CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;34 of 34 results for author: <span class="mathjax">Francoual, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Francoual%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Francoual, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Francoual%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Francoual, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14690">arXiv:2406.14690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14690">pdf</a>, <a href="https://arxiv.org/format/2406.14690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Absence of bulk charge density wave order in the normal state of UTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kengle%2C+C+S">Caitlin S. Kengle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vonka%2C+J">Jakub Vonka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janoschek%2C+M">Marc Janoschek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simeth%2C+W">Wolfgang Simeth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14690v3-abstract-short" style="display: inline;"> A spatially modulated superconducting state, known as pair density wave (PDW), is a tantalizing state of matter with unique properties. Recent scanning tunneling microscopy (STM) studies revealed that spin-triplet superconductor UTe$_2$ hosts an unprecedented spin-triplet, multi-component PDW whose three wavevectors are indistinguishable from a preceding charge-density wave (CDW) order that surviv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14690v3-abstract-full').style.display = 'inline'; document.getElementById('2406.14690v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14690v3-abstract-full" style="display: none;"> A spatially modulated superconducting state, known as pair density wave (PDW), is a tantalizing state of matter with unique properties. Recent scanning tunneling microscopy (STM) studies revealed that spin-triplet superconductor UTe$_2$ hosts an unprecedented spin-triplet, multi-component PDW whose three wavevectors are indistinguishable from a preceding charge-density wave (CDW) order that survives to temperatures well above the superconducting critical temperature, $T_{c}$. Whether the PDW is the mother or a subordinate order remains unsettled. Here, based on a systematic search for bulk charge order above $T_{c}$ using resonant elastic X-ray scattering (REXS), we show that the structure factor of charge order previously identified by STM is absent in the bulk within the sensitivity of REXS. Our results invite two scenarios: either the density-wave orders condense simultaneously at $T_{c}$ in the bulk, in which case PDW order is likely the mother phase, or the charge modulations are restricted to the surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14690v3-abstract-full').style.display = 'none'; document.getElementById('2406.14690v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12035">arXiv:2401.12035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12035">pdf</a>, <a href="https://arxiv.org/format/2401.12035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.066501">10.1103/PhysRevLett.133.066501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The origin of magnetism in a supposedly nonmagnetic osmium oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borgatti%2C+F">F. Borgatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Florio%2C+P">P. Florio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frassineti%2C+J">J. Frassineti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mosca%2C+D+F">D. Fiore Mosca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Detlefs%2C+B">B. Detlefs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahle%2C+C+J">C. J. Sahle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitrovic%2C+V+F">V. F. Mitrovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woodward%2C+P+M">P. M. Woodward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franchini%2C+C">C. Franchini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boscherini%2C+F">F. Boscherini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanna%2C+S">S. Sanna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+a+M+M">and M. Moretti Sala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12035v1-abstract-short" style="display: inline;"> A supposedly nonmagnetic 5d$^1$ double perosvkite oxide is investigated by a combination of spectroscopic and theoretical methods, namely resonant inelastic X-ray scattering, X-ray absorption spectroscopy, magnetic circular dichroism, and multiplet ligand field calculations. We found that the large spin-orbit coupling admixes the 5d $t_{2g}$ and $e_g$ orbitals, covalency raises the 5d population w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12035v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12035v1-abstract-full" style="display: none;"> A supposedly nonmagnetic 5d$^1$ double perosvkite oxide is investigated by a combination of spectroscopic and theoretical methods, namely resonant inelastic X-ray scattering, X-ray absorption spectroscopy, magnetic circular dichroism, and multiplet ligand field calculations. We found that the large spin-orbit coupling admixes the 5d $t_{2g}$ and $e_g$ orbitals, covalency raises the 5d population well above the nominal value, and the local symmetry is lower than $O_h$. The obtained electronic interactions account for the finite magnetic moment of Os in this compound and, in general, of 5d$^1$ ions. Our results provide direct evidence of elusive Jahn-Teller distortions, hinting at a strong electron-lattice coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12035v1-abstract-full').style.display = 'none'; document.getElementById('2401.12035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 066501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15054">arXiv:2312.15054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15054">pdf</a>, <a href="https://arxiv.org/format/2312.15054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Unusual magnetism of the axion-insulator candidate Eu$_5$In$_2$Sb$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+M+N">M. N. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicken%2C+T+J">T. J. Hicken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pratt%2C+F+L">F. L. Pratt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlandi%2C+F">F. Orlandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalyavin%2C+D+D">D. D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bereciartua%2C+P">P. Bereciartua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sukhanov%2C+A+S">A. S. Sukhanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thompson%2C+J+D">J. D. Thompson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+S+M">S. M. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosa%2C+P+F+S">P. F. S. Rosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lancaster%2C+T">T. Lancaster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">F. Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janoschek%2C+M">M. Janoschek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15054v1-abstract-short" style="display: inline;"> Eu$_5$In$_2$Sb$_6$ is a member of a family of orthorhombic nonsymmorphic rare-earth intermetallics that combines large localized magnetic moments and itinerant exchange with a low carrier density and perpendicular glide planes. This may result in special topological crystalline (wallpaper fermion) or axion insulating phases. Recent studies of Eu$_5$In$_2$Sb$_6$ single crystals have revealed coloss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15054v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15054v1-abstract-full" style="display: none;"> Eu$_5$In$_2$Sb$_6$ is a member of a family of orthorhombic nonsymmorphic rare-earth intermetallics that combines large localized magnetic moments and itinerant exchange with a low carrier density and perpendicular glide planes. This may result in special topological crystalline (wallpaper fermion) or axion insulating phases. Recent studies of Eu$_5$In$_2$Sb$_6$ single crystals have revealed colossal negative magnetoresistance and multiple magnetic phase transitions. Here, we clarify this ordering process using neutron scattering, resonant elastic X-ray scattering, muon spin-rotation, and magnetometry. The nonsymmorphic and multisite character of Eu$_5$In$_2$Sb$_6$ results in coplanar noncollinear magnetic structure with an Ising-like net magnetization along the $a$ axis. A reordering transition, attributable to competing ferro- and antiferromagnetic couplings, manifests as the onset of a second commensurate Fourier component. In the absence of spatially resolved probes, the experimental evidence for this low-temperature state can be interpreted either as an unusual double-$q$ structure or in a phase separation scenario. The net magnetization produces variable anisotropic hysteretic effects which also couple to charge transport. The implied potential for functional domain physics and topological transport suggests that this structural family may be a promising platform to implement concepts of topological antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15054v1-abstract-full').style.display = 'none'; document.getElementById('2312.15054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11961">arXiv:2312.11961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11961">pdf</a>, <a href="https://arxiv.org/format/2312.11961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.126402">10.1103/PhysRevLett.133.126402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of giant circular dichroism induced by electronic chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Wu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bereciartua%2C+P">Pablo Bereciartua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Wezel%2C+J">Jasper van Wezel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11961v1-abstract-short" style="display: inline;"> Chiral phases of matter, characterized by a definite handedness, abound in nature, ranging from the crystal structure of quartz to spiraling spin states in helical magnets. In $1T$-TiSe$_2$ a source of chirality has been proposed that stands apart from these classical examples as it arises from combined electronic charge and quantum orbital fluctuations. This may allow its chirality to be accessed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11961v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11961v1-abstract-full" style="display: none;"> Chiral phases of matter, characterized by a definite handedness, abound in nature, ranging from the crystal structure of quartz to spiraling spin states in helical magnets. In $1T$-TiSe$_2$ a source of chirality has been proposed that stands apart from these classical examples as it arises from combined electronic charge and quantum orbital fluctuations. This may allow its chirality to be accessed and manipulated without imposing either structural or magnetic handedness. However, direct bulk evidence that broken inversion symmetry and chirality are intrinsic to TiSe$_2$ remains elusive. Here, employing resonant elastic scattering of x-rays, we reveal the presence of giant circular dichroism up to $\sim$ 40$\%$ at forbidden Bragg peaks that emerge at the charge and orbital ordering transition. The dichroism varies dramatically with incident energy and azimuthal angle. Comparison to calculated scattering intensities unambiguously traces its origin to bulk chiral electronic order in ${\mathrm{TiSe}}_2$ and establishes resonant elastic x-ray scattering as a sensitive probe to electronic chirality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11961v1-abstract-full').style.display = 'none'; document.getElementById('2312.11961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 126402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01767">arXiv:2312.01767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01767">pdf</a>, <a href="https://arxiv.org/format/2312.01767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopic signatures and origin of a hidden order in Ba$_2$MgReO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J">Jian-Rui Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merkel%2C+M+E">Maximilian E. Merkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pourovskii%2C+L">Leonid Pourovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDivkovi%C4%87%2C+I">Ivica 沤ivkovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malanyuk%2C+O">Oleg Malanyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%A1sztorov%C3%A1%2C+J">Jana P谩sztorov谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirai%2C+D">Daigorou Hirai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urru%2C+A">Andrea Urru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tolj%2C+D">Davor Tolj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiore-Mosca%2C+D">Dario Fiore-Mosca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O">Oleg Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spaldin%2C+N+A">Nicola A. Spaldin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ederer%2C+C">Claude Ederer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">Henrik M. R酶nnow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01767v1-abstract-short" style="display: inline;"> Clarifying the underlying mechanisms that govern ordering transitions in condensed matter systems is crucial for comprehending emergent properties and phenomena. While transitions are often classified as electronically driven or lattice-driven, we present a departure from this conventional paradigm in the case of the double perovskite Ba$_2$MgReO$_6$. Leveraging resonant and non-resonant elastic x&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01767v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01767v1-abstract-full" style="display: none;"> Clarifying the underlying mechanisms that govern ordering transitions in condensed matter systems is crucial for comprehending emergent properties and phenomena. While transitions are often classified as electronically driven or lattice-driven, we present a departure from this conventional paradigm in the case of the double perovskite Ba$_2$MgReO$_6$. Leveraging resonant and non-resonant elastic x-ray scattering techniques, we unveil the simultaneous ordering of structural distortions and charge quadrupoles at a critical temperature of $T_\mathrm{q}$$\sim$33 K. Using a variety of complementary first-principles-based computational techniques, we demonstrate that while electronic interactions drive the ordering at $T_\mathrm{q}$, it is ultimately the lattice that dictates the specific ground state that emerges. Our findings highlight the crucial interplay between electronic and lattice degrees of freedom, providing a unified framework to understand and predict unconventional emergent phenomena in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01767v1-abstract-full').style.display = 'none'; document.getElementById('2312.01767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01114">arXiv:2310.01114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.01114">pdf</a>, <a href="https://arxiv.org/format/2310.01114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2023.171276">10.1016/j.jmmm.2023.171276 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Co$^{2+}$-Ir$^{5+}$ orbital hybridization in LaCaCoIrO$_6$ double perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bufai%C3%A7al%2C+L">L. Bufai莽al</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">J. R. L. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pohlmann%2C+T">T. Pohlmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fontes%2C+M+B">M. B. Fontes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bittar%2C+E+M">E. M. Bittar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01114v1-abstract-short" style="display: inline;"> Here, we report on the structural, electronic, and magnetic properties of a polycrystalline sample of the LaCaCoIrO$_6$ double-perovskite investigated by means of synchrotron x-ray powder diffraction, x-ray absorption spectroscopy, and x-ray magnetic circular dichroism at the Co and Ir $L_{2,3}$ edges, magnetometry, and electrical transport. Our results indicate a configuration of nearly Co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01114v1-abstract-full').style.display = 'inline'; document.getElementById('2310.01114v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01114v1-abstract-full" style="display: none;"> Here, we report on the structural, electronic, and magnetic properties of a polycrystalline sample of the LaCaCoIrO$_6$ double-perovskite investigated by means of synchrotron x-ray powder diffraction, x-ray absorption spectroscopy, and x-ray magnetic circular dichroism at the Co and Ir $L_{2,3}$ edges, magnetometry, and electrical transport. Our results indicate a configuration of nearly Co$^{2+}$/Ir$^{5+}$ configuration for the transition-metal ions, with spin canting within the Co antiferromagnetic superstructure responsible for the ferromagnetic-like behavior observed below 100 K. The highly insulating character of LaCaCoIrO$_6$ and its positive magnetoresistance further suggest that this antiferromagnetic superexchange interaction occurs through an indirect hybridization between the Co $e_g$ orbitals <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01114v1-abstract-full').style.display = 'none'; document.getElementById('2310.01114v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Magnetism and Magnetic Materials 587, 171276 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15392">arXiv:2307.15392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15392">pdf</a>, <a href="https://arxiv.org/format/2307.15392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electronic structure and lattice dynamics of 1T-VSe$_2$: origin of the 3D-CDW </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Diego%2C+J">Josu Diego</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Subires%2C+D">D. Subires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaney%2C+D+A">D. A. Chaney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korshunov%2C+A">A. Korshunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diekmann%2C+F">F. Diekmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahatha%2C+K">K. Mahatha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pardo%2C+V">V. Pardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+P+J+B">Pablo J. Bereciartua Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popescu%2C+C">C. Popescu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tallarida%2C+M">M. Tallarida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">J. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bianco%2C+R">Raffaello Bianco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monacelli%2C+L">Lorenzo Monacelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bosak%2C+A">A. Bosak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossnagel%2C+K">K. Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fumega%2C+A+O">Adolfo O. Fumega</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15392v1-abstract-short" style="display: inline;"> In order to characterize in detail the charge density wave (CDW) transition of 1$T$-VSe$_2$, its electronic structure and lattice dynamics are comprehensively studied by means of x-ray diffraction, angle resolved photoemission (ARPES), diffuse and inelastic x-ray scattering (IXS), and state-of-the-art first principles density functional theory calculations. Resonant elastic x-ray scattering (REXS)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15392v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15392v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15392v1-abstract-full" style="display: none;"> In order to characterize in detail the charge density wave (CDW) transition of 1$T$-VSe$_2$, its electronic structure and lattice dynamics are comprehensively studied by means of x-ray diffraction, angle resolved photoemission (ARPES), diffuse and inelastic x-ray scattering (IXS), and state-of-the-art first principles density functional theory calculations. Resonant elastic x-ray scattering (REXS) does not show any resonant enhancement at either V or Se K-edges, indicating that the CDW peak describes a purely structural modulation of the electronic ordering. ARPES identifies (i) a pseudogap at T$&gt;$T$_{CDW}$, which leads to a depletion of the density of states in the $ML-M&#39;L&#39;$ plane at T$&lt;$T$_{CDW}$, and (ii) anomalies in the electronic dispersion reflecting a sizable impact of phonons on it. A diffuse scattering precursor, characteristic of soft phonons, is observed at room temperature (RT) and leads to the full collapse of the low-energy phonon ($蠅_1$) with propagation vector (0.25 0 -0.3) r.l.u. We show that the frequency and linewidth of this mode are anisotropic in momentum space, reflecting the momentum dependence of the electron-phonon interaction (EPI), hence demonstrating that the origin of the CDW is, to a much larger extent, due to the momentum dependence EPI with a small contribution from nesting. The pressure dependence of the $蠅_1$ soft mode remains nearly constant up to 13 GPa at RT, with only a modest softening before the transition to the high-pressure monoclinic $C2/m$ phase. The wide set of experimental data are well captured by our state-of-the art first-principles anharmonic calculations with the inclusion of van der Waals (vdW) corrections in the exchange-correlation functional. The description of the electronics and dynamics of VSe$_2$ reported here adds important pieces of information to the understanding of the electronic modulations of TMDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15392v1-abstract-full').style.display = 'none'; document.getElementById('2307.15392v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10883">arXiv:2306.10883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10883">pdf</a>, <a href="https://arxiv.org/ps/2306.10883">ps</a>, <a href="https://arxiv.org/format/2306.10883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.214427">10.1103/PhysRevB.107.214427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 3d and 5d electronic structures and orbital hybridization in Ba- and Ca-doped La2CoIrO6 double perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">J. R. L. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pohlmann%2C+T">T. Pohlmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jesus%2C+J+R">J. R. Jesus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Macchiutti%2C+C">C. Macchiutti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bittar%2C+E+M">E. M. Bittar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bufai%C3%A7al%2C+L">L. Bufai莽al</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10883v1-abstract-short" style="display: inline;"> Here we present a detailed investigation of the Co and Ir local electronic structures in La1.5A0.5CoIrO6 (A = Ba, Ca) compounds in order to unravel the orbital hybridization mechanism in these CoIr-based double perovskites. Our results of x-ray powder diffraction, ac and dc magnetization, Co and Ir L2,3-edges and Co K-edge x-ray absorption spectroscopy and x-ray magnetic circular dichroism suggest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10883v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10883v1-abstract-full" style="display: none;"> Here we present a detailed investigation of the Co and Ir local electronic structures in La1.5A0.5CoIrO6 (A = Ba, Ca) compounds in order to unravel the orbital hybridization mechanism in these CoIr-based double perovskites. Our results of x-ray powder diffraction, ac and dc magnetization, Co and Ir L2,3-edges and Co K-edge x-ray absorption spectroscopy and x-ray magnetic circular dichroism suggest a competition between magnetic interactions. A dominant antiferromagnetic coupling is found to be responsible for the ferrimagnetic behavior observed for A = Ca below approximately 96 K, the competing magnetic phases and the cationic disorder in this compound giving rise to a spin-glass state at low temperatures. For the A = Ba, on the other hand, there is no evidence of long range order down to its spin-glass transition temperature. The remarkably different magnetic properties observed between these two compounds is discussed in terms of the structural distortion that alters the strength of the Co - Ir couplings, with a relevant role played by the Co 3d eg - Ir 5d j = 1/2 hybridization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10883v1-abstract-full').style.display = 'none'; document.getElementById('2306.10883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 107, 214427 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07653">arXiv:2305.07653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07653">pdf</a>, <a href="https://arxiv.org/format/2305.07653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.266701">10.1103/PhysRevLett.130.266701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant elastic X-ray scattering of antiferromagnetic superstructures in EuPtSi$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Simeth%2C+W">Wolfgang Simeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+A">Andreas Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+C">Christian Franz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aqeel%2C+A">Aisha Aqeel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+P+J+B">Pablo J. Bereciartua Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J+A">Jennifer A. Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Back%2C+C+H">Christian H. Back</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfleiderer%2C+C">Christian Pfleiderer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07653v1-abstract-short" style="display: inline;"> We report resonant elastic X-ray scattering (REXS) of long-range magnetic order in EuPtSi$_{\text{3}}$, combining different scattering geometries with full linear polarization analysis to unambiguously identify magnetic scattering contributions. At low temperatures, EuPtSi$_{\text{3}}$ stabilizes type A antiferromagnetism featuring various long-wavelength modulations. For magnetic fields applied i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07653v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07653v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07653v1-abstract-full" style="display: none;"> We report resonant elastic X-ray scattering (REXS) of long-range magnetic order in EuPtSi$_{\text{3}}$, combining different scattering geometries with full linear polarization analysis to unambiguously identify magnetic scattering contributions. At low temperatures, EuPtSi$_{\text{3}}$ stabilizes type A antiferromagnetism featuring various long-wavelength modulations. For magnetic fields applied in the hard magnetic basal plane, well-defined regimes of cycloidal, conical, and fan-like superstructures may be distinguished that encompass a pocket of commensurate type A order without superstructure. For magnetic field applied along the easy axis, the phase diagram comprises the cycloidal and conical superstructures only. Highlighting the power of polarized REXS, our results reveal a combination of magnetic phases that suggest a highly unusual competition between antiferromagnetic exchange interactions with Dzyaloshinsky--Moriya spin--orbit coupling of similar strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07653v1-abstract-full').style.display = 'none'; document.getElementById('2305.07653v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.07974">arXiv:2205.07974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.07974">pdf</a>, <a href="https://arxiv.org/format/2205.07974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.064427">10.1103/PhysRevB.108.064427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Element resolved evidence of superdiffusive terahertz spin current arising from ultrafast demagnetization process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cosco%2C+F">F. Cosco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malik%2C+R+S">R. S. Malik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+S">S. Saha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+A">A. Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pohlmann%2C+T">T. Pohlmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">J. R. L. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stefanuik%2C+R">R. Stefanuik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soderstrom%2C+J">J. Soderstrom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanyal%2C+B">B. Sanyal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karis%2C+O">O. Karis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svedlindh%2C+P">P. Svedlindh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oppeneer%2C+P+M">P. M. Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knut%2C+R">R. Knut</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.07974v2-abstract-short" style="display: inline;"> Using element-specific measurements of the ultrafast demagnetization of Ru/Fe$_{65}$Co$_{35}$ heterostructures, we show that Ru can exhibit a significant magnetic contrast (3% asymmetry) resulting from ultrafast spin currents emanating from the demagnetization process of the FeCo layer. We use this magnetic contrast to investigate how superdiffusive spin currents are affected by the doping of heav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07974v2-abstract-full').style.display = 'inline'; document.getElementById('2205.07974v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.07974v2-abstract-full" style="display: none;"> Using element-specific measurements of the ultrafast demagnetization of Ru/Fe$_{65}$Co$_{35}$ heterostructures, we show that Ru can exhibit a significant magnetic contrast (3% asymmetry) resulting from ultrafast spin currents emanating from the demagnetization process of the FeCo layer. We use this magnetic contrast to investigate how superdiffusive spin currents are affected by the doping of heavy elements in the FeCo layer. We find that the spin currents are strongly suppressed, and that the recovery process in Ru slows down, by Re doping. This is in accordance with a change in interface reflectivity of spin currents as found by the superdiffusive spin transport model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07974v2-abstract-full').style.display = 'none'; document.getElementById('2205.07974v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05972">arXiv:2205.05972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05972">pdf</a>, <a href="https://arxiv.org/ps/2205.05972">ps</a>, <a href="https://arxiv.org/format/2205.05972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L100205">10.1103/PhysRevB.103.L100205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of local structural heterogeneities and long-range ferroelectricity in Pb-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dey%2C+K">Koushik Dey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahad%2C+A">Abdul Ahad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gautam%2C+K">Kamini Gautam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tripathy%2C+A">Abinash Tripathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majid%2C+S+S">Sofi Suhail Majid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+C">Carsten Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+M">MN Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sagdeo%2C+A">Archna Sagdeo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Welter%2C+E">Edmund Welter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vittayakorn%2C+N">Naratip Vittayakorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sathe%2C+V+G">Vasant G. Sathe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rawat%2C+R">Rajeev Rawat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+D+K">Dinesh Kumar Shukla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05972v1-abstract-short" style="display: inline;"> Environmentally benign (1-x)Ba(Ti$_{0.8}$Zr$_{0.2}$)O$_3$-x(Ba$_{0.7}$Ca$_{0.3}$)TiO$_3$ (BZT-BCT) ceramics are promising materials due to their remarkable high piezoresponse [Liu and Ren, Phys. Rev. Lett. \textbf{103}, 257602 (2009)]. In this Letter, by focusing on local and average structure in combination with macroscopic electromechanical and dielectric measurements we demonstrate the structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05972v1-abstract-full').style.display = 'inline'; document.getElementById('2205.05972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05972v1-abstract-full" style="display: none;"> Environmentally benign (1-x)Ba(Ti$_{0.8}$Zr$_{0.2}$)O$_3$-x(Ba$_{0.7}$Ca$_{0.3}$)TiO$_3$ (BZT-BCT) ceramics are promising materials due to their remarkable high piezoresponse [Liu and Ren, Phys. Rev. Lett. \textbf{103}, 257602 (2009)]. In this Letter, by focusing on local and average structure in combination with macroscopic electromechanical and dielectric measurements we demonstrate the structure property relationship in the tetragonal BZT-BCT ceramic. During high-temperature cubic to tetragonal phase transformation, polar nanoregions are manifested through the spontaneous volume ferroelectrostriction at temperatures below $\sim$ 477 K. Temperature-dependent local structural investigations across the Zr K edge extended x-ray absorption fine structure spectroscopy reveal an anomalous collaboration between the ZrO$_{6}$ and TiO$_6$ octahedra. These octahedra compromise their individuality during polarization development. The presence of domains of submicron size embedded inside the macroscopic ferroelectric regions below T$_{m}$, as well as their hierarchical arrangement, is observed by piezo-response force microscopy. Effects of the existence of the structural/polar heterogeneities below T$_{m}$ are observed also when polarizibilities of the poled and the unpoled samples are compared; the poled sample is found to be more susceptible to the electric field. In addition, by using electric field dependent x-ray diffraction studies we also show that this ceramic under field exhibits reduction of tetragonal distortion, which is consistent with earlier reports. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05972v1-abstract-full').style.display = 'none'; document.getElementById('2205.05972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05211">arXiv:2201.05211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05211">pdf</a>, <a href="https://arxiv.org/format/2201.05211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.L012032">10.1103/PhysRevResearch.5.L012032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of Multiple Stacking Charge Density Waves in Kagome Superconductor ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Q">Qian Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yihao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plueckthun%2C+C">Christian Plueckthun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+J">Ji Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05211v4-abstract-short" style="display: inline;"> The recently discovered Kagome family ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ (A = K, Rb, Cs) exhibits rich physical phenomena, including non-trivial topological electronic structure, giant anomalous Hall effect, charge density waves (CDW) and superconductivity. Notably, CDW in ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ is evidenced to intertwine with its superconductivity and topology, but its nature remains elus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05211v4-abstract-full').style.display = 'inline'; document.getElementById('2201.05211v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05211v4-abstract-full" style="display: none;"> The recently discovered Kagome family ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ (A = K, Rb, Cs) exhibits rich physical phenomena, including non-trivial topological electronic structure, giant anomalous Hall effect, charge density waves (CDW) and superconductivity. Notably, CDW in ${\mathrm{AV}}_3{\mathrm{Sb}}_5$ is evidenced to intertwine with its superconductivity and topology, but its nature remains elusive. Here, we combine x-ray scattering experiments and density-functional theory calculations to investigate the CDWs in ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$ and demonstrate the coexistence of 2 $\times$ 2 $\times$ 2 and 2 $\times$ 2 $\times$ 4 CDW stacking phases. Competition between these CDW phases is revealed by tracking the temperature evolution of CDW intensities, which also manifests in different transition temperatures during warming- and cooling measurements. We also identify a meta-stable quenched state of ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$ after fast-cooling process. Our study demonstrates the coexistence of competing CDW stacking in ${\mathrm{CsV}}_3{\mathrm{Sb}}_5$, offering new insights in understanding the novel properties of this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05211v4-abstract-full').style.display = 'none'; document.getElementById('2201.05211v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, L012032 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.02527">arXiv:2108.02527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.02527">pdf</a>, <a href="https://arxiv.org/format/2108.02527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.097203">10.1103/PhysRevLett.127.097203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden Charge Order in an Iron Oxide Square-Lattice Compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jung-Hwa Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">Darren C. Peets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reehuis%2C+M">Manfred Reehuis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adler%2C+P">Peter Adler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maljuk%2C+A">Andrey Maljuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritschel%2C+T">Tobias Ritschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allison%2C+M+C">Morgan C. Allison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">Jochen Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">Jose R. L. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perez%2C+P+J+B">Pablo J. Bereciartua Perez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A+C">Andrew C. Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+T">Thomas Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abdala%2C+P+M">Paula M. Abdala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pattison%2C+P">Philip Pattison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dosanjh%2C+P">Pinder Dosanjh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.02527v1-abstract-short" style="display: inline;"> Since the discovery of charge disproportionation in the FeO$_2$ square-lattice compound Sr$_3$Fe$_2$O$_7$ by M枚ssbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained &#34;hidden&#34; to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02527v1-abstract-full').style.display = 'inline'; document.getElementById('2108.02527v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.02527v1-abstract-full" style="display: none;"> Since the discovery of charge disproportionation in the FeO$_2$ square-lattice compound Sr$_3$Fe$_2$O$_7$ by M枚ssbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained &#34;hidden&#34; to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO$_2$ planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty to detect them by conventional probes. We discuss implications of these findings for research on &#34;hidden order&#34; in other materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.02527v1-abstract-full').style.display = 'none'; document.getElementById('2108.02527v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PRL in press, 12 pages including Supplementary, CIF files available as ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 097203 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06508">arXiv:2107.06508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06508">pdf</a>, <a href="https://arxiv.org/ps/2107.06508">ps</a>, <a href="https://arxiv.org/format/2107.06508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/acea11">10.1088/1361-648X/acea11 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sublattice spin reversal and field induced $Fe^{3+}$ spin-canting across the magnetic compensation temperature in $Y_{1.5}Gd_{1.5}Fe_{5}O_{12}$ rare-earth iron garnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuila%2C+M">Manik Kuila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">Jose Renato Linares Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tayal%2C+A">Akhil Tayal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+V+R">V. Raghavendra Reddy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06508v3-abstract-short" style="display: inline;"> In the present work $Fe^{3+}$ sublattice spin reversal and $Fe^{3+}$ spin-canting across the magnetic compensation temperature ($T_{Comp}$) are demonstrated in polycrystalline $Y_{1.5}Gd_{1.5}Fe_{5}O_{12}$ (YGdIG) by means of in-field $^{57}Fe$ M$\ddot{o}$ssbauer spectroscopy measurements. Corroborating in-field $^{57}Fe$ M$\ddot{o}$ssbauer measurements, both $Fe^{3+}$ &amp; $Gd^{3+}$ sublattice spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06508v3-abstract-full').style.display = 'inline'; document.getElementById('2107.06508v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06508v3-abstract-full" style="display: none;"> In the present work $Fe^{3+}$ sublattice spin reversal and $Fe^{3+}$ spin-canting across the magnetic compensation temperature ($T_{Comp}$) are demonstrated in polycrystalline $Y_{1.5}Gd_{1.5}Fe_{5}O_{12}$ (YGdIG) by means of in-field $^{57}Fe$ M$\ddot{o}$ssbauer spectroscopy measurements. Corroborating in-field $^{57}Fe$ M$\ddot{o}$ssbauer measurements, both $Fe^{3+}$ &amp; $Gd^{3+}$ sublattice spin reversal has also been manifested with x-ray magnetic circular dichroism (XMCD) measurement in hard x-ray region. Moreover from in-field $^{57}Fe$ M$\ddot{o}$ssbauer measurements, estimation and analysis of effective internal hyperfine field ($H_{eff}$), relative intensity of absorption lines in a sextet elucidated unambiguously the signatures of $Fe^{3+}$ spin reversal, their continuous transition and field induced spin-canting of $Fe^{3+}$ sublattices across $T_{Comp}$. Further, Fe K- (Gd $L_{3}$-) edge XMCD signal is observed to consist of additional spectral features, those are identified from $Gd^{3+}$ ($Fe^{3+}$) magnetic ordering, enabling us the extraction of both the sublattices ($Fe^{3+}$ &amp; $Gd^{3+}$) information from a single edge analysis. The evolution of the magnetic moments as a function of temperature for both magnetic sublattices extracted either at the Fe K- or Gd $L_3$-edge agree quite well with values that are extracted from bulk magnetization data of YGdIG and YIG ($Y_{3}Fe_{5}O_{12}$). These measurements pave new avenues to investigate how the magnetic behavior of such complex system acts across the compensation point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06508v3-abstract-full').style.display = 'none'; document.getElementById('2107.06508v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 35 (2023) 445801 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03979">arXiv:2010.03979</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.03979">pdf</a>, <a href="https://arxiv.org/format/2010.03979">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.214438">10.1103/PhysRevB.102.214438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static magnetic proximity effects and spin Hall magnetoresistance in Pt/Y$_{3}$Fe$_{5}$O$_{12}$ and inverted Y$_{3}$Fe$_{5}$O$_{12}$/Pt bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gepr%C3%A4gs%2C+S">Stephan Gepr盲gs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klewe%2C+C">Christoph Klewe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+S">Sibylle Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graulich%2C+D">Dominik Graulich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schade%2C+F">Felix Schade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+M">Marc Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+S+P">Stephen P. Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollefs%2C+K">Katharina Ollefs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilhelm%2C+F">Fabrice Wilhelm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rogalev%2C+A">Andrei Rogalev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+Y">Yves Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goennenwein%2C+S+T+B">Sebastian T. B. Goennenwein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opel%2C+M">Matthias Opel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuschel%2C+T">Timo Kuschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+R">Rudolf Gross</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03979v1-abstract-short" style="display: inline;"> The magnetic state of heavy metal Pt thin films in proximity to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$ has been investigated systematically by means of x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity measurements combined with angle-dependent magnetotransport studies. To reveal intermixing effects as the possible cause for induced magnetic moments in Pt, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03979v1-abstract-full').style.display = 'inline'; document.getElementById('2010.03979v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03979v1-abstract-full" style="display: none;"> The magnetic state of heavy metal Pt thin films in proximity to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$ has been investigated systematically by means of x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity measurements combined with angle-dependent magnetotransport studies. To reveal intermixing effects as the possible cause for induced magnetic moments in Pt, we compare thin film heterostructures with different order of the layer stacking and different interface properties. For standard Pt layers on Y$_{3}$Fe$_{5}$O$_{12}$ thin films, we do not detect any static magnetic polarization in Pt. These samples show an angle-dependent magnetoresistance behavior, which is consistent with the established spin Hall magnetoresistance. In contrast, for the inverted layer sequence, Y$_{3}$Fe$_{5}$O$_{12}$ thin films grown on Pt layers, Pt displays a finite induced magnetic moment comparable to that of all-metallic Pt/Fe bilayers. This magnetic moment is found to originate from finite intermixing at the Y$_{3}$Fe$_{5}$O$_{12}$/Pt interface. As a consequence, we found a complex angle-dependent magnetoresistance indicating a superposition of the spin Hall and the anisotropic magnetoresistance in these type of samples. Both effects can be disentangled from each other due to their different angle dependence and their characteristic temperature evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03979v1-abstract-full').style.display = 'none'; document.getElementById('2010.03979v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 214438 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02195">arXiv:2010.02195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02195">pdf</a>, <a href="https://arxiv.org/format/2010.02195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0032584">10.1063/5.0032584 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantitative comparison of the magnetic proximity effect in Pt detected by XRMR and XMCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Graulich%2C+D">Dominik Graulich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krieft%2C+J">Jan Krieft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moskaltsova%2C+A">Anastasiia Moskaltsova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demir%2C+J">Johannes Demir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peters%2C+T">Tobias Peters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pohlmann%2C+T">Tobias Pohlmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertram%2C+F">Florian Bertram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wollschl%C3%A4ger%2C+J">Joachim Wollschl盲ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">Jose R. L. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuschel%2C+T">Timo Kuschel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02195v2-abstract-short" style="display: inline;"> X-ray resonant magnetic reflectivity (XRMR) allows for the simultaneous measurement of structural, optical and magnetooptic properties and depth profiles of a variety of thin film samples. However, a same-beamtime same-sample systematic quantitative comparison of the magnetic properties observed with XRMR and x-ray magnetic circular dichroism (XMCD) is still pending. Here, the XRMR results (Pt L&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02195v2-abstract-full').style.display = 'inline'; document.getElementById('2010.02195v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02195v2-abstract-full" style="display: none;"> X-ray resonant magnetic reflectivity (XRMR) allows for the simultaneous measurement of structural, optical and magnetooptic properties and depth profiles of a variety of thin film samples. However, a same-beamtime same-sample systematic quantitative comparison of the magnetic properties observed with XRMR and x-ray magnetic circular dichroism (XMCD) is still pending. Here, the XRMR results (Pt L$_{3}$ absorption edge) for the magnetic proximity effect in Pt deposited on the two different ferromagnetic materials Fe and Co$_{33}$Fe$_{67}$ are compared with quantitatively analyzed XMCD results. The obtained results are in very good quantitative agreement between the absorption-based (XMCD) and reflectivity-based (XRMR) techniques taking into account an ab initio calculated magnetooptic conversion factor for the XRMR analysis. Thus, it is shown that XRMR provides quantitative reliable spin depth profiles important for spintronic and spin caloritronic transport phenomena at this type of magnetic interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02195v2-abstract-full').style.display = 'none'; document.getElementById('2010.02195v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 118, 012407 (2021) and may be found at https://aip.scitation.org/doi/abs/10.1063/5.0032584</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 118, 012407 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13702">arXiv:2006.13702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.13702">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.013128">10.1103/PhysRevResearch.3.013128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structurally assisted melting of excitonic correlations in 1T-TiSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Burian%2C+M">Max Burian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porer%2C+M">Michael Porer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">Jose R. L. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Esposito%2C+V">Vincent Esposito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parchenko%2C+S">Sergii Parchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burganov%2C+B">Bulat Burganov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gurung%2C+N">Namrata Gurung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramakrishnan%2C+M">Mahesh Ramakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scagnoli%2C+V">Valerio Scagnoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizi%2C+F">Federica Fabrizi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+Y">Yoshikazu Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Togashi%2C+T">Tadashi Togashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubota%2C+Y">Yuya Kubota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yabashi%2C+M">Makina Yabashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossnagel%2C+K">Kai Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+S+L">Steven L. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13702v1-abstract-short" style="display: inline;"> The simultaneous condensation of electronic and structural degrees of freedom gives rise to new states of matter, including superconductivity and charge-density-wave formation. When exciting such a condensed system, it is commonly assumed that the ultrafast laser pulse disturbs primarily the electronic order, which in turn destabilizes the atomic structure. Contrary to this conception, we show her&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13702v1-abstract-full').style.display = 'inline'; document.getElementById('2006.13702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13702v1-abstract-full" style="display: none;"> The simultaneous condensation of electronic and structural degrees of freedom gives rise to new states of matter, including superconductivity and charge-density-wave formation. When exciting such a condensed system, it is commonly assumed that the ultrafast laser pulse disturbs primarily the electronic order, which in turn destabilizes the atomic structure. Contrary to this conception, we show here that structural destabilization of few atoms causes melting of the macroscopic ordered charge-density wave in 1T-TiSe2. Using ultrafast pump-probe non-resonant and resonant X-ray diffraction, we observe full suppression of the Se 4p orbital order and the atomic structure at excitation energies more than one order of magnitude below the suggested excitonic binding energy. Complete melting of the charge-density wave occurs 4-5 times faster than expected from a purely electronic charge-screening process, strongly suggesting a structurally assisted breakup of excitonic correlations. Our experimental data clarifies several questions on the intricate coupling between structural and electronic order in stabilizing the charge-density-wave in 1T-TiSe2. The results further show that electron-phonon-coupling can lead to different, energy dependent phase-transition pathways in condensed matter systems, opening new possibilities in the conception of non-equilibrium phenomena at the ultrafast scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13702v1-abstract-full').style.display = 'none'; document.getElementById('2006.13702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 013128 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.08215">arXiv:2004.08215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.08215">pdf</a>, <a href="https://arxiv.org/format/2004.08215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/ab8fdc">10.1088/1361-6463/ab8fdc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advanced data analysis procedure for hard x-ray resonant magnetic reflectivity discussed for Pt thin film samples of various complexity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krieft%2C+J">Jan Krieft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graulich%2C+D">Dominik Graulich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moskaltsova%2C+A">Anastasiia Moskaltsova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouchenoire%2C+L">Laurence Bouchenoire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuschel%2C+T">Timo Kuschel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.08215v1-abstract-short" style="display: inline;"> X-ray resonant magnetic reflectivity (XRMR) is a powerful method to determine the optical, structural and magnetic depth profiles of a variety of thin films. Here, we investigate samples of different complexity all measured at the Pt L$_3$ absorption edge to determine the optimal procedure for the analysis of the experimental XRMR curves, especially for nontrivial bi- and multilayer samples that i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08215v1-abstract-full').style.display = 'inline'; document.getElementById('2004.08215v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.08215v1-abstract-full" style="display: none;"> X-ray resonant magnetic reflectivity (XRMR) is a powerful method to determine the optical, structural and magnetic depth profiles of a variety of thin films. Here, we investigate samples of different complexity all measured at the Pt L$_3$ absorption edge to determine the optimal procedure for the analysis of the experimental XRMR curves, especially for nontrivial bi- and multilayer samples that include differently bonded Pt from layer to layer. The software tool ReMagX is used to fit these data and model the magnetooptic depth profiles based on a highly adaptable layer stack which is modified to be a more precise and physically consistent representation of the real multilayer system. Various fitting algorithms, iterative optimization approaches and a detailed analysis of the asymmetry ratio features as well as $蠂^2$ (goodness of fit) landscapes are utilized to improve the agreement between measurements and simulations. We present a step-by-step analysis procedure tailored to the Pt thin film systems to take advantage of the excellent magnetic sensitivity and depth resolution of XRMR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08215v1-abstract-full').style.display = 'none'; document.getElementById('2004.08215v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. D: Appl. Phys. 53, 375004 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01406">arXiv:2004.01406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.01406">pdf</a>, <a href="https://arxiv.org/format/2004.01406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.220202">10.1103/PhysRevB.101.220202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of the high Seebeck coefficient of the misfit [Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$] cobaltate from site-specific valency and spin-state determinations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ahad%2C+A">Abdul Ahad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gautam%2C+K">K. Gautam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majid%2C+S+S">S. S. Majid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahman%2C+F">F. Rahman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Groot%2C+F+M+F">Frank M. F. De Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+D+K">D. K. Shukla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01406v2-abstract-short" style="display: inline;"> Layered misfit cobaltate [Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$], which emerged as an important thermoelectric material~[A. C. Masset et al. Phys. Rev. B, 62, 166 (2000)], has been explored extensively in the last decade for the exact mechanism behind its high Seebeck coefficient. Its complex crystal and electronic structures have inhibited consensus among such investigations. This situation has arisen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01406v2-abstract-full').style.display = 'inline'; document.getElementById('2004.01406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01406v2-abstract-full" style="display: none;"> Layered misfit cobaltate [Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$], which emerged as an important thermoelectric material~[A. C. Masset et al. Phys. Rev. B, 62, 166 (2000)], has been explored extensively in the last decade for the exact mechanism behind its high Seebeck coefficient. Its complex crystal and electronic structures have inhibited consensus among such investigations. This situation has arisen mainly due to difficulties in accurate identification of the chemical state, spin state, and site symmetries in its two subsystems (rocksalt [Ca$_2$CoO$_3$] and triangular [CoO$_2$]). By employing resonant photoemission spectroscopy and x-ray absorption spectroscopy along with charge transfer multiplet simulations (at the Co ions), we have successfully identified the site symmetries, valencies and spin states of the Co in both layers. Our site-symmetry observations explain the experimental value of the high Seebeck coefficient and also confirm that the carriers hop within the rocksalt layer, which is in contrast to earlier reports where hopping within triangular CoO$_2$ layer has been held responsible for the large Seebeck coefficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01406v2-abstract-full').style.display = 'none'; document.getElementById('2004.01406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures and 1 supplementary with 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 220202(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12187">arXiv:1911.12187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12187">pdf</a>, <a href="https://arxiv.org/format/1911.12187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.144435">10.1103/PhysRevB.102.144435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asymmetric modification of the magnetic proximity effect in Pt/Co/Pt trilayers by the insertion of a Ta buffer layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mukhopadhyay%2C+A">Ankan Mukhopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vayalil%2C+S+K">Sarathlal Koyiloth Vayalil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graulich%2C+D">Dominik Graulich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahamed%2C+I">Imran Ahamed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kashyap%2C+A">Arti Kashyap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuschel%2C+T">Timo Kuschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+P+S+A">P S Anil Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12187v1-abstract-short" style="display: inline;"> The magnetic proximity effect in top and bottom Pt layers induced by Co in Ta/Pt/Co/Pt multilayers has been studied by interface sensitive, element specific x-ray resonant magnetic reflectivity. The asymmetry ratio for circularly polarized x-rays of left and right helicity has been measured at the Pt $L_3$ absorption edge (11567 eV) with an in-plane magnetic field ($\pm158$ mT) to verify its magne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12187v1-abstract-full').style.display = 'inline'; document.getElementById('1911.12187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12187v1-abstract-full" style="display: none;"> The magnetic proximity effect in top and bottom Pt layers induced by Co in Ta/Pt/Co/Pt multilayers has been studied by interface sensitive, element specific x-ray resonant magnetic reflectivity. The asymmetry ratio for circularly polarized x-rays of left and right helicity has been measured at the Pt $L_3$ absorption edge (11567 eV) with an in-plane magnetic field ($\pm158$ mT) to verify its magnetic origin. The proximity-induced magnetic moment in the bottom Pt layer decreases with the thickness of the Ta buffer layer. Grazing incidence x-ray diffraction has been carried out to show that the Ta buffer layer induces the growth of Pt(011) rather than Pt(111) which in turn reduces the induced moment. A detailed density functional theory study shows that an adjacent Co layer induces more magnetic moment in Pt(111) than in Pt(011). The manipulation of the magnetism in Pt by the insertion of a Ta buffer layer provides a new way of controlling the magnetic proximity effect which is of huge importance in spin-transport experiments across similar kind of interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12187v1-abstract-full').style.display = 'none'; document.getElementById('1911.12187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 144435 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13390">arXiv:1910.13390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13390">pdf</a>, <a href="https://arxiv.org/format/1910.13390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0874-0">10.1038/s41567-020-0874-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in $伪$-RuCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J+A">J. A. Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chern%2C+L+E">Li Ern Chern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Subin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bereciartua%2C+P+J">P. J. Bereciartua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+B">Yong Baek Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-June Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13390v1-abstract-short" style="display: inline;"> $伪$-RuCl$_3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13390v1-abstract-full').style.display = 'inline'; document.getElementById('1910.13390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13390v1-abstract-full" style="display: none;"> $伪$-RuCl$_3$ is drawing much attention as a promising candidate Kitaev quantum spin liquid. However, despite intensive research efforts, controversy remains about the form of the basic interactions governing the physics of this material. Even the sign of the Kitaev interaction (the bond-dependent anisotropic interaction responsible for Kitaev physics) is still under debate, with conflicting results from theoretical and experimental studies. The significance of the symmetric off-diagonal exchange interaction (referred to as the $螕$ term) is another contentious question. Here, we present resonant elastic x-ray scattering data that provides unambiguous experimental constraints to the two leading terms in the magnetic interaction Hamiltonian. We show that the Kitaev interaction ($K$) is ferromagnetic, and that the $螕$ term is antiferromagnetic and comparable in size to the Kitaev interaction. Our findings also provide a natural explanation for the large anisotropy of the magnetic susceptibility in $伪$-RuCl$_3$ as arising from the large $螕$ term. We therefore provide a crucial foundation for understanding the interactions underpinning the exotic magnetic behaviours observed in $伪$-RuCl$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13390v1-abstract-full').style.display = 'none'; document.getElementById('1910.13390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, two-column, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.00371">arXiv:1908.00371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.00371">pdf</a>, <a href="https://arxiv.org/format/1908.00371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.224430">10.1103/PhysRevB.101.224430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic and orbital correlations in multiferroic CaMn$_7$O$_{12}$ probed by x-ray resonant elastic scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gautam%2C+K">K. Gautam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majid%2C+S+S">S. S. Majid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahad%2C+A">A. Ahad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dey%2C+K">K. Dey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sankar%2C+R">R. Sankar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+F+C">F. C. Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+D+K">D. K. Shukla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.00371v2-abstract-short" style="display: inline;"> The quadruple perovskite CaMn$_7$O$_{12}$ is a topical multiferroic, in which the hierarchy of electronic correlations driving structural distortions, modulated magnetism, and orbital order is not well known and may vary with temperature. x-ray resonant elastic scattering (XRES) provides a momentum-resolved tool to study these phenomena, even in very small single crystals, with valuable informatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00371v2-abstract-full').style.display = 'inline'; document.getElementById('1908.00371v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.00371v2-abstract-full" style="display: none;"> The quadruple perovskite CaMn$_7$O$_{12}$ is a topical multiferroic, in which the hierarchy of electronic correlations driving structural distortions, modulated magnetism, and orbital order is not well known and may vary with temperature. x-ray resonant elastic scattering (XRES) provides a momentum-resolved tool to study these phenomena, even in very small single crystals, with valuable information encoded in its polarization- and energy-dependence. We present an application of this technique to CaMn$_7$O$_{12}$. By polarization analysis, it is possible to distinguish superstructure reflections associated with magnetic order and orbital order. Given the high momentum resolution, we resolve a previously unknown splitting of an orbital order superstructure peak, associated with a distinct \textit{locked-in} phase at low temperatures. A second set of orbital order superstructure peaks can then be interpreted as a second-harmonic orbital signal. Surprisingly, the intensities of the first- and second-harmonic orbital signal show disparate temperature and polarization dependence. This orbital re-ordering may be driven by an exchange mechanism, that becomes dominant over the Jahn-Teller instability at low temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00371v2-abstract-full').style.display = 'none'; document.getElementById('1908.00371v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures and 1 supplementary with 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 224430 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01930">arXiv:1904.01930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.01930">pdf</a>, <a href="https://arxiv.org/ps/1904.01930">ps</a>, <a href="https://arxiv.org/format/1904.01930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0327-2">10.1038/s41563-019-0327-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Suzuki%2C+H">H. Suzuki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gretarsson%2C+H">H. Gretarsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishikawa%2C+H">H. Ishikawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueda%2C+K">K. Ueda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukusta%2C+D">D. Kukusta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A">A. Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sears%2C+J+A">J. A. Sears</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wille%2C+H+-">H. -C. Wille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nuss%2C+J">J. Nuss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B+J">B. J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khaliullin%2C+G">G. Khaliullin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yavas%2C+H">H. Yavas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01930v2-abstract-short" style="display: inline;"> Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the Higgs mode in particle physics. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key paramete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01930v2-abstract-full').style.display = 'inline'; document.getElementById('1904.01930v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01930v2-abstract-full" style="display: none;"> Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the Higgs mode in particle physics. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including the Hund&#39;s-rule, spin-orbit, and exchange interactions) are comparable in magnitude, and their interplay is poorly understood - partly due to difficulties in synthesizing sizable single crystals for spectroscopic experiments. Here we introduce a resonant inelastic x-ray scattering (RIXS) technique capable of probing collective modes in microcrystals of $4d$-electron materials. We present a comprehensive set of data on spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu$_{2}$O$_{6}$, which possesses an unusually high N茅el temperature. The new RIXS method provides fresh insight into the unconventional magnetism of SrRu$_{2}$O$_{6}$, and enables momentum-resolved spectroscopy of a large class of $4d$ transition-metal compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01930v2-abstract-full').style.display = 'none'; document.getElementById('1904.01930v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The original submitted version of the published manuscript. https://www.nature.com/articles/s41563-019-0327-2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.06920">arXiv:1808.06920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.06920">pdf</a>, <a href="https://arxiv.org/format/1808.06920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.085125">10.1103/PhysRevB.99.085125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pseudospin-lattice coupling in the spin-orbit Mott insulator Sr2IrO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Porras%2C+J">J. Porras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertinshaw%2C+J">J. Bertinshaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khaliullin%2C+G">G. Khaliullin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+N+H">N. H. Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+-">J. -W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steffens%2C+P">P. Steffens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">G. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Effimenko%2C+A">A. Effimenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A">A. Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casa%2C+D">D. Casa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">X. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gog%2C+T">T. Gog</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B+J">B. J. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.06920v2-abstract-short" style="display: inline;"> Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We present a comprehensive study of the static magnetism and low-energy pseudospin dynamics in the archetypal spin-orbit Mott insulator Sr2IrO4. We find&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06920v2-abstract-full').style.display = 'inline'; document.getElementById('1808.06920v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.06920v2-abstract-full" style="display: none;"> Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We present a comprehensive study of the static magnetism and low-energy pseudospin dynamics in the archetypal spin-orbit Mott insulator Sr2IrO4. We find that in order to understand even basic magnetization measurements, a formerly overlooked in-plane anisotropy is fundamental. In addition to magnetometry, we use neutron diffraction, inelastic neutron scattering and resonant elastic and inelastic x-ray scattering to identify and quantify the interactions that determine the global symmetry of the system and govern the linear responses of pseudospins to external magnetic felds and their low-energy dynamics. We find that a pseudospin-only Hamiltonian is insufficient for an accurate description of the magnetism in Sr2IrO4 and that pseudospin-lattice coupling is essential. This finding should be generally applicable to other pseudospin systems with sizable orbital moments sensitive to anisotropic crystalline environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06920v2-abstract-full').style.display = 'none'; document.getElementById('1808.06920v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text:11 pages, 12 figures Supplementary Material: 3 pages, 2 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 085125 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.09032">arXiv:1807.09032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.09032">pdf</a>, <a href="https://arxiv.org/format/1807.09032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Impact of magnetic moment and anisotropy of Co$_\textrm{1-x}$Fe$_\textrm{x}$ thin films on the magnetic proximity effect of Pt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bougiatioti%2C+P">Panagiota Bougiatioti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manos%2C+O">Orestis Manos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuschel%2C+O">Olga Kuschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wollschl%C3%A4ger%2C+J">Joachim Wollschl盲ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tolkiehn%2C+M">Martin Tolkiehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuschel%2C+T">Timo Kuschel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.09032v2-abstract-short" style="display: inline;"> We present a systematic study of the magnetic proximity effect in Pt, depending on the magnetic moment and anisotropy of adjacent metallic ferromagnets. Element-selective x-ray resonant magnetic reflectivity measurements at the Pt absorption edge (11565$\,$eV) are carried out to investigate the spin polarization of Pt in Pt/Co$_\textrm{1-x}$Fe$_\textrm{x}$ bilayers. We observe the largest magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09032v2-abstract-full').style.display = 'inline'; document.getElementById('1807.09032v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.09032v2-abstract-full" style="display: none;"> We present a systematic study of the magnetic proximity effect in Pt, depending on the magnetic moment and anisotropy of adjacent metallic ferromagnets. Element-selective x-ray resonant magnetic reflectivity measurements at the Pt absorption edge (11565$\,$eV) are carried out to investigate the spin polarization of Pt in Pt/Co$_\textrm{1-x}$Fe$_\textrm{x}$ bilayers. We observe the largest magnetic moment of (0.72$\,\pm\,$0.03)$\, 渭_\textrm{B}$ per spin polarized Pt atom in Pt/Co$_\textrm{33}$Fe$_\textrm{67}$, following the Slater-Pauling curve of magnetic moments in Co-Fe alloys. In general, a clear linear dependence is observed between the Pt moment and the moment of the adjacent ferromagnet. Further, we study the magnetic anisotropy of the magnetized Pt which clearly adopts the magnetic anisotropy of the ferromagnet below. This is depicted for Pt on Fe(001) and on Co$_\textrm{50}$Fe$_\textrm{50}$(001), which have a 45$^{\circ}$ relative rotation of the fourfold magnetocrystalline anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.09032v2-abstract-full').style.display = 'none'; document.getElementById('1807.09032v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07061">arXiv:1803.07061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.07061">pdf</a>, <a href="https://arxiv.org/format/1803.07061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.214422">10.1103/PhysRevB.97.214422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M+C">M. C. Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J+-">J. -R. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J">J. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D+Y">D. Y. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+F">Y. F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07061v3-abstract-short" style="display: inline;"> We use resonant elastic x-ray scattering to determine the evolution of magnetic order in EuCd$_2$As$_2$ below $T_\textrm{N}=9.5$\,K, as a function of temperature and applied magnetic field. We find an A-type antiferromagneticstructure with in-plane magnetic moments, and observe dramatic magnetoresistive effects associated with field-induced changes in the magnetic structure and domain populations.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07061v3-abstract-full').style.display = 'inline'; document.getElementById('1803.07061v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07061v3-abstract-full" style="display: none;"> We use resonant elastic x-ray scattering to determine the evolution of magnetic order in EuCd$_2$As$_2$ below $T_\textrm{N}=9.5$\,K, as a function of temperature and applied magnetic field. We find an A-type antiferromagneticstructure with in-plane magnetic moments, and observe dramatic magnetoresistive effects associated with field-induced changes in the magnetic structure and domain populations. Our \textit{ab initio} electronic structure calculations indicate that the Dirac dispersion found in the nonmagnetic Dirac semimetal Cd$_3$As$_2$ is also present in EuCd$_2$As$_2$, but is gapped for $T &lt; T_\textrm{N}$ due to the breaking of $C_3$ symmetry by the magnetic structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07061v3-abstract-full').style.display = 'none'; document.getElementById('1803.07061v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental information attached to preprint</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 214422 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.07495">arXiv:1508.07495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.07495">pdf</a>, <a href="https://arxiv.org/ps/1508.07495">ps</a>, <a href="https://arxiv.org/format/1508.07495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.024421">10.1103/PhysRevB.93.024421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of Gd$T_2$Zn$_{20}$ (T = Fe, Co) investigated by X-ray diffraction and spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mardegan%2C+J+R+L">J. R. L. Mardegan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbris%2C+G">G. Fabbris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haskel%2C+D">D. Haskel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ribeiro%2C+R+A">R. A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avila%2C+M+A">M. A. Avila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giles%2C+C">C. Giles</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.07495v1-abstract-short" style="display: inline;"> We investigate the magnetic and electronic properties of the Gd$T_2$Zn$_{20}$ ($T$ = Fe and Co) compounds using X-ray resonant magnetic scattering (XRMS), X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) techniques. The XRMS measurements reveal that the GdCo$_2$Zn$_{20}$ compound has a commensurate antiferromagnetic spin structure with a magnetic propagatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07495v1-abstract-full').style.display = 'inline'; document.getElementById('1508.07495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.07495v1-abstract-full" style="display: none;"> We investigate the magnetic and electronic properties of the Gd$T_2$Zn$_{20}$ ($T$ = Fe and Co) compounds using X-ray resonant magnetic scattering (XRMS), X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) techniques. The XRMS measurements reveal that the GdCo$_2$Zn$_{20}$ compound has a commensurate antiferromagnetic spin structure with a magnetic propagation vector $\vec蟿$ = $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ below the N茅el temperature ($T_N \sim$ 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation $螕_6$. For the ferromagnetic GdFe$_2$Zn$_{20}$ compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD techniques. A strong XMCD signal of about 12.5 $\%$ and 9.7 $\%$ is observed below the Curie temperature ($T_C \sim$ 85 K) at the Gd-$L_2$ and $L_3$ edges, respectively. In addition, a small magnetic signal of about 0.06 $\%$ of the jump is recorded at the Zn $K$-edge suggesting that the Zn 4$p$ states are spin polarized by the Gd 5$d$ extended orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.07495v1-abstract-full').style.display = 'none'; document.getElementById('1508.07495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.0113">arXiv:1411.0113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.0113">pdf</a>, <a href="https://arxiv.org/format/1411.0113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.097401">10.1103/PhysRevLett.115.097401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Static magnetic proximity effect in Pt/NiFe2O4 and Pt/Fe bilayers investigated by x-ray resonant magnetic reflectivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuschel%2C+T">Timo Kuschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klewe%2C+C">Christoph Klewe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmalhorst%2C+J">Jan-Michael Schmalhorst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertram%2C+F">Florian Bertram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuckmann%2C+O">Olga Schuckmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schemme%2C+T">Tobias Schemme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wollschl%C3%A4ger%2C+J">Joachim Wollschl盲ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">Sonia Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J枚rg Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+A">Arunava Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meinert%2C+M">Markus Meinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B6tz%2C+G">Gerhard G枚tz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+D">Daniel Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reiss%2C+G">G眉nter Reiss</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.0113v2-abstract-short" style="display: inline;"> The spin polarization of Pt in Pt/NiFe2O4 and Pt/Fe bilayers is studied by interface-sensitive x-ray resonant magnetic reflectivity to investigate static magnetic proximity effects. The asymmetry ratio of the reflectivity was measured at the Pt L3 absorption edge using circular polarized x-rays for opposite directions of the magnetization at room temperature. The results of the 2% asymmetry ratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0113v2-abstract-full').style.display = 'inline'; document.getElementById('1411.0113v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.0113v2-abstract-full" style="display: none;"> The spin polarization of Pt in Pt/NiFe2O4 and Pt/Fe bilayers is studied by interface-sensitive x-ray resonant magnetic reflectivity to investigate static magnetic proximity effects. The asymmetry ratio of the reflectivity was measured at the Pt L3 absorption edge using circular polarized x-rays for opposite directions of the magnetization at room temperature. The results of the 2% asymmetry ratio for Pt/Fe bilayers are independent of the Pt thickness between 1.8 and 20 nm. By comparison with ab initio calculations, the maximum magnetic moment per spin polarized Pt atom at the interface is determined to be $(0.6\pm0.1)\,渭_{B}$ for Pt/Fe. For Pt/NiFe2O4 the asymmetry ratio drops below the sensitivity limit of $0.02\,渭_{B}$ per Pt atom. Therefore, we conclude, that the longitudinal spin Seebeck effect recently observed in Pt/NiFe2O4 is not influenced by a proximity induced anomalous Nernst effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0113v2-abstract-full').style.display = 'none'; document.getElementById('1411.0113v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 097401 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.1355">arXiv:1304.1355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1304.1355">pdf</a>, <a href="https://arxiv.org/ps/1304.1355">ps</a>, <a href="https://arxiv.org/format/1304.1355">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.224421">10.1103/PhysRevB.86.224421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ho and Fe magnetic ordering in multiferroic HoFe3(BO3)O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+D+K">D. K. Shukla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skaugen%2C+A">A. Skaugen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bezmaternykh%2C+L+N">L. N. Bezmaternykh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gudim%2C+I+A">I. A. Gudim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Temerov%2C+V+L">V. L. Temerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.1355v1-abstract-short" style="display: inline;"> Resonant and non-resonant X-ray scattering studies on HoFe3(BO3)O4 reveal competing magnetic ordering of Ho and Fe moments. Temperature and X-ray polarization dependent measurements employed at the Ho L3 edge directly reveal a spiral spin order of the induced Ho moments in the ab-plane propagating along the c-axis, a screw-type magnetic structure. At about 22.5 K the Fe spins are observed to rotat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1355v1-abstract-full').style.display = 'inline'; document.getElementById('1304.1355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.1355v1-abstract-full" style="display: none;"> Resonant and non-resonant X-ray scattering studies on HoFe3(BO3)O4 reveal competing magnetic ordering of Ho and Fe moments. Temperature and X-ray polarization dependent measurements employed at the Ho L3 edge directly reveal a spiral spin order of the induced Ho moments in the ab-plane propagating along the c-axis, a screw-type magnetic structure. At about 22.5 K the Fe spins are observed to rotate within the basal plane inducing spontaneous electric polarization, P. Components of P in the basal plane and along the c-axis can be scaled with the separated magnetic X-ray scattering intensities of the Fe and Ho magnetic sublattices, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1355v1-abstract-full').style.display = 'none'; document.getElementById('1304.1355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 224421 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.1333">arXiv:1304.1333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1304.1333">pdf</a>, <a href="https://arxiv.org/ps/1304.1333">ps</a>, <a href="https://arxiv.org/format/1304.1333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Resonant scattering and diffraction beamline P09 at PETRA III </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reuther%2C+D">D. Reuther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+D+K">D. K. Shukla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skaugen%2C+A">A. Skaugen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulte-Schrepping%2C+H">H. Schulte-Schrepping</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kracht%2C+T">T. Kracht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franz%2C+H">H. Franz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.1333v1-abstract-short" style="display: inline;"> The resonant scattering and diffraction beamline P09 at PETRA III is designed for X-ray experiments requiring small beams, energy tunability, variable polarization and high photon flux. It is highly flexible in terms of beam size and offers full higher harmonic suppression. A state of the art double phase retarder setup provides variable linear or circular polarization. A high precision Psi-diffra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1333v1-abstract-full').style.display = 'inline'; document.getElementById('1304.1333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.1333v1-abstract-full" style="display: none;"> The resonant scattering and diffraction beamline P09 at PETRA III is designed for X-ray experiments requiring small beams, energy tunability, variable polarization and high photon flux. It is highly flexible in terms of beam size and offers full higher harmonic suppression. A state of the art double phase retarder setup provides variable linear or circular polarization. A high precision Psi-diffractometer and a heavy load diffractometer in horizontal Psi-geometry allow the accommodation of a wide variety of sample environments. A 14 T cryo-magnet is available for scattering experiments in magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1333v1-abstract-full').style.display = 'none'; document.getElementById('1304.1333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. 20, 541 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.3051">arXiv:1211.3051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.3051">pdf</a>, <a href="https://arxiv.org/ps/1211.3051">ps</a>, <a href="https://arxiv.org/format/1211.3051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.246405">10.1103/PhysRevLett.109.246405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-magnetic field lattice length changes in URu2Si2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Correa%2C+V+F">V. F. Correa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaime%2C+M">M. Jaime</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+T+P">T. P. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palm%2C+E+C">E. C. Palm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tozer%2C+S+W">S. W. Tozer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacerda%2C+A+H">A. H. Lacerda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+P+A">P. A. Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mydosh%2C+J+A">J. A. Mydosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.3051v1-abstract-short" style="display: inline;"> We report high magnetic field (up to 45 T) c-axis thermal expansion and magnetostriction experiments on URu2Si2 single crystals. The sample length change associated with the transition to the hidden order phase becomes increasingly discontinous as the magnetic field is raised above 25 T. The re-entrant ordered phase III is clearly observed in both the thermal expansion and magnetostriction above 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3051v1-abstract-full').style.display = 'inline'; document.getElementById('1211.3051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.3051v1-abstract-full" style="display: none;"> We report high magnetic field (up to 45 T) c-axis thermal expansion and magnetostriction experiments on URu2Si2 single crystals. The sample length change associated with the transition to the hidden order phase becomes increasingly discontinous as the magnetic field is raised above 25 T. The re-entrant ordered phase III is clearly observed in both the thermal expansion and magnetostriction above 36 T, in good agreement with previous results. The sample length is also discontinuous at the boundaries of this phase, mainly at the upper boundary. A change in the sign of the coefficient of thermal-expansion is observed at the metamagnetic transition (B_M = 38 T) which is likely related to the existence of a quantum critical end point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3051v1-abstract-full').style.display = 'none'; document.getElementById('1211.3051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, to be published in PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1107.1778">arXiv:1107.1778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1107.1778">pdf</a>, <a href="https://arxiv.org/ps/1107.1778">ps</a>, <a href="https://arxiv.org/format/1107.1778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.054419">10.1103/PhysRevB.84.054419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong coupling of Sm and Fe magnetism in SmFeAsO as revealed by magnetic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nandi%2C+S">S. Nandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Y. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Y. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Price%2C+S">S. Price</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+F">X. F. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrero-Mart%C3%ADn%2C+J">J. Herrero-Mart铆n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paolasini%2C+L">L. Paolasini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shukla%2C+D+K">D. K. Shukla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatterji%2C+T">T. Chatterji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mittal%2C+R">R. Mittal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Br%C3%BCckel%2C+T">Th. Br眉ckel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1107.1778v1-abstract-short" style="display: inline;"> The magnetic structures adopted by the Fe and Sm sublattices in SmFeAsO have been investigated using element specific x-ray resonant and non-resonant magnetic scattering techniques. Between 110 and 5 K, the Sm and Fe moments are aligned along the c and a directions, respectively according to the same magnetic representation $螕_{5}$ and the same propagation vector (1, 0, 0.5). Below 5 K, magnetic o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.1778v1-abstract-full').style.display = 'inline'; document.getElementById('1107.1778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1107.1778v1-abstract-full" style="display: none;"> The magnetic structures adopted by the Fe and Sm sublattices in SmFeAsO have been investigated using element specific x-ray resonant and non-resonant magnetic scattering techniques. Between 110 and 5 K, the Sm and Fe moments are aligned along the c and a directions, respectively according to the same magnetic representation $螕_{5}$ and the same propagation vector (1, 0, 0.5). Below 5 K, magnetic order of both sublattices change to a different magnetic structure and the Sm moments reorder in a magnetic unit cell equal to the chemical unit cell. Modeling of the temperature dependence for the Sm sublattice as well as a change in the magnetic structure below 5 K provide a clear evidence of a surprisingly strong coupling between the two sublattices, and indicate the need to include anisotropic exchange interactions in models of SmFeAsO and related compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1107.1778v1-abstract-full').style.display = 'none'; document.getElementById('1107.1778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 84, 054419 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0707.2075">arXiv:0707.2075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0707.2075">pdf</a>, <a href="https://arxiv.org/ps/0707.2075">ps</a>, <a href="https://arxiv.org/format/0707.2075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.0804320105">10.1073/pnas.0804320105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fractalization drives crystalline states in a frustrated spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sebastian%2C+S+E">Suchitra E. Sebastian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+N">N. Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sengupta%2C+P">P. Sengupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palm%2C+E">E. Palm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+T">T. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marcano%2C+N">N. Marcano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dabkowska%2C+H+A">H. A. Dabkowska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaulin%2C+B+D">B. D. Gaulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0707.2075v2-abstract-short" style="display: inline;"> We measure a sequence of quantum Hall-like plateaux at 1/q: 9 &gt;= q &gt;= 2 and p/q = 2/9 fractions in the magnetisation with increasing magnetic field in the geometrically frustrated spin system SrCu2(BO3)2. We find that the entire observed sequence of plateaux is reproduced by solving the Hofstadter problem on the system lattice when short-range repulsive interactions are included, thus providing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2075v2-abstract-full').style.display = 'inline'; document.getElementById('0707.2075v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0707.2075v2-abstract-full" style="display: none;"> We measure a sequence of quantum Hall-like plateaux at 1/q: 9 &gt;= q &gt;= 2 and p/q = 2/9 fractions in the magnetisation with increasing magnetic field in the geometrically frustrated spin system SrCu2(BO3)2. We find that the entire observed sequence of plateaux is reproduced by solving the Hofstadter problem on the system lattice when short-range repulsive interactions are included, thus providing a sterling demonstration of bosons confined by a magnetic and lattice potential mimicking fermions in the extreme quantum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2075v2-abstract-full').style.display = 'none'; document.getElementById('0707.2075v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 105, 20157 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0312163">arXiv:cond-mat/0312163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0312163">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0312163">ps</a>, <a href="https://arxiv.org/format/cond-mat/0312163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Sound modes broadening in quasicrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=de+Boissieu%2C+M">M. de Boissieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Currat%2C+R">R. Currat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kats%2C+E">E. Kats</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0312163v1-abstract-short" style="display: inline;"> We propose a simple phenomenological model to analyze vibrational characteristics of quasicrystals (QCs). The interpretation of the obtained recently data is based on the existence of almost dispersionless optical modes most probably related to the specific clusters which constitute the characteristic building blocks of any QC structure. We generalize to QCs the well - known Akhiezer mechanism,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0312163v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0312163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0312163v1-abstract-full" style="display: none;"> We propose a simple phenomenological model to analyze vibrational characteristics of quasicrystals (QCs). The interpretation of the obtained recently data is based on the existence of almost dispersionless optical modes most probably related to the specific clusters which constitute the characteristic building blocks of any QC structure. We generalize to QCs the well - known Akhiezer mechanism, which in our case is related to a &#39;&#39;long wave&#39;&#39; disturbance of the quasicrystalline optical modes by the propagating sound modes. At higher wave vectors strong hybridization of acoustic and optical modes takes place, and it leads to a more steep broadening dependence on wave vectors, and besides the excitation can no longer be described as a single acoustic mode with a well defined wave vector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0312163v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0312163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 eps figures, Revtex-4, accepted to Phys. Rev. B</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10