CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 103 results for author: <span class="mathjax">Khalyavin, D D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Khalyavin, D D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Khalyavin%2C+D+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Khalyavin, D D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10159">arXiv:2403.10159</a> <span> [<a href="https://arxiv.org/pdf/2403.10159">pdf</a>, <a href="https://arxiv.org/format/2403.10159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous spin chirality reversal and competing phases in the topological magnet EuAl$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vibhakar%2C+A+M">A. M. Vibhakar</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Moya%2C+J+M">J. M. Moya</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+S">S. Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Morosan%2C+E">E. Morosan</a>, <a href="/search/cond-mat?searchtype=author&query=Bombardi%2C+A">A. Bombardi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10159v1-abstract-short" style="display: inline;"> We demonstrate the spontaneous reversal of spin chirality in a single crystal sample of the intermetallic magnet EuAl$_4$. We solve the nanoscopic nature of each of the four magnetically phases of EuAl$_4$ using resonant magnetic x-ray scattering, and demonstrate all four phases order with single-k incommensurate magnetic modulation vectors. Below 15.4 K the system forms a spin density modulated s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10159v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10159v1-abstract-full" style="display: none;"> We demonstrate the spontaneous reversal of spin chirality in a single crystal sample of the intermetallic magnet EuAl$_4$. We solve the nanoscopic nature of each of the four magnetically phases of EuAl$_4$ using resonant magnetic x-ray scattering, and demonstrate all four phases order with single-k incommensurate magnetic modulation vectors. Below 15.4 K the system forms a spin density modulated spin structure where the spins are orientated in the ab plane perpendicular to the orientation of the magnetic propagation vector. Below 13.2 K a second spin density wave orders with moments aligned parallel to the c-axis, such that the two spin density wave orders coexist. Below 12.2 K a magnetic helix of a single chirality is stabilised across the entire sample. Below 10 K the chirality of the magnetic helix reverses, and the sample remains a single chiral domain. Concomitant with the establishment of the helical magnetic ordering is the lowering of the crystal symmetry to monoclinic, as evidenced the formation of uniaxial charge and spin strip domains. A group theoretical analysis demonstrates that below 12.2 K the symmetry lowers to polar monoclinic, which is necessary to explain the observed asymmetry in the chiral states of the magnetic helix and the spin chiral reversal. We find that in every magnetically ordered phase of EuAl4 the in-plane moment is perpendicular to the orientation of the magnetic propagation vector, which we demonstrate is favoured by magnetic dipolar interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10159v1-abstract-full').style.display = 'none'; document.getElementById('2403.10159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01889">arXiv:2403.01889</a> <span> [<a href="https://arxiv.org/pdf/2403.01889">pdf</a>, <a href="https://arxiv.org/format/2403.01889">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Polarity vs Chirality: Functionality from competing magneto-structural instabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tardieux%2C+M">M. Tardieux</a>, <a href="/search/cond-mat?searchtype=author&query=Stylianidis%2C+E">E. Stylianidis</a>, <a href="/search/cond-mat?searchtype=author&query=Behr%2C+D">D. Behr</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">R. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Bowler%2C+D+R">D. R. Bowler</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">A. A. Belik</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01889v1-abstract-short" style="display: inline;"> We report a phenomenological magneto-structural model based on competing free-energy terms that couple either polar or chiral distortions in cubic quadruple perovskites, depending on the global direction of magnetic moments. The model naturally explains why some compounds in this material system host magnetically-induced ferroelectricity at low temperature, while others such as CaMn$_3$(Cr$_3$Mn)O… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01889v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01889v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01889v1-abstract-full" style="display: none;"> We report a phenomenological magneto-structural model based on competing free-energy terms that couple either polar or chiral distortions in cubic quadruple perovskites, depending on the global direction of magnetic moments. The model naturally explains why some compounds in this material system host magnetically-induced ferroelectricity at low temperature, while others such as CaMn$_3$(Cr$_3$Mn)O$_{12}$, which we characterise experimentally, do not. Importantly, our results suggest a new approach towards developing an applied multiferroic functionality, and can be generalised to other multi-sublattice systems where the magnetic interaction between sublattices is prohibited by spatial inversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01889v1-abstract-full').style.display = 'none'; document.getElementById('2403.01889v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02802">arXiv:2401.02802</a> <span> [<a href="https://arxiv.org/pdf/2401.02802">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.084405">10.1103/PhysRevMaterials.8.084405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong impact of low-level substitution of Mn by Fe on the magnetoelectric coupling in $TbMnO_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Maia%2C+A">A. Maia</a>, <a href="/search/cond-mat?searchtype=author&query=Vilarinho%2C+R">R. Vilarinho</a>, <a href="/search/cond-mat?searchtype=author&query=Proschek%2C+P">P. Proschek</a>, <a href="/search/cond-mat?searchtype=author&query=Lebeda%2C+M">M. Lebeda</a>, <a href="/search/cond-mat?searchtype=author&query=Mihalik%2C+M">M. Mihalik jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Mihalik%2C+M">M. Mihalik</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Kamba%2C+S">S. Kamba</a>, <a href="/search/cond-mat?searchtype=author&query=Moreira%2C+J+A">J. Agostinho Moreira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02802v2-abstract-short" style="display: inline;"> The correlation between static magnetoelectric coupling and magnetic structure was investigated in $TbMn_{0.98}Fe_{0.02}O_{3}$ with magnetic field up to 8 T and down to 2 K. Single-crystal neutron diffraction experiments reveal a substantial increase in the temperature dependence of the incommensurate modulation wave vector of the antiferromagnetic phase as the magnetic field strength increases. M… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02802v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02802v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02802v2-abstract-full" style="display: none;"> The correlation between static magnetoelectric coupling and magnetic structure was investigated in $TbMn_{0.98}Fe_{0.02}O_{3}$ with magnetic field up to 8 T and down to 2 K. Single-crystal neutron diffraction experiments reveal a substantial increase in the temperature dependence of the incommensurate modulation wave vector of the antiferromagnetic phase as the magnetic field strength increases. Magnetic field-dependent pyroelectric current measurements revealed significantly higher magnetoelectric coupling at magnetic fields below 4 T than in pure TbMnO3. This is due to the higher sensitivity of the incommensurably modulated cycloid structure to weak magnetic fields. Detailed analysis of our data confirmed that the ferroelectric polarization is induced by inverse Dzyaloshinskii-Moriya interaction for magnetic field strength up to 4 T, but at higher fields a departure from theoretical predictions is ascertained, giving evidence for an additional, as yet misunderstood, contribution to magnetoelectric coupling. It shows that a small 2% substitution of Mn3+ by Fe3+ has a strong impact on the magnetic structure, promoting the destabilization of the incommensurably modulated magnetic cycloidal structure of $TbMnO_{3}$ in a magnetic field above 5 T. We demonstrate that the magnetoelectric coupling magnitude can be tuned through suitable substitutional elements, even at low level, inducing local lattice distortions with different electronic and magnetic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02802v2-abstract-full').style.display = 'none'; document.getElementById('2401.02802v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15054">arXiv:2312.15054</a> <span> [<a href="https://arxiv.org/pdf/2312.15054">pdf</a>, <a href="https://arxiv.org/format/2312.15054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Unusual magnetism of the axion-insulator candidate Eu$_5$In$_2$Sb$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">C. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&query=Bereciartua%2C+P">P. Bereciartua</a>, <a href="/search/cond-mat?searchtype=author&query=Sukhanov%2C+A+S">A. S. Sukhanov</a>, <a href="/search/cond-mat?searchtype=author&query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">T. Lancaster</a>, <a href="/search/cond-mat?searchtype=author&query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&query=Janoschek%2C+M">M. Janoschek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15054v1-abstract-short" style="display: inline;"> Eu$_5$In$_2$Sb$_6$ is a member of a family of orthorhombic nonsymmorphic rare-earth intermetallics that combines large localized magnetic moments and itinerant exchange with a low carrier density and perpendicular glide planes. This may result in special topological crystalline (wallpaper fermion) or axion insulating phases. Recent studies of Eu$_5$In$_2$Sb$_6$ single crystals have revealed coloss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15054v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15054v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15054v1-abstract-full" style="display: none;"> Eu$_5$In$_2$Sb$_6$ is a member of a family of orthorhombic nonsymmorphic rare-earth intermetallics that combines large localized magnetic moments and itinerant exchange with a low carrier density and perpendicular glide planes. This may result in special topological crystalline (wallpaper fermion) or axion insulating phases. Recent studies of Eu$_5$In$_2$Sb$_6$ single crystals have revealed colossal negative magnetoresistance and multiple magnetic phase transitions. Here, we clarify this ordering process using neutron scattering, resonant elastic X-ray scattering, muon spin-rotation, and magnetometry. The nonsymmorphic and multisite character of Eu$_5$In$_2$Sb$_6$ results in coplanar noncollinear magnetic structure with an Ising-like net magnetization along the $a$ axis. A reordering transition, attributable to competing ferro- and antiferromagnetic couplings, manifests as the onset of a second commensurate Fourier component. In the absence of spatially resolved probes, the experimental evidence for this low-temperature state can be interpreted either as an unusual double-$q$ structure or in a phase separation scenario. The net magnetization produces variable anisotropic hysteretic effects which also couple to charge transport. The implied potential for functional domain physics and topological transport suggests that this structural family may be a promising platform to implement concepts of topological antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15054v1-abstract-full').style.display = 'none'; document.getElementById('2312.15054v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01595">arXiv:2312.01595</a> <span> [<a href="https://arxiv.org/pdf/2312.01595">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Negative Magnetization and Magnetic Ordering of Rare Earth and Transition Metal Sublattices in NdFe0.5Cr0.5O3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kanthal%2C+S">S. Kanthal</a>, <a href="/search/cond-mat?searchtype=author&query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+S">S. Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Yanda%2C+P">P. Yanda</a>, <a href="/search/cond-mat?searchtype=author&query=Sundaresan%2C+A">A. Sundaresan</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Saha-Dasgupta%2C+T">T. Saha-Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&query=Bandyopadhyay%2C+S">S. Bandyopadhyay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01595v1-abstract-short" style="display: inline;"> We investigate the effect of alloying at the 3d transition metal site of a rare-earth-transition metal oxide, by considering NdFe0.5Cr0.5O3 alloy with two equal and random distribution of 3d ions, Cr and Fe, interacting with an early 4f rare earth ion, Nd. Employing temperature- and field-dependent magnetization measurements, temperature-dependent x-ray diffraction, neutron powder diffraction, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01595v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01595v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01595v1-abstract-full" style="display: none;"> We investigate the effect of alloying at the 3d transition metal site of a rare-earth-transition metal oxide, by considering NdFe0.5Cr0.5O3 alloy with two equal and random distribution of 3d ions, Cr and Fe, interacting with an early 4f rare earth ion, Nd. Employing temperature- and field-dependent magnetization measurements, temperature-dependent x-ray diffraction, neutron powder diffraction, and Raman spectroscopy, we characterize its structural and magnetic properties. Our study reveals bipolar magnetic switching (arising from negative magnetization) and magnetocaloric effect which underline the potential of the studied alloy in device application. The neutron diffraction study shows the absence of spin reorientation transition over the entire temperature range of 1.5-320 K, although both parent compounds exhibit spin orientation transition. We discuss the microscopic origin of this curious behavior. The neutron diffraction results also reveal the ordering of Nd spins at an unusually high temperature of about 40 K, which is corroborated by Raman measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01595v1-abstract-full').style.display = 'none'; document.getElementById('2312.01595v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05455">arXiv:2311.05455</a> <span> [<a href="https://arxiv.org/pdf/2311.05455">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Incommensurate antiferromagnetism in UTe2 under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Knafo%2C+W">W. Knafo</a>, <a href="/search/cond-mat?searchtype=author&query=Thebault%2C+T">T. Thebault</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">E. Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Beauvois%2C+K">K. Beauvois</a>, <a href="/search/cond-mat?searchtype=author&query=Lapertot%2C+G">G. Lapertot</a>, <a href="/search/cond-mat?searchtype=author&query=Kaneko%2C+K">K. Kaneko</a>, <a href="/search/cond-mat?searchtype=author&query=Aoki%2C+D">D. Aoki</a>, <a href="/search/cond-mat?searchtype=author&query=Braithwaite%2C+D">D. Braithwaite</a>, <a href="/search/cond-mat?searchtype=author&query=Knebel%2C+G">G. Knebel</a>, <a href="/search/cond-mat?searchtype=author&query=Raymond%2C+S">S. Raymond</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05455v1-abstract-short" style="display: inline;"> The discovery of multiple superconducting phases in UTe2 boosted research on correlated-electron physics. This heavy-fermion paramagnet was rapidly identified as a reference compound to study the interplay between magnetism and unconventional superconductivity with multiple degrees of freedom. The proximity to a ferromagnetic quantum phase transition was initially proposed as a driving force to tr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05455v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05455v1-abstract-full" style="display: none;"> The discovery of multiple superconducting phases in UTe2 boosted research on correlated-electron physics. This heavy-fermion paramagnet was rapidly identified as a reference compound to study the interplay between magnetism and unconventional superconductivity with multiple degrees of freedom. The proximity to a ferromagnetic quantum phase transition was initially proposed as a driving force to triplet-pairing superconductivity. However, we find here that long-range incommensurate antiferromagnetic order is established under pressure. The propagation vector km = (0.07,0.33,1) of the antiferromagnetic phase is close to a wavevector where antiferromagnetic fluctuations have previously been observed at ambient pressure. These elements support that UTe2 is a nearly-antiferromagnet at ambient pressure. Our work appeals for theories modelling the evolution of the magnetic interactions and electronic properties, driving a correlated paramagnetic regime at ambient pressure to a long-range antiferromagnetic order under pressure. A deeper understanding of itinerant-f-electrons magnetism in UTe2 will be a key for describing its unconventional superconducting phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05455v1-abstract-full').style.display = 'none'; document.getElementById('2311.05455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Article: 17 pages, 4 figures, 64 references Supplementary Information: 6 pages, 6 figures, 7 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09268">arXiv:2310.09268</a> <span> [<a href="https://arxiv.org/pdf/2310.09268">pdf</a>, <a href="https://arxiv.org/format/2310.09268">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic structure, excitations and field induced transitions in the honeycomb lattice $\rm{Er_2Si_2O_7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Islam%2C+M">M. Islam</a>, <a href="/search/cond-mat?searchtype=author&query=d%27Ambrumenil%2C+N">N. d'Ambrumenil</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Petrenko%2C+O+A">O. A. Petrenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09268v3-abstract-short" style="display: inline;"> We investigate the magnetic properties of the monoclinic D-type $\rm{Er_2Si_2O_7}$ with a distorted honeycomb lattice using powder and single crystal neutron scattering techniques, as well as single crystal magnetisation measurements. The powder neutron diffraction shows that below the ordering temperature, $T_{\rm N}=1.85$ K, the compound forms a ${\bf q}=0$ antiferromagnetic structure with four… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09268v3-abstract-full').style.display = 'inline'; document.getElementById('2310.09268v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09268v3-abstract-full" style="display: none;"> We investigate the magnetic properties of the monoclinic D-type $\rm{Er_2Si_2O_7}$ with a distorted honeycomb lattice using powder and single crystal neutron scattering techniques, as well as single crystal magnetisation measurements. The powder neutron diffraction shows that below the ordering temperature, $T_{\rm N}=1.85$ K, the compound forms a ${\bf q}=0$ antiferromagnetic structure with four sublattices. For $H \! \parallel \! a$, magnetisation measurements reveal a narrow, but clearly visible plateau at one third of the magnetisation saturation value. The plateau's stabilisation is accompanied by a significant increase of the magnetic unit cell, as the magnetic peaks with fractional indices are observed in single crystal neutron diffraction experiments. At low-temperatures, the inelastic neutron scattering measurements reveal the presence of low-energy dispersionless excitations. Their spectrum is sensitive to the applied field, it significantly softens on the magnetisation plateau, and demonstrates the behaviour expected for a non-collinear Ising antiferromagnet away from the plateau. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09268v3-abstract-full').style.display = 'none'; document.getElementById('2310.09268v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures and Supplementary Material containing 8 pages, 6 figures. To view the .mcif file, please download and extract the gzipped tar source file listed under "Other formats"</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04282">arXiv:2309.04282</a> <span> [<a href="https://arxiv.org/pdf/2309.04282">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Templates for magnetic symmetry and altermagnetism in hexagonal MnTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Laan%2C+G">G. van der Laan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04282v1-abstract-short" style="display: inline;"> The symmetry of long-range magnetic order in manganese telluride (alpha-MnTe) is unknown. Likewise, its standing as an altermagnet. To improve the situation, we present symmetry informed Bragg diffraction patterns based on a primary magnetic order parameter for antiferromagnetic alignment between Mn dipoles. It does not break translation symmetry in a centrosymmetric structure, in keeping with an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04282v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04282v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04282v1-abstract-full" style="display: none;"> The symmetry of long-range magnetic order in manganese telluride (alpha-MnTe) is unknown. Likewise, its standing as an altermagnet. To improve the situation, we present symmetry informed Bragg diffraction patterns based on a primary magnetic order parameter for antiferromagnetic alignment between Mn dipoles. It does not break translation symmetry in a centrosymmetric structure, in keeping with an accepted definition of altermagnetism. Our templates serve x-ray diffraction that benefits from signal enhancement using a Mn atomic resonance, and neutron scattering. Even rank multipoles in magnetic neutron diffraction reflect a core requirement of altermagnetism, because they are zero for strong spin-orbit coupling. Symmetry in the templates demands that nuclear and magnetic contributions possess the same phase, which enables standard neutron polarization analysis on Bragg spots with overlapping contributions. However, three of the four templates generate Bragg spots that do not appear in the lattice (nuclear) diffraction pattern, i.e., Bragg spots that are basis-forbidden and purely magnetic in origin. On the other hand, identical symmetry demands a 90 deg phase shift between magnetic (time-odd) and charge-like (time-even, Templeton-Templeton) contributions to x-ray scattering amplitudes. Consequently, circular polarization in the primary beam of x-rays is rotated. The difference in the intensities of a Bragg spot measured with right- and left-handed circular primary polarization defines a chiral signature. Further tests include predictions in three out four templates of zero intensity in a specified channel of x-ray polarization. Diffraction properties of a template are radically different from those of a parity-time (PT)-symmetric antiferromagnet, for its symmetry allows a linear ME effect and prohibits both a PM effect and a chiral signature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04282v1-abstract-full').style.display = 'none'; document.getElementById('2309.04282v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14724">arXiv:2306.14724</a> <span> [<a href="https://arxiv.org/pdf/2306.14724">pdf</a>, <a href="https://arxiv.org/ps/2306.14724">ps</a>, <a href="https://arxiv.org/format/2306.14724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.174412">10.1103/PhysRevB.108.174412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The crystal and magnetic structure of cesium superoxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&query=Reehuis%2C+M">M. Reehuis</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Gibbs%2C+A+S">A. S. Gibbs</a>, <a href="/search/cond-mat?searchtype=author&query=Fortes%2C+A+D">A. D. Fortes</a>, <a href="/search/cond-mat?searchtype=author&query=Hoser%2C+A">A. Hoser</a>, <a href="/search/cond-mat?searchtype=author&query=Princep%2C+A+J">A. J. Princep</a>, <a href="/search/cond-mat?searchtype=author&query=Jansen%2C+M">M. Jansen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14724v2-abstract-short" style="display: inline;"> CsO2 is a member of the family of alkali superoxides (formula AO2 with A= Na, K, Rb and Cs) that exhibit magnetic behavior arising from open $p$-shell electrons residing on O2- molecules. We use neutron diffraction to solve the crystal and magnetic structures of CsO2, and observe a complex series of structures on cooling from room temperature to 1.6 K. These include an incommensurate modulation al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14724v2-abstract-full').style.display = 'inline'; document.getElementById('2306.14724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14724v2-abstract-full" style="display: none;"> CsO2 is a member of the family of alkali superoxides (formula AO2 with A= Na, K, Rb and Cs) that exhibit magnetic behavior arising from open $p$-shell electrons residing on O2- molecules. We use neutron diffraction to solve the crystal and magnetic structures of CsO2, and observe a complex series of structures on cooling from room temperature to 1.6 K. These include an incommensurate modulation along the a-axis of the structure at intermediate temperatures, which then locks into a commensurate modulation that doubles the unit cell compared to the previously supposed orthorhombic unit cell. In both incommensurate and commensurate phases our structural solution involves a staggering of the cesium ion positions along the b-axis, in contrast to studies of other alkali superoxides in which staggered tilts of the O2- dimers relative to the c-axis are seen. Below T ~ 10 K we observe magnetic Bragg reflections arising from an antiferromagnetically ordered structure with a wavevector of k = (0,0,0) (relative to the doubled crystallographic unit cell), with moments that point predominantly along the b-axis with a small component along the a-axis that hints at possible anisotropic exchange coupling (consistent with the crystal structure). Measurements of the magnetic Bragg reflections in an applied magnetic field suggest a spin-flop transition takes place between 2 T and 4 T in which moments likely flop to point along the crystallographic a-axis. Our measurements indicate that CsO2 is an interesting example of magnetic properties being inherently linked to the crystal structure, in that the staggered displacement of the cesium ions activates antisymmetric exchange which then permits the observed spin canting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14724v2-abstract-full').style.display = 'none'; document.getElementById('2306.14724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12130">arXiv:2306.12130</a> <span> [<a href="https://arxiv.org/pdf/2306.12130">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A magnetic structure of ruthenium dioxide (RuO2) and altermagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Laan%2C+G">G. van der Laan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12130v1-abstract-short" style="display: inline;"> The magnetic structure of RuO2 and the Ru atomic configuration are unknown. A magnetic structure is inferred by confronting measured and calculated Bragg diffraction patterns and adjusting the latter to achieve satisfactory agreement. An accepted pattern, a magnetic symmetry, includes symmetry of sites occupied by the magnetic ions. As a realistic starting point, we provide diffraction patterns fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12130v1-abstract-full').style.display = 'inline'; document.getElementById('2306.12130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12130v1-abstract-full" style="display: none;"> The magnetic structure of RuO2 and the Ru atomic configuration are unknown. A magnetic structure is inferred by confronting measured and calculated Bragg diffraction patterns and adjusting the latter to achieve satisfactory agreement. An accepted pattern, a magnetic symmetry, includes symmetry of sites occupied by the magnetic ions. As a realistic starting point, we provide diffraction patterns for a magnetic symmetry of RuO2, a descendent of the tetragonal parent structure, which accommodates a departure of Ru axial dipoles from the crystal c axis. A chiral signal and piezomagnetic effect are permitted, and a linear magnetoelectric effect forbidden. Features of the neutron diffraction pattern test the non-relativistic requirement of altermagnetism, and we scrutinize published room-temperature data. Specifically, one Bragg point is consistent with Ru orbital angular momentum and magnetic quadrupole both zero, and the latter result is not expected from non-relativistic altermagnetism. Azimuthal angle scans in resonant x-ray diffraction are sensitive to the Ru site symmetry and the atomic configuration. Acid tests of the studied magnetic symmetry include a chiral signature and null intensity for unrotated photon polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12130v1-abstract-full').style.display = 'none'; document.getElementById('2306.12130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01804">arXiv:2305.01804</a> <span> [<a href="https://arxiv.org/pdf/2305.01804">pdf</a>, <a href="https://arxiv.org/format/2305.01804">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.054403">10.1103/PhysRevB.108.054403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic inhomogeneities in the quadruple perovskite manganite [Y$_{2-x}$Mn$_x$]MnMnMn$_4$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vibhakar%2C+A+M">A. M. Vibhakar</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Steinke%2C+N+J">N. J. Steinke</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">A. A. Belik</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01804v1-abstract-short" style="display: inline;"> A combination of competing exchange interactions and substitutional disorder gives rise to magnetic inhomogeneities in the [Y$_{2-x}$Mn$_x$]MnMnMn$_4$O$_{12}$ $x = 0.23$ and $x = 0.16$ quadruple perovskite manganites. Our neutron powder scattering measurements show that both the $x = 0.23$ and $x = 0.16$ samples separate into two distinct magnetic phases; below T$_{1}$ = 120 $\pm$ 10 K the system… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01804v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01804v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01804v1-abstract-full" style="display: none;"> A combination of competing exchange interactions and substitutional disorder gives rise to magnetic inhomogeneities in the [Y$_{2-x}$Mn$_x$]MnMnMn$_4$O$_{12}$ $x = 0.23$ and $x = 0.16$ quadruple perovskite manganites. Our neutron powder scattering measurements show that both the $x = 0.23$ and $x = 0.16$ samples separate into two distinct magnetic phases; below T$_{1}$ = 120 $\pm$ 10 K the system undergoes a transition from a paramagnetic phase to a phase characterised by short range antiferromagnetic clusters contained in a paramagnetic matrix, and below T$_{2}$ $\sim$ 65 K, the system is composed of well correlated long range collinear ferrimagnetic order, punctuated by short range antiferromagnetic clusters. A sharp increase in the antiferromagnetic phase fraction is observed below $\sim$ 33 K, concomitant with a decrease in the ferrimagnetic phase fraction. Our results demonstrate that the theoretically proposed AFM phase is stabilised in the [Y$_{2-x}$Mn$_x$]MnMnMn$_4$O$_{12}$ manganites in the presence of dominant B-B exchange interactions, as predicted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01804v1-abstract-full').style.display = 'none'; document.getElementById('2305.01804v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14896">arXiv:2304.14896</a> <span> [<a href="https://arxiv.org/pdf/2304.14896">pdf</a>, <a href="https://arxiv.org/format/2304.14896">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L180402">10.1103/PhysRevB.107.L180402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Double-$Q$ Ground State with Topological Charge Stripes in the Skyrmion Candidate $\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wood%2C+G+D+A">G. D. A. Wood</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Mayoh%2C+D+A">D. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&query=Bouaziz%2C+J">J. Bouaziz</a>, <a href="/search/cond-mat?searchtype=author&query=Hall%2C+A+E">A. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&query=Holt%2C+S+J+R">S. J. R. Holt</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Bl%C3%BCgel%2C+S">S. Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&query=Staunton%2C+J+B">J. B. Staunton</a>, <a href="/search/cond-mat?searchtype=author&query=Petrenko%2C+O+A">O. A. Petrenko</a>, <a href="/search/cond-mat?searchtype=author&query=Lees%2C+M+R">M. R. Lees</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14896v2-abstract-short" style="display: inline;"> $\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$ is a centrosymmetric magnet in which a skyrmion lattice has recently been discovered. Here, we investigate the magnetic structure of the zero field ground state using neutron diffraction on single crystal and polycrystalline $^{\text{160}}\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$. In addition to observing the principal propagation vectors $\mathbf{q}_… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14896v2-abstract-full').style.display = 'inline'; document.getElementById('2304.14896v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14896v2-abstract-full" style="display: none;"> $\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$ is a centrosymmetric magnet in which a skyrmion lattice has recently been discovered. Here, we investigate the magnetic structure of the zero field ground state using neutron diffraction on single crystal and polycrystalline $^{\text{160}}\text{GdRu}_{\text{2}}\text{Si}_{\text{2}}$. In addition to observing the principal propagation vectors $\mathbf{q}_{1}$ and $\mathbf{q}_{2}$, we discover higher order magnetic satellites, notably $\mathbf{q}_{1} + 2\mathbf{q}_{2}$. The appearance of these satellites are explained within the framework of a new double-$Q$ constant-moment solution. Using powder diffraction we implement a quantitative refinement of this model. This structure, which contains vortexlike motifs, is shown to have a one-dimensional topological charge density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14896v2-abstract-full').style.display = 'none'; document.getElementById('2304.14896v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted PRB Letter (14.4.2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07903">arXiv:2304.07903</a> <span> [<a href="https://arxiv.org/pdf/2304.07903">pdf</a>, <a href="https://arxiv.org/format/2304.07903">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L100404">10.1103/PhysRevB.108.L100404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competing charge and magnetic order in the candidate centrosymmetric skyrmion host EuGa$_2$Al$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vibhakar%2C+A+M">A. M. Vibhakar</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Moya%2C+J+M">J. M. Moya</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+S">S. Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Morosan%2C+E">E. Morosan</a>, <a href="/search/cond-mat?searchtype=author&query=Bombardi%2C+A">A. Bombardi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07903v2-abstract-short" style="display: inline;"> Eu(Ga$_{1-x}$Al$_x$)$_4$ are centrosymmetric systems that have recently been identified as candidates to stabilise topologically non-trivial magnetic phases, such as skyrmion lattices. In this Letter, we present a high-resolution resonant x-ray and neutron scattering study on EuAl2Ga2 that provides new details of the complex coupling between the electronic ordering phenomena. Our results unambiguo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07903v2-abstract-full').style.display = 'inline'; document.getElementById('2304.07903v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07903v2-abstract-full" style="display: none;"> Eu(Ga$_{1-x}$Al$_x$)$_4$ are centrosymmetric systems that have recently been identified as candidates to stabilise topologically non-trivial magnetic phases, such as skyrmion lattices. In this Letter, we present a high-resolution resonant x-ray and neutron scattering study on EuAl2Ga2 that provides new details of the complex coupling between the electronic ordering phenomena. Our results unambiguously demonstrate that the system orders to form a spin density wave with moments aligned perpendicular to the direction of the propagation vector, and upon further cooling, a cycloid with moments in the ab plane, in contrast to what has been reported in the literature. We show that concomitant with the onset of the spin density wave is the suppression of the charge order, indicative of a coupling between the localised 4$f$ electrons and itinerant electron density. Furthermore we demonstrate that the charge density wave order breaks the four-fold symmetry present in the I4/mmm crystal structure, thus declassifying these systems as square-net magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07903v2-abstract-full').style.display = 'none'; document.getElementById('2304.07903v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 108.10 (2023), L100404 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10312">arXiv:2212.10312</a> <span> [<a href="https://arxiv.org/pdf/2212.10312">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2CP04863A">10.1039/D2CP04863A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of antifluorite layer on the magnetic order in Eu-based 1111 compounds, EuTAsF (T = Zn, Mn, and Fe) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Plokhikh%2C+I+V">Igor V. Plokhikh</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirlin%2C+A+A">Alexander A. Tsirlin</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+H+E">Henry E. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Shevelkov%2C+A+V">Andrei V. Shevelkov</a>, <a href="/search/cond-mat?searchtype=author&query=Pfitzner%2C+A">Arno Pfitzner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10312v1-abstract-short" style="display: inline;"> The 1111 compounds with an alternating sequence of fluorite and antifluorite layers serve as structural hosts for the vast family of Fe-based superconductors. Here, we use neutron powder diffraction and density-functional-theory (DFT) band-structure calculations to study magnetic order of Eu2+ in the [EuF]+ fluorite layers depending on the nature of the [TAs]- antifluorite layer that can be non-ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10312v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10312v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10312v1-abstract-full" style="display: none;"> The 1111 compounds with an alternating sequence of fluorite and antifluorite layers serve as structural hosts for the vast family of Fe-based superconductors. Here, we use neutron powder diffraction and density-functional-theory (DFT) band-structure calculations to study magnetic order of Eu2+ in the [EuF]+ fluorite layers depending on the nature of the [TAs]- antifluorite layer that can be non-magnetic semiconducting (T = Zn), magnetic semiconducting (T = Mn), or magnetic metallic (T = Fe). Antiferromagnetic transitions at TN ~ 2.4 - 3 K due to an ordering of the Eu2+ magnetic moments were confirmed in all three EuTAsF compounds. Whereas in EuTAsF (T = Zn and Mn), the commensurate k1 = (1/2 1/2 0) stripe order pattern with magnetic moments within the ab-plane is observed, the order in EuFeAsF is incommensurate with k = (0 0.961(1) 1/2) and represents a cycloid of Eu2+ magnetic moments confined within the bc-plane. Additionally, the Mn2+ sublattice in EuMnAsF features a robust G-type antiferromagnetic order that persists at least up to room temperature, with magnetic moments along the c-direction. Although DFT calculations suggest stripe antiferromagnetic order in the Fe-sublattice of EuFeAsF as the ground state, neutron diffraction reveals no evidence of long-range magnetic order associated with Fe. We show that the frustrating interplane interaction J3 between the adjacent [EuF]+ layers is comparable with in-plane J1-J2 interactions already in the case of semiconducting fluorite layers [TAs]- (T = Zn and Mn) and becomes dominant in the case of the metallic [FeAs]- ones. The latter, along with a slight orthorhombic distortion, is proposed to be the origin of the incommensurate magnetic structure observed in EuFeAsF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10312v1-abstract-full').style.display = 'none'; document.getElementById('2212.10312v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12555">arXiv:2210.12555</a> <span> [<a href="https://arxiv.org/pdf/2210.12555">pdf</a>, <a href="https://arxiv.org/format/2210.12555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41714-8">10.1038/s41467-023-41714-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain control of a bandwidth-driven spin reorientation in Ca$_{3}$Ru$_{2}$O$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+A+H">A. H. Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Kwasigroch%2C+M+P">M. P. Kwasigroch</a>, <a href="/search/cond-mat?searchtype=author&query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Colin%2C+C+V">C. V. Colin</a>, <a href="/search/cond-mat?searchtype=author&query=Fabelo%2C+O">O. Fabelo</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%BCger%2C+F">F. Kr眉ger</a>, <a href="/search/cond-mat?searchtype=author&query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Green%2C+A+G">A. G. Green</a>, <a href="/search/cond-mat?searchtype=author&query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12555v2-abstract-short" style="display: inline;"> The layered-ruthenate family of materials possess an intricate interplay of structural, electronic and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is exemplified by Ca$_{3}$Ru$_{2}$O$_{7}$, which hosts a coupled transition in which the lattice parameters jump, the Fermi surface partially gaps and the spins undergo a $90^{\circ}$ in-plane reorientat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12555v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12555v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12555v2-abstract-full" style="display: none;"> The layered-ruthenate family of materials possess an intricate interplay of structural, electronic and magnetic degrees of freedom that yields a plethora of delicately balanced ground states. This is exemplified by Ca$_{3}$Ru$_{2}$O$_{7}$, which hosts a coupled transition in which the lattice parameters jump, the Fermi surface partially gaps and the spins undergo a $90^{\circ}$ in-plane reorientation. Here, we show how the transition is driven by a lattice strain that tunes the electronic bandwidth. We apply uniaxial stress to single crystals of Ca$_{3}$Ru$_{2}$O$_{7}$, using neutron and resonant x-ray scattering to simultaneously probe the structural and magnetic responses. These measurements demonstrate that the transition can be driven by externally induced strain, stimulating the development of a theoretical model in which an internal strain is generated self-consistently to lower the electronic energy. We understand the strain to act by modifying tilts and rotations of the RuO$_{6}$ octahedra, which directly influences the nearest-neighbour hopping. Our results offer a blueprint for uncovering the driving force behind coupled phase transitions, as well as a route to controlling them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12555v2-abstract-full').style.display = 'none'; document.getElementById('2210.12555v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures (+ 12 pages, 6 figures of supplemental material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 6197 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12657">arXiv:2205.12657</a> <span> [<a href="https://arxiv.org/pdf/2205.12657">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.064419">10.1103/PhysRevB.106.064419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden magnetic order on a kagome lattice for KV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Scagnoli%2C+V">V. Scagnoli</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12657v1-abstract-short" style="display: inline;"> KV3Sb5 has recently attracted a considerable attention, due to its low temperature superconducting properties, which are heralded by a charge density wave. The apparent presence of a very weak magnetism does not result in long range ordering. We propose a model compatible with a detectable internal magnetic field with no evidence of magnetic long-range order. It invokes higher order terms in the v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12657v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12657v1-abstract-full" style="display: none;"> KV3Sb5 has recently attracted a considerable attention, due to its low temperature superconducting properties, which are heralded by a charge density wave. The apparent presence of a very weak magnetism does not result in long range ordering. We propose a model compatible with a detectable internal magnetic field with no evidence of magnetic long-range order. It invokes higher order terms in the vanadium magnetization density compatible with the presence of a "hidden order" of Dirac (polar) multipoles. The Dirac dipole, known as an anapole or toroidal dipole, is one of a family of electronic multipoles visible in x-ray and magnetic neutron diffraction while undetectable with standard laboratory-based techniques. Two plausible hidden orders are studied with a view to testing in future x-ray and neutron Bragg diffraction experiments whether they are trustworthy. One candidate is magneto-electric and restricted to the linear type, while the other candidate cannot show a magneto-electric effect of any type. The latter hosts a vanadium entity that is both a true scalar and magnetic, and its presence epitomizes an absence of loop currents. Diffraction patterns for the two proposed hidden magnetic orders are distinctly different, fortunately. Corresponding scattering amplitudes for resonant x-ray and neutron Bragg diffraction are calculated with standard chemical and magnetic symmetry tools, and atomic physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12657v1-abstract-full').style.display = 'none'; document.getElementById('2205.12657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11569">arXiv:2202.11569</a> <span> [<a href="https://arxiv.org/pdf/2202.11569">pdf</a>, <a href="https://arxiv.org/format/2202.11569">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.224415">10.1103/PhysRevB.106.224415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-density-wave order controlled by uniaxial stress in CeAuSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Waite%2C+R">R. Waite</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Sokolov%2C+D+A">D. A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Hicks%2C+C+W">C. W. Hicks</a>, <a href="/search/cond-mat?searchtype=author&query=Hayden%2C+S+M">S. M. Hayden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11569v2-abstract-short" style="display: inline;"> The tetragonal heavy-fermion compound CeAuSb$_2$ (space group $P4/nmm$) exhibits incommensurate spin density wave (SDW) order below $T_{N}\approx6.5~K$ with the propagation vector $\mathbf{q}_A = (未_A,未_A,1/2)$. The application of uniaxial stress along the [010] direction induces a sudden change in the resistivity ratio $蟻_a/蟻_b$ at a compressive strain of $蔚\approx -0.5$\%. Here we use neutron sc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11569v2-abstract-full').style.display = 'inline'; document.getElementById('2202.11569v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11569v2-abstract-full" style="display: none;"> The tetragonal heavy-fermion compound CeAuSb$_2$ (space group $P4/nmm$) exhibits incommensurate spin density wave (SDW) order below $T_{N}\approx6.5~K$ with the propagation vector $\mathbf{q}_A = (未_A,未_A,1/2)$. The application of uniaxial stress along the [010] direction induces a sudden change in the resistivity ratio $蟻_a/蟻_b$ at a compressive strain of $蔚\approx -0.5$\%. Here we use neutron scattering to show that the uniaxial stress induces a first-order transition to a SDW state with a different propagation vector $(0,未_B,1/2)$ with $未_B=0.25$. The magnetic structure of the new (B) phase consists of Ce layers with ordered moments alternating with layers with zero moment stacked along the $c$-axis. The ordered layers have an up-up-down-down configuration along the $b$-axis. This is an unusual situation in which the loss of spatial inversion is driven by the magnetic order. We argue that the change in SDW wavevector leads to Fermi surface reconstruction and a concomitant change in the transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11569v2-abstract-full').style.display = 'none'; document.getElementById('2202.11569v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final author version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 224415 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10215">arXiv:2112.10215</a> <span> [<a href="https://arxiv.org/pdf/2112.10215">pdf</a>, <a href="https://arxiv.org/format/2112.10215">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac4280">10.1088/1367-2630/ac4280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heisenberg spins on an anisotropic triangular lattice: PdCrO2 under uniaxial stress </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+D">Dan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Sokolov%2C+D+A">Dmitry A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&query=Waite%2C+R">Richard Waite</a>, <a href="/search/cond-mat?searchtype=author&query=Khim%2C+S">Seunghyun Khim</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">Fabio Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&query=Hicks%2C+C+W">Clifford W. Hicks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10215v1-abstract-short" style="display: inline;"> When Heisenberg spins interact antiferromagnetically on a triangular lattice and nearest-neighbor interactions dominate, the ground state is 120$^{\circ}$ antiferromagnetism. In this work, we probe the response of this state to lifting the triangular symmetry, through investigation of the triangular antiferromagnet PdCrO$_2$ under uniaxial stress by neutron diffraction and resistivity measurements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10215v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10215v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10215v1-abstract-full" style="display: none;"> When Heisenberg spins interact antiferromagnetically on a triangular lattice and nearest-neighbor interactions dominate, the ground state is 120$^{\circ}$ antiferromagnetism. In this work, we probe the response of this state to lifting the triangular symmetry, through investigation of the triangular antiferromagnet PdCrO$_2$ under uniaxial stress by neutron diffraction and resistivity measurements. The periodicity of the magnetic order is found to change rapidly with applied stress; the rate of change indicates that the magnetic anisotropy is roughly forty times the stress-induced bond length anisotropy. At low stress, the incommensuration period becomes extremely long, on the order of 1000 lattice spacings; no locking of the magnetism to commensurate periodicity is detected. Separately, the magnetic structure is found to undergo a first-order transition at a compressive stress of $\sim$0.4 GPa, at which the interlayer ordering switches from a double- to a single-q structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10215v1-abstract-full').style.display = 'none'; document.getElementById('2112.10215v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, accepted by New Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01972">arXiv:2108.01972</a> <span> [<a href="https://arxiv.org/pdf/2108.01972">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.014403">10.1103/PhysRevB.105.014403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of ruthenium dioxide (RuO2) and charge-magnetic interference in Bragg diffraction of circularly polarized x-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Laan%2C+G">G. van der Laan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01972v2-abstract-short" style="display: inline;"> Rutile-type RuO2 likely supports a simple antiferromagnetic structure which can be verified by x-ray Bragg diffraction. Three magnetic motifs that do not break translation symmetry are explored in calculations of amplitudes suitable for diffraction enhanced by tuning the primary x-ray energy to a ruthenium atomic resonance. Coupling to x-ray helicity through a charge-magnetic interference is commo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01972v2-abstract-full').style.display = 'inline'; document.getElementById('2108.01972v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01972v2-abstract-full" style="display: none;"> Rutile-type RuO2 likely supports a simple antiferromagnetic structure which can be verified by x-ray Bragg diffraction. Three magnetic motifs that do not break translation symmetry are explored in calculations of amplitudes suitable for diffraction enhanced by tuning the primary x-ray energy to a ruthenium atomic resonance. Coupling to x-ray helicity through a charge-magnetic interference is common to all motifs, together with magnetic and charge intensities in quadrature in the rotated channel of polarization. Necessary conditions for these diffraction phenomena are a centrosymmetric crystal structure, null magnetic propagation vector, and absence of a linear magnetoelectric effect. Published x-ray diffraction data for RuO2 was analysed by the authors against a magnetic motif that does not satisfy the conditions. A polarized neutron study of antiferromagnetic domains can be achieved with a sample that meets the stated crystal and magnetic symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01972v2-abstract-full').style.display = 'none'; document.getElementById('2108.01972v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14269">arXiv:2104.14269</a> <span> [<a href="https://arxiv.org/pdf/2104.14269">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.235160">10.1103/PhysRevB.103.235160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic order and 5d1 multipoles in a rhenate double perovskite Ba2MgReO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14269v1-abstract-short" style="display: inline;"> Structural and magnetic transitions in a double perovskite hosting 5d1 Re ions are discussed on the basis of recently published high-resolution x-ray diffraction patterns [D. Hirai, et al., Phys. Rev. Res. 2, 022063(R) (2020)]. A reported structural transition below room temperature, from cubic to tetragonal symmetry, appears not to be driven by T2g-type quadrupoles, as suggested. A magnetic motif… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14269v1-abstract-full').style.display = 'inline'; document.getElementById('2104.14269v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14269v1-abstract-full" style="display: none;"> Structural and magnetic transitions in a double perovskite hosting 5d1 Re ions are discussed on the basis of recently published high-resolution x-ray diffraction patterns [D. Hirai, et al., Phys. Rev. Res. 2, 022063(R) (2020)]. A reported structural transition below room temperature, from cubic to tetragonal symmetry, appears not to be driven by T2g-type quadrupoles, as suggested. A magnetic motif at lower temperature is shown to be composed of two order parameters, associated with propagation vectors k = (0, 0, 1) and k = (0, 0, 0). Findings from our studies, for structural and magnetic properties of Ba2MgReO6, surface in predicted amplitudes for x-ray diffraction at rhenium L2 and L3 absorption edges, and magnetic neutron Bragg diffraction. Specifically, entanglement of anapole and spatial degrees of freedom creates a quadrupole in the neutron scattering amplitude. It would be excluded in an unexpected scenario whereby the rhenium atomic state is a manifold. Also, a chiral signature visible in resonant x-ray diffraction will be one consequence of predicted electronic quadrupole and magnetic dipole orders. A model Re wave function consistent with all current knowledge is a guide to electronic and magnetic multipoles engaged in x-ray and neutron diffraction investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14269v1-abstract-full').style.display = 'none'; document.getElementById('2104.14269v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 235160 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10859">arXiv:2104.10859</a> <span> [<a href="https://arxiv.org/pdf/2104.10859">pdf</a>, <a href="https://arxiv.org/format/2104.10859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.174423">10.1103/PhysRevB.103.174423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic Spin Fluctuations in the Frustrated Spin Chain Compound Li$_3$Cu$_2$SbO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bhattacharyya%2C+A">A. Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&query=Bhowmik%2C+T+K">T. K. Bhowmik</a>, <a href="/search/cond-mat?searchtype=author&query=Adroja%2C+D+T">D. T. Adroja</a>, <a href="/search/cond-mat?searchtype=author&query=Rahaman%2C+B">B. Rahaman</a>, <a href="/search/cond-mat?searchtype=author&query=Kar%2C+S">S. Kar</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">S. Das</a>, <a href="/search/cond-mat?searchtype=author&query=Saha-Dasgupta%2C+T">T. Saha-Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&query=Biswas%2C+P+K">P. K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&query=Sinha%2C+T+P">T. P. Sinha</a>, <a href="/search/cond-mat?searchtype=author&query=Ewings%2C+R+A">R. A. Ewings</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Strydom%2C+A+M">A. M. Strydom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10859v1-abstract-short" style="display: inline;"> We report the signatures of dynamic spin fluctuations in the layered honeycomb Li$_3$Cu$_2$SbO$_6$ compound, with a 3$d$ S = 1/2 $d^9$ Cu$^{2+}$ configuration, through muon spin rotation and relaxation ($渭$SR) and neutron scattering studies. Our zero-field (ZF) and longitudinal-field (LF)-$渭$SR results demonstrate the slowing down of the Cu$^{2+}$ spin fluctuations below 4.0 K. The saturation of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10859v1-abstract-full').style.display = 'inline'; document.getElementById('2104.10859v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10859v1-abstract-full" style="display: none;"> We report the signatures of dynamic spin fluctuations in the layered honeycomb Li$_3$Cu$_2$SbO$_6$ compound, with a 3$d$ S = 1/2 $d^9$ Cu$^{2+}$ configuration, through muon spin rotation and relaxation ($渭$SR) and neutron scattering studies. Our zero-field (ZF) and longitudinal-field (LF)-$渭$SR results demonstrate the slowing down of the Cu$^{2+}$ spin fluctuations below 4.0 K. The saturation of the ZF relaxation rate at low temperature, together with its weak dependence on the longitudinal field between 0 and 3.2 kG, indicates the presence of dynamic spin fluctuations persisting even at 80 mK without static order. Neutron scattering study reveals the gaped magnetic excitations with three modes at 7.7, 13.5 and 33 meV. Our DFT calculations reveal that the next nearest neighbors (NNN) AFM exchange ($J_{AFM}$ = 31 meV) is stronger than the NN FM exchange ($J_{FM}$ = -21 meV) indicating the importance of the orbital degrees of freedom. Our results suggest that the physics of Li$_3$Cu$_2$SbO$_6$ can be explained by an alternating AFM chain rather than the honeycomb lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10859v1-abstract-full').style.display = 'none'; document.getElementById('2104.10859v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 174423 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06028">arXiv:2104.06028</a> <span> [<a href="https://arxiv.org/pdf/2104.06028">pdf</a>, <a href="https://arxiv.org/format/2104.06028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.134115">10.1103/PhysRevB.103.134115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competing electronic instabilities in the quadruple perovskite manganite PbMn$_{7}$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">A. A. Belik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06028v1-abstract-short" style="display: inline;"> Structural behaviour of PbMn$_{7}$O$_{12}$ has been studied by high resolution synchrotron X-ray powder diffraction. This material belongs to a family of quadruple perovskite manganites that exhibit an incommensurate structural modulation associated with an orbital density wave. It has been found that the structural modulation in PbMn$_{7}$O$_{12}$ onsets at 294 K with the incommensurate propagati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06028v1-abstract-full').style.display = 'inline'; document.getElementById('2104.06028v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06028v1-abstract-full" style="display: none;"> Structural behaviour of PbMn$_{7}$O$_{12}$ has been studied by high resolution synchrotron X-ray powder diffraction. This material belongs to a family of quadruple perovskite manganites that exhibit an incommensurate structural modulation associated with an orbital density wave. It has been found that the structural modulation in PbMn$_{7}$O$_{12}$ onsets at 294 K with the incommensurate propagation vector $\mathbf{k}_s=(0,0,\sim2.08)$. At 110 K another structural transition takes place where the propagation vector suddenly drops down to a \emph{quasi}-commensurate value $\mathbf{k}_s=(0,0,2.0060(6))$. The \emph{quasi}-commensurate phase is stable in the temperature range of 40K - 110 K, and below 40 K the propagation vector jumps back to the incommensurate value $\mathbf{k}_s=(0,0,\sim2.06)$. Both low temperature structural transitions are strongly first order with large thermal hysteresis. The orbital density wave in the \emph{quasi}-commensurate phase has been found to be substantially suppressed in comparison with the incommensurate phases, which naturally explains unusual magnetic behaviour recently reported for this perovskite. Analysis of the refined structural parameters revealed that that the presence of the \emph{quasi}-commensurate phase is likely to be associated with a competition between the Pb$^{2+}$ lone electron pair and Mn$^{3+}$ Jahn-Teller instabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06028v1-abstract-full').style.display = 'none'; document.getElementById('2104.06028v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01178">arXiv:2102.01178</a> <span> [<a href="https://arxiv.org/pdf/2102.01178">pdf</a>, <a href="https://arxiv.org/format/2102.01178">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.214403">10.1103/PhysRevB.103.214403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collinear antiferromagnetic order in URu$_2$Si$_{2-x}$P$_x$ revealed by neutron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&query=Gallagher%2C+A">A. Gallagher</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+C">C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Baumbach%2C+R">R. Baumbach</a>, <a href="/search/cond-mat?searchtype=author&query=Janoschek%2C+M">M. Janoschek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01178v2-abstract-short" style="display: inline;"> The hidden order phase in URu$_2$Si$_2$ is highly sensitive to electronic doping. A special interest in silicon-to-phosphorus substitution is due to the fact that it may allow one, in part, to isolate the effects of tuning the chemical potential from the complexity of the correlated $f$ and $d$ electronic states. We investigate the new antiferromagnetic phase that is induced in URu$_2$Si$_{2-x}$P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01178v2-abstract-full').style.display = 'inline'; document.getElementById('2102.01178v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01178v2-abstract-full" style="display: none;"> The hidden order phase in URu$_2$Si$_2$ is highly sensitive to electronic doping. A special interest in silicon-to-phosphorus substitution is due to the fact that it may allow one, in part, to isolate the effects of tuning the chemical potential from the complexity of the correlated $f$ and $d$ electronic states. We investigate the new antiferromagnetic phase that is induced in URu$_2$Si$_{2-x}$P$_x$ at $x\gtrsim0.27$. Time-of-flight neutron diffraction of a single crystal ($x=0.28$) reveals $c$-axis collinear $\mathbf{q}_\mathrm{m}=(\frac12,\frac12,\frac12)$ magnetic structure with localized magnetic moments ($\approx2.1\,渭_\mathrm{B}$). This points to an unexpected analogy between the (Si,P) and (Ru,Rh) substitution series. Through further comparisons with other tuning studies of URu$_2$Si$_2$, we are able to delineate the mechanisms by which silicon-to-phosphorus substitution affects the system. In particular, both the localization of itinerant 5$f$ electrons as well as the choice of $\mathbf{q}_m$ appears to be consequences of the increase in chemical potential. Further, enhanced exchange interactions are induced by chemical pressure and lead to magnetic order, in which an increase in inter-layer spacing may play a special role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01178v2-abstract-full').style.display = 'none'; document.getElementById('2102.01178v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 214403 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03941">arXiv:2011.03941</a> <span> [<a href="https://arxiv.org/pdf/2011.03941">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.104429">10.1103/PhysRevB.103.104429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diffraction by multipoles in a 5d2 rhenium double perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Laan%2C+G">G. van der Laan</a>, <a href="/search/cond-mat?searchtype=author&query=Nilsen%2C+G+J">G. J. Nilsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03941v1-abstract-short" style="display: inline;"> A recent polarized neutron diffraction experiment on the 5d2 rhenium double perovskite Ba2YReO6 held at a low temperature uncovered weak magnetic diffraction peaks. Data analysis inferred a significantly reduced Re dipole moment, and long-range order compatible with an antiferromagnet, non-collinear motif. To interpret the experimental findings, we present a model wavefunction for Re ions derived… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03941v1-abstract-full').style.display = 'inline'; document.getElementById('2011.03941v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03941v1-abstract-full" style="display: none;"> A recent polarized neutron diffraction experiment on the 5d2 rhenium double perovskite Ba2YReO6 held at a low temperature uncovered weak magnetic diffraction peaks. Data analysis inferred a significantly reduced Re dipole moment, and long-range order compatible with an antiferromagnet, non-collinear motif. To interpret the experimental findings, we present a model wavefunction for Re ions derived from the crystal field potential, Coulomb interaction, and spin-orbit coupling that fully respects the symmetry of the low-temperature ordered state. It is used to calculate in analytic form all multipole moments visible in neutron and resonance enhanced x-ray diffraction. A minimal model consistent with available neutron diffraction data predicts significant multipolar moments up to the hexadecapole, and, in particular, a dominant charge-like quadrupole moment. Calculated diffraction patterns embrace single crystal x-ray diffraction at the Re L-edge, and renewed neutron diffraction, to probe the presumed underlying multipolar order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03941v1-abstract-full').style.display = 'none'; document.getElementById('2011.03941v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 104429 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10005">arXiv:2009.10005</a> <span> [<a href="https://arxiv.org/pdf/2009.10005">pdf</a>, <a href="https://arxiv.org/format/2009.10005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.214428">10.1103/PhysRevB.102.214428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusual effects of magnetic dilution in the ferrimagnetic columnar ordered $\mathrm{Sm_2MnMnMn_{4-x}Ti_xO_{12}}$ perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vibhakar%2C+A+M">Anuradha M. Vibhakar</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Ran Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yamaura%2C+K">Kazunari Yamaura</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">Alexei A. Belik</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">Roger D. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10005v1-abstract-short" style="display: inline;"> Powder neutron diffraction experiments have been employed to establish the effects of site-selective magnetic dilution in the Sm2MnMnMn4-x Tix O12 A-site columnar ordered quadruple perovskite manganites (x = 1, x = 2 and x = 3). We show that in all three compositions the Mn ions adopt a collinear ferrimagnetic structure below 27 K, 62 K and 34 K, respectively. An unexpected increase in the orderin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10005v1-abstract-full').style.display = 'inline'; document.getElementById('2009.10005v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10005v1-abstract-full" style="display: none;"> Powder neutron diffraction experiments have been employed to establish the effects of site-selective magnetic dilution in the Sm2MnMnMn4-x Tix O12 A-site columnar ordered quadruple perovskite manganites (x = 1, x = 2 and x = 3). We show that in all three compositions the Mn ions adopt a collinear ferrimagnetic structure below 27 K, 62 K and 34 K, respectively. An unexpected increase in the ordering temperature was observed between the x = 1 and x = 2 samples, which indicates a considerable departure from mean field behaviour. This result is corroborated by large reductions in the theoretical ground state magnetic moments observed across the series, which indicate the presence of spin fluctuations and or disorder. We show that long range magnetic order in the x = 3 sample, which occurs below the percolation threshold for B-B exchange, can only be understood to arise if magnetic order in Sm2MnMnMn4-xTixO12 is mediated via both A-B and B-B exchange, hence confirming the importance of A-B exchange interactions in these materials. Finally we show that site-selective magnetic dilution enables the tuning of a ferrimagnetic compensation point and the introduction of temperature-induced magnetization reversal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10005v1-abstract-full').style.display = 'none'; document.getElementById('2009.10005v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 214428 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01670">arXiv:2009.01670</a> <span> [<a href="https://arxiv.org/pdf/2009.01670">pdf</a>, <a href="https://arxiv.org/format/2009.01670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nature of Partial Magnetic Order in the Frustrated Antiferromagnet Gd2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Paddison%2C+J+A+M">Joseph A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&query=Ehlers%2C+G">Georg Ehlers</a>, <a href="/search/cond-mat?searchtype=author&query=Cairns%2C+A+B">Andrew B. Cairns</a>, <a href="/search/cond-mat?searchtype=author&query=Gardner%2C+J+S">Jason S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&query=Petrenko%2C+O+A">Oleg A. Petrenko</a>, <a href="/search/cond-mat?searchtype=author&query=Butch%2C+N+P">Nicholas P. Butch</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+H+E">Henry E. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Goodwin%2C+A+L">Andrew L. Goodwin</a>, <a href="/search/cond-mat?searchtype=author&query=Stewart%2C+J+R">J. Ross Stewart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01670v1-abstract-short" style="display: inline;"> Partially-ordered magnets are distinct from both spin liquids and conventional ordered magnets because order and disorder coexist in the same magnetic phase. Here, we determine the nature of partial order in the canonical frustrated pyrochlore antiferromagnet Gd$_2$Ti$_{2}$O$_{7}$. Using single-crystal neutron-diffraction measurements in applied magnetic field, magnetic symmetry analysis, inelasti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01670v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01670v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01670v1-abstract-full" style="display: none;"> Partially-ordered magnets are distinct from both spin liquids and conventional ordered magnets because order and disorder coexist in the same magnetic phase. Here, we determine the nature of partial order in the canonical frustrated pyrochlore antiferromagnet Gd$_2$Ti$_{2}$O$_{7}$. Using single-crystal neutron-diffraction measurements in applied magnetic field, magnetic symmetry analysis, inelastic neutron-scattering measurements, and spin-wave modeling, we show that its low-temperature magnetic structure involves two propagation vectors (2-$\mathbf{k}$ structure) with suppressed ordered magnetic moments and enhanced spin-wave fluctuations. Our experimental results support theoretical predictions of thermal fluctuation-driven order in Gd$_{2}$Ti$_{2}$O$_{7}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01670v1-abstract-full').style.display = 'none'; document.getElementById('2009.01670v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. This manuscript develops an earlier preprint, arXiv:1506.05045, from which it is significantly different</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10517">arXiv:2008.10517</a> <span> [<a href="https://arxiv.org/pdf/2008.10517">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aay7356">10.1126/science.aay7356 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent helical texture of electric dipoles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">Roger D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">Fabio Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Radaelli%2C+P+G">Paolo G. Radaelli</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">Alexei A. Belik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10517v1-abstract-short" style="display: inline;"> Long-range ordering of magnetic dipoles in bulk materials gives rise to a broad range of magnetic structures, from simple collinear ferromagnets and antiferromagnets, to complex magnetic helicoidal textures stabilized by competing exchange interactions. In contrast, in the context of dipolar order in dielectric crystals, only parallel (ferroelectric) and antiparallel (antiferroelectric) collinear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10517v1-abstract-full').style.display = 'inline'; document.getElementById('2008.10517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10517v1-abstract-full" style="display: none;"> Long-range ordering of magnetic dipoles in bulk materials gives rise to a broad range of magnetic structures, from simple collinear ferromagnets and antiferromagnets, to complex magnetic helicoidal textures stabilized by competing exchange interactions. In contrast, in the context of dipolar order in dielectric crystals, only parallel (ferroelectric) and antiparallel (antiferroelectric) collinear alignments of electric dipoles are typically considered. Here, we report an observation of incommensurate helical ordering of electric dipoles by light hole-doping of the quadruple perovskite BiMn7O12. In analogy with magnetism, the electric dipole helicoidal texture is also stabilized by competing instabilities. Specifically, orbital ordering and lone electron pair stereochemical activity compete, giving rise to phase transitions from a non-chiral cubic structure, to an incommensurate electric dipole and orbital helix, via an intermediate density wave. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10517v1-abstract-full').style.display = 'none'; document.getElementById('2008.10517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 369, 680-684 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09374">arXiv:2008.09374</a> <span> [<a href="https://arxiv.org/pdf/2008.09374">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.134425">10.1103/PhysRevB.103.134425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multipole Orders in a Chain Ferrate Na2FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09374v1-abstract-short" style="display: inline;"> Fundamental block and staggered orders of magnetic Fe multipoles in Na2FeSe2 are classified by their symmetry and magnetoelectric properties. Our structure model incorporates ferromagnetic or antiferromagnetic coupling between chains. The ferrate salt is valued in studies of highly correlated electrons as the only iron selenide known to possess chain-like structural units hosting ferrous cations.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09374v1-abstract-full').style.display = 'inline'; document.getElementById('2008.09374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09374v1-abstract-full" style="display: none;"> Fundamental block and staggered orders of magnetic Fe multipoles in Na2FeSe2 are classified by their symmetry and magnetoelectric properties. Our structure model incorporates ferromagnetic or antiferromagnetic coupling between chains. The ferrate salt is valued in studies of highly correlated electrons as the only iron selenide known to possess chain-like structural units hosting ferrous cations. Axial and polar (Dirac) multipoles are compulsory in the electronic structure since Fe ions exhibit enantiomorphic symmetry in the parent K2ZnO2-type compound. Calculated Bragg diffraction patterns for neutrons and x-rays reveal specific contributions from both multipole types. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09374v1-abstract-full').style.display = 'none'; document.getElementById('2008.09374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 134425 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12882">arXiv:2006.12882</a> <span> [<a href="https://arxiv.org/pdf/2006.12882">pdf</a>, <a href="https://arxiv.org/format/2006.12882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.180410">10.1103/PhysRevB.102.180410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous cycloidal order mediating a spin-reorientation transition in a polar metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/cond-mat?searchtype=author&query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/cond-mat?searchtype=author&query=Porter%2C+D+G">D. G. Porter</a>, <a href="/search/cond-mat?searchtype=author&query=Collins%2C+S+P">S. P. Collins</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Perry%2C+R+S">R. S. Perry</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=McMorrow%2C+D+F">D. F. McMorrow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12882v2-abstract-short" style="display: inline;"> We show how complex modulated order can spontaneously emerge when magnetic interactions compete in a metal with polar lattice distortions. Combining neutron and resonant x-ray scattering with symmetry analysis, we reveal that the spin reorientation in Ca$_3$Ru$_2$O$_7$ is mediated by a magnetic cycloid whose eccentricity evolves smoothly but rapidly with temperature. We find the cycloid to be high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12882v2-abstract-full').style.display = 'inline'; document.getElementById('2006.12882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12882v2-abstract-full" style="display: none;"> We show how complex modulated order can spontaneously emerge when magnetic interactions compete in a metal with polar lattice distortions. Combining neutron and resonant x-ray scattering with symmetry analysis, we reveal that the spin reorientation in Ca$_3$Ru$_2$O$_7$ is mediated by a magnetic cycloid whose eccentricity evolves smoothly but rapidly with temperature. We find the cycloid to be highly sensitive to magnetic fields, which appear to continuously generate higher harmonic modulations. Our results provide a unified picture of the rich magnetic phases of this correlated, multi-band polar metal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12882v2-abstract-full').style.display = 'none'; document.getElementById('2006.12882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures (+ 11 pages, 3 figures of supplemental material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 180410(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.13325">arXiv:2004.13325</a> <span> [<a href="https://arxiv.org/pdf/2004.13325">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.064407">10.1103/PhysRevB.102.064407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lone octupole and bulk magnetism in osmate 5d2 double perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.13325v2-abstract-short" style="display: inline;"> Cubic double perovskites that host heavy ions with total angular momentum J = 2 can exhibit a singular magnetic state epitomized by a lone octupole and bulk ferro-type magnetism. It exists in the Chen - Balents Hamiltonian with a quadrupole interaction and competing exchange forces between the ions. Our symmetry inspired analysis mirrors the Dzyaloshinskii - Man'ko theory of latent antiferromagnet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13325v2-abstract-full').style.display = 'inline'; document.getElementById('2004.13325v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.13325v2-abstract-full" style="display: none;"> Cubic double perovskites that host heavy ions with total angular momentum J = 2 can exhibit a singular magnetic state epitomized by a lone octupole and bulk ferro-type magnetism. It exists in the Chen - Balents Hamiltonian with a quadrupole interaction and competing exchange forces between the ions. Our symmetry inspired analysis mirrors the Dzyaloshinskii - Man'ko theory of latent antiferromagnetic ordering, and a 3-k collinear structure. Experimental tests of the singular state include neutron and x-ray Bragg diffraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13325v2-abstract-full').style.display = 'none'; document.getElementById('2004.13325v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 064407 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13774">arXiv:2003.13774</a> <span> [<a href="https://arxiv.org/pdf/2003.13774">pdf</a>, <a href="https://arxiv.org/format/2003.13774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.127201">10.1103/PhysRevLett.124.127201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous Rotation of Ferrimagnetism Driven by Antiferromagnetic Spin Canting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vibhakar%2C+A+M">A. M. Vibhakar</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">A. A. Belik</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13774v1-abstract-short" style="display: inline;"> Spin-reorientation phase transitions that involve the rotation of a crystal$'$s magnetization have been well characterized in distorted-perovskite oxides such as the orthoferrites. In these systems spin reorientation occurs due to competing rare-earth and transition metal anisotropies coupled via $f$-$d$ exchange. Here, we demonstrate an alternative paradigm for spin reorientation in distorted per… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13774v1-abstract-full').style.display = 'inline'; document.getElementById('2003.13774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13774v1-abstract-full" style="display: none;"> Spin-reorientation phase transitions that involve the rotation of a crystal$'$s magnetization have been well characterized in distorted-perovskite oxides such as the orthoferrites. In these systems spin reorientation occurs due to competing rare-earth and transition metal anisotropies coupled via $f$-$d$ exchange. Here, we demonstrate an alternative paradigm for spin reorientation in distorted perovskites. We show that the $R_2\mathrm{CuMnMn_4O_{12}}$ (R = Y or Dy) triple A-site columnar-ordered quadruple perovskites have three ordered magnetic phases and up to two spin-reorientation phase transitions. Unlike the spin-reorientation phenomena in other distorted perovskites, these transitions are independent of rare-earth magnetism, but are instead driven by an instability towards antiferromagnetic spin canting likely originating in frustrated Heisenberg exchange interactions, and the competition between Dzyaloshinskii-Moriya and single-ion anisotropies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13774v1-abstract-full').style.display = 'none'; document.getElementById('2003.13774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 127201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08261">arXiv:2003.08261</a> <span> [<a href="https://arxiv.org/pdf/2003.08261">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.094105">10.1103/PhysRevB.101.094105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron diffraction and symmetry analysis of the martensitic transformation in Co-doped Ni$_2$MnGa </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">Fabio Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=%C3%87ak%C4%B1r%2C+A">Asl谋 脟ak谋r</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Acet%2C+M">Mehmet Acet</a>, <a href="/search/cond-mat?searchtype=author&query=Righi%2C+L">Lara Righi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08261v1-abstract-short" style="display: inline;"> Martensitic transformations are strain driven displacive transitions governing the mechanical and physical properties in intermetallic materials. This is the case in Ni$_2$MnGa, where the martensite transition is at the heart of the striking magnetic shape memory and magneto-caloric properties. Interestingly, the martensitic transformation is preceded by a pre-martensite phase, and the role of thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08261v1-abstract-full').style.display = 'inline'; document.getElementById('2003.08261v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08261v1-abstract-full" style="display: none;"> Martensitic transformations are strain driven displacive transitions governing the mechanical and physical properties in intermetallic materials. This is the case in Ni$_2$MnGa, where the martensite transition is at the heart of the striking magnetic shape memory and magneto-caloric properties. Interestingly, the martensitic transformation is preceded by a pre-martensite phase, and the role of this precursor and its influence on the martensitic transition and properties is still a matter of debate. In this work, we report on the influence of Co doping (Ni$_{50-x}$Co$_x$Mn$_{25}$Ga$_{25}$ with x = 3 and 5) on the martensitic transformation path in stoichiometric Ni$_2$MnGa by neutron diffraction. The use of the superspace formalism to describe the crystal structure of the modulated martensitic phases, joined with a group theoretical analysis allows unfolding the different distortions featuring the structural transitions. Finally, a general Landau thermodynamic potential of the martensitic transformation, based on the symmetry analysis is outlined. The combined use of phenomenological and crystallographic studies highlights the close relationship between the lattice distortions at the core of the Ni$_2$MnGa physical properties and, more in general, on the properties of the martensitic transformations in the Ni-Mn based Heusler systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08261v1-abstract-full').style.display = 'none'; document.getElementById('2003.08261v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 094105 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.00935">arXiv:1912.00935</a> <span> [<a href="https://arxiv.org/pdf/1912.00935">pdf</a>, <a href="https://arxiv.org/format/1912.00935">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.134434">10.1103/PhysRevB.103.134434 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fragile ground state and rigid field-induced structures in zigzag ladder compound BaDy2O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Petrenko%2C+O+A">O. A. Petrenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.00935v1-abstract-short" style="display: inline;"> We report on a sequence of field-induced transitions in the zigzag ladder compound BaDy2O4 studied with powder neutron diffraction and magnetisation measurements. In agreement with the previously published results, the low temperature zero-field structure is characterised by two half-integer propagation vectors, k1=[1/2 0 1/2] and k2= 1/2 1/2 1/2]. However, on application of an external magnetic f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00935v1-abstract-full').style.display = 'inline'; document.getElementById('1912.00935v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.00935v1-abstract-full" style="display: none;"> We report on a sequence of field-induced transitions in the zigzag ladder compound BaDy2O4 studied with powder neutron diffraction and magnetisation measurements. In agreement with the previously published results, the low temperature zero-field structure is characterised by two half-integer propagation vectors, k1=[1/2 0 1/2] and k2= 1/2 1/2 1/2]. However, on application of an external magnetic field, the Bragg peaks corresponding to the zero-field structure lose their intensity rather rapidly and disappear completely in a field of 2.5 kOe. In the intermediate fields, 2.5 to 22.5 kOe, new peaks are observed characterised by the propagation vector k0=[0 0 1/3] corresponding to an up-up-down (uud) structure as well k=0 ferromagnetic peaks. This regime of fields corresponds to a pronounced plateau in the magnetisation curve. Remarkably, the uud structure survives heating to at least 1.4 K, three times higher temperature than the TN of 0.48 K for the zero-field structure. Above 22.5 kOe, the k0 peaks disappear while the k = 0 peaks gain significant intensity indicating an increase in the polarisation of the system. The analysis of the intensities of the field-induced reflections allows for a clear identification of the magnetic structures in both the intermediate and high field regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00935v1-abstract-full').style.display = 'none'; document.getElementById('1912.00935v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 134434 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.00042">arXiv:1910.00042</a> <span> [<a href="https://arxiv.org/pdf/1910.00042">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.actamat.2019.04.044">10.1016/j.actamat.2019.04.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colossal magnetoresistance in the insulating ferromagnetic double perovskites Tl$_2$NiMnO$_6$: A neutron diffraction study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+L">Lei Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Blake%2C+J">Joseph Blake</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">Fabio Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+W">Wei Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">Alexei A. Belik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.00042v1-abstract-short" style="display: inline;"> In the family of double perovskites, colossal magnetoresistance (CMR) has been so far observed only in half-metallic ferrimagnets such as the known case Sr$_2$FeMoO$_6$ where it has been assigned to the tunneling MR at grain boundaries due to the half-metallic nature. Here we report a new material-Tl$_2$NiMnO$_6$, a relatively ordered double perovskite stablized by the high pressure and high tempe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00042v1-abstract-full').style.display = 'inline'; document.getElementById('1910.00042v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.00042v1-abstract-full" style="display: none;"> In the family of double perovskites, colossal magnetoresistance (CMR) has been so far observed only in half-metallic ferrimagnets such as the known case Sr$_2$FeMoO$_6$ where it has been assigned to the tunneling MR at grain boundaries due to the half-metallic nature. Here we report a new material-Tl$_2$NiMnO$_6$, a relatively ordered double perovskite stablized by the high pressure and high temperature synthesis-showing CMR in the vicinity of its Curie temperature. We explain the origin of such effect with neutron diffraction experiment and electronic structure calculations that reveal the material is a ferromagnetic insulator. Hence the ordered Tl$_2$NiMnO$_6$ (~70% of Ni$^{2+}$/Mn$^{4+}$ cation ordering) represents the first realization of a ferromagnetic insulating double perovskite, showing CMR. The study of the relationship between structure and magnetic properties allows us to clarify the nature of spin glass behaviour in the disordered Tl$_2$NiMnO$_6$ (~31% of cation ordering), which is related to the clustering of antisite defects and associated with the short-range spin correlations. Our results highlight the key role of the cation ordering in establishing the long range magnetic ground state and lay out new avenues to exploit advanced magnetic materials in double perovskites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.00042v1-abstract-full').style.display = 'none'; document.getElementById('1910.00042v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Materialia 173, 20-26 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.05535">arXiv:1905.05535</a> <span> [<a href="https://arxiv.org/pdf/1905.05535">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.224415">10.1103/PhysRevB.100.224415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anapole Correlations in Sr2IrO4 Defy the jeff = 1/2 Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D D Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S W Lovesey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.05535v2-abstract-short" style="display: inline;"> Zel'dovich (spin) anapole correlations in Sr2IrO4 unveiled by magnetic neutron diffraction contravene the spin-orbit coupled ground state used by the jeff = 1/2 (pseudo-spin) model. Specifically, spin and space know inextricable knots which bind each to the other in the iridate. The diffraction property studied in the Letter is enforced by strict requirements from quantum mechanics and magnetic sy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05535v2-abstract-full').style.display = 'inline'; document.getElementById('1905.05535v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.05535v2-abstract-full" style="display: none;"> Zel'dovich (spin) anapole correlations in Sr2IrO4 unveiled by magnetic neutron diffraction contravene the spin-orbit coupled ground state used by the jeff = 1/2 (pseudo-spin) model. Specifically, spin and space know inextricable knots which bind each to the other in the iridate. The diffraction property studied in the Letter is enforced by strict requirements from quantum mechanics and magnetic symmetry. It has not been exploited in the past, whereas neutron diffraction by anapole moments is established. Entanglement of the electronic degrees of freedom is captured by binary correlations of the anapole and position operators, and hallmarked in the diffraction amplitude by axial atomic multipoles with an even rank. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05535v2-abstract-full').style.display = 'none'; document.getElementById('1905.05535v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 224415 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11933">arXiv:1904.11933</a> <span> [<a href="https://arxiv.org/pdf/1904.11933">pdf</a>, <a href="https://arxiv.org/format/1904.11933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.094414">10.1103/PhysRevB.100.094414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic frustration and spontaneous rotational symmetry breaking in PdCrO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+D">Dan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Sokolov%2C+D">Dmitry Sokolov</a>, <a href="/search/cond-mat?searchtype=author&query=Bartlett%2C+J">Jack Bartlett</a>, <a href="/search/cond-mat?searchtype=author&query=Sannigrahi%2C+J">Jhuma Sannigrahi</a>, <a href="/search/cond-mat?searchtype=author&query=Khim%2C+S">Seunghyun Khim</a>, <a href="/search/cond-mat?searchtype=author&query=Kushwaha%2C+P">Pallavi Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Gibbs%2C+A+S">Alexandra S. Gibbs</a>, <a href="/search/cond-mat?searchtype=author&query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&query=Hicks%2C+C+W">Clifford W. Hicks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11933v2-abstract-short" style="display: inline;"> In the triangular layered magnet PdCrO2 the intralayer magnetic interactions are strong, however the lattice structure frustrates interlayer interactions. In spite of this, long-range, 120$^\circ$ antiferromagnetic order condenses at $T_N = 38$~K. We show here through neutron scattering measurements under in-plane uniaxial stress and in-plane magnetic field that this occurs through a spontaneous l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11933v2-abstract-full').style.display = 'inline'; document.getElementById('1904.11933v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11933v2-abstract-full" style="display: none;"> In the triangular layered magnet PdCrO2 the intralayer magnetic interactions are strong, however the lattice structure frustrates interlayer interactions. In spite of this, long-range, 120$^\circ$ antiferromagnetic order condenses at $T_N = 38$~K. We show here through neutron scattering measurements under in-plane uniaxial stress and in-plane magnetic field that this occurs through a spontaneous lifting of the three-fold rotational symmetry of the nonmagnetic lattice, which relieves the interlayer frustration. We also show through resistivity measurements that uniaxial stress can suppress thermal magnetic disorder within the antiferromagnetic phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11933v2-abstract-full').style.display = 'none'; document.getElementById('1904.11933v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 094414 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.05159">arXiv:1903.05159</a> <span> [<a href="https://arxiv.org/pdf/1903.05159">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.035128">10.1103/PhysRevB.96.035128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rich magnetoelectric phase diagrams of multiferroic single-crystal alpha-NaFeO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Terada%2C+N">Noriki Terada</a>, <a href="/search/cond-mat?searchtype=author&query=Ikedo%2C+Y">Yuta Ikedo</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+H">Hirohiko Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Miyake%2C+A">Atsushi Miyake</a>, <a href="/search/cond-mat?searchtype=author&query=Matsuo%2C+A">Akira Matsuo</a>, <a href="/search/cond-mat?searchtype=author&query=Tokunaga%2C+M">Masashi Tokunaga</a>, <a href="/search/cond-mat?searchtype=author&query=Kindo%2C+K">Koichi Kindo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.05159v1-abstract-short" style="display: inline;"> The magnetic and dielectric properties of the multiferroic triangular lattice magnet compound alpha-NaFeO2 were studied by magnetization, specific heat, dielectric permittivity, and pyroelectric current measurements and by neutron diffraction experiments using single crystals grown by a hydrothermal synthesis method. This work produced magnetic field (in the monoclinic ab-plane, B_ab, and along th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05159v1-abstract-full').style.display = 'inline'; document.getElementById('1903.05159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.05159v1-abstract-full" style="display: none;"> The magnetic and dielectric properties of the multiferroic triangular lattice magnet compound alpha-NaFeO2 were studied by magnetization, specific heat, dielectric permittivity, and pyroelectric current measurements and by neutron diffraction experiments using single crystals grown by a hydrothermal synthesis method. This work produced magnetic field (in the monoclinic ab-plane, B_ab, and along the c*-axis, B_c) versus temperature magnetic phase diagrams, including five and six magnetically ordered phases in B_ab and along B_c, respectively. Comparing the polarization direction to the magnetic structures in the different ferroelectric phases, we conclude that the extended inverse Dzyaloshinskii-Moriya mechanism expressed by the orthogonal components p1 ~ rij x (Si x Sj ) and p2 ~ Si x Sj can explain the polarization directions. Based on calculations incorporating exchange interactions up to fourth-nearest-neighbor (NN) couplings, we infer that competition among antiferromagnetic second NN interactions in the triangular lattice plane, as well as weak interplane antiferromagnetic interactions, are responsible for the rich phase diagrams of alpha-NaFeO2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05159v1-abstract-full').style.display = 'none'; document.getElementById('1903.05159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 035128 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.02347">arXiv:1903.02347</a> <span> [<a href="https://arxiv.org/pdf/1903.02347">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.134412">10.1103/PhysRevB.94.134412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin and orbital ordering in TlMnO3: Neutron diffraction study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+W">Wei Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">Alexei A. Belik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.02347v1-abstract-short" style="display: inline;"> Crystal and magnetic structures of the high-pressure stabilized perovskite phase of TlMnO3 have been studied by neutron powder diffraction. The crystal structure involves two types of primary structural distortions: a+b-b-octahedral tilting and antiferrodistortive type of orbital ordering, whose common action reduces the symmetry down to triclinic P -1. The orbital pattern and the way it is combin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02347v1-abstract-full').style.display = 'inline'; document.getElementById('1903.02347v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.02347v1-abstract-full" style="display: none;"> Crystal and magnetic structures of the high-pressure stabilized perovskite phase of TlMnO3 have been studied by neutron powder diffraction. The crystal structure involves two types of primary structural distortions: a+b-b-octahedral tilting and antiferrodistortive type of orbital ordering, whose common action reduces the symmetry down to triclinic P -1. The orbital pattern and the way it is combined with the octahedral tilting are different from the family of LnMnO3 (Ln = lanthanide or Y) manganites who share with TlMnO3 the same tilting scheme. The experimentally determined magnetic structure with the k = (1/2,0,1/2) propagation vector and P_S-1 symmetry implies anisotropic exchange interactions with a ferromagnetic coupling within the (1,0,-1) planes and an antiferromagnetic one between them (A type). The spins in the primary magnetic mode were found to be confined close to the (1,0,-1) plane, which underlines the predominant role of the single ion anisotropy with the local easy axes of Mn3+ following the Jahn-Teller distortions of the octahedra. In spite of the same octahedral tilting scheme in the perovskite structures of both LnMnO3 and TlMnO3 manganites, a coupling of the secondary ferromagnetic component to the primary A-type spin configuration through antisymmetric exchange interaction is allowed in the former and forbidden in the latter cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02347v1-abstract-full').style.display = 'none'; document.getElementById('1903.02347v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 134412 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.01319">arXiv:1903.01319</a> <span> [<a href="https://arxiv.org/pdf/1903.01319">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.081104">10.1103/PhysRevB.93.081104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ordering in pressure-induced phases with giant spin-driven ferroelectricity in multiferroic TbMnO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Terada%2C+N">Noriki Terada</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Osakabe%2C+T">Toyotaka Osakabe</a>, <a href="/search/cond-mat?searchtype=author&query=Kikkawa%2C+A">Akiko Kikkawa</a>, <a href="/search/cond-mat?searchtype=author&query=Kitazawa%2C+H">Hideaki Kitazawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.01319v1-abstract-short" style="display: inline;"> In order to clarify the mechanism associated with pressure/magnetic-field-induced giant ferroelectric polarization in TbMnO3, this work investigated changes in magnetic ordering brought about by variations in temperature, magnetic field, and pressure. This was accomplished by means of neutron diffraction analyses under high pressures and high magnetic fields, employing a single crystal. The incomm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01319v1-abstract-full').style.display = 'inline'; document.getElementById('1903.01319v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.01319v1-abstract-full" style="display: none;"> In order to clarify the mechanism associated with pressure/magnetic-field-induced giant ferroelectric polarization in TbMnO3, this work investigated changes in magnetic ordering brought about by variations in temperature, magnetic field, and pressure. This was accomplished by means of neutron diffraction analyses under high pressures and high magnetic fields, employing a single crystal. The incommensurate magnetic ordering of a cycloid structure was found to be stable below the reported critical pressure of 4.5 GPa. In contrast, a commensurate E-type spin ordering of Mn spins and a noncollinear configuration of Tb spins with k=(0,1/2,0) appeared above 4.5 GPa. The application of a magnetic field along the a axis (H_{||a}) under pressure induces a k=(0,0,0)antiferromagnetic structure in the case of Tb spins above H_{||a}, enhancing the ferroelectric polarization, while the E-type ordering of Mn spins is stable even above the critical field. From the present experimental findings, we conclude that the E-type ordering of Mn spins induces giant ferroelectric polarization through an exchange striction mechanism. The H_{||a}-induced polarization enhancement can be understood by considering that the polarization, reduced by the polar ordering of Tb moments in a zero field, can be recovered through a field-induced change to nonpolar k=(0,0,0) ordering at H_{||a} ~ 2T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01319v1-abstract-full').style.display = 'none'; document.getElementById('1903.01319v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 081104(R) (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.01307">arXiv:1903.01307</a> <span> [<a href="https://arxiv.org/pdf/1903.01307">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.094434">10.1103/PhysRevB.91.094434 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ordering and ferroelectricity in multiferroic 2H-AgFeO2: Comparison between hexagonal and rhombohedral polytypes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Terada%2C+N">Noriki Terada</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Tsujimoto%2C+Y">Yoshihiro Tsujimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">Alexei A. Belik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.01307v1-abstract-short" style="display: inline;"> Magnetic and dielectric properties of the hexagonal triangular lattice antiferromagnet 2H-AgFeO2 have been studied by neutron diffraction, magnetic susceptibility, specific heat, pyroelectric current, and dielectric constant measurements. The ferroelectric polarization, P ~ 5 渭C/m2, has been found to appear below 11 K due to a polar nature of the magnetic ground state of the system. In the tempera… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01307v1-abstract-full').style.display = 'inline'; document.getElementById('1903.01307v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.01307v1-abstract-full" style="display: none;"> Magnetic and dielectric properties of the hexagonal triangular lattice antiferromagnet 2H-AgFeO2 have been studied by neutron diffraction, magnetic susceptibility, specific heat, pyroelectric current, and dielectric constant measurements. The ferroelectric polarization, P ~ 5 渭C/m2, has been found to appear below 11 K due to a polar nature of the magnetic ground state of the system. In the temperature range of 11 K < T < 18 K, an incommensurate spin density wave (ICM1) with the nonpolar magnetic point group mmm1' and the k1 = (0,q1_b,0; q1_b = 0.390-0.405)propagation vector takes place. Below 14 K, a proper screw ordering (ICM2) and k2 = (0,q2_b,0; q2_b = 0.385-0.396) appears as a minor phase which coexists with ICM1 and the ground state down to the lowestmeasured temperature 5.5 K. No ferroelectric polarization associated with the ICM2 phase was observed in agreement with its nonpolar point group 2221'. Finally, a spiral order with cycloid and proper screw components (ICM3), and k3 = (q3_a,q3_b,0; q3_a = 0.0467, q3_b = 0.349) emerges below 11 K as the ground state of the system. Based on the deduced magnetic point group 21', we conclude that the ferroelectric polarization in ICM3 is parallel to the c axis and is caused by the inverse Dzyloshinskii-Moriya effect with p1 ~ rij x (Si x Sj ). Unlike the rhombohedral 3R-AgFeO2 polytype, the additional contribution to the macroscopic polarization p2 ~ Si x Sj is not allowed in the present case due to the symmetry constraints imposed by the hexagonal lattice of 2H-AgFeO2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01307v1-abstract-full').style.display = 'none'; document.getElementById('1903.01307v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 094434 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00363">arXiv:1903.00363</a> <span> [<a href="https://arxiv.org/pdf/1903.00363">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.104413">10.1103/PhysRevB.91.104413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity induced by ferriaxial crystal rotation and spin helicity in a B-site-ordered double-perovskite multiferroic In2NiMnO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Terada%2C+N">Noriki Terada</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manue%2C+P">Pascal Manue</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+W">Wei Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Suzuki%2C+H+S">Hiroyuki S. Suzuki</a>, <a href="/search/cond-mat?searchtype=author&query=Tsujii%2C+N">Naohito Tsujii</a>, <a href="/search/cond-mat?searchtype=author&query=Imanaka%2C+Y">Yasutaka Imanaka</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">Alexei A. Belik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00363v1-abstract-short" style="display: inline;"> We have performed dielectric measurements and neutron diffraction experiments on the double perovskite In2NiMnO6. A ferroelectric polarization, P ~ 30 渭C/m2, is observed in a polycrystalline sample below TN = 26 K where a magnetic phase ransition occurs. The neutron diffraction experiment demonstrates that a complex noncollinear magnetic structure with "cycloidal" and "proper screw" components app… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00363v1-abstract-full').style.display = 'inline'; document.getElementById('1903.00363v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00363v1-abstract-full" style="display: none;"> We have performed dielectric measurements and neutron diffraction experiments on the double perovskite In2NiMnO6. A ferroelectric polarization, P ~ 30 渭C/m2, is observed in a polycrystalline sample below TN = 26 K where a magnetic phase ransition occurs. The neutron diffraction experiment demonstrates that a complex noncollinear magnetic structure with "cycloidal" and "proper screw" components appears below TN, which has the incommensurate propagation vector k = (ka,0,ks; ka ~ 0.274, ks ~ -0.0893). The established magnetic point group 21' implies that the macroscopic ferroelectric polarization is along the monoclinic b axis. Recent theories based on the inverse Dzyaloshinskii-Moriya effect allow us to specify two distinct contributions to the polarization of In2NiMnO6. One of them is associated with the cycloidal component, p1 ~ rij x (Si x Sj), and the other with the proper screw component, p2 ~ [rij (Si x Sj )]A. The latter is explained by coupling between spin helicity and "ferriaxial" crystal rotation with macroscopic ferroaxial vector A, characteristic of the B-site ordered perovskite systems with out-of-plane octahedral tilting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00363v1-abstract-full').style.display = 'none'; document.getElementById('1903.00363v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 104413 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.02978">arXiv:1902.02978</a> <span> [<a href="https://arxiv.org/pdf/1902.02978">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.134444">10.1103/PhysRevB.99.134444 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Multipoles in a Ruthenate Ca3Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S W Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D D Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Laan%2C+G">G van der Laan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.02978v1-abstract-short" style="display: inline;"> Compulsory Dirac multipoles in the bilayer perovskite Ca3Ru2O7 are absent in published analyses of experimental data. In a first step at correcting knowledge of the magnetic structure, we have analysed existing Bragg diffraction patterns gathered on samples held well below the N茅el temperature at which A-type antiferromagnetic order of axial dipoles spontaneously develops. Patterns were gathered w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02978v1-abstract-full').style.display = 'inline'; document.getElementById('1902.02978v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.02978v1-abstract-full" style="display: none;"> Compulsory Dirac multipoles in the bilayer perovskite Ca3Ru2O7 are absent in published analyses of experimental data. In a first step at correcting knowledge of the magnetic structure, we have analysed existing Bragg diffraction patterns gathered on samples held well below the N茅el temperature at which A-type antiferromagnetic order of axial dipoles spontaneously develops. Patterns were gathered with neutrons, and linearly polarized x-rays tuned in energy to a ruthenium atomic resonance. Neutron diffraction data contains solid evidence of Dirac dipoles (anapoles or toroidal moments). No such conclusion is reached with existing x-ray diffraction data, which instead is ambiguous on the question. To address this shortcoming by future experiments, we calculated additional diffraction patterns. Chiral order of Dirac multipoles is allowed by magnetic space-group PCna21, and it can be exposed in Bragg diffraction using circularly polarized x-rays. Likewise, a similar experiment can expose a chiral order of axial dipoles. A magnetic field applied parallel to the b-axis creates a ferrimagnetic structure in which bulk magnetization arises from field-induced nonequivalent Ru sites (magnetic space-group Pm'c'21). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02978v1-abstract-full').style.display = 'none'; document.getElementById('1902.02978v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 fig</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 134444 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06874">arXiv:1901.06874</a> <span> [<a href="https://arxiv.org/pdf/1901.06874">pdf</a>, <a href="https://arxiv.org/format/1901.06874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.104424">10.1103/PhysRevB.99.104424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The magnetic structure and spin-flop transition in the A-site columnar-ordered quadruple perovskite $\mathrm{TmMn_3O_6}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vibhakar%2C+A+M">A. M. Vibhakar</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&query=Radaelli%2C+P+G">P. G. Radaelli</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">A. A. Belik</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06874v1-abstract-short" style="display: inline;"> We present the magnetic structure of $\mathrm{TmMn_3O_6}$, solved via neutron powder diffraction - the first such study of any $R\mathrm{Mn_3O_6}$ A-site columnar-ordered quadruple perovskite to be reported. We demonstrate that long range magnetic order develops below 74 K, and at 28 K a spin-flop transition occurs driven by $f$-$d$ exchange and rare earth single ion anisotropy. In both magnetic p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06874v1-abstract-full').style.display = 'inline'; document.getElementById('1901.06874v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06874v1-abstract-full" style="display: none;"> We present the magnetic structure of $\mathrm{TmMn_3O_6}$, solved via neutron powder diffraction - the first such study of any $R\mathrm{Mn_3O_6}$ A-site columnar-ordered quadruple perovskite to be reported. We demonstrate that long range magnetic order develops below 74 K, and at 28 K a spin-flop transition occurs driven by $f$-$d$ exchange and rare earth single ion anisotropy. In both magnetic phases the magnetic structure may be described as a collinear ferrimagnet, contrary to conventional theories of magnetic order in the manganite perovskites. Instead, we show that these magnetic structures can be understood to arise due to ferro-orbital order, the A, A$'$ and A$''$ site point symmetry, $mm2$, and the dominance of A-B exchange over both A-A and B-B exchange, which together are unique to the $R\mathrm{Mn_3O_6}$ perovskites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06874v1-abstract-full').style.display = 'none'; document.getElementById('1901.06874v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 104424 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08407">arXiv:1811.08407</a> <span> [<a href="https://arxiv.org/pdf/1811.08407">pdf</a>, <a href="https://arxiv.org/ps/1811.08407">ps</a>, <a href="https://arxiv.org/format/1811.08407">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.047203">10.1103/PhysRevLett.122.047203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of anapoles by neutron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterji%2C+T">T. Chatterji</a>, <a href="/search/cond-mat?searchtype=author&query=Stunault%2C+A">A. Stunault</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Laan%2C+G">G. van der Laan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08407v1-abstract-short" style="display: inline;"> The scope of magnetic neutron scattering has been expanded by the observation of electronic Dirac dipoles (anapoles) that are polar (parity-odd) and magnetic (time-odd). A zero-magnetization ferromagnet Sm0.976Gd0.024Al2 with a diamond-type structure presents Dirac multipoles at basis-forbidden reflections that include the standard (2, 2, 2) reflection. Magnetic amplitudes measured at four such re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08407v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08407v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08407v1-abstract-full" style="display: none;"> The scope of magnetic neutron scattering has been expanded by the observation of electronic Dirac dipoles (anapoles) that are polar (parity-odd) and magnetic (time-odd). A zero-magnetization ferromagnet Sm0.976Gd0.024Al2 with a diamond-type structure presents Dirac multipoles at basis-forbidden reflections that include the standard (2, 2, 2) reflection. Magnetic amplitudes measured at four such reflections are in full accord with a structure factor calculated from the appropriate magnetic space group. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08407v1-abstract-full').style.display = 'none'; document.getElementById('1811.08407v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 047203 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.09155">arXiv:1808.09155</a> <span> [<a href="https://arxiv.org/pdf/1808.09155">pdf</a>, <a href="https://arxiv.org/format/1808.09155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The magnetic structures of rare-earth quadruple perovskite manganites $R$Mn$_7$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&query=Belik%2C+A+A">A. A. Belik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.09155v1-abstract-short" style="display: inline;"> We report a neutron powder diffraction study of $R$Mn$_7$O$_{12}$ quadruple perovskite manganites with $R$ = La, Ce, Nd, Sm, and Eu. We show that in all measured compounds concomitant magnetic ordering of the $A$ and $B$ manganese sublattices occurs on cooling below the N$\mathrm{\acute{e}}$el temperature. The respective magnetic structures are collinear, with one uncompensated Mn$^{3+}$ moment pe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09155v1-abstract-full').style.display = 'inline'; document.getElementById('1808.09155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.09155v1-abstract-full" style="display: none;"> We report a neutron powder diffraction study of $R$Mn$_7$O$_{12}$ quadruple perovskite manganites with $R$ = La, Ce, Nd, Sm, and Eu. We show that in all measured compounds concomitant magnetic ordering of the $A$ and $B$ manganese sublattices occurs on cooling below the N$\mathrm{\acute{e}}$el temperature. The respective magnetic structures are collinear, with one uncompensated Mn$^{3+}$ moment per formula unit as observed in bulk magnetisation measurements. We show that both LaMn$_7$O$_{12}$ and NdMn$_7$O$_{12}$ undergo a second magnetic phase transition at low temperature, which introduces a canting of the $B$ site sublattice moments that is commensurate in LaMn$_7$O$_{12}$ and incommensurate in NdMn$_7$O$_{12}$. This spin canting is consistent with a magnetic instability originating in the $B$ site orbital order. Furthermore, NdMn$_7$O$_{12}$ displays a third magnetic phase transition at which long range ordering of the Nd sublattice modifies the periodicity of the incommensurate spin canting. Our results demonstrate a rich interplay between transition metal magnetism, orbital order, and the crystal lattice, which may be fine tuned by cation substitution and rare earth magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09155v1-abstract-full').style.display = 'none'; document.getElementById('1808.09155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01387">arXiv:1808.01387</a> <span> [<a href="https://arxiv.org/pdf/1808.01387">pdf</a>, <a href="https://arxiv.org/format/1808.01387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.064403">10.1103/PhysRevB.99.064403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Jahn-Teller antiferromagnetism in CoTi$_2$O$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kirschner%2C+F+K+K">Franziska K. K. Kirschner</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">Roger D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Lang%2C+F">Franz Lang</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Lancaster%2C+T">Tom Lancaster</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Blundell%2C+S+J">Stephen J. Blundell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01387v1-abstract-short" style="display: inline;"> We have used neutron powder diffraction to solve the magnetic structure of orthorhombic CoTi$_2$O$_5$, showing that the long-range ordered state below 26 K identified in our muon-spin rotation experiments is antiferromagnetic with propagation vector ${\bf k}=(\pm \frac{1}{2}, \frac{1}{2}, 0)$ and moment of 2.72(1)$渭_{\rm B}$ per Co$^{2+}$ ion. This long range magnetic order is incompatible with th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01387v1-abstract-full').style.display = 'inline'; document.getElementById('1808.01387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01387v1-abstract-full" style="display: none;"> We have used neutron powder diffraction to solve the magnetic structure of orthorhombic CoTi$_2$O$_5$, showing that the long-range ordered state below 26 K identified in our muon-spin rotation experiments is antiferromagnetic with propagation vector ${\bf k}=(\pm \frac{1}{2}, \frac{1}{2}, 0)$ and moment of 2.72(1)$渭_{\rm B}$ per Co$^{2+}$ ion. This long range magnetic order is incompatible with the experimentally determined crystal structure because the imposed symmetry completely frustrates the exchange coupling. We conclude that the magnetic transition must therefore be associated with a spin Jahn-Teller effect which lowers the structural symmetry and thereby relieves the frustration. These results show that CoTi$_2$O$_5$ is a highly unusual low symmetry material exhibiting a purely spin-driven lattice distortion critical to the establishment of an ordered magnetic ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01387v1-abstract-full').style.display = 'none'; document.getElementById('1808.01387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 064403 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.04461">arXiv:1806.04461</a> <span> [<a href="https://arxiv.org/pdf/1806.04461">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/1316/1/012004">10.1088/1742-6596/1316/1/012004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-induced magnetic charge in a cubic Laves compound UAl2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Laan%2C+G">G. van der Laan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.04461v4-abstract-short" style="display: inline;"> Magnetic diffraction of polarized neutrons by the cubic Laves compound UAl2 in a magnetic field has unveiled weak Bragg spots that are nominally forbidden. On the one hand, they can be viewed as magnetic analogues of the basis-forbidden (2, 2, 2) reflection in diamond-type structures that has been painstakingly and frequently investigated over almost a century. Alternatively, the pattern of weak i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04461v4-abstract-full').style.display = 'inline'; document.getElementById('1806.04461v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.04461v4-abstract-full" style="display: none;"> Magnetic diffraction of polarized neutrons by the cubic Laves compound UAl2 in a magnetic field has unveiled weak Bragg spots that are nominally forbidden. On the one hand, they can be viewed as magnetic analogues of the basis-forbidden (2, 2, 2) reflection in diamond-type structures that has been painstakingly and frequently investigated over almost a century. Alternatively, the pattern of weak intensities can be assigned to Dirac multipoles imbedded in field-induced magnetic charge. To this end, a published diffraction pattern is successfully confronted with intensities calculated from the appropriate magnetic space-group that includes Dirac dipoles (anapoles) to describe the basis-forbidden magnetic reflections, and conventional (axial) dipole and octupole multipoles to describe basis-allowed magnetic reflections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04461v4-abstract-full').style.display = 'none'; document.getElementById('1806.04461v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02309">arXiv:1806.02309</a> <span> [<a href="https://arxiv.org/pdf/1806.02309">pdf</a>, <a href="https://arxiv.org/ps/1806.02309">ps</a>, <a href="https://arxiv.org/format/1806.02309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.134406">10.1103/PhysRevB.101.134406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent topological spin structures in a centrosymmetric cubic perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ishiwata%2C+S">S. Ishiwata</a>, <a href="/search/cond-mat?searchtype=author&query=Nakajima%2C+T">T. Nakajima</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J+-">J. -H. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Inosov%2C+D+S">D. S. Inosov</a>, <a href="/search/cond-mat?searchtype=author&query=Kanazawa%2C+N">N. Kanazawa</a>, <a href="/search/cond-mat?searchtype=author&query=White%2C+J+S">J. S. White</a>, <a href="/search/cond-mat?searchtype=author&query=Gavilano%2C+J+L">J. L. Gavilano</a>, <a href="/search/cond-mat?searchtype=author&query=Georgii%2C+R">R. Georgii</a>, <a href="/search/cond-mat?searchtype=author&query=Seemann%2C+K">K. Seemann</a>, <a href="/search/cond-mat?searchtype=author&query=Brandl%2C+G">G. Brandl</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Seki%2C+S">S. Seki</a>, <a href="/search/cond-mat?searchtype=author&query=Tokunaga%2C+Y">Y. Tokunaga</a>, <a href="/search/cond-mat?searchtype=author&query=Kinoshita%2C+M">M. Kinoshita</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+Y+W">Y. W. Long</a>, <a href="/search/cond-mat?searchtype=author&query=Kaneko%2C+Y">Y. Kaneko</a>, <a href="/search/cond-mat?searchtype=author&query=Taguchi%2C+Y">Y. Taguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Arima%2C+T">T. Arima</a>, <a href="/search/cond-mat?searchtype=author&query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&query=Tokura%2C+Y">Y. Tokura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02309v1-abstract-short" style="display: inline;"> The skyrmion crystal (SkX) characterized by a multiple-q helical spin modulation has been reported as a unique topological state that competes with the single-q helimagnetic order in non-centrosymmetric materials. Here we report the discovery of a rich variety of multiple-q helimagnetic spin structures in the centrosymmetric cubic perovskite SrFeO3. On the basis of neutron diffraction measurements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02309v1-abstract-full').style.display = 'inline'; document.getElementById('1806.02309v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02309v1-abstract-full" style="display: none;"> The skyrmion crystal (SkX) characterized by a multiple-q helical spin modulation has been reported as a unique topological state that competes with the single-q helimagnetic order in non-centrosymmetric materials. Here we report the discovery of a rich variety of multiple-q helimagnetic spin structures in the centrosymmetric cubic perovskite SrFeO3. On the basis of neutron diffraction measurements, we have identified two types of robust multiple-q topological spin structures that appear in the absence of external magnetic fields: an anisotropic double-q spin spiral and an isotropic quadruple-q spiral hosting a three-dimensional lattice of hedgehog singularities. The present system not only diversifies the family of SkX host materials, but furthermore provides an experimental missing link between centrosymmetric lattices and topological helimagnetic order. It also offers perspectives for integration of SkXs into oxide electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02309v1-abstract-full').style.display = 'none'; document.getElementById('1806.02309v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 134406 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.09031">arXiv:1805.09031</a> <span> [<a href="https://arxiv.org/pdf/1805.09031">pdf</a>, <a href="https://arxiv.org/format/1805.09031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.257202">10.1103/PhysRevLett.120.257202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of magneto-orbital order upon B-site electron doping in Na1-xCaxMn7O12 quadruple perovskite manganites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Mezzadri%2C+F">F. Mezzadri</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Gilioli%2C+E">E. Gilioli</a>, <a href="/search/cond-mat?searchtype=author&query=Radaelli%2C+P+G">P. G. Radaelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.09031v1-abstract-short" style="display: inline;"> We present the discovery and refinement by neutron powder diffraction of a new magnetic phase in the Na1-xCaxMn7O12 quadruple perovskite phase diagram, which is the incommensurate analogue of the well-known pseudo-CE phase of the simple perovskite manganites. We demonstrate that incommensurate magnetic order arises in quadruple perovskites due to the exchange interactions between A and B sites. Fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09031v1-abstract-full').style.display = 'inline'; document.getElementById('1805.09031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.09031v1-abstract-full" style="display: none;"> We present the discovery and refinement by neutron powder diffraction of a new magnetic phase in the Na1-xCaxMn7O12 quadruple perovskite phase diagram, which is the incommensurate analogue of the well-known pseudo-CE phase of the simple perovskite manganites. We demonstrate that incommensurate magnetic order arises in quadruple perovskites due to the exchange interactions between A and B sites. Furthermore, by constructing a simple mean field Heisenberg exchange model that generically describes both simple and quadruple perovskite systems, we show that this new magnetic phase unifies a picture of the interplay between charge, magnetic and orbital ordering across a wide range of compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.09031v1-abstract-full').style.display = 'none'; document.getElementById('1805.09031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.01436">arXiv:1805.01436</a> <span> [<a href="https://arxiv.org/pdf/1805.01436">pdf</a>, <a href="https://arxiv.org/ps/1805.01436">ps</a>, <a href="https://arxiv.org/format/1805.01436">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.094416">10.1103/PhysRevB.98.094416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unravelling the complex magnetic structure of multiferroic pyroxene NaFeGe2O6: A combined experimental and theoretical study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+L">Lei Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D+D">Dmitry D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Orlandi%2C+F">Fabio Orlandi</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirlin%2C+A+A">Alexander A. Tsirlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.01436v2-abstract-short" style="display: inline;"> Magnetic order and the underlying magnetic model of the multiferroic pyroxene NaFeGe2O6 are systematically investigated by neutron powder diffraction, thermodynamic measurements, density-functional bandstructure calculations, and Monte-Carlo simulations. Upon cooling, NaFeGe2O6 first reveals one-dimensional spin-spin correlations in the paramagnetic state below about 50 K, revealed by magnetic dif… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.01436v2-abstract-full').style.display = 'inline'; document.getElementById('1805.01436v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.01436v2-abstract-full" style="display: none;"> Magnetic order and the underlying magnetic model of the multiferroic pyroxene NaFeGe2O6 are systematically investigated by neutron powder diffraction, thermodynamic measurements, density-functional bandstructure calculations, and Monte-Carlo simulations. Upon cooling, NaFeGe2O6 first reveals one-dimensional spin-spin correlations in the paramagnetic state below about 50 K, revealed by magnetic diffuse scattering. The sinusoidal spin-density wave with spins along the a-direction sets in at 13 K, followed by the cycloidal configuration with spins lying in the (ac) plane below 11.6 K. Microscopically, the strongest magnetic coupling runs along the structural chains, J1 ' 12 K, which is likely related to the one-dimensional spin-spin correlations. The interchain couplings J2 ' 3:8K and J3 ' 2:1K are energetically well balanced and compete, thus giving rise to the incommensurate order in sharp contrast to other transition-metal pyroxenes, where one type of the interchain couplings prevails. The magnetic model of NaFeGe2O6 is further completed by the weak single-ion anisotropy along the a-direction. Our results resolve the earlier controversies regarding the magnetic order in NaFeGe2O6 and establish relevant symmetries of the magnetic structures. These results, combined with symmetry analysis, enable us to identify the possible mechanisms of the magnetoelectric coupling in this compound. We also elucidate microscopic conditions for the formation of incommensurate magnetic order in pyroxenes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.01436v2-abstract-full').style.display = 'none'; document.getElementById('1805.01436v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages 10 figures, PRB(accepted)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 094416 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Khalyavin%2C+D+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>