт иткән теләһә ҡайһы хисаплама системаһы  ИХС булып тора. </p><p>Арауыҡта локалләшә алған һәм шуның менән бергә бик бәләкәй оҙайлылыҡҡа эйә булған теләһә ҡайһы физик процесс ваҡиға тип атала.  Йәғни ваҡиға (x, y, z) <a href="/wiki/%D0%9A%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B0%D0%BB%D0%B0%D1%80_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%D2%BB%D1%8B" title="Координаталар системаһы">координаталары</a> һәм t ваҡыт мәле менән тасуирлана. Ваҡиғаларға миҫалдар: <a href="/wiki/%D0%AF%D2%A1%D1%82%D1%8B%D0%BB%D1%8B%D2%A1" title="Яҡтылыҡ">яҡтылыҡ</a> балҡышы, материаль нөктәнең ошо мәлдәге торошо һ.б.   </p><p>Ғәҙәттә  S һәм S' инерциялы системалары ҡарала. S системаһына ҡарата үлсәнгән бер ваҡиғаның ваҡыты һәм координаталары (t, x, y, z) тип, ә ошо уҡ ваҡиғаның S' системаһына ҡарата булған ваҡыты һәм координаталары (t', x', y', z') тип билдәләнә. Системаларҙың координата күсәрҙәре бер-береһенә параллель һәм S' системаһы S системаһының x күсәре эргәһенән  v тиҙлеге менән хәрәкәт итә тип ҡарау уңайлы. (t', x', y', z') ваҡыты һәм координатаһын (t, x, y, z) менән бәйләүсе нисбәттәрҙе эҙләү МСТ алдындағы бурыстарҙың береһе  булып тора. Был нисбәттәр Лоренц әүерелештәре тип атала.  </p> <div class="mw-heading mw-heading3"><h3 id="Ваҡытты_синхронлаштырыу"><span id=".D0.92.D0.B0.D2.A1.D1.8B.D1.82.D1.82.D1.8B_.D1.81.D0.B8.D0.BD.D1.85.D1.80.D0.BE.D0.BD.D0.BB.D0.B0.D1.88.D1.82.D1.8B.D1.80.D1.8B.D1.83"></span>Ваҡытты синхронлаштырыу</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=4" title="Ваҡытты синхронлаштырыу бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=4" title="Ваҡытты синхронлаштырыу бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>МСТ-ла бирелгән инерциялы хисаплама системаһы сиктәрендә берҙәм ваҡытты билдәләү мөмкинлеге раҫлана. Бының өсөн ИХС-тың төрлө нөктәләрендә урынлашҡан ике сәғәтте синхронлаштырыу ғәмәлгә ашырыла <sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup>. Беренсе сәғәттән  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb0768c0bd659f2f84fb5ef9f4b74f336123d915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.894ex; height:2.343ex;" alt="{\displaystyle t_{1}}"></span> сәғәттә u даими тиҙлеге менән сигнал  (уның мотлаҡ яҡтылыҡ сигналы булыуы мөһим түгел) ебәрелә икән ти. Икенсе сәғәткә барып еткәс тә (ул күрһәткән <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> сәғәттә) сигнал шул уҡ u тиҙлеге менән кире оҙатыла һәм беренсе сәғәткә  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/749fee708b41e7079eabd50d61c8bf3e965db16f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.894ex; height:2.343ex;" alt="{\displaystyle t_{2}}"></span> сәғәттә барып етә.  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=(t_{1}+t_{2})/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=(t_{1}+t_{2})/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3032bcad6e80e2fec82bb914d5938d52571793e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.497ex; height:2.843ex;" alt="{\displaystyle T=(t_{1}+t_{2})/2}"></span> нисбәте тотолһа, сәғәттәр синхронлаштырылған тип иҫәпләнә.  </p><p>Был инерциялы хисаплама системаһында ошоноң кеүек ғәмәл бер-береһенә ҡарата хәрәкәтһеҙ торған теләһә ниндәй сәғәттәр өсөн дә башҡарыла ала тип иҫәпләнелә, тимәк, транзитивлыҡ хас:  <b>A</b> сәғәте <b>B</b> сәғәте менән синхронлашһа,  <b>B</b> сәғәте  <b>C </b>сәғәте менән синхронлашһа,  <b>A</b> менән <b>C</b> сәғәттәре лә синхронлы булып сыға. </p><p>Классик механиканан айырмалы, берҙәм ваҡытты ошо хисаплама системаһында ғына индереп була. МСТ-ла ваҡыт төрлө системалар өсөн дөйөм тип ҡаралмай. МСТ-ның бөтә төр хисаплама системалары өсөн берҙәм (абсолют) ваҡыт булыуын раҫлаусы классик механиканан айырмаһы нәҡ ошонан ғибәрәт.   </p> <div class="mw-heading mw-heading3"><h3 id="Үлсәү_берәмектәрен_яраштырыу"><span id=".D2.AE.D0.BB.D1.81.D3.99.D2.AF_.D0.B1.D0.B5.D1.80.D3.99.D0.BC.D0.B5.D0.BA.D1.82.D3.99.D1.80.D0.B5.D0.BD_.D1.8F.D1.80.D0.B0.D1.88.D1.82.D1.8B.D1.80.D1.8B.D1.83"></span>Үлсәү берәмектәрен яраштырыу</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=5" title="Үлсәү берәмектәрен яраштырыу бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=5" title="Үлсәү берәмектәрен яраштырыу бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Инерциялы хисаплама системаларының төрлөһөндә эшләнгән үлсәүҙәрҙе бер-береһе менән сағыштырып булһын өсөн үлсәү  берәмектәрен хисаплама системалары араһында яраштырыу мөһим. Әйтәйек, оҙонлоҡ үлсәүҙәре перпендикуляр йүнәлешле оҙонлоҡ эталондарын инерциялы хисаплама системаларының сағыштырма хәрәкәтенә сағыштырып яраштырыла ала<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup>. Мәҫәлән, был x һәм x' күсәрҙәренә параллель хәрәкәт итеүсе һәм (y, z) менән (y',z') рәүешендәге төрлө, ләкин даими координаталы ике киҫәксәнең траекторияһы араһындағы иң ҡыҫҡа ара булыуы мөмкин. <a href="/wiki/%D0%92%D0%B0%D2%A1%D1%8B%D1%82" title="Ваҡыт">Ваҡытты</a> үлсәү берәмеген яраштырыу өсөн бер иш сәғәттәрҙе, мәҫәлән, атом сәғәттәрен файҙаланырға була.  </p> <div class="mw-heading mw-heading3"><h3 id="МСТ_постулаттары"><span id=".D0.9C.D0.A1.D0.A2_.D0.BF.D0.BE.D1.81.D1.82.D1.83.D0.BB.D0.B0.D1.82.D1.82.D0.B0.D1.80.D1.8B"></span>МСТ постулаттары</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=6" title="МСТ постулаттары бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=6" title="МСТ постулаттары бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>МСТ-ла, классик механикалағы кеүек үк, арауыҡ һәм ваҡыт бер төрлө, ә арауыҡ, өҫтәүенә, изотроп та булып тора тип һанала. Йәғни инерциялы хисаплама системаларында арауыҡ бер төрлө һәм изотроп, ә ваҡыт бер төрлө.  </p><p><b>1-се постулат</b> (<i>Эйнштейндың сағыштырмалыҡ принцибы</i>). Теләһә ҡайһы физик күренеш тә   инерциялы хисаплама системаларының бөтәһендә лә  бер төрлө бара. Сағыштырмалыҡ принцибы бөтә инерциялы хисаплама системаларының да тиңлеген урынлаштыра. </p><p><b>2-се постулат </b> (<i>яҡтылыҡ тиҙлегенең даимилығы принцибы</i>). «Тынлыҡтағы» хисаплама системаһында яҡтылыҡ тиҙлеге сығанаҡтың тиҙлегенә бәйле түгел.  </p> <div class="mw-heading mw-heading2"><h2 id="Лоренц_әүерелештәре"><span id=".D0.9B.D0.BE.D1.80.D0.B5.D0.BD.D1.86_.D3.99.D2.AF.D0.B5.D1.80.D0.B5.D0.BB.D0.B5.D1.88.D1.82.D3.99.D1.80.D0.B5"></span>Лоренц әүерелештәре</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=7" title="Лоренц әүерелештәре бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=7" title="Лоренц әүерелештәре бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ике инерциаль хисаплама системаһының координата күсәрҙәре <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> һәм <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf9961844d1f539adee019e432dc18aa2a7ede59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.206ex; height:2.509ex;" alt="{\displaystyle S'}"></span> бер-береһенә параллель икән ти, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t,x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t,x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/899eb4e1d2776847a8a39f5a9e0354b2e1383c80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.324ex; height:2.843ex;" alt="{\displaystyle (t,x,y,z)}"></span> —  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> системаһына ҡарата күҙәтелеүсе бер ваҡиғаның ваҡыты һәм координаталары,  ә <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t',x',y',z')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>,</mo> <msup> <mi>z</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t',x',y',z')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0570a0199bfae73e0e14346ad593034c49540343" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.07ex; height:3.009ex;" alt="{\displaystyle (t',x',y',z')}"></span> —  <i>шул уҡ </i> ваҡиғаның  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf9961844d1f539adee019e432dc18aa2a7ede59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.206ex; height:2.509ex;" alt="{\displaystyle S'}"></span> системаһына ҡарата ваҡыты һәм координаталары. </p><p>Хисаплама системаларының тиҙлеге ирекле йүнәлешле булғанда Лоренц әүерелештәренең векторлы рәүештәге дөйөм күренеше<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=\gamma \cdot \left(t-{\frac {\mathbf {r} \mathbf {v} }{c^{2}}}\right),~~~~~~~~~~~~~~~~~~~\mathbf {r} '=\mathbf {r} -\gamma \mathbf {v} t+(\gamma -1)\,{\frac {(\mathbf {r} \mathbf {v} )\mathbf {v} }{v^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mi>t</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=\gamma \cdot \left(t-{\frac {\mathbf {r} \mathbf {v} }{c^{2}}}\right),~~~~~~~~~~~~~~~~~~~\mathbf {r} '=\mathbf {r} -\gamma \mathbf {v} t+(\gamma -1)\,{\frac {(\mathbf {r} \mathbf {v} )\mathbf {v} }{v^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0b4eb8a2024ed3630eaa7876151d9e6708ded3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:60.327ex; height:6.343ex;" alt="{\displaystyle t'=\gamma \cdot \left(t-{\frac {\mathbf {r} \mathbf {v} }{c^{2}}}\right),~~~~~~~~~~~~~~~~~~~\mathbf {r} '=\mathbf {r} -\gamma \mathbf {v} t+(\gamma -1)\,{\frac {(\mathbf {r} \mathbf {v} )\mathbf {v} }{v^{2}}}.}"></span></dd></dl> <p>бында <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =1/{\sqrt {1-\mathbf {v} ^{2}/c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =1/{\sqrt {1-\mathbf {v} ^{2}/c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/020442b1c823adc711a039a4eab7247b7bce4e55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:18.701ex; height:4.843ex;" alt="{\displaystyle \gamma =1/{\sqrt {1-\mathbf {v} ^{2}/c^{2}}}}"></span> — Лоренц факторы, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> һәм <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1317b633a9366fab48e4b85ddec1cd1c0a8c31b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.509ex;" alt="{\displaystyle \mathbf {r} '}"></span> — ваҡиғаның  S һәм S' системаларына ҡарата радиус-векторҙары.  </p><p>Әгәр координата күсәрҙәрен инерциялы системаларҙың сағыштырма хәрәкәте йүнәлешенә борғанда  (йәғни дөйөм формулаларға  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} \mathbf {v} =||\mathbf {r} ||||\mathbf {v} ||=rv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>r</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} \mathbf {v} =||\mathbf {r} ||||\mathbf {v} ||=rv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fae78847c1f9d0815db04fe8eb083f550c0e65c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.574ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} \mathbf {v} =||\mathbf {r} ||||\mathbf {v} ||=rv}"></span> индергәндә) һәм был йүнәлеште  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> күсәре сифатында һайлағанда  (йәғни S' системаһы S-ҡа ҡарата <i>x</i> күсәре эргәһенән <i>v</i> тиҙлеге менән тигеҙ һәм тура һыҙыҡлы хәрәкәт итһә), Лоренц әүерелештәре түбәндәге рәүеште алыр: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'={\frac {t-{\frac {\displaystyle v}{\displaystyle c^{2}}}\,x}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}},~~~~~~~~~~~x'={\frac {x-vt}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}},~~~~~~~~~~~y'=y,~~~~~~~~~~~z'=z,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mfrac> </mrow> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mfrac> </mrow> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <msup> <mi>z</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'={\frac {t-{\frac {\displaystyle v}{\displaystyle c^{2}}}\,x}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}},~~~~~~~~~~~x'={\frac {x-vt}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}},~~~~~~~~~~~y'=y,~~~~~~~~~~~z'=z,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/465e6dc712d9f4fc87c11168eba201a20bf8a50f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:65.068ex; height:11.509ex;" alt="{\displaystyle t'={\frac {t-{\frac {\displaystyle v}{\displaystyle c^{2}}}\,x}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}},~~~~~~~~~~~x'={\frac {x-vt}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}},~~~~~~~~~~~y'=y,~~~~~~~~~~~z'=z,}"></span></dd></dl> <p>бында <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> — яҡтылыҡ тиҙлеге. Яҡтылыҡ тиҙлегенән күпкә кәм тиҙлектәрҙә (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\ll c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>≪<!-- ≪ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\ll c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeae20cf8308560968c220b5c0da3d2b6a48e8d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.749ex; height:1.843ex;" alt="{\displaystyle v\ll c}"></span>) Лоренц әүерелештәре  Галилей әүерелештәренә күсә:  </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=t,~~~~~~~~~~~x'=x-vt,~~~~~~~~~~~y'=y,~~~~~~~~~~~z'=z.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>t</mi> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <msup> <mi>z</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=t,~~~~~~~~~~~x'=x-vt,~~~~~~~~~~~y'=y,~~~~~~~~~~~z'=z.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab84ac3bf7479ac91297d8d9af4573fef35b0d28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:51.683ex; height:2.843ex;" alt="{\displaystyle t'=t,~~~~~~~~~~~x'=x-vt,~~~~~~~~~~~y'=y,~~~~~~~~~~~z'=z.}"></span></dd></dl> <p>Бындай сикке күсеш ярашлылыҡ принцибының сағылышы булып тора.  </p> <div class="mw-heading mw-heading3"><h3 id="Лоренц_әүерелештәрен_сығарыу"><span id=".D0.9B.D0.BE.D1.80.D0.B5.D0.BD.D1.86_.D3.99.D2.AF.D0.B5.D1.80.D0.B5.D0.BB.D0.B5.D1.88.D1.82.D3.99.D1.80.D0.B5.D0.BD_.D1.81.D1.8B.D2.93.D0.B0.D1.80.D1.8B.D1.83"></span>Лоренц әүерелештәрен сығарыу</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=8" title="Лоренц әүерелештәрен сығарыу бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=8" title="Лоренц әүерелештәрен сығарыу бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Лоренц әүерелештәрен сығарыуҙың күп төрлө ысулдары бар. Береһен ҡарайыҡ. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf9961844d1f539adee019e432dc18aa2a7ede59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.206ex; height:2.509ex;" alt="{\displaystyle S'}"></span> системаһының координаталары башы (арауыҡтың бер төрлөлөгө арҡаһында ул ошо системалағы теләһә ҡайһы тын нөктә булыуы мөмкин)  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> системаһына ҡарата  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> тиҙлеге менән хәрәкәт итә тип фараз ҡылайыҡ.  Быға ярашлы, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> системаһының координаталар башы (тын нөктә)  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf9961844d1f539adee019e432dc18aa2a7ede59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.206ex; height:2.509ex;" alt="{\displaystyle S'}"></span> яғына  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05d12e513906523af26c5372b10aee063aa11926" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.936ex; height:2.176ex;" alt="{\displaystyle -v}"></span> тиҙлеге менән хәрәкәт итә ти. Артабанғы ғәмәлдәрҙе ҡыҫҡартыу маҡсатында  инерциялы хисаплама системаларының икеһенең дә хисап башының тап килеүенән (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eae2a35ea44e20976df6aea2c07de7245653ecba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.723ex; height:2.509ex;" alt="{\displaystyle t'=t=0}"></span>, әгәр <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'=x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'=x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a0166c804dc541feddbe317ae92ce7bf08d20db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.703ex; height:2.509ex;" alt="{\displaystyle x'=x=0}"></span> булһа) һәм координаталар күсәрҙәренең бер төрлө йүнәлешле булыуынан башлайыҡ, ИХС-тың сағыштырма хәрәкәте  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> (төрлө системала ҡапма-ҡаршы билдә менән) күсәре буйлап йүнәлгән булһын. Системалар  <i>x</i> күсәре буйлап сағыштырма хәрәкәт иткәндә,    <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'=y,z'=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>z</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'=y,z'=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53ed007ed7a7cce0250e245a713037dcb81cd714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.095ex; height:2.843ex;" alt="{\displaystyle y'=y,z'=z}"></span>  тип иҫәпләргә була. Шулай итеп, әүерелештәрҙе ғәмәлдә бер үлсәмле арауыҡта ғына ҡарарға һәм ике үлсәмле арауыҡ-ваҡыт векторҙарын ғына ҡарарға була  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=(x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=(x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09e683131b148797af1af5db9a206c409f067a49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.199ex; height:2.843ex;" alt="{\displaystyle z=(x,t)}"></span>.  </p> <div class="mw-heading mw-heading4"><h4 id="Әүерелештәрҙең_һыҙыҡлы_булыуы"><span id=".D3.98.D2.AF.D0.B5.D1.80.D0.B5.D0.BB.D0.B5.D1.88.D1.82.D3.99.D1.80.D2.99.D0.B5.D2.A3_.D2.BB.D1.8B.D2.99.D1.8B.D2.A1.D0.BB.D1.8B_.D0.B1.D1.83.D0.BB.D1.8B.D1.83.D1.8B"></span>Әүерелештәрҙең һыҙыҡлы булыуы</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=9" title="Әүерелештәрҙең һыҙыҡлы булыуы бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=9" title="Әүерелештәрҙең һыҙыҡлы булыуы бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Арауыҡ менән ваҡыттың бер төрлөлөгө һәм арауыҡтың изотроплығы һәм сағыштырмалыҡ принцибы арҡаһында бер ИХС-тан икенсеһенә әүерелештәр һыҙыҡлы булырға тейеш<sup id="cite_ref-matveev_10-0" class="reference"><a href="#cite_note-matveev-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pauli_11-0" class="reference"><a href="#cite_note-pauli-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup>. Әүерелештәрҙең һыҙыҡлылығын табыу өсөн шундай фараз да булышлыҡ итер: <i>әгәр ике объект бер ИХС-ға ҡарата бер төрлө тигеҙлеккә эйә булһа, уларҙың тиҙлеге башҡа ИХС-ға ҡарата ла бер тигеҙ була.</i><sup id="cite_ref-lorenz_synset_12-0" class="reference"><a href="#cite_note-lorenz_synset-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup>  </p> <div class="mw-heading mw-heading3"><h3 id="Интервал"><span id=".D0.98.D0.BD.D1.82.D0.B5.D1.80.D0.B2.D0.B0.D0.BB"></span>Интервал</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=10" title="Интервал бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=10" title="Интервал бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Түбәндәге дәүмәлле квадрат тамыры ирекле ваҡиғалар араһындағы  интервал тип атала: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}=c^{2}\Delta t_{}^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}=c^{2}\Delta t_{}^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b6333772038f6733453dc2a19845a8b3d54df33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:34.789ex; height:3.009ex;" alt="{\displaystyle \Delta s^{2}=c^{2}\Delta t_{}^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2},}"></span></dd></dl> <p>бында <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t=t_{2}-t_{1},~\Delta x=x_{2}-x_{1},~\Delta y=y_{2}-y_{1},~\Delta z=z_{2}-z_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t=t_{2}-t_{1},~\Delta x=x_{2}-x_{1},~\Delta y=y_{2}-y_{1},~\Delta z=z_{2}-z_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd7af76249caca69e967d45746ff10a4337126fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:57.969ex; height:2.509ex;" alt="{\displaystyle \Delta t=t_{2}-t_{1},~\Delta x=x_{2}-x_{1},~\Delta y=y_{2}-y_{1},~\Delta z=z_{2}-z_{1}}"></span> — ике ваҡиғаның ваҡыты һәм координаталары араһындағы айырма.  </p><p>Лоренц әүерелештәрен уларҙың һыҙыҡлылығынан һәм интервалдың инвариантһыҙ булырға тейешлегенән сығарырға була.   </p> <div class="mw-heading mw-heading3"><h3 id="Геометрик_алым"><span id=".D0.93.D0.B5.D0.BE.D0.BC.D0.B5.D1.82.D1.80.D0.B8.D0.BA_.D0.B0.D0.BB.D1.8B.D0.BC"></span>Геометрик алым</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=11" title="Геометрик алым бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=11" title="Геометрик алым бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Дүрт_үлсәмле_арауыҡ-ваҡыт"><span id=".D0.94.D2.AF.D1.80.D1.82_.D2.AF.D0.BB.D1.81.D3.99.D0.BC.D0.BB.D0.B5_.D0.B0.D1.80.D0.B0.D1.83.D1.8B.D2.A1-.D0.B2.D0.B0.D2.A1.D1.8B.D1.82"></span>Дүрт үлсәмле арауыҡ-ваҡыт</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=12" title="Дүрт үлсәмле арауыҡ-ваҡыт бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=12" title="Дүрт үлсәмле арауыҡ-ваҡыт бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Үҙенең формаһы буйынса интервал (бигерәк тә баштағы яҙмаларҙа) Евклид арауығындағы алыҫлыҡты хәтерләтә, ләкин ваҡиғаның арауыҡ һәм ваҡыт өлөштәрендә уның билдәһе төрлө. Минковскийға һәм Пуанкареның алдараҡ сыҡҡан хеҙмәтенә эйәргәндә,  4-координаталы   <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ct,x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ct,x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6eac3c6402a2569f6196eae23de908484737e5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.331ex; height:2.843ex;" alt="{\displaystyle (ct,x,y,z)}"></span> берҙәм метрик дүрт үлсәмле арауыҡ-ваҡыттың барлығын постулат итергә була. Яҫы арауыҡлы иң ябай осраҡта сикһеҙ яҡын ике нөктә араһындағы алыҫлыҡты билдәләүсе метрика евклидса йәки псевдоевклидса булырға мөмкин. Һуңғы осраҡ махсус сағыштырмалыҡ теорияһына тап килә.  Интервал псевдоевклидса дүрт үлсәмле арауыҡ-ваҡытта алыҫлыҡты билдәләй, тиҙәр. Уны Минковскийҙың арауыҡ-ваҡыты тип тә йөрөтәләр.  </p><p>Был осраҡта  Лоренц әүерелештәрен аңлауҙың һәм сығарыуҙың иң «ябай» ысулын интервалды (кире тамғалы) «уйҙырма» ваҡыт  координатаһын (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ict}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ict}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d97237fb106f0775e66bba26c671da0ce06526" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.649ex; height:2.176ex;" alt="{\displaystyle ict}"></span>) ҡулланып яҙыу  юлы менән алып була: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2}\Delta t^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}+\Delta (ict)^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mi>c</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2}\Delta t^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}+\Delta (ict)^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81697467c6b2d955caca3991d62bff5cb5f1ddb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:66.408ex; height:3.176ex;" alt="{\displaystyle \Delta s^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2}\Delta t^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}+\Delta (ict)^{2},}"></span></dd></dl> <p>Ул сағында интервал дүрт үлсәмле арауыҡта нөктәләр араһындағы ҡәҙимге евклидса алыҫлыҡ рәүешендә күренә. Күрһәтелеүенсә, ИХС-тар араһындағы күсеш ваҡытында интервал  һаҡланырға тейеш, тимәк, был —  параллель күсереүҙәр һәм инверсиялар (был ҡыҙыҡ түгел), йәиһә ошо арауыҡтағы боролоштар. Лоренц әүерелештәре ошондай арауыҡта боролош вазифаһын үтәй. Дүрт үлсәмле арауыҡ-ваҡытта базистың 4-векторҙарҙың ваҡыт һәм арауыҡ координаталарын бутай-бутай өйөрөлөүе хәрәкәт итеүсе хисаплама системаһына күсеү кеүек булып күренә һәм ҡәҙимге өс үлсәмле арауыҡтағы өйөрөлөүҙәргә бик оҡшаған. Был ваҡытта дүрт үлсәмле интервалдарҙың ҡаралған ваҡиғалар араһында хисаплама системаһының ваҡыт һәм арауыҡ күсәрҙәренә проекциялары ла үҙгәрә. Был ваҡыт һәм арауыҡ интервалдары үҙгәреүенең релятивистик эффекттарын хасил итә.  Был арауыҡтың МСТ постулаттары  тарафынан бирелгән  инвариантлы структураһы бер инерциаль хисаплама системаһынан икенсеһенә күскәндә алмашынмай. Тик ике генә арауыҡ координатаһын (x, y) ҡулланып, дүрт үлсәмле арауыҡты (t, x, y) координаталары менән тасуирлап була. Координаталар башындағы ваҡиғалар менән яҡтылыҡ сигналы (яҡтылыҡҡа оҡшаш интервал)  аша бәйләнгән ваҡиғалар  (t=0, x=y=0) яҡтылыҡ конусында ята (уңдағы һүрәттә).  </p><p>Минковскийҙың башланғыс версияһында (уйҙырма ваҡыт менән) Лоренц әүерелештәре формулалары ябай ғына табыла — улар евклидса арауыҡтағы билдәле боролоштар формулаларынан сығарыла.  </p><p>Ләкин заманса ҡараш псевдометрикалы дүрт үлсәмле арауыҡ-ваҡытты  (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72479bb6f1dc1b592b57dd9fed06d5f50030a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.846ex; height:2.009ex;" alt="{\displaystyle ct}"></span> ваҡыт күсәре менән) индереүҙән ғибәрәт.  Бындай арауыҡта боролоштар формулалары оҡшаш ҡиәфәттә була, ләкин тригонометрик функциялар урынына гиперболик функцияларҙы ҡулланыу талап ителә.  </p><p>Минковский менән Пуанкареның геометрик ҡарашы 1914 йылда А. Робб тарафынан үҫтерелә. Ул МСТ-ның аксиоматик ҡоролошо нигеҙенә ваҡиғаларҙың <i>эйәреүе </i>тураһындағы төшөнсәне һала. Был ҡараш артабан 50-се — 70-се йылдарҙа  А. Д. Александров тарафынан дауам иттерелә.  </p><p>Геометрик интерпретация сағыштырмалыҡ теорияһын (дөйөм сағыштырмалыҡ теорияһын)  дөйөмләштереү өсөн нигеҙ булып тора. </p> <div class="mw-heading mw-heading2"><h2 id="Сығанаҡтар"><span id=".D0.A1.D1.8B.D2.93.D0.B0.D0.BD.D0.B0.D2.A1.D1.82.D0.B0.D1.80"></span>Сығанаҡтар</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=13" title="Сығанаҡтар бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=13" title="Сығанаҡтар бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="references-small" style="column-count:2;-moz-column-count:2;-webkit-column-count:2;"> <ol class="references"> <li id="cite_note-_7e6cd6ec521ca3f5-1"><span class="mw-cite-backlink"><a href="#cite_ref-_7e6cd6ec521ca3f5_1-0">↑</a></span> <span class="reference-text"><span class="wikidata_cite citetype_Q13442814" data-entity-id="Q3020388"><i class="wef_low_priority_links"><a href="/wiki/%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD" title="Альберт Эйнштейн">Einstein A.</a></i> <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004">Zur Elektrodynamik bewegter Körper</a> <span class="ref-info" style="cursor:help;" title="на языке немец теле">(нем.)</span> // <i><a href="https://de.wikipedia.org/wiki/Annalen_der_Physik" class="extiw" title="de:Annalen der Physik">Ann. Phys. (Berlin)</a></i><span class="wef_low_priority_links"> — <a href="/wiki/%D0%9B%D0%B5%D0%B9%D0%BF%D1%86%D0%B8%D0%B3" title="Лейпциг">Leipzig</a>: <a href="https://de.wikipedia.org/wiki/Wiley-VCH_Verlag" class="extiw" title="de:Wiley-VCH Verlag">Wiley-VCH Verlag</a>, 1905. — Vol. 322, вып. 17. — S. 891–921. — 270 с. — ISSN <a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/0003-3804">0003-3804</a>; <a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/1521-3889">1521-3889</a> — <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1002/ANDP.19053221004">doi:10.1002/ANDP.19053221004</a></span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Впервые такие преобразования пространственно-временных координат получены Фогтом в 1887 году при исследовании эффекта Доплера (для света) как преобразования, сохраняющие уравнение колебаний упругой среды — светоносного эфира. Данная работа осталась незамеченной. Даже сам Фогт не использовал эти выводы в своей последующей статье того же года. Лоренц в 1892 и 1895 г. формально вводит понятие «местное время», которое примерно сохраняет неизменными уравнения Максвелла в движущейся системе отсчёта. В 1900 году Лармор в работе «Эфир и материя» опубликовал преобразования, сохраняющие уравнения Максвелла. Эти же преобразования уже в 1904 году переоткрыл Лоренц.</span> </li> <li id="cite_note-Ginzburg-3"><span class="mw-cite-backlink"><a href="#cite_ref-Ginzburg_3-0">↑</a></span> <span class="reference-text"><i>Гинзбург В. Л.</i> Как и кто создал теорию относительности? в <span class="citation">Эйнштейновский сборник, 1974. — М.: Наука, 1976. — С. 351-385. — 400 с. — 9200 экз.</span><span class="citation"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><i>Гинзбург В. Л.</i> Как и кто создал теорию относительности? в <span class="citation">Эйнштейновский сборник, 1966. — М.: Наука, 1966. — С. 366-378. — 375 с. — 16 000 экз.</span><span class="citation"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><span class="citation"><i>Сацункевич И. С.</i> <a rel="nofollow" class="external text" href="http://urss.ru/cgi-bin/db.pl?lang=Ru&blang=ru&page=Book&id=16349">Экспериментальные корни специальной теории относительности</a>. — 2-е изд. — М.: УРСС, 2003. — 176 с. </span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><span class="citation"><i>Мизнер Ч., Торн К., Уилер Дж.</i> Гравитация. — М.: Мир, 1977. — Т. 1. — С. 109. — 474 с.</span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text">Einstein A. «Zur Elektrodynamik bewegter Korper» Ann Phys.- 1905.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><span class="citation"><i>Киттель Ч., Наит У., Рудерман М.</i> Берклеевский курс физики. — Издание 3-е, исправленное. — М.: Наука, 1986. </span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><span class="citation"><i>Паули В.</i> Теория Относительности. — М.: Наука, Издание 3-е, исправленное. — С. 26. — 328 с. — 17 700 экз. </span></span> </li> <li id="cite_note-matveev-10"><span class="mw-cite-backlink"><a href="#cite_ref-matveev_10-0">↑</a></span> <span class="reference-text"><span class="citation"><i>Матвеев А. Н.</i> Механика и теория относительности. — Издание 2-е, переработанное. — М.: Высш. шк., 1986. — С. 78-80. — 320 с. — 28 000 экз.</span><span class="citation"></span></span> </li> <li id="cite_note-pauli-11"><span class="mw-cite-backlink"><a href="#cite_ref-pauli_11-0">↑</a></span> <span class="reference-text"><span class="citation"><i>Паули В.</i> Теория Относительности. — М.: Наука, Издание 3-е, исправленное. — 328 с. — 17 700 экз. </span></span> </li> <li id="cite_note-lorenz_synset-12"><span class="mw-cite-backlink"><a href="#cite_ref-lorenz_synset_12-0">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://synset.com/ru/Преобразования_Лоренца">«Преобразования Лоренца»</a> <small><span style="white-space: nowrap;"> 2021 йыл 25 август <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210825104055/http://synset.com/ru/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%B0">архивланған</a>.</span></small> в книге <a rel="nofollow" class="external text" href="http://synset.com/ru/Релятивистский_мир">«Релятивистский мир»</a> <small><span style="white-space: nowrap;"> 2021 йыл 23 август <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210823161221/http://synset.com/ru/%D0%A0%D0%B5%D0%BB%D1%8F%D1%82%D0%B8%D0%B2%D0%B8%D1%81%D1%82%D1%81%D0%BA%D0%B8%D0%B9_%D0%BC%D0%B8%D1%80">архивланған</a>.</span></small>.</span> </li> </ol> </div> <div class="mw-heading mw-heading2"><h2 id="Әҙәбиәт"><span id=".D3.98.D2.99.D3.99.D0.B1.D0.B8.D3.99.D1.82"></span>Әҙәбиәт</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=14" title="Әҙәбиәт бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=14" title="Әҙәбиәт бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist not-references" style=""> <ul><li><i>Визгин В. П.</i> Релятивистская теория тяготения (истоки и формирование, 1900—1915). М.: Наука, 1981. — 352 c.</li> <li><i>Ландау Л.Д., Лифшиц Е.М.</i>: Теория поля. 1960.</li> <li><i>Ландау Л. Д., Лифшиц Е. М.</i>: Теория поля. 1988.</li> <li><i>Паули В.</i> <a rel="nofollow" class="external text" href="http://book.plib.ru/download/15113.html">Теория относительности.</a> Изд. 2-е, испр. и доп. Перев. с нем. — М.: Наука, 1983. — 336 с.</li> <li><i>Паули В.</i> <a rel="nofollow" class="external text" href="http://www.lib.prometey.org/?id=15113">Теория относительности.</a> <small><span style="white-space: nowrap;"> 2018 йыл 14 март <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180314174212/http://www.lib.prometey.org/?id=15113">архивланған</a>.</span></small> М.: Издательство «Наука», 1991. 328 с.</li> <li><i>Спасский Б. И.</i>. <a rel="nofollow" class="external text" href="http://osnovanija.narod.ru/History/Spas/T2_2.djvu">История физики. Том 2, часть 2-я.</a> М.: Высшая школа, 1977.</li> <li><i>Уиттекер Э.</i> <a rel="nofollow" class="external text" href="http://physicsbooks.narod.ru/Uitteker/Uitteker2.djvu">История теории эфира и электричества. Современные теории 1900—1926.</a> Пер с англ. Москва, Ижевск: ИКИ, 2004. 464с. <a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%9A%D0%B8%D1%82%D0%B0%D0%BF_%D1%81%D1%8B%D2%93%D0%B0%D0%BD%D0%B0%D2%A1%D1%82%D0%B0%D1%80%D1%8B/5939723047" class="internal mw-magiclink-isbn">ISBN 5-93972-304-7</a> (Глава 2).</li> <li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/ru/library/books/Tyapkin1973ru.djvu">Принцип относительности.</a> Сб. работ по специальной теории относительности. М.: Атомиздат, 1973.</li> <li><i>Г. А. Лоренц</i>. <a rel="nofollow" class="external text" href="http://djvu-books.narod.ru/lorenz1895.htm">Интерференционный опыт Майкельсона</a> <small><span style="white-space: nowrap;"> 2011 йыл 25 апрель <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110425160618/http://djvu-books.narod.ru/lorenz1895.htm">архивланған</a>.</span></small>. Из книги "Versucheiner Theoriederelektrischenundoptischen Erscheinungeninbewegten Korpern. Leiden, <b>1895</b>, параграфы 89…92.</li> <li><i>Г. А. Лоренц</i>.Электромагнитные явления в системе, движущейся с любой скоростью, меньшей скорости света. Proc Acad., Amsterdam, <b>1904</b>, v 6, p. 809.</li> <li><i>А. Пуанкаре</i>. Измерение времени. «Revuede Metaphysiqueetde Morale», <b>1898</b>, t. 6, p. 1…13.</li> <li><i>А. Пуанкаре</i>. Оптические явления в движущихся телах. ElectriciteetOptique, G. CarreetC. Naud, Paris, <b>1901</b>, p. 535…536.</li> <li><i>А. Пуанкаре</i>. О принципе относительности пространства и движения. Главы 5…7 из книги «Наука и гипотеза»(H. Poinrare. Scienceand Hypothesis. Paris, <b>1902</b>.)</li> <li><i>А. Пуанкаре</i>. Настоящее и будущее математической физики. Доклад, напечатанный в журнале «Bulletindes Sciences Mathematiques», <b>1904</b>, v. 28, ser. 2, p. 302.</li> <li><i>А. Пуанкаре</i>. О динамике электрона. Rendicontidel Circolo Matematicodi Palermo, 1906.</li> <li><i>А. Эйнштейн</i>. К электродинамике движущихся тел. Ann. d. Phys.,1905 (рукопись поступила <b>30 июня 1905 г</b>.), b. 17, s. 89.</li> <li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/ru/library/books/Einstein_t1_1965ru.djvu"><i>Эйнштейн А.</i> Собрание научных трудов в четырёх томах. Том 1. Работы по теории относительности 1905—1920. М.: Наука, 1965.</a></li> <li><i>Эйнштейн А.</i> Сущность теории относительности. — М.: Изд. ин. лит., 1955. — 157 с.</li> <li><span class="citation no-wikidata" data-wikidata-property-id="P1343" id="CITEREFЭволюция_физики1948"><i>Альберт Эйнштейн, Леопольд Инфельд.</i> Эволюция физики. — <span style="border-bottom:1px dotted gray; cursor:default" title="Москва">М</span>.: ОГИЗ, 1948. — 267 с.</span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Өҫтәлмә_әҙәбиәт"><span id=".D3.A8.D2.AB.D1.82.D3.99.D0.BB.D0.BC.D3.99_.D3.99.D2.99.D3.99.D0.B1.D0.B8.D3.99.D1.82"></span>Өҫтәлмә әҙәбиәт</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=15" title="Өҫтәлмә әҙәбиәт бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=15" title="Өҫтәлмә әҙәбиәт бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://ivanik3.narod.ru/linksPO73.html">Принцип относительности. Сборник работ по специальной теории относительности.</a> М.: Атомиздат, 1973.</li> <li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/ru/library/books/Ugarov1977ru.djvu">Угаров В. А.<i> Специальная теория относительности. 2-е изд. М.: Наука, 1977.</i></a></li> <li><i>Мари-Антуанетт Тоннела</i> <a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/ru/library/books/Tonnela1962ru.djvu">Основы электромагнетизма и теории относительности. М.: ИЛ, 1962.</a></li> <li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/ru/library/books/Tolmen1974ru.djvu"><i>Толмен Р.</i> Относительность, термодинамика и космология. М.: Наука, 1974.</a></li> <li>Физическая энциклопедия, т.2 — <span style="border-bottom:1px dotted gray; cursor:default" title="Москва">М</span>.: Большая Российская Энциклопедия. <a rel="nofollow" class="external text" href="http://www.physicum.narod.ru/.">Физическая энциклопедия.</a></li> <li><span class="citation no-wikidata" data-wikidata-property-id="P1343" id="CITEREFНачала_теоретической_физики2007"><i>Борис Валентинович Медведев.</i> Начала теоретической физики. — <span style="border-bottom:1px dotted gray; cursor:default" title="Москва">М</span>.: Физматлит, 2007. — 600 с.</span></li> <li><span class="citation no-wikidata" data-wikidata-property-id="P1343" id="CITEREFНеванлинна1966"><i>Рольф Неванлинна.</i> Пространство, время и относительность. — <span style="border-bottom:1px dotted gray; cursor:default" title="Москва">М</span>.: Мир, 1966. — 229 с.</span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Һылтанмалар"><span id=".D2.BA.D1.8B.D0.BB.D1.82.D0.B0.D0.BD.D0.BC.D0.B0.D0.BB.D0.B0.D1.80"></span>Һылтанмалар</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&veaction=edit&section=16" title="Һылтанмалар бүлеген мөхәррирләргә" class="mw-editsection-visualeditor"><span>үҙгәртергә</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&action=edit&section=16" title="Һылтанмалар бүлегенең сығанаҡ кодын мөхәррирләү"><span>сығанаҡты үҙгәртеү</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://synset.com/ru/Релятивистский_мир">Релятивистик мир</a> <small><span style="white-space: nowrap;"> 2021 йыл 23 август <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210823161221/http://synset.com/ru/%D0%A0%D0%B5%D0%BB%D1%8F%D1%82%D0%B8%D0%B2%D0%B8%D1%81%D1%82%D1%81%D0%BA%D0%B8%D0%B9_%D0%BC%D0%B8%D1%80">архивланған</a>.</span></small> — сағыштырмалыҡ теорияһы, гравитация һәм космология буйынса лекциялар.</li> <li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/ru/library/physics/relativity.htm">"Мир математических уравнений" EqWorld</a> сайтында дөйөм һәм махсус сағыштырмалыҡ теорияһы. </li> <li>МСТ структураһын һәм унда сәғәттәр синхронлашыуын һүрәтләүсе хеҙмәттәр: <a href="https://arxiv.org/abs/gr-qc/0510024" class="extiw" title="arxiv:gr-qc/0510024">arxiv: gr-qc/0510024</a>; <a href="https://arxiv.org/abs/gr-qc/0510017" class="extiw" title="arxiv:gr-qc/0510017">arxiv: gr-qc/0510017</a>; <a href="https://arxiv.org/abs/gr-qc/0205039" class="extiw" title="arxiv:gr-qc/0205039">arxiv: gr-qc/0205039</a>.</li> <li>А. Пуанкареның МСТ-ға индергән өлөшө тураһында: <a href="https://arxiv.org/abs/hep-th/0501168" class="extiw" title="arxiv:hep-th/0501168">T. Damour: Poincare, Relativity, Billiards and Symmetry</a>.</li></ul> <table class="metadata plainlinks navigation-box ruwikiWikimediaNavigation" style="margin:0 0 1em 1em; clear:right; border:solid var(--border-color-base, #a2a9b1) 1px; background:var(--background-color-neutral-subtle, #f8f9fa); color:inherit; padding:1ex; font-size:90%; float:right;"> <tbody><tr> <th><span typeof="mw:File"><a href="https://commons.wikimedia.org/wiki/Category:Special_relativity" title="commons:Category:Special relativity"><img alt="commons:" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> </th> <td><span class="wikicommons-ref"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Special_relativity?uselang=ru">Махсус сағыштырмалыҡ теорияһы</a></span> Викимилектә </td></tr> </tbody></table> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b5f68485b‐vqsq9 Cached time: 20241113142925 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.622 seconds Real time usage: 1.064 seconds Preprocessor visited node count: 4596/1000000 Post‐expand include size: 64020/2097152 bytes Template argument size: 31672/2097152 bytes Highest expansion depth: 31/100 Expensive parser function count: 13/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 11670/5000000 bytes Lua time usage: 0.440/10.000 seconds Lua memory usage: 10602350/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 718.306 1 -total 85.14% 611.599 1 Ҡалып:Ук 13.69% 98.306 4 Ҡалып:Wikidata 9.42% 67.647 1 Ҡалып:Сначала_имя 8.80% 63.206 1 Ҡалып:Str_find 8.50% 61.073 1 Ҡалып:Str_find/logic 5.60% 40.192 1 Ҡалып:Commons 5.36% 38.512 199 Ҡалып:Str_left 5.32% 38.232 1 Ҡалып:Навигация 4.65% 33.422 3 Ҡалып:Книга --> <!-- Saved in parser cache with key bawiki:pcache:idhash:106819-0!canonical and timestamp 20241113142925 and revision id 1268022. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">«<a dir="ltr" href="https://ba.wikipedia.org/w/index.php?title=Махсус_сағыштырмалыҡ_теорияһы&oldid=1268022">https://ba.wikipedia.org/w/index.php?title=Махсус_сағыштырмалыҡ_теорияһы&oldid=1268022</a>» битенән алынған</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F%D0%BB%D0%B0%D1%80" title="Махсус:Категориялар">Категориялар</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD" title="Категория:Альберт Эйнштейн">Альберт Эйнштейн</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Категория:Махсус сағыштырмалыҡ теорияһы">Махсус сағыштырмалыҡ теорияһы</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Йәшерелгән категориялар: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D1%81_%D0%B8%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B0%D0%BC%D0%B8_%D0%B8%D0%B7_%D0%92%D0%B8%D0%BA%D0%B8%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85" title="Категория:Википедия:Статьи с источниками из Викиданных">Википедия:Статьи с источниками из Викиданных</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D0%B8_%D1%81%D0%BE_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0%D0%BC%D0%B8_%D0%BD%D0%B0_%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D1%8B_%D0%92%D0%B8%D0%BA%D0%B8%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85_%D0%B1%D0%B5%D0%B7_%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%BE%D0%B9_%D0%BF%D0%BE%D0%B4%D0%BF%D0%B8%D1%81%D0%B8" title="Категория:Википедия:Статьи со ссылками на элементы Викиданных без русской подписи">Википедия:Статьи со ссылками на элементы Викиданных без русской подписи</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:ISBN_%D1%81%D0%B5%D1%80%D0%BB%D0%B5_%D2%BB%D1%8B%D0%BB%D1%82%D0%B0%D0%BD%D0%BC%D0%B0%D2%BB%D1%8B%D0%BD_%D2%A1%D1%83%D0%BB%D0%BB%D0%B0%D0%BD%D2%93%D0%B0%D0%BD_%D0%B1%D0%B8%D1%82%D1%82%D3%99%D1%80" title="Категория:ISBN серле һылтанмаһын ҡулланған биттәр">ISBN серле һылтанмаһын ҡулланған биттәр</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Был бит һуңғы тапҡыр 07:53 11 февраль 2024 үҙгәртелгән.</li> <li id="footer-info-copyright">Текст <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike License</a> буйынса рөхсәт ителгән; өҫтәмә шарттар ҡулланылыуы мөмкин. Тулыраҡ мәғлүмәт алыу өсөн, <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Ҡулланыу шарттарын</a> ҡарағыҙ.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ru">Сер һаҡлау сәйәсәте</a></li> <li id="footer-places-about"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A2%D0%B0%D1%81%D1%83%D0%B8%D1%80%D0%BB%D0%B0%D0%BC%D0%B0">Википедия тураһында</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%AF%D1%83%D0%B0%D0%BF%D0%BB%D1%8B%D0%BB%D1%8B%D2%A1%D1%82%D0%B0%D0%BD_%D0%B1%D0%B0%D1%88_%D1%82%D0%B0%D1%80%D1%82%D1%8B%D1%83">Яуаплылыҡтан баш тартыу</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Тәртип кодексы</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Эшләүселәр</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ba.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie ҡулланыу тураһында белдереү</a></li> <li id="footer-places-mobileview"><a href="//ba.m.wikipedia.org/w/index.php?title=%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобиль версия</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-84779d6bf6-7hlq2","wgBackendResponseTime":222,"wgPageParseReport":{"limitreport":{"cputime":"0.622","walltime":"1.064","ppvisitednodes":{"value":4596,"limit":1000000},"postexpandincludesize":{"value":64020,"limit":2097152},"templateargumentsize":{"value":31672,"limit":2097152},"expansiondepth":{"value":31,"limit":100},"expensivefunctioncount":{"value":13,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":11670,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 718.306 1 -total"," 85.14% 611.599 1 Ҡалып:Ук"," 13.69% 98.306 4 Ҡалып:Wikidata"," 9.42% 67.647 1 Ҡалып:Сначала_имя"," 8.80% 63.206 1 Ҡалып:Str_find"," 8.50% 61.073 1 Ҡалып:Str_find/logic"," 5.60% 40.192 1 Ҡалып:Commons"," 5.36% 38.512 199 Ҡалып:Str_left"," 5.32% 38.232 1 Ҡалып:Навигация"," 4.65% 33.422 3 Ҡалып:Книга"]},"scribunto":{"limitreport-timeusage":{"value":"0.440","limit":"10.000"},"limitreport-memusage":{"value":10602350,"limit":52428800},"limitreport-logs":"Loaded datatype time of P571 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype commonsMedia of P18 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype commonsMedia of P10 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype wikibase-item of P61 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nGot person name of Q937 from label: «Albert Einstein»\ntokenizeName: «Albert Einstein»: have «Im (x1) Fa» match\nGot title of Q463360 from label: «Wiley-VCH Verlag»\nLoaded datatype time of P575 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype wikibase-item of P12457 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype string of P373 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype string of P373 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype string of P373 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\nLoaded datatype string of P373 from wikidata, consider passing datatype argument to formatProperty call or to Wikidata/config\n"},"cachereport":{"origin":"mw-web.codfw.main-6b5f68485b-vqsq9","timestamp":"20241113142925","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u041c\u0430\u0445\u0441\u0443\u0441 \u0441\u0430\u0493\u044b\u0448\u0442\u044b\u0440\u043c\u0430\u043b\u044b\u04a1 \u0442\u0435\u043e\u0440\u0438\u044f\u04bb\u044b","url":"https:\/\/ba.wikipedia.org\/wiki\/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11455","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11455","author":{"@type":"Organization","name":"\u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0430 \u043f\u0440\u043e\u0435\u043a\u0442\u0442\u0430\u0440\u044b\u043d\u0434\u0430 \u04a1\u0430\u0442\u043d\u0430\u0448\u044b\u0443\u0441\u044b\u043b\u0430\u0440"},"publisher":{"@type":"Organization","name":"\u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0430 \u0424\u043e\u043d\u0434\u044b","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2016-05-16T05:59:47Z","dateModified":"2024-02-11T07:53:32Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/44\/Gedankenexperiment_Zeitdilitation.svg"}</script> </body> </html>